Response to reviews and proposed changes regarding bg-2020-409

We thank all reviewers and the associate editor for their constructive feedback.

Previous responses to reviewers’ comments can be found here: https://bg.copernicus.org/
preprints/bg-2020-409/, but some comments will additionally be treated in more depth below.

As before, referee comments are cited in italics and author’s responses in normal font. Responses are
separated by horizontal lines. However, here we only discuss comments raised by the reviewers that warrant
further discussion. All other comments will be treated as set out in our previous responses (AC1, AC2, AC3, and
AC4, which can be found at the link above). Further, a list of major changes concludes this part of the document,
followed by the tracked changes between the manuscript versions and the new supplementary materials for
reference. Figure numbers and section references in our responses below refer to the updated documents which
are included at the end.

Additional responses to RC2

I am concerned about the cross-validation strategy employed here (L137. By randomly choosing the vali-
dation dataset the potential for spatial autocorrelation issues arises. This is well known in the literature (see
Roberts et al. 2017; Ploton et al. 2020; Kiihn and Dormann, 2012; Meyer et al. 2019). Here is a snippet
from the abstract to the Roberts article: ‘Ecological data often show temporal, spatial, hierarchical (ran-
dom effects), or phylogenetic structure. Modern statistical approaches are increasingly accounting for such
dependencies. However, when performing cross-validation, these structures are regularly ignored, resulting
in serious underestimation of predictive error. One cause for the poor performance of uncorrected (random)
cross-validation, noted often by modellers, are dependence structures in the data that persist as dependence
structures in model residuals, violating the assumption of independence. Even more concerning, because often
overlooked, is that structured data also provides ample opportunity for overfitting with non-causal predictors.’.
Because the authors devote considerable space to discussion of these predictors, I think this issue is worth
consideration. The authors also argue [that] the gap in R2 of the training-validation simulations gives an idea
of the generalizability of the model - but that breaks down if there are spatial autocorrelation issues. Also there
is some spatial structure in their biases (Fig S2) that could be coming from this issue. I would suggest adopting
other CV strategies as outlined in the papers I list above.

As I am not yet convinced by their CV strategy, which is important as it impacts the results quite heavily, 1
suggest major revisions as I assume it will take a bit of work to demonstrate that the chosen CV strategy doesn’t
give misleading results.

In addition to our previous response to RC2 and as already indicated therein, we have made it clear in our
updated manuscript how we assert the robustness of our model. We have included the following in the updated
methods section, which expands upon our previous response:

“However, this is only valid if there is no autocorrelation between the samples. We investigated the degree
of spatial autocorrelation using a variogram of global GFED4 BA which informed a buffered leave-one-out
(B-LOO) CV procedure following Ploton et al.| [2020]. This was carried out to determine how much the
autocorrelation that may be present influences the amount of potential overfitting. We did not employ the
extrapolation-prevention procedure used in [Ploton et al.|[2020] because it led to the exclusion of significant
areas like northern Australia and west Africa. The B-LOO CV was executed as follows, where 7,4, = 50 pixels
and IV; was chosen such that the number of potential training samples was guaranteed to be equal to or above
Ny forall r < 70

1. Randomly choose a single location. The 12 monthly samples at this test location constitute the test set.

2. Exclude samples from the potential training set in a circular region of radius r pixels around the test
location, such that no potential training sample is closer than r pixels to the test location. This limits the
influence of spatial autocorrelation.

3. Randomly choose NV; training samples from all remaining potential training samples.
4. Using a model trained on the above training samples, predict BA for the test location.

5. Increment 7 and repeat steps 1-4 until r has reached 7,4
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This process was repeated 4000 times for each of the eight linearly spaced investigated radii, with the lowest
radius being equal to 0. Due to computational constraints, the B-LOO CV was only carried out for a single set
of variables.”

In the results and discussion section, we go on to explain:

“Using a combination of regional neural networks trained on fewer variables at a coarser spatial resolution
of 1° x 1°, Joshi and Sukumar [2021] found a global R? score for BA prediction of 0.36. An earlier study
by Thomas et al.|[2014] considered an R? score of 0.6 as indicating a robust prediction. Our results compare
favourably to both. To further ensure model robustness, we also compared the PFI importances computed
separately on the training and validation sets in Fig. S6. There is no appreciable difference between the two,
which is indicative of a lack of overfitting, since the model training has not unduly prioritised certain variables
based on the training set [Dankers and Pfisterer, 2020]]. Additionally, using the variogram shown in Fig. S7, we
carried out the B-LOO CV as detailed in Sect. 2.3 in order to investigate the influence of spatial autocorrelation
on the ISVEG_FAPAR model (see Fig. S8). The performance of the model drops as a larger region around
the test samples is excluded (with 30 pixels corresponding to ~900 km at the equator, which is the scale
of autocorrelation identified using Fig. S7). However, as opposed to the case study in [Ploton et al.| [2020],
the R? score plateaus at around 0.1-0.4 beyond ~900 km instead of dropping to 0, thereby indicating the
robustness of our model. Certain regions and extreme events are poorly captured by the model, accounting for
the lower end of this range. Furthermore, the model is potentially forced to extrapolate to a larger extent as
the exclusion radius is increased, leading to an overly pessimistic performance estimate. The extrapolation-
prevention procedure in [Ploton et al.|[2020] was not used here because it led to the exclusion of certain key
regions.”

- L105 - I am concerned about the gap-filling approach.So for SWI doesn’t this mean that it would assume
drought conditions? How often would you have this condition applied (outside of winter, L100)?

We have expanded our previous response by including a more detailed explanation of our gap-filling ap-
proach and the implications for SWI in the manuscript:

“There are gaps in the SWI, FAPAR, LAI, SIF, and VOD datasets in winter months at latitudes above
~60°N, and in the austral winter for southern South America, due to high solar zenith angles for FAPAR, LA,
and SIF and because of snow cover and frozen soil for SWI and VOD [see e.g. Moesinger et al., [2020]. There
are also sporadic missing values in these datasets caused by e.g. cloud cover. Unfortunately, simple exclusion
of the times lacking data is not possible for our analysis because we commonly rely on antecedent samples
throughout. Thus, data gaps were filled using a two-step approach as in [Forkel et al.| [2017] in order to allow
analysis of summer months at the affected locations. This approach differentiates between two gap types based
on the amount of missing information for a specific month at each location.

First, ‘persistent” gaps, defined as months for which 50% or more of the observations across all years are
missing, were filled using the minimum value observed at that location for the given predictor variable. We
assume that this indicates missing data during the winter, since other causes for data gaps (e.g. cloud cover)
are predominantly ‘transient’. For example, if a certain grid cell was missing data for more than 50% of all
Decembers in the record, these gaps in December would be treated as persistent and therefore filled using
minima.

Second, the remaining transient gaps were filled using season-trend regression models with four harmonic
terms (k = 4) and without breakpoints. These models were fitted using ordinary least squares regression to the
entire timeseries obtained during the first step, as mentioned before using data from January 2008 to April 2015
(or November 2000 to December 2019 for the monthly analysis). Cloud cover, which also affects detection in
tropical and subtropical regions, is usually transient, and therefore filled using the regression models. Locations
where no observations were available for > 52 months out of the total 88 months (regardless of whether such
data gaps always occur in the same month, as for persistent gaps, or at any point throughout the year) were
discarded in a trade-off between data quality and geographic extent. For the monthly analysis, locations were
discarded given > 138 unavailable months (out of 239 months).

