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We thank the reviewer for their detailed reading of the text and correspondingly con-
structive feedback which will undoubtedly improve the quality of this work.

Referee comments are cited in jtalics and author’s responses in normal font. Re-
sponses are separated by horizontal lines.

The authors use a machine learning approach (ML) to investigate the impact of bio-
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physical and climatic variables on burned area over a five year period where there are
available data on a global scale. FAPAR appears to be the most important predictor
from their RF simulations. Variables were tested for their impact if they included the
preceeding X number of months. This allowed for the investigation of the impact of
lagged relationships, arguably very important for fire modelling.

I am concerned about the cross-validation strategy employed here (L137. By randomly
choosing the validation dataset the potential for spatial autocorrelation issues arises.
This is well known in the literature (see Roberts et al. 2017; Ploton et al. 2020; Kihn
and Dormann, 2012; Meyer et al. 2019). Here is a snippet from the abstract to the
Rovberts article: ‘Ecological data often show temporal, spatial, hierarchical (random
effects), or phylogenetic structure. Modern statistical approaches are increasingly ac-
counting for such dependencies. However, when performing cross-validation, these
structures are regularly ignored, resulting in serious underestimation of predictive er-
ror. One cause for the poor performance of uncorrected (random) cross-validation,
noted often by modellers, are dependence structures in the data that persist as depen-
dence structures in model residuals, violating the assumption of independence. Even
more concerning, because often overlooked, is that structured data also provides am-
ple opportunity for overfitting with non-causal predictors.”. Because the authors de-
vote considerable space to discussion of these predictors, | think this issue is worth
consideration. The authors also argue [that] the gap in R2 of the training-validation
simulations gives an idea of the generalizability of the model - but that breaks down
if there are spatial autocorrelation issues. Also there is some spatial structure in their
biases (Fig S2) that could be coming from this issue. | would suggest adopting other
CV strategies as outlined in the papers | list above.

Comparing Fig. S2 (in the supplementary materials) to the normalised (by mean ob-
servations) differences (Fig. 2c in the manuscript), the spatial pattern changes if not
disappears. The main spatial patterns apparent from Fig. S2 (in the supplementary
materials) follow the magnitude of mean BA.

Cc2



We will also adjust the number of bins in Fig. 2¢ (in the manuscript) in order to make
the plot easier to read.

Further, the question concerning robustness verification is an important one, and we
thank the reviewer for mentioning it. This will be addressed further below.

As | am not yet convinced by their CV strategy, which is important as it impacts the
results quite heavily, | suggest major revisions as | assume it will take a bit of work to
demonstrate that the chosen CV strategy doesn’t give misleading results.

We have undertaken additional experiments to demonstrate the robustness of our
model against overfitting. Excluding a variable number of grid cells around the test-
ing data grid points (as in Ploton et al. (2020)) while keeping the number of training
grid points constant yields the results shown in Fig. 1.

It can be seen that the performance of the model drops as a larger region around the
test samples is excluded (with 40 pixels corresponding roughly to 1200 km at the equa-
tor). However, as opposed to the case study in Ploton et al. (2020), the performance
remains relatively stable, not dropping below an R2 score of 0.4.

We have also undertaken an analysis of monthly data (as opposed to climatolog-
ical averages) for the time period 11-2000aAT12-2019 (230 months). A different
burnt area dataset, MODIS MCD64CMQ BA, was used for this run. This experi-
ment, the 15VEG_FAPAR_MON experiment, otherwise uses the same variables as
the 15VEG_FAPAR experiment.

These results again show decreased R2 values, which is to be expected given the
higher variance of this data:
+ Using random cross-validation; Test R2: 0.45, OOB R2: 0.45

+ Excluding the years 2009-2012 (including 2012); Test R2: 0.38, OOB R2: 0.45
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+ Excluding the years 2016-2019 (including 2019); Test R2: 0.41, OOB R2: 0.45

Despite the slightly reduced R2 values, the above experiments show that the model is
able to robustly predict BA under spatial and temporal cross-validation scenarios. For
the temporal cross-validation either period 2009-2012 or period 2016-2019 is left out
for testing.

Minor comments:

- Line 78: | am not sure if | understand the DD calculation. If you had, say 5 days in
one month below the precip threshold then 10 into the next. A brief precip event then
the rest of the month below threshold. How does that rate? Would it be concatenated
so the whole month is seen as being DD?

