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Dear René Orth,

Thank you for your thorough review which will surely enhance the quality of this work.

Referee comments are cited in italics and author’s responses in normal font. Re-
sponses are separated by horizontal lines.

This study investigates the role of antecedent fuel and moisture conditions for global
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temporal and spatial fire patterns represented by burnt area. Using a suite of ran-
dom forest models with different sets of explanatory variables, the authors show
that both antecedent moisture and fuel conditions are relevant for accurately mod-
elling/predicting observed burnt areas. Thereby, the time scales extend over a few
months prior to the fire, with pronounced variations across biomes.

Recommendation: I think the paper requires moderate revisions.

This is an interesting analysis that is both relevant to the readership of Biogeosciences
and a timely contribution to the ecohydrology-fire community. Legacy effects undoubt-
edly affect wildfire dynamics and can be a potential source of difficulties of state-of-
the-art models to accurately capture fire dynamics across time scales. The machine
learning approach in concert with various ecological and meteorological datasets is
therefore well suited to study the underlying relationships without prior assumptions to
finally provide valuable insights for the development of physically-based models. How-
ever, I have some concerns regarding the robustness of the analysis with respect to
the gap filling strategy, the employed fire dataset and the relatively short analysis time
period, which should to be addressed before the paper is published in Biogeosciences.

General comments:

(1) While I recognize the necessity to perform gap filling for the random forest approach
in this study, I do not really like the strategy. Persistent gaps are filled using minimum
values which in the case of soil water index would produce artifical droughts. While I
actually do not fully understand the difference between transient and persistent gaps
I agree with the authors that applying a regression-based can be suitable to fill short
gaps of a few months. Nevertheless, and especially for the longer gaps extending
across several consecutive months I think at least the role of the gap filling for the final
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conclusions needs to be tested. This could be done by additionally using an alternative
gap filling strategy, or by adding random noise to the gap filled values which could be
scaled by the typical inter-annual dynamics of the respective month-of-year or season
of the concerned metric.

(2) It is known that there are differences between fire datasets. To illustrate the robust-
ness of the findings of this study, it would be helpful to re-compute selected key figures
with the MODIS-based ESA CCI fire dataset (Chuvieco et al. 2018).

(3) I agree with the authors that the relatively short analysis time period could have
a impact on the results, particularly with respect to the long legacy effects. In this
context, as lightning data which limits the available time period is not employed in all
experiments with 15 predictors, they could be performed with more input data covering
a longer time period.

(4) I really like that different metrics are jointly used to quantify the importance of the
predictors in a robust way. It would be great if the authors could add some information
in the (dis?)agreement of the results between the individual importance metrics, also
to inform similar future analyses.

I do not wish to remain anonymous - Rene Orth.

(1) The algorithm used to discern the location of ‘permanent’ as opposed to ‘transient’
gaps utilises the amount of missing information for a specific month at each location.
For example, if a certain grid cell was missing data for more than 50% of all Decembers
in the record, these gaps in December would be treated as a permanent gap and
therefore subject to filling by minimum values. Remaining gaps are treated as transient
and therefore filled using the regression model outlined in the text.

Use of a different gap filling mechanism (Fig. 1 on the left; temporal nearest-neighbour
gap-filling) yields very similar results (this applies to ALE plots, too). This simple
nearest-neighbour gap-filling approach works by considering timeseries at each lo-
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cation and filling gaps by using the temporally closest valid sample at that location.
Of the two approaches, we have decided to use the season-trend model with minima
filling because it represents a more physical solution, which is based on an approach
previously used for vegetation variables (see Beck et al. 2006), for which one would
expect minima to occur during winter.

Additionally, we have quantified how many samples were filled using minimum values
outside of winter, and as can be seen in Fig. 2, virtually no samples are filled using
minimum values outside of winter in the northern extreme latitudes.

Regarding the filling of SWI, this should not have a big influence on the final results
because we are not using antecedent values of SWI in any case. Since we don’t
expect fires during the winter, having (by necessity of gap filling) unphysical values of
SWI in the winter should not affect results where relevant for our analysis.