Use of a different gap filling mechanism (Fig. S1b; temporal nearest-neighbour gap-filling) yielded very
similar results. This simple nearest-neighbour gap-filling approach used for the eventual ALL_NN model
processes timeseries at a given location, filling gaps by using the temporally closest available samples at that
location. Of the two approaches, we decided to use the season-trend model with minima filling because it



represents a more physical solution; it is based on an approach previously used for vegetation variables [see
Beck et al.| 2006], for which one would expect minima to occur during winter. Indeed, as can be seen in
Fig. S2, virtually no samples are being filled with minima outside of winter, and predominantly in the northern
extreme latitudes. While our gap-filling methodology may yield unphysical values for non-vegetation variables
like SWI, we do not expect the filling of SWI to have a big influence on the final results because we do not use
antecedent values of SWI. Since we do not anticipate fires during the winter, having (by necessity of gap filling)
potentially unphysical values of SWI in the winter should not affect results where relevant for our analysis.”

Additional response to RC3

(1) While I recognize the necessity to perform gap filling for the random forest approach in this study, I do
not really like the strategy. Persistent gaps are filled using minimum values which in the case of soil water index
would produce artificial droughts. While I actually do not fully understand the difference between transient and
persistent gaps I agree with the authors that applying a regression-based can be suitable to fill short gaps of
a few months. Nevertheless, and especially for the longer gaps extending across several consecutive months
I think at least the role of the gap filling for the final conclusions needs to be tested. This could be done by
additionally using an alternative gap filling strategy, or by adding random noise to the gap filled values which
could be scaled by the typical inter-annual dynamics of the respective month-of-year or season of the concerned
metric.

We have updated our manuscript in order to further explain the gap-filling procedure and demonstrate its
robustness:

“There are gaps in the SWI, FAPAR, LAI, SIF, and VOD datasets in winter months at latitudes above
~60°N, and in the austral winter for southern South America, due to high solar zenith angles for FAPAR, LAI,
and SIF and because of snow cover and frozen soil for SWI and VOD [see e.g. Moesinger et al., [2020]. There
are also sporadic missing values in these datasets caused by e.g. cloud cover. Unfortunately, simple exclusion
of the times lacking data is not possible for our analysis because we commonly rely on antecedent samples
throughout. Thus, data gaps were filled using a two-step approach as in [Forkel et al.| [2017] in order to allow
analysis of summer months at the affected locations. This approach differentiates between two gap types based
on the amount of missing information for a specific month at each location.

First, ‘persistent’ gaps, defined as months for which 50% or more of the observations across all years are
missing, were filled using the minimum value observed at that location for the given predictor variable. We
assume that this indicates missing data during the winter, since other causes for data gaps (e.g. cloud cover)
are predominantly ‘transient’. For example, if a certain grid cell was missing data for more than 50% of all
Decembers in the record, these gaps in December would be treated as persistent and therefore filled using
minima.

Second, the remaining transient gaps were filled using season-trend regression models with four harmonic
terms (k = 4) and without breakpoints. These models were fitted using ordinary least squares regression to the
entire timeseries obtained during the first step, as mentioned before using data from January 2008 to April 2015
(or November 2000 to December 2019 for the monthly analysis). Cloud cover, which also affects detection in
tropical and subtropical regions, is usually transient, and therefore filled using the regression models. Locations
where no observations were available for > 52 months out of the total 88 months (regardless of whether such
data gaps always occur in the same month, as for persistent gaps, or at any point throughout the year) were
discarded in a trade-off between data quality and geographic extent. For the monthly analysis, locations were
discarded given > 138 unavailable months (out of 239 months).

Use of a different gap filling mechanism (Fig. S1b; temporal nearest-neighbour gap-filling) yielded very
similar results. This simple nearest-neighbour gap-filling approach used for the eventual ALL_NN model
processes timeseries at a given location, filling gaps by using the temporally closest available samples at that
location. Of the two approaches, we decided to use the season-trend model with minima filling because it
represents a more physical solution; it is based on an approach previously used for vegetation variables [see
Beck et al.| 2006], for which one would expect minima to occur during winter. Indeed, as can be seen in
Fig. S2, virtually no samples are being filled with minima outside of winter, and predominantly in the northern
extreme latitudes. While our gap-filling methodology may yield unphysical values for non-vegetation variables
like SWI, we do not expect the filling of SWI to have a big influence on the final results because we do not use
antecedent values of SWI. Since we do not anticipate fires during the winter, having (by necessity of gap filling)



potentially unphysical values of SWI in the winter should not affect results where relevant for our analysis.”
Also, we wish to clarify that transient gaps (as defined above, e.g. due to cloud cover) will always be filled
using the season-trend regression model. This has been made clearer as in the response above.

Changes to the manuscript
Line numbers and other references in brackets below (e.g. L100) refer to the tracked changes document that
is included further below.

1. Typographical errors and grammatical issues have been corrected.
2. (Fig. 6) Fig. 6 will remain in the manuscript.

3. Figure captions have been updated in order to pronounce key findings. The following sentences have
been added to the captions of:

(a) Fig. 1: “The CURR model is the only model that does not include antecedent conditions, and
it performs much worse as a result. Despite the fact that the ALL model contains 50 predictors,
while all other models contain just 15, it does not perform significantly better than the best models
containing just 15 predictors (e.g. 15VEG_FAPAR). Note that although train R? scores are shown
here, they are not indicative of model performance on unseen data, for which the shown train OOB
scores should be used instead.”

(b) Fig. 2: “Despite the visual exaggeration of the errors, which are generally small, there is no overall
pattern.”

(c) Fig. 4: “A clear difference between instantaneous and antecedent relationships can be seen in both
cases, with instantaneous FAPAR limiting BA while antecedent FAPAR promotes BA, and vice
versa for the dry-day period.” Note that the enhancement of BA due to extreme droughts (extreme
dry-day period) is apparent across time periods.

(d) Fig. 5: “Notably, the relationship between LAI and BA is not modelled consistently by the CURR
model (b), but relationships with BA are generally consistent across models otherwise.”

(e) Fig. 6: “It can be seen that the combined effect of FAPAR and FAPAR 1M on BA is positive if
FAPAR is low while FAPAR 1M is high.”

4. (L236) Regarding the choice of 15 predictor variables, we have updated the methods section:

“The choice of 15 predictors was heuristically based on the slope of the feature importance plots (see
Fig. S3), where, by inspection, the importance change is minimal after 15 variables. Thereafter, no addi-
tional information was being conveyed, so we decided to use this as our threshold. While use of the more
rigorous recursive feature elimination with cross-validation (RFECV) would be possible in principle, this
commonly makes use of the Gini importance owing to its ease of calculation, as it only considers data
already seen during training. Unfortunately, this also means that RFECV fails to account for overfitting,
as it only considers the training data when calculating feature importance [Meyer et al., 2019]. In con-
trast, the different approaches we jointly utilised to calculate a more robust feature importance metric are
much more computationally demanding, making RFECYV infeasible.”

5. The title has been changed to “The Importance of Antecedent Vegetation and Drought Conditions as
Global Drivers of Burnt Area”.

6. The abstract has been updated to further pronounce the empirically discovered interactions and the fact
that the current conditions relevant for the moisture-limited regions relate to fuel drying. It has also
generally been rephrased.

7. Numerical output (and importance ranks) have been updated throughout the paper in response to renewed
runs of the model resulting in different hyperparameters.

8. (L25) The introduction has been rephrased as detailed in AC2.



9.

10.

11.

12.