Concatenation is only carried out across month boundaries if the resulting dry-day
period is contiguous. Wetting precipitation events always disrupt a dry-day period. We
have added an example calculation to the manuscript to make this clearer:

“The dry-day period was defined as the longest contiguous period of ERA5 mean daily
precipitation below 0.1 mm day~! (wetting rainfall; Harris et al., 2014; Jolly et al., 2015)
within each month. A period contiguous with the previous month’s dry-day period was
concatenated such that the sum of both (number of days) was used to determine the
longest period. For example, consider a 30-day long month with a 10-day long dry-day
period at the beginning of the month, followed by a wetting precipitation event on day
11, and then a dry-day period for the following 19 days. This month has a dry-day
period of 19 days. However, if the previous month were to terminate in a 10-day long
dry-day period, these 10 days would be added to the initial 10-day dry-day period of
the current month, thereby making this combined dry-day period the longest.”
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- L80: Soil moisture was done how? Was it percent of saturation? relative to field
capacity? Or some sort of index since it is later refered to as SWI.

It is the SWI index as provided by Copernicus, see mention in line 81 of the manuscript.

- L81 - The Kaplan and Lau reference is for the WGLC that is based on the WWLLN,
not the WWLLN directly. It also says it provides the frequency of lightning flashes per
unit area but doesn’t specify that these are ground strikes. Can you please check that
these are indeed cloud to ground and not total (cloud to ground + cloud to cloud)

That is true, WWLLN was used previously because it is the dataset that the WGLC is
based on. The manuscript has been updated to use the WGLC dataset name. We
have also added additional references regarding the type of lightning strokes detected
by the network; the WWLLN network is unable to rule out detection of any cloud to
cloud strikes but is most sensitive to cloud to ground strikes:

“We used the WGLC dataset (Kaplan and Lau, 2019) which provides counts of monthly
lightning strikes. It is based on the World Wide Lightning Location Network (WWLLN)
dataset, which mainly detects cloud-to-ground strikes (Rodger et al., 2004; Abarca et
al., 2010), as opposed to LIS (Blrgesser, 2017).

- Table 1: For the AGB datasets, was there any overlapping latitudes between the two
datasets? If so, how was that dealt with?

Both datasets were first averaged from the original resolution to a 0.25° x 0.25° grid,
then mosaicked to the global extent by taking the mean. This has been pointed out in
the updated manuscript, along with the original resolutions of the individual datasets:

“Tree AGB was obtained by mosaicking AGB datasets for the tropics (Avitabile et al.,
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2016, 1 km resolution) and for northern forests (Thurner et al., 2014, 0.01° resolution)
using the mean after resampling each to a common spatial resolution of 0.25°.”

- L105 - | am concerned about the gap-filling approach.So for SWI doesn’t this mean
that it would assume drought conditions? How often would you have this condition
applied (outside of winter, L100)?

As shown in Fig. 2 for FAPAR, outside of winter the minimum value filling is virtually
never applied. Additionally, it is mostly limited to northern latitudes in winter, as ex-
pected.

Regarding the filling of SWI, this should not have a big influence on the final results
because we are not using antecedent values of SWI in any case. Since we don’t
expect fires during the winter, having (by necessity of gap filling) unphysical values
of SWI in the winter should not affect results where relevant for our analysis. Other
variables (e.g. low temperature during the winter) should be sufficient for the random
forest model to ignore these SWI values.

-L110: | don't follow what was done here. What do those numbers mean? This is the
smallest area of herb or crop in a pixel?

They are indeed the smallest observed area of HERB or CROP in a pixel. Missing land
cover was previously filled using these values to prevent excessive data gaps.

However, this has now become obsolete due to renewed processing of the landcover
dataset (to enable processing of a longer time period for specific runs). Consequently,
this line has been removed from the manuscript.

- L125: | think X is referring to both the variables (FAPAR, etc.) and a single month,
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i.e. I think you are saying variable X at month, t, has the seasonal cycle for variable X
(called in the text, X 12M) subtracted from it? Please reconsider how this is formulated
in the text. This doesn’t work as written.

That is correct. We have improved the clarity of the manuscript by writing X OM’ instead
of ‘X’ to reflect the fact that this refers to the variable ‘X’ in the current month.

-Table 2: To help choose which variables were useful for the ML algorithm (and which
might only be contributing to overfitting), why did the authors not try applying one of the
most standard techniques available such as recursive feature elimination with crossval-
idation (available in scikit-learn, which the authors are already using (L132); Pedregosa
etal. 2011)? These techniques could help get around arbitrary choices about the num-
ber of predictors, e.g. why 15 and not 10 or 207

Part of our original intention was to evaluate how different importance measures affect
the choice of variables. While RFECV is of course possible to carry out in principle, this
is usually easily done with the Gini importance which is quite cheap (computationally)
to calculate, as it only considers data already seen during training. Unfortunately, this
also means that RFECYV fails to account for overfitting, as it only considers the training
data when calculating feature importance (Meyer et al., 2019). In contrast, the differ-
ent approaches we utilise to calculate feature importance (aiming to calculate a more
robust metric) are computationally demanding, making an approach such as RFECV
infeasible.