(2 & 3) In our revised manuscript, we present an analysis of monthly data (as op-
posed to climatological averages) for the time period 11-2000–12-2019 (230 months),
which also expands upon the previously limited temporal range. A different burnt
area dataset, MODIS MCD64CMQ BA, was also used for this run. This experi-
ment, the 15VEG_FAPAR_MON experiment, otherwise uses the same variables as
the 15VEG_FAPAR experiment.

These results show decreased R2 values, which is to be expected given the higher
variance of this data:

• Using random cross-validation; Test R2: 0.45, OOB R2: 0.45

• Excluding the years 2009-2012 (including 2012); Test R2: 0.38, OOB R2: 0.45

• Excluding the years 2016-2019 (including 2019); Test R2: 0.41, OOB R2: 0.45

For this temporal cross-validation either period 2009-2012 or period 2016-2019 is left
out for testing.
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The main relationships identified by the model did not change appreciably, however,
showing that there is no temporal change that is important. The spatial patterns are
dominant, since the models behave very similarly when comparing climatological and
monthly data, and the main commonality between those data is the geographical pat-
tern.

For example, the FAPAR ALE plots for the 15VEG_FAPAR (climatological) and
15VEG_FAPAR_MON (monthly, expanded temporal range) models are shown in Fig-
ures 3 and 4, respectively.

These ALEs are highly consistent. Note that the smaller variability in the second plot
(monthly analysis) arises from the fact that a constant proportion of bootstrap samples
is used to construct the shaded region, and since the monthly data has more samples,
these random samples are larger.

Other variables are similarly consistent, e.g. DD 3M as shown in Figures 5 and 6.

We expect results for the MODIS-based ESA CCI fire dataset to be consistent with the
above, since it is based on the same underlying product as the MODIS MCD64CMQ
dataset.

(4) The results shown in Fig. 1 are also indicative of the disagreement between the dif-
ferent importance metrics that were used. We will include an analogous figure (sorted
by combined importance instead of Gini importance) in the updated supplementary
materials, which will show the level of (dis-)agreement between the different metrics.

Specific comments:

line 8: this should be "simulated burnt area" I guess

Correct, this has now been rectified in the abstract.
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25/26: Here you could cite O et al. (2020) and/or other previous studies on related
topics.

This part of the introduction has been rewritten to include more references to previ-
ous studies of the effect of antecedent productivity, moisture, and fuel build-up on fire
activity:

“A number of regional and global studies have indicated the importance of antecedent
fuel build-up for BA. For example, links between fire activity and antecedent productivity
have been found in South Africa (Van Wilgen et al., 2000), central Australia (Griffin et
al., 1983), grass and shrublands in the western US (Littell et al., 2009; Westerling et al.,
2003; Swetnam and Betancourt, 1998), NSW Australia (for bushfire fuel) (Jenkins et
al., 2020), and southern Africa (Archibald et al., 2009). Global studies have identified
similar relationships (a positive relationship between pre-season productivity and fire
activity in the following dry season) in some dry areas. By studying the correlation
between growing period (i.e. antecedent) soil moisture and fire activity, Krawchuk and
Moritz (2011) found fire activity in dry regions to be related to antecedent productivity.
Similarly, van der Werf et al. (2008) found a similar relationship for arid ecosystem
(e.g. N. AUS), where antecedent wet conditions coupled with instantaneous drying
were important. Other global studies have identified northern Australia as obeying this
relationship too (Randerson et al., 2005; Spessa et al., 2005). In a more recent global
analysis, O et al. (2020) found that for arid regions, wet anomalies (soil moisture) lead
to increased fire later in the year by increasing fuel loads and biomass. Thus, it is
clear that a better understanding of the timescales of fuel accumulation, the interaction
between biophysical drivers and fuel build-up, and the effects of antecedent weather
conditions on both fuel loads and fuel drying is needed in order to improve predictions
of BA.”
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line 66: What do you mean here with "visualization techniques"?