(L67) We have added the following paragraphs to the introduction which further detail previous relevant
studies:

“A number of regional and global studies have indicated the importance of antecedent fuel build-up
for BA. For example, links between fire activity and antecedent productivity have been found in South
Africa [[Van Wilgen et al.l 2000], central Australia [Griffin et al., [1983]], grass and shrublands in the
western United States [Littell et al., 2009, |Westerling et al., 2003, |Swetnam and Betancourt, |1998]], New
South Wales, Australia, for bushfire fuel [Jenkins et al., |2020]], and southern Africa [[Archibald et al.,
2009]]. Global studies have identified similar relationships (a positive relationship between pre-season
productivity and fire activity in the following dry season) in some dry areas. By studying the correlation
between growing period (i.e. antecedent) soil moisture and fire activity, Krawchuk and Moritz [2011]]
found fire activity in dry regions to be related to antecedent productivity. Similarly, van der Werf et al.
[2008]] found a similar relationship for arid ecosystem (e.g. northern Australia), where antecedent wet
conditions coupled with instantaneous drying were found to be important. Other global studies have also
identified northern Australia as obeying this relationship [Randerson et al.,[2005] |Spessa et al.,|2005]. In
a more recent global analysis, |O et al.|[[2020] found that for arid regions, wet anomalies (soil moisture)
lead to increased fire later in the year by increasing fuel loads and biomass. Thus, it is clear that a
better understanding of the timescales of fuel accumulation, the interaction between biophysical drivers
and fuel build-up, and the effects of antecedent weather conditions on both fuel loads and fuel drying is
needed in order to improve predictions of BA.

While other studies have used machine learning to explore fire drivers including the effect of antecedent
productivity [e.g. /Archibald et al.| 2009, [Forkel et al., 2017} Joshi and Sukumar} 2021]], they have not ex-
plored the relationship between antecedent conditions (fuel load and drying) and fire in detail. Here we
quantify the roles that antecedent vegetation productivity and aridity play relative to instantaneous con-
ditions, the critical number of months that are most important for each, the shape of their relationships to
BA, and the interactions between them. While the (relative) importance of antecedent variables has been
investigated before [Bessie and Johnson, [1995[, we aim to quantify this on a global scale. Since other
climate factors, ignitions, and human activities also influence BA, we necessarily include these factors
in our analysis. The use of a machine learning approach enables us to identify non-linear relationships
and interactions between the drivers. This is then combined with analysis and visualisation techniques
that provide insights into the modelled relationships while mitigating the effects of correlations among
variables. Such insights include the effect of a particular driver on BA and the interactions between pairs
of drivers.”

(L90) The visualisation techniques used in our work have been described in more detail at the end of the
introduction:

“The use of a machine learning approach enables us to identify non-linear relationships and interactions
between the drivers. This is then combined with analysis and visualisation techniques that provide in-
sights into the modelled relationships while mitigating the effects of correlations among variables. Such
insights include the effect of a particular driver on BA and the interactions between pairs of drivers.”

(L98) While introducing the datasets used, we now mention that “A longer time period from November
2000 to December 2019 was also considered in an analysis using fewer variables.”, in order to introduce
the new monthly analysis that was undertaken.

(L107) We have added an example dry-day calculation:

“A period contiguous with the previous month’s dry-day period was concatenated such that the sum
of both (number of days) was used to determine the longest period. For example, consider a 30-day
long month with a 10-day long dry-day period at the beginning of the month, followed by a wetting
precipitation event on day 11, and then a dry-day period for the following 19 days. This month has a
dry-day period of 19 days. However, if the previous month were to terminate in a 10-day long dry-day
period, these 10 days would be added to the initial 10-day dry-day period of the current month, thereby
making this combined dry-day period the longest.”



13.

14.

15.

16.
17.
18.

19.

20.

21.

22,

23.
24.

25.

26.
27.

(L114) We have clarified that the WGLC data we are using (which is based on but not equivalent to
WWLLN data) mainly detect cloud-to-ground strikes:

“We used the WGLC dataset [Kaplan and Lau, 2019] which provides counts of monthly lightning
strikes. It is based on the World Wide Lightning Location Network (WWLLN) dataset, which mainly
detects cloud-to-ground strikes [[Rodger et al., 2004} |Abarca et al., 2010], as opposed to LIS lightning
data [Biirgesser, |[2017[].”

(L122) We have clarified how the AGB datasets we used were combined in regions where they overlap
(which is by taking the mean):

“Tree AGB was obtained by mosaicking AGB datasets for the tropics [Avitabile et al.,[2016| 1 km reso-
lution] and northern forests [Thurner et al., 2014, 0.01° resolution] using the mean after resampling each
to a common spatial resolution of 0.25°.

(L125) We mention our usage of an updated version of the HYDE 3.2 dataset. This is required for the
new longer monthly analysis.

(Table 1) We have indicated datasets that are continually being updated in the updated Table 1.
(Table 1) We have added the MCD64CMQ BA dataset to the updated Table 1.
(Table 1) We have updated the table to reflect updated datasets.

(L185) We have used X OM instead of X when discussing the calculation of antecedent anomalies to
make it clearer that we are referring to the current variable.

(L199) We have updated our description of the hyperparameters used to reflect the updated state of our
models.

(L204) We have mentioned that the number of split levels were limited both in order to limit overfitting
and to enable SHAP value calculation.

(L259) We have included the following description of our monthly analysis in the methods section:

“In addition to the above climatological experiments, we also investigate monthly data for the time period
11-2000-12-2029 (230 months) using the 15VEG_FAPAR_MON model. To avoid the temporal limits
of the GFED4 dataset (see Table 1) the MODIS MCD64CMQ [Giglio et al.,[2018]] BA dataset was used.
Otherwise, this experiment uses the same variables as the ISVEG_FAPAR experiment with the exception
of lightning, which was replaced with the similarly significant variable AGB (see Fig. S3) in order to
enable processing of a longer time period. In addition to five-fold random CV as for the other models, the
performance and generalisability of this model was also measured using temporal CV. Here, the model
was trained on all samples excluding either all months within the years 2009-2012 (including 2012) or
2016-2019 (including 2019). Thereafter, the R? was measured on whichever years were excluded for
training. Note that unless explicitly specified, all following methodological descriptions will relate to the
climatological experiments as opposed to the monthly 15VEG_FAPAR_MON experiment.”

(Table 2) We have added the 15VEG_FAPAR_MON and ALL_NN experiments to Table 2.
(Sect. 2.4) We have rephrased Sect. 2.4 in order to explain our calculations more clearly.

(L314) Instead of introducing 1D and 2D ALEs, we now uniformly refer to these as first-order and
second-order ALEs.

(L320 onwards) We have combined the results and discussion sections.

(Fig. 2) We have updated all maps to include grey shading that indicates regions where BA data is
available, but other datasets are not.



28.

29.

30.

31.

32.

33.

34.

35.
36.
37.

38.

39.

40.

(L336) We have added an explanation regarding the absence of 0 predictions by the model:

“The model may struggle to predict 0 BA because the random forest model consists of many smaller
decision trees. All 500 individual models would have to predict O to yield this value overall, which does
not appear to occur given the stochastic nature of the training process. Failure to capture extreme events
well is likely due to their rarity, resulting in the absence of comparable training data [see also e.g. Joshi
and Sukumar, 2021].”

(L340) As indicated further above, we have included an explanation of the B-LOO CV procedure and its
results.

(L366) We have updated our discussion of why antecedent conditions > 1 yr. may not be important
predictors.

(L381) Paragraphs from the previous discussion section have been moved into the combined results and
discussion section.

(Figure 4) Figure 4 has been updated to include uncertainties using shaded regions. An inset axis has also
been added to (b) to further highlight the relationships between DD and BA. The updated figure caption
makes it clear that we used ~10% of training data 100 times to construct the uncertainty ranges.