While we agree that the choice of 15 predictors is somewhat arbitrary, this is heuristi-
cally based on the slope of the feature importance plots (see Fig. 3). Looking at these
feature importances, where the importance change is ‘flat’ (by inspection) after 15 vari-
ables, no additional information was being conveyed. Therefore, we decided to use
this as our threshold.
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Given this choice of 15 variables (and some constraints as discussed in the
manuscript), we also carry out an iterative approach where we investigate different
sets of variables to determine which combination of vegetation variables yields the
best results. This was done to balance the computationally intensive nature of the CV
calculations with the ability to answer the question “Which vegetation proxy is the most
important?”.

- Why does Fig S2/2/3/7/etc. have straight line cutoffs? Top of Mexico, Australia, E of
Iran. Plotting error? Real problem? | don't recall this being mentioned in the main text
but it is in all figures. Fig 3-Also for v. low BA, what about grey instead of black? Would
be easier to see the larger BA values...

The ‘block-shapes’ are caused by our choice of AGB dataset, which we have mentioned
in all relevant figure captions in the updated manuscript. We have also changed the
way BA is plotted to more correctly highlight areas with missing data as shown in Fig. 4.

We have added grey shading to indicate regions with fire data availability, but where
one or more of the other datasets is not available. Light grey indicates regions where
mean BA is 0, with dark grey representing regions with nonzero mean BA.

Note that in addition to the shown changes in this figure, the colour scheme for plot ¢
will also be revised to make the differences more apparent, and the number of divisions
adjusted in order to make the plots clearer.

- L 300- Are those the right refs? Both papers use Causality Analysis and not re-
gression techniques as mentioned here. What aspects of those papers touches on
inclusion of extra predictors and overfitting in a ML approach?

The causality analyses in those papers are also based on regression techniques so
that the same logic applies. In fact, causality methods are often used for predictions in
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the same way as random forests (e.g. Kretschmer, Runge, and Coumou (2017)). The
problem is always: there is a curse of dimensionality in high dimensional regression
problems, and this can lead to overfitting if the dimensions are not controlled in some
way. Our interpretation of random forests here is also causal by considering feature
importances as a measure of driver importance behind the earth system process.

Both papers state, for example, that the explanative power of the machine learning
approach they use (Causal Networks) decreases as additional, irrelevant variables are
included. For example, Nowack et al. (2020) mentions “low detection power [...] if
too many variables are used” and Runge et al. (2019) explains “Ideally, we want to
condition only on the few relevant variables that actually explain a relationship”.

We expect these observations to apply to our methodology, because inclusion of irrele-
vant variables may increase the likelihood of fitting to noise in the data, which, although
likely somewhat mitigated by the bootstrapping employed by the random forest algo-
rithm and cross-validation, may still present an issue.

- p 12 has a lot of ‘discussion’ in the results section. Either have a ‘results and discus-
sion’ section or keep them separate.

As recommended by the reviewer, we have adapted the manuscript to have a combined
‘Results and Discussion’ section.

- Fig 6 - can you not use sci notation for the numbers? It makes it easier to read.
| am not sure if this warrants main text inclusion as it is very simple with almost no
interesting structure. | would put this in supplement and move S2 or S3 into the main.

These figures will be adapted to no longer make use of scientific notation in the tick
labels.
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While results shown in Fig. 6 (in the manuscript) may not be revolutionary or complex,
they do illustrate one of the key findings — the ability to empirically determine and
visualise intuitive interactions between variables. We therefore believe this figure still
warrants inclusion in the main text.

- L310 - what about masking for areas with longer fire return intervals to see if it [then]
pops out as more important?

Unfortunately, even considering the 20-year long MODIS record, we are strongly limited
by the data available to us. Predictability in boreal ecosystems is expected to remain
very limited because the return times are many times longer than the time series, so
there is a very large stochastic component. Therefore, we don’t currently expect this to
be a viable analysis.
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Fig. 1. R2 scores for burnt area (BA) prediction on test samples for different exclusion radii
around the test samples. Each line represents the R2 score for around 333 individual test
samples.
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Fig. 2. The proportion of filled samples for FAPAR, with yellow indicating that all occurrences
of a given month at a given location were filled and purple indicating no filling was done.
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Fig. 3. Sorted variable importance metrics (Gini, PFl, SHAP, and LOCO) for the ALL model,
with the highest variable importance according to each metric at the top. Note alternative

metrics are greyed out.
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Fig. 4. (a) Average observed (Ob.) BA derived from the GFED4 BA dataset. (b) Out-of-sample
predictions (Pr.) by the ALL model. (c) Relative prediction error of the ALL model.

C17