Visualisation techniques here refers to the use of ALE plots and SHAP value plots in
order to visualise the relationships between the predictor variables and BA and the
interactions between the different predictor variables. This has been made clearer in
the Introduction.

line 117-125: So this means you are using anomalies in the case of antecedent values
for DD and the vegetation productivity proxies but absolute values in the case of the
current variables? While I can understand the motivation for the removal of the sea-
sonal cycle, I feel this is inconsistent. Why not give it all the random forest model in the
ALL analysis, i.e. absolute and anomaly versions of DD and the vegetation productivity
proxies at current and antecedent times, and let the model decide which of these are
most relevant? This would seem more objective to me.

We are only using anomalies for very large antecedent shifts ≥12 months. The rea-
soning for this was heuristically based on our desire to keep results interpretable, as
opposed to improving the model’s performance. This is because we expect anomalies
with respect to the current year’s seasonal cycle to be more interpretable as opposed to
the absolute values, which are bound to be quite similar to the current year’s value due
to their large autocorrelation (globally, on average). Since the model is able (in theory)
to capture arbitrary, non-linear, relationships between predictor variables, the inclusion
of absolute values or anomalies should not affect the performance of the model (or,
consequently, the feature importances) if the model has access to both the values for
≥12 months and current year’s values (i.e. <12 months). The model should be able
to compute the anomalies itself if these were indeed significant predictors (which, as
it turns out, for the most part they are not). The same also applies in reverse, i.e. the
model should be able to reconstruct the absolute values from the anomalies since it
has access to the current year’s variables which were originally used to compute the
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anomalies in the first place.

line 139-141: Wouldn’t it be more straightforward to use the OOB score for this, in-
stead of dividing the dataset into training and validation parts while it is relatively short
anyway?

We recognise that looking just at the training (in-the-bag) and validation scores is not
valid, which is why we are also including the OOB scores in the updated manuscript.

We are showing OOB results (see Fig. 7) because they are a good indication of how the
model is expected to generalise to unseen data (Fox et al., 2017). However, a separate
validation dataset is still needed in analyses like ours (see also e.g. Joshi and Sukumar
(2021)) because we are optimising the model using the training data. Therefore, even
the OOB data which the model ‘technically’ has never seen influence the choice of
variables, for example. Thus, a truly unseen dataset, the validation dataset, is reserved
for a more unbiased evaluation of how the model should generalise.

line 142-143: Please add a comment why the random forest model is not re-calibrated
for each experiment where different (numbers of) predictors are used.

The random forest models are not individually calibrated because this would be too
computationally demanding. A comment to this end has been added to the manuscript
where we introduce the models and when talking about potential future work.

lines 180-181: Why only the first 300’000?

The SHAP interaction values were only calculated for a limited number of samples
because of the very large computational effort required to do so. However, since a
discussion of the SHAP interaction values is beyond the scope of the current work, we

C8



will omit this statement from the manuscript for clarity.

line 228: I agree with the approach to focus on the most relevant predictors, but why
did you decide on using 15 rather even fewer which could probably reduce overfitting
even more while still preserving most of the model skill?

While we agree that the choice of 15 predictors is somewhat arbitrary, this is heuristi-
cally based on the slope of the feature importance plots (see Fig. 8). Looking at these
feature importances, where the importance change is ‘flat’ (by inspection) after 15 vari-
ables, no additional information was being conveyed. Therefore, we decided to use
this as our threshold.

Given this choice of 15 variables (and some constraints as discussed in the
manuscript), we also carry out an iterative approach where we investigate different
sets of variables to determine which combination of vegetation variables yields the
best results. This was done to balance the computationally intensive nature of the CV
calculations with the ability to answer the question “Which vegetation proxy is the most
important?”.

line 252: I think the FAPAR impact is strongest at high levels rather than intermediate
levels.

That is correct. This sentence has been rephrased to clarify the original intention:
the importance of FAPAR changes most rapidly at intermediate levels of FAPAR. This
is important to clarify, since it establishes that the relationship of current FAPAR and
BA is described by two plateaus at extreme values, combined with a rapid transition
through intermediate values.
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lines 273-277: I think this is a particularly nice result which could be more highlighted
in the abstract or conclusions.

The empirically discovered interactions have now been mentioned both in the abstract
and conclusions.

line 324-326: Couldn’t it be a solution to test the inclusion of antecedent BA as a
predictor in the random forest model?