(L450) We have added a reference to a recent relevant study ([Joshi and Sukumar, [2021]]) in our discus-
sion of poor predictability in boreal regions (amongst others).

(L455) Our description of the relationship between FAPAR and BA has been corrected to indicate that it
changes most rapidly at intermediate levels of FAPAR.

(L457) This sentence has been moved up in order to make the paragraph more coherent.
(L474) The results and discussion sections have been merged.

(L492) Results and discussion of our new monthly analysis have been added, in order to illustrate the
robustness of our modelling approach given a variety of CV scenarios:

“Relationships between predictors and BA were also stable when considering the 15VEG_FAPAR_MON
model (Fig. S12) which not only uses monthly instead of climatological data, but also a different BA
dataset. Using random CV, a test R? of 0.501 and an OOB train R? of 0.498 were measured. Excluding
the years 2009-2012, a test R% of 0.403 and an OOB train R? of 0.507 were measured. Excluding
the final years 2016-2019, a test R? of 0.435 and an OOB train R? of 0.505 were measured. While
these R? scores are lower than those observed for the previously discussed climatological analyses, they
demonstrate that the model is able to robustly predict BA under multiple CV scenarios. Lower R? scores
are also expected given the higher variance of this data. Additionally, the relationships identified by the
model are highly consistent with the previous climatological analyses, showing that there is no temporal
change that is important. The spatial patterns are dominant as the models behave very similarly when fit
on climatological and monthly data; and the main commonality between those data is the geographical
pattern. Note also that while lightning is omitted from this experiment in contrast to the climatological
15VEG_FAPAR experiment, lightning is also not present in the TOP15 model which performs similarly
to the ALL and BEST15 models. Furthermore, as shown in Fig. S3, the importance of lightning and its
replacement, AGB, are very similar.”

(L515) A reference to [van der Wert et al.| [2008]] has been added to contextualise the empirically discov-
ered interactions.

(L535) The conclusions section has been expanded to further highlight previous studies, make the novel
contributions in our paper clearer, and introduce potential future work.

(L626) An additional acknowledgement has been added due to the contribution of an updated HYDE
dataset by Kees Klein Goldewijk.
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Abstract. The seasonal and longer-term dynamics of fuel accumulation affect fire seasonality and the occurrence of extreme
wildfires. Failure to account for their influence may help to explain why state-of-the-art fire models do not simulate the length
and timing of the fire season or interannual variability in burnt area well. We investigated the impact of accounting for different
timescales of fuel production and accumulation on burnt area using a suite of random forest regression models that included the
immediate impact of climate, vegetation, and human influences in a given month, and tested the impact of various combinations
of antecedent conditions in four productivity-related vegetation indices and in antecedent moisture conditions. Analyses were

conducted for the period from 2010 to 2015 inclusive. W

Inclusion of antecedent vegetation conditions representing fuel

build-up led to an improvement of the global cllmatologlcal out-of- sample R? from 0:567-t0-0-686-The-0.579 to 0.701, but

ARAARARAARNARARAAAA

its-vegetation conditions on
timescales >1 yr had no impact on simulated burnt area. Current moisture levels were the dominant influence on fuel build-up;
drying. Additionally, antecedent moisture levels were

important for fuel build-up. The models also enabled the visualisation of interactions between variables, such as the importance
of antecedent productivity coupled with instantaneous drying. The length of the period which needs to be considered to-aceount

the inclusion of antecedent s

for-fuel-build-up-varies across biomes; fuel-limited regions are sensitive to antecedent conditions that determine fuel build-u

over longer time periods (~4 months)and-, while moisture-limited regions are more sensitive to current conditions that regulate

fuel drying.

1 Introduction

Wildfires are an important natural disturbance of the Earth System. They have extensive socio-economic impacts as well as
profound effects on vegetation, atmospheric composition, and climate (Bowman et al., 2011; Voulgarakis and Field, 2015;
Andela et al., 2017; Lasslop et al., 2019). How fire regimes may change in the future, and how fire-related feedbacks may
influence climate and global environmental changes are growing concerns.

The factors that influence the occurrence and intensity of fire are well-known: the presence of an ignition source, vegetation
properties that determine the availability of fuel, and weather conditions that promote fuel drying and thereby the rate of fire

spread.

landseape-meodification—However, these factors are strongly coupled to one another. Climate conditions influence the incidence
of lightning and the nature of the vegetation, while wind strength and the impact of atmospheric conditions on drying are
modulated by vegetation cover. Furthermore, the relationships among ignitions, vegetation, and climate may depend on the
timescales involved—Short-terar; short-term drought promotes fuel drying and hence increases the-risk-ef-fire-fire risk, but in

the longer term, drought conditions reduce vegetation cover and fuel loads. This complexity makes it challenging to disentangle

the causes of observed changes in fire regimes-—Reeentactivity.
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Furthermore, recent declines in burnt area (BA) in some regions have been explained as a consequence of human activity,
through indirect and direct intervention (Martinez et al., 2009; Andela et al., 2017) albeit modulated by climate and veg-
etation (Forkel et al., 2019b). i i

Such human intervention can promote

or suppress fire through ignitions, fuel management, and landscape modification. A mainly temperature-driven increase in
conditions conducive to wildfires was suggested by a number of regional studies (e.g. Westerling, 2006; van Oldenborgh et al.,

. D D ) o). )

2020; Goss et al., 2020; Barbero et al., 2015). At the global scale, Abatzoglou et al. (2019) showed that anthropogenic climate
change had led to an increase in fire weather over 22% of the global burnable area by 2019, while Jolly et al. (2015) found that
anthropogenic climate change has led to a lengthening of the fire season across more than a quarter of global vegetated land in
recent decades. Increases in fire weather are predicted under different assumptions about levels of future warming (e.g. Burton
et al., 2018; Turco et al., 2018; Bedia et al., 2015).

Understanding the interplay among the different present-day controls of fire is also a key requirement for the prediction of
future fire-regime shifts and impacts on the land biosphere and human activities. Coupled fire-vegetation models can be used
to predict changes in large-scale fire regimes in response to future climate change scenarios (see e.g. Knorr et al., 2016; Kloster
et al., 2012) and to explore how these changes are affected by and will affect regional vegetation patterns and climate. Although
these models are reasonably good at simulating modern geographical fire patterns in BA, they are poor at reproducing observed
fire-season length and inter-annual variability (IAV) in BA (Hantson et al., 2020). Furthermore, there are large differences in
their predictions of both historical (Teckentrup et al., 2019) and future (Kloster and Lasslop, 2017; Sanderson and Fisher, 2020)

trends.

Studies have pinpointed the relationship between simulated vegetation properties and BA as a cause for concern {e-g—2KeHey-et-al;2019:
—2-(e.g. Forkel et al., 2019a; Kelley et al., 2019; Teckentrup et al., 2019; Hantson et al., 2020). Forkel et al. (2019a) analysed satel-

lite data to show that while state-of-the-art fire—vegetation-fire-vegetation models reproduce the emergent relationships with
climatic variables, they do not correctly represent the relationship between vegetation and BA. Hantson et al. (2020) high-
lighted the need for improved understanding of vegetation drivers of fire season length and inter-annual-variability (FAV--JAV.
of BA. Both >-Forkel et al. (2019a) and Hantson et al. (2020) argued for a better understanding of how vegetation properties
control fuel build-up, and therefore fire occurrence and intensity.

Fuel is organic matter that is available for ignition (Keane et al., 2001). The type, amount, and spatial arrangement of fuel
affect its tendency to burn (Archibald et al., 2009). These properties, dictated by vegetation, in turn affect fuel connectivity and
hence fire spread in addition to how rapidly fuel dries out and becomes combustible. Fhe-aceumulation-offuel-over-time-is
expected-to-influenece-fire-intensity—Antecedent weather conditions in the weeks to years before fire events can alse-determine
fuel availability (van Oldenborgh et al., 2020) and hence fire occurrence. The effect of antecedent weather conditions on BA
may depend on the types of vegetation present (which influences whether fuel drying or accumulation is most important): an-

tecedent precipitation will increase BA in fuel-limited regions, for example, but decrease BA in regions where fuel drying is the

major control (Alvarade-et-al;2020;-Abatzoglov-and Kelden; 2043 )-A-(Alvarado et al., 2020; Abatzoglou and Kolden, 2013; Littell et al.
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A number of regional and global studies have indicated the importance of antecedent fuel build-up for BA. For example
links between fire activity and antecedent productivity have been found in South Africa (Van Wilgen et al., 2000), central

Australia (Griffin et al., 1983), erass and shrublands in the western United States (Littell et al., 2009; Westerling et al., 2003; Swetnam and

New South Wales, Australia, for bushfire fuel (Jenkins et al., 2020), and southern Africa (Archibald et al., 2009). Global
studies have identified similar relationships (a positive relationship between pre-season productivity and fire activity in the

following dry season) in some dry areas. By studying the correlation between growing period (i.e. antecedent) soil moisture and
fire activity, Krawchuk and Moritz (2011) found fire activity in dry regions to be related to antecedent productivity. Similarl

van der Werf et al. (2008) found a similar relationship for arid ecosystem (e.g. northern Australia), where antecedent wet
conditions coupled with instantaneous drying were found to be important. Other global studies have also identified northern

Australia as obeying this relationship (Randerson et al., 2005; Spessa et al., 2005). In a more recent global analysis, O et al. (2020)

found that for arid regions, wet anomalies (soil moisture) lead to increased fire later in the year by increasing fuel loads and
biomass. Thus, it is clear that a better understanding of the timescales of fuel accumulation, the interaction between biophysical
drivers and fuel build-up, and the effects of antecedent weather conditions on both fuel loads and fuel drying is needed in order

to improve predictions of BA.

tink-of BA—to-While other studies have used machine learning to explore fire drivers including the effect of antecedent
productivity (¢.g. Archibald et al., 2009; Forkel et al., 2017; Joshi and Sukumar, 2021), they have not explored the relationship
between antecedent conditions (fuel load and drying) and fire in detail. Here we quantify the roles that antecedent vegetation
productivity and aridity play relative to instantaneous conditions, the critical number of months that are most important for
each, the shape of their relationships to BA, and the interactions between them. While the (relative) importance of antecedent

variables has been investigated before (Bessie and Johnson, 1995), we aim to quantify this on a global scale. Since other cli-
mate factors, ignitions, and human activities also influence BA, we necessarily include these factors in our analysis. We-tse-The

use of a machine learning approach enables us to identify non-linear relationships and interactions between the drivers. This
is supperted-by-then combined with analysis and visualisation techniques designed-to-mitigate-that provide insights into the
modelled relationships while mitigating the effects of correlations among variables;-and-to-provide-insights-into-the-modelled

2 Methods
2.1 Data

The predictor and BA datasets are available for different but overlapping time periods (Table 1). We pre-processed each dataset
separately and conducted random forest analyses based on the common period from January 2010 to April 2015. Monthly

fractional BA for this period was obtained from the GFED4 dataset (Giglio et al., 2013) (data were retrieved from https:

/Iwww.globalfiredata.org/data.html). A longer time period from November 2000 to December 2019 was also considered in an
analysis using fewer variables.


https://www.globalfiredata.org/data.html
https://www.globalfiredata.org/data.html
https://www.globalfiredata.org/data.html

100 Diurnal temperature range (DTR), maximum temperature (MaxT), dry-day period (DD), and soil moisture are important cli-
mate factors influencing BA (A
Archibald et al., 2009; Bistinas et al., 2014; Forkel et al., 2017, 2019a; Abatzoglou et al., 2018; Kelley et al., 2019) and are

thus considered as predictors in our analyses. DTR was calculated by taking the monthly average of the difference between
the daily maximum and minimum ERAS5 (Copernicus Climate Change Service (C3S), 2017) 2 m temperatures.

105 The dry-day period was defined as the longest contiguous period of ERAS mean daily precipitation below
0.1 mm day ' (wetting rainfall; Harris et al., 2014; Jolly et al., 2015) within each month. I this-period-was eontiguous

with-a-preeeding-A _period contiguous with the previous month’s dry-day period was concatenated such that the sum of both
(number of days) was used to determine the longest period. For example, consider a 30-day long month with a 10-day long.
dry-day period ;-these-were-coneatenated-at the beginning of the month, followed by a wetting precipitation event on day 11,
110 and then a dry-day period for the following 19 days. This month has a dry-day period of 19 days. However, if the previous
month were to terminate in a 10-day long dry-day period, these 10 days would be added to the initial 10-day dry-day period of

the current month, thereby making this combined dry-day period the longest.
Soil moisture was taken from the Copernicus soil water index (SWI) dataset (Albergel et al., 2008; Wagner et al., 1999). We

115 Wide Lightning Location Network (WWLLN) dataset
WW&MMMMMWA&MMWN
lightning data (Burgesser, 2017).

Land cover was shown in previous studies to be another important influence on BA. We included several alternative represen-

tations of land cover including above-ground tree biomass (AGB) and the fractional cover of trees (TREE), shrubs (SHRUB),
120 herbaceous vegetation (HERB), and crops (CROP) in our predictor set. Tree AGB was obtained by combining-mosaicking AGB

datasets for the tropicsand-fer- (Avitabile et al., 2016, 1 km resolution) and northern forests (Avitabile-et-al; 2046 Fhurneretal; 2044y
Thurner et al., 2014, 0.01° resolution) using the mean after resampling each to a common spatial resolution of 0.25°. Yearly

land cover values were obtained from the ESA CCI Land Cover dataset (Li et al., 2018). Land cover types were converted to
fractional cover according to Poulter et al. (2015) using the conversion table as in Forkel et al. (2017). Global population density

125 (POPD) from an updated version of the HYDE 3.2 dataset (ilein-Goldewijk;20+7)-(Klein Goldewijk, 2017, Kees Klein Goldewijk; person
was used as a measure of human influence on vegetation and fire regimes.

Field data on fuel loads is sparse and the only global dataset (Pettinari and Chuvieco, 2016) is based on extrapolating
scattered field measurements by biome. We therefore used four remotely sensed vegetation properties related to total biomass
or leaf cover that could be regarded as indices for fuel load in our predictor set: solar-induced fluorescence (SIF), vegetation

130 optical depth (VOD), fraction of absorbed photosynthetically active radiation (FAPAR), and leaf area index (LAI). All four
properties have previously been used as productivity indices (e.g. Mohammed et al., 2019; Ryu et al., 2019; Teubner et al.,
2018; Ogutu et al., 2014) and we use all four because it is uncertain which would be most closely related to fuel loads.
Monthly SIF was obtained from the GlobFluo SIF dataset (Kohler et al., 2015). Ku-band VOD was obtained from the VODCA
dataset (Moesinger et al., 2020). FAPAR and LAI were obtained from the MOD15A2H dataset (Myneni et al., 2015). Fer



135 pre-proeessing;-To pre-process data for the period from January 2010 to April 2015 we used data from January 2008 to April
2015, for which period all four datasets are available. Similarly, relevant data from February 2000 to December 2019 was
re-processed to enable analysis of the period from November 2000 to December 2019.