We expect antecedent burning in previous months to be reflected in the vegetation
variables used in our studies, e.g. a decrease in FAPAR following a fire. The problem
we discuss in lines 324–326, however, would not be addressed by knowledge of the
burnt area in previous months, because here we are concerned with burnt area within
the current month and its effects on our analysis. As we discuss in the manuscript, the
monthly timescales we are working on prevent us from clearly resolving the effects of
fires in the current month.

Figures 2 and 3: More colors are needed for the color bars to enable a finer distinction
of the spatial patterns.

More colours will be added to the colour bar.

Figures 4 and 5: It could be informative to add uncertainty ranges to the curves, for
example by re-running the random forest models many times.

We originally felt that inclusion of such plots might introduce too many visual elements.
However, we have now added uncertainty ranges to Fig. 4 (in the manuscript), gener-
ated by repeated bootstrapping of the training data before generating the plots. This is
shown in Fig. 9 (in the current document).
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However, we believe that due to the large number of curves present in Fig. 5 (in the
manuscript), adding yet more elements to this plot is infeasible without an undue en-
largement of the plot.

Figure 5, caption: "LAI" should probably be removed in "First-order LAI ALEs"; further-
more it is not explained what is meant by first-order and second-order.

That is correct and has now been rectified. The distinction between first-order and
second-order ALE plots had previously been defined in the Methods section, albeit
using the terms 1D and 2D instead of first-order and second-order, respectively. We
have now removed this inconsistency to make this clearer.

Figures 2-6: Please adapt the value labels of the axes and color bars to avoid the use
of the exponent term to improve readability.

We will remove the exponent terms in the labels (see Fig. 9).

Figure 6: Why are there darker colors surrounding the gray area in the upperleft cor-
ner?

These darker colours are the result of the overlap between the grey areas representing
missing data and the colours representing the ALE plot itself. This overlap results from
the fact that ALEs are calculated for each bin edge (thus being plotted as 1

2 in one
cell and 1

2 in the next), while the missing data applies to entire bins (i.e. between the
two bin edges, which is what the tick marks on the plot correspond to). Therefore, the
rectangles indicating missing data end up being shifted by 1

2 of the bin size relative
to the ALE data. This partial overlap is also meant to indicate that the affected ALE
values are less reliable than others.
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Figure 7: Why is there no data in the southern half of Australia?

This spatial artifact is a result of our chosen AGB dataset. This has now been stated
for all figures exhibiting these artifacts.
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Fig. 1. Comparison of feature importances using four metrics (Gini, PFI, SHAP, and LOCO) for
the ALL model using nearest-neighbour filling on the left, and season-trend model filling on the
right.
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Fig. 2. The proportion of filled samples for FAPAR, with yellow indicating that all occurrences
of a given month at a given location were filled and purple indicating no filling was done.
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Fig. 3. First-order ALE plot showing the effect of instantaneous FAPAR on burnt area (BA) in
the 15VEG_FAPAR model after accounting for all other variables.
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Fig. 4. First-order ALE plot showing the effect of instantaneous FAPAR on burnt area (BA) in
the 15VEG_FAPAR_MON model after accounting for all other variables.

C18



Fig. 5. First-order ALE plot showing the effect of the 3-month antecedent dry-day period (DD
3M) on burnt area (BA) in the 15VEG_FAPAR model after accounting for all other variables.
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Fig. 6. First-order ALE plot showing the effect of the 3-month antecedent dry-day period (DD
3M) on burnt area (BA) in the 15VEG_FAPAR_MON model after accounting for all other vari-
ables.
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Fig. 7. Global climatological R2 scores for the different experiments. Note that although train
R2 scores are shown here, train OOB scores are more indicative of model performance on
unseen data.
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Fig. 8. Sorted variable importance metrics (Gini, PFI, SHAP, and LOCO) for the ALL model,
with the highest variable importance according to each metric at the top. Note alternative
metrics are greyed out.
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Fig. 9. First-order ALEs for different antecedent (< 1 yr) relationships with (a) FAPAR and (b)
dry-day period (DD) in the 15VEG_FAPAR model, showing the underlying relationships with
BA.
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