Table 1. Characteristics of the datasets. End times as applicable to the processed data are indicated in brackets.

Variable Abbreviation Dataset Start End Time Reference
burnt area BA GFED4 06-1995 12-2016 monthly  Giglio et al. (2013)
. present.
diurnal temperature range ) . )
) DTR ERAS 1950 12-2020)  monthly  Copernicus Climate Change Service (C39) |
Faximum-temperature—
present.
maximum temperature_ MaxT ERAS 1950 12-2020)  monthly  Copernicus Climate Change Service (C3S) |
122048
) present. Copernicus Climate Change
dry-day period BTRMaxT-DD ERAS 04+-1996-1950 monthly .
Y (11-2020) Service (C3S) (2017)
. ) . Albergel et al. (2008);
soil moisture SWI Copernicus SWI 01-2007 11-2018 monthly
Wagner et al. (1999)
WWEEN-WGLC
lightning Lightning . e 01-2010 12-2018 monthly Kaplan and Lau (2019)
Lightning
above-ground tree Tropical AGB: Avitabile, . . . Avitabile et al. (2016);
AGB static static static
biomass Northern AGB: Thurner Thurner et al. (2014)
2045
land cover (fractional CROP, SHRUB, )
) ESA CCI Land Cover 1992 present yearly Lietal. (2018)
cover per grid cell) TREE, HERB
2019)
solar-induced fluorescence  SIF GlobFluo SIF 01-2007 04-2015 monthly Kohler et al. (2015)
vegetation optical depth VOD VODCA (Ku-band) 12-1997 12-2018 monthly ~ Moesinger et al. (2019)
fraction of absorbed present.
photosynthetically active FAPAR MODI15A2H 102-2000 03-2021)  monthly ~ Myneni et al. (2015)
radiation -
present.
leaf area index FAPARLAI MODI15A2H 02-2000 (11-2018)  monthly Myneni et al. (2015)
Klein Goldewijk (2017),
2047 ~
lation densi POPD HYDE 3.2 (updated) 2000 1 Kees Kleln Qoldewijk;
opulation densit .2 (update resent ear
- ’ SRS %5;5)‘ P personal communication
2020, February 2021)
present.
MCDO4CMQburntarea  MCD64BA  MCDO4CMQ 11:2000 062020)  monthly  Giglioetal. (2018)
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2.2 Data processing

2.2.1 Gap fillin

There are gaps in the SWI, FAPAR, LAI, SIF, and VOD datasets in winter months at latitudes above ~60°N, and in the
austral winter for southern South America, due to high sun-solar zenith angles for FAPAR, LAI, and SIF and because of snow
cover and frozen soil for SWI and VOD {WMMMWM There are also sporadlc
missing values in these datasets caused by e.g. cloud cover. Miss
Fhese-gaps-were-therefore-Unfortunately, simple exclusion of the times lacking data is not possible for our analysis because
we commonly rely on antecedent samples throughout. Thus, data gaps were filled using a two-step approach as in Forkel et al.
(2017) for-in order to allow analysis of summer months at the affected locations. This approach differentiates between two gap

types based on the amount of missing information for a specific month at each location. First,persistent-
First, ‘persistent’ gaps, defined as months for which 56%-50% or more of the observations across all years are missing,

were filled using the minimum value observed at that location s-for the given predictor variable. Seeond;-We assume that this

indicates missing data during the winter, since other causes for data gaps (e.g. cloud cover) are predominantly ‘transient’. For
example, if a certain grid cell was missing data for more than 50% of all Decembers in the record, these gaps in December

would be treated as persistent and therefore filled using minima.
Second, the remaining transient gaps were filled using a-season-trend regression medel-models with four harmonic terms

(k = 4) and without breakpoints. These models were fitted using ordinary least sgquare-squares regression to the entire time-
series obtained during the first step, as mentioned before using data from January 2008 to April 2045-2015 (or November

2000 to December 2019 for the monthly analysis). Cloud cover, which also affects detection in tropical and subtropical

regions, is usually transient, and therefore filled using the regression models. Locations where no observations were avail-
able for > 52 months out of the total 88 months (regardless of whether such data gaps always occur in the same month
as for persistent gaps, or at any point throughout the year) were discarded in a trade-off between data quahty and geo-

graphic extent. M

> 138 unavailable months (out of 239 months).

Use of a different gap filling mechanism (Fi

ielded very similar results. This

simple nearest-neighbour gap-filling approach used for the eventual ALL._ NN model processes timeseries at a given location,
filling gaps by using the temporally closest available samples at that location. Of the two approaches, we decided to use the
season-trend model with minima filling because it represents a more physical solution; it is based on an approach previously.
used for vegetation variables (see Beck et al., 2000), for which one would expect minima to occur during winter. Indeed, as
can be seen in Fig. 52, virtually no samples are being filled with minima outside of winter, and predominantly in the northern
extreme latitudes. While our gap-filling methodology may yield unphysical values for non-vegetation variables like SWI, we
do not expect the filling of SWI to have a big influence on the final results because we do not use antecedent values of SWI.

. S1b; temporal nearest-neighbour gap-filling)
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Since we do not anticipate fires during the winter, having (by necessity of gap filling) potentially unphysical values of SWI in
the winter should not affect results where relevant for our analysis.

2.2.2  Interpolation

All datasets were interpolated to a common 0.25° spatial grid. Datasets where the original spatial resolution was higher than
this were averaged; the other datasets were interpolated using nearest-neighbour interpolation to avoid smoothing local ex-
trema (Forkel et al., 2017). Datasets that were only available at yearly time resolution (i.e. land cover, POPD) were linearly
interpolated to monthly intervals. Temporally static data (i.e. AGB) were recycled. Processing was carried out before averaging

to provide monthly climatological time series where applicable.

2.2.3 Antecedent predictor variables

The influence of antecedent conditions that might affect fuel loads or fuel dryness, specifically vegetation properties and DD,
on BA was investigated by using antecedent FAPAR, LAI, VOD, SIF, and DD data from up to two years before any given month
(1M, 3M, 6M, 9M, 12M, 18M, 24M, where M denotes months). The large autocorrelation between predictor variables could
impede the visual interpretation of the impacts of antecedent periods > 1 yr. Thus, anomalies were computed by subtracting

the seasonal cycle relative to the designated month, resulting in the following transformations:

(X 12M) — X(X OM) — X A12M,

(X 18M) — (X 6M) — X A18M,
and (X 24M) — X(X OM) — X A24M,

where X € {FAPAR, LAI, VOD, SIF, DD} and X OM refers to the variable X in the current month. For example, the 12-month
antecedent X 12M was transformed by subtracting the instantaneous (month 0) value of X, thereby yielding the anomaly in X
X A12M, that may be easier to interpret.

2.3 Machine learning experiments

We used random forest (RF) regression to model the relationships between BA and the driver variables (predictors). RF is an
ensemble learning approach in which multiple decision trees are constructed using a randomly sampled subset of training ob-
servations. The final model is the average result from all of the individual decision trees. RF regression is highly suited to inves-
tigating the emergent controls on fire because it is able to learn non-linear relationships in high-dimensional space (Archibald
et al., 2009). By averaging over multiple decision trees, RFs also mitigate overfitting (Breiman, 2001). We used the scikit-learn
version 0:23-00.24.1 (Pedregosa et al., 2011) RF regression implementation in Python, with hyperparameters determined us-
ing five-fold eress—vatidation-of-the-final-random cross validation (CV) of the eventual ALL model: n_estimators: 500,
=9

max_depth: 18, min—samptes—teaf: 3cep—atpha2-x10—5-and default values for all other parameters. The num-

ber of estimators (n_estimators) determines the number of trees whose predictions are averaged. The maximum depth



(max_depth) limits the number of split levels—Setting-min—samptes—teat to-threerequires-that-all final-splitseontain
at-least-three—samples—Finally,thecep—atphe parametercontrols—the-cost-complexity-pruning—algerithmthat-penalises—a

P O a St Qtry-—DboYy 9 Sis s, O1-SP1itS—a oramgtoa

metries; these-measures reduee-overfitting—, which can reduce overfitting. We also found that a limited number of split levels
205  was necessary for the computation of SHAP values, although we expect this to be a limitation of the specific software we used
as opposed to the SHAP method itself. The hyperparameters were only estimated once for the model containing all variables

due to computational constraints.
The validation dataset was randomly sampled across space and time and comprised 36%-30% of the data. The-gap-between
the-To_estimate how the model will perform on unseen data, the out-of-bag (OOB) R? values-ebtained-on-the training-and

the training dataset, the R? for the validation dataset, which has not been used for variable selection or hyperparameter tunin
is also used to provide an alternative, independent, measure of the generalisability of a given model;-where-areduection-in-the

However, this is only valid if there is no autocorrelation between the samples. We investigated the degree of spatial autocorrelation
215 using a variogram of global GFED4 BA which informed a buffered leave-one-out (B-LOO) CV procedure following Ploton et al. (2020)
- This was carried out to determine how much the autocorrelation that may be present influences the amount of potential
overfitting. We did not employ the extrapolation-prevention procedure used in Ploton et al. (2020) because it led to the exclusion
of significant areas like northern Australia and west Africa. The B-LOO CV was executed as follows, where 74, = 50 pixels
and N, was chosen such that the number of potential training samples was guaranteed to be equal to or above N for all

220 1= Tmagt.
1. Randomly choose a single location. The 12 monthly samples at this test location constitute the test set.

2. Exclude samples from the potential training set in a circular region of radius r pixels around the test location, such that
no potential training sample is closer than r pixels to the test location. This limits the influence of spatial autocorrelation.

225 3. Randomly choose [V, training samples from all remaining potential training samples.
4. Using a model trained on the above training samples, predict BA for the test location.
5. Increment r and repeat steps 1-4 until r has reached r .

This process was repeated 4000 times for each of the eight linearly spaced investigated radii, with the lowest radius being equal

to 0. Due to computational constraints, the B-LOO CV was only carried out for a single set of variables.
230 We trained a number of different RF regression models to test explicit hypotheses about the importance of antecedent

conditions on BA (see Table 2) using the defined hyperparameters on the climatological timeseries. The initial experiment

(ALL) was run using the basic set of 15 predictor variables related to climate, vegetation, and human influences on fire (Table 1)
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and included both current and antecedent values of the four vegetation indices and DD, giving 50 predictor variables. A second
experiment (TOP15) used only the 15 most important predictors from the ALL model, as a way of testing whether all the

predictors were necessary and whether including so many predictors resulted in overfitting.

The choice of 15 predictors was heuristically based on the slope of the feature importance plots (see Fig. S3), where, by
inspection, the importance change is minimal after 15 variables. Thereafter, no additional information was being conveyed,
$0 we decided to use this as our threshold. While use of the more rigorous recursive feature elimination with cross-validation
RFECYV) would be possible in principle, this commonly makes use of the Gini importance owing to its ease of calculation, as it
only considers data already seen during training, Unfortunately, this also means that RFECV fails to account for overfitting, as it
only considers the training data when calculating feature importance (Meyer et al., 2019). In contrast, the different approaches

we jointly utilised to calculate a more robust feature importance metric are much more computationally demanding, makin

All of the remaining experiments used combinations of 15 predictor variables. The CURR experiment only used current-
month values of each predictor. Comparisen-Therefore, comparison of the CURR +-All-and-TOP15-and ALL experiments
allowed the impact of including antecedent vegetation and moisture conditions to be evaluated. Seme-However, some of the
vegetation predictors are highly correlated with one another and-this-which could artificially decrease their importancein-the
AlE-medel. To test this, we ran four further experiments (15VEG_FAPAR, 15VEG_LAI, 15VEG_VOD, 15VEG_SIF) that
included the 10 most important non-vegetation predictors from the ALL model, potentially including current and antecedent
values of DD. In addition, each of these experiments contained one of the four vegetation predictors represented by both current
(OM) and antecedent values for-(1M, 3M, 6M, and 9IM—Fhesefour-experiments-al-inchided-current-and-antecedent-values-of
DPDb-—To-separate-out-). To disentangle the effects of antecedent DD and antecedent vegetation properties, we ran a second
set of vegetation experiments (CURRDD_FAPAR, CURRDD_LAI, CURRDD_VOD, CURRDD_SIF) where each vegetation

predictor was represented by both current (OM) and antecedent values for-(1M, 3M, 6M, and 9M) but only using current DD
and the next nine most important ether-non-vegetation factors from the CURR model. Finally, five-fold eross-validation-random
CV was used to isolate the best combination of the vegetation predictors under the constraint that each of the feur-anteeedent
states-(HM—9Mfive states (OM—9M) must be represented exactly once (using any of the four vegetation predictors), resulting in
the BEST15 model.

In addition to the above climatological experiments, we also investigate monthly data for the time period 11-2000-12-2029
(230 months) using the 15VEG_FAPAR, MON model. To avoid the temporal limits of the GFED4 dataset (see Table 1) the
MODIS MCD64CMQ (Giglio et al., 2018) BA dataset was used. Otherwise, this experiment uses the same variables as the
15VEG _FAPAR experiment with the exception of lightning, which was replaced with the similarly significant variable AGB
(see Fig. S3) in order to enable processing of a longer time period. In addition to five-fold random CV as for the other models,
the performance and generalisability of this model was also measured using temporal CV. Here, the model was trained on all
samples excluding either all months within the years 2009-2012 (including 2012) or 20162019 (including 2019). Thereafter,
the R? was measured on whichever years were excluded for training, Note that unless explicitly specified, all following
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Table 2. The modelling experiments. Except for the ALL experimentexperiments, the other experiments included 15 predictor variables for
comparability. Differences in number of antecedent variables included in each experiment meant that different numbers of variables from the
basic set were used in these experiments. For the TOP15, 15VEG_X(_MON), and BEST15 models we used the most important variables
from the ALL experiment up to the required number of 15. For the CURRDD_X models, we used the most important non-vegetation variables

from the CURR model. Table S1 provides a detailed list of the variables included in each experiment.

Name Nr.  Variables

Basic set of current variables + current month and antecedent (1, 3, 6, 12, 18, 24M) values for

ALL & ALL_NN 50 L
SO Dry Days and vegetation indices (FAPAR, LAI, VOD, SIF)
TOPI15 15  Top 15 predictors from the ALL model
CURR 15 Only current values of the basic set of 15 variables
Top 10 non-vegetation variables from the ALL experiment, plus current and antecedent (1, 3,
15VEG_X (e.g. I5VEG_FAPAR) 15

6, 9 months) vegetation index X (e.g. FAPAR)

Current and antecedent (1, 3, 6, 9 months) versions of the vegetation index X (e.g. FAPAR),
CURRDD_X (e.g. CURRDD_FAPAR ) 15

current DD, top 9 other variables from the CURR experiment

Current and antecedent DD, one current, 1M, 3M, 6M, 9M vegetation index (drawn from the

BEST15 15 . L . . .
four potential vegetation indices) and 5 most important other variables from the basic set —
Same as the 15VEG_FAPAR experiment with monthly data instead of climatological data and
1SVEG FAPAR_MON_ 13

lightning data replaced by the next-most important non-vegetation variable

methodological descriptions will relate to the climatological experiments as opposed to the monthly 15VEG_FAPAR _MON
experiment.

2.4 Measuring predictor importance and relationships

270 Our goal is to determine the contribution of individual predictors (including antecedent states of these predictors) to model
skill at predicting BA ;-and to examine the relationships between predictors and BA.

There is no unique way to measure the importance of a given predictor on model skill in predicting BA and it is particularly
difficult to assign importance to individual predictors when there is a high degree of collinearity between them (Permann-et-al;2613: Nowa
(Dormann et al., 2013; Nowack et al., 2018; Mansfield et al., 2020). We use four techniques to assess—the-robustness—of-the

275 inferred-infer the importance of individual predictors: Gini impurity, permutation feature importance (PFI), leave-one-column-
out (LOCO), and SHapley Additive exPlanations (SHAP) values. The Gini importance aggregates the decrease in mean squared
error (MSE) for each split involving a given predictor variable over the individual decision trees making up the RF. The PFI was
calculated from five permutations of each predictor variable using-(validation set) using the ELIS 0-10-1-0.11.0 Permutation-
Importance (https://eli5.readthedocs.io/en/latest/index.html). While this provides an alternative assessment of the prediction

280 score, the permutations may result in unlikely or impossible combinations of predictors and thus the PFI approach has a known
tendency to overemphasise the importance of individual variables (Hooker and Mentch, 2019). The LOCO importance measure

is estimated by repeatedly retraining the RF models, each time without one particular predictor variable. The relative impor-

12


https://eli5.readthedocs.io/en/latest/index.html

285

290

295

300

305

310

tance of this predictor variable is then measured as the change in MSE on the training-validation dataset, where a larger drop in
MSE signifies a larger significance for the variable within the dataset. The importance of correlated predictor variables may be
under-emphasised in this approach since the model is retrained, and thus some of the importance associated with the removed
variable may be transferred to the correlated variables during the re-training process. The SHAP value (Lundberg and Lee,
2017; Lundberg et al., 2020) is the average of the marginal contributions from a series of perturbations of the predictor vari-
ables. In a similar way to the PFI, this method shares the importance amongst correlated predictor variables, which may make
them appear less significant than if they were included on their own. Asfor-the-other-metries;-SHAP values were computed on

N1R-o mMmnle Howeave 1te on anoth Aara an ad fao he 00000 PEEETEP mnle Ao aatad
a a g—Sa P - OWCVCE; d O W O y a dratCca—1o v, d a v, atca—a

for all validation samples. In order to create a robust composite importance metric for each predictor variableby-dividing-, we
divided the Gini, PFI, LOCO, and SHAP metrics by the sum of their absolute values and then summing-summed them.

timescales were calculated by weighting antecedent months using the largest SHAP value magnitude out of all 12 months s
was-ealentated-as-in the climatological data, The maximum SHAP value magnitudes were calculated for a predictor variable 2

SHAP, ¢ := SHAP, ¢ m,.., Wwhere My, = argmax [SHAP, ;. €}
me{1,2,...,12}

t Za,x a‘SHAPLJ
XXl T XN [QUAP. | 7 7
max, X, Za,m |SHAP,’I?,£‘

fora,z € {(0,X), (1,X IM), (3,X 3M), (6,X 6M), (9,X 9M)},

where—X-denotes-These were then used to calculate the maximally significant timescales for the basis predictor variable for
which-to-carry-out-the-caleulation-X (e.g. FAPAR) —using an average over antecedent months, a, weighted by maximum SHAP
value magnitudes:

> ar 8|SHAP, 4|

tmaex = =2 fora, 0,X OM), (1,X 1M), (3,X 3M), (6,X 6M), (9,X 9M)}. 2
w5 ISHAP, | ora,z € {( ) ( ) ( ), ( ), ( )} 2

Locations with too many significant antecedent months were ignored in order to visualise resulting relationships more
reliably; for example, if both the current ({SHAPx—+{|SHAP ¢) and nine-month antecedent (|]SHAPx gv ¢

dominant, the weighted mean month (according to Eq. (2)) would lie in between, which is physically meaningless. We designed

) magnitudes are

an algorithm to detect SHAP values that differ significantly from the baseline in order to mitigate this. Additionally, we also

employed-applied a range-based threshold, whereby locations were ignored using-the-mean-BA-if the variability of the SHAP
values at location ¢ was below a threshold heuristically related to the mean BA, BA, (based on all BA samples);-;

max(SHAP, () — min(SHAP, ;) < 0.12 x BA,. 3)

We further used Accumulated Local Effects (ALE) plots (Apley and Zhu, 2020) to examine and interpret the coupled re-
lationships fitted by the RF models. ALE plots are a more robust alternative to partial dependence plots (PDP) or individual
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Figure 1. Global climatological R* scores for the different experiments. The CURR model is the only model that does not include antecedent
conditions, and it performs much worse as a result. Despite the fact that the ALL model contains 50 predictors, while all other models contain
Just 13, it does not perform significantly better than the best models containing just 15 predictors (e.g. 15VEG_FAPAR). Note that although
train R? scores are shown here, they are not indicative of model performance on unseen data, for which the shown train OOB scores should

conditional expectation (ICE) plots (Apley and Zhu, 2020; Molnar, 2020). We assessed the impact of each of the predictor
variables on BA in isolation using HB-AdEs—-taking-first-order ALEs which take into account the effect of all other predictor
variables. Underlying-However, underlying inhomogeneities may appear when the model fits different relationships for differ-
ent locations —We-or times. We therefore tested for inhomogeneities by subsampling the dataset prior to ALE plotconstruction;
alowing-plotting to enable the visualisation of underlying relationships for a subset of locations and times. The causes of the
these inhomogeneities were explored using 2B-second-order ALE plots, which show the combined effect of two predictor

variables on BA.

3 Results and discussion

In general, all models are able to predict BA using the given biophysical predictors. However, the inclusion of antecedent
redictors significantly improves model performance. Below, we discuss the performance of the different models, the importance
of the different predictor variables, and their relationships with BA.

3.1 Model performance

The ALL model, which includes all 50 variables, achieves an in-the-bag R? of 8:884-0.919 and out-of-bag (OOB) R? of 0.701
for the training dataset and of-0-686-an R? of 0.701 for the validation dataset (Fig. 1). Out-of-sample-predietions-Predictions
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Figure 2. (a) Average observed (Ob,) BA derived from the GFED4 BA dataset (Giglio et al., 2013). (b) Qut-of-sample predictions (Pr.) by
the ALL model on the validation dataset. (c) Relative prediction error of the ALL model calculated by taking the mean of the difference
between observations and predictions divided by the mean observations. While the predictions in (b) are qualitatively very similar to the
observations in (a), there is an overestimation of low BA. Areas with very low or 0 observed BA (a) are omitted from (¢) to avoid division

by (nearly) 0. Despite the visual exaggeration of the errors, which are generally small, there is no overall pattern. Note that sharp data
availability boundaries (e.

data availability, but where one or more of the other datasets is not available. Light grey indicates regions where mean BA is 0, with dark
rey representing regions with non-zero mean BA.

. in western Asia, southern Australia) are introduced by the AGB dataset. Grey shading indicates regions with fire
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on the validation set (Fig. 2b) show a similar geographic pattern to observed BA (Fig. 2a). However, overprediction in the
validation set relative to observed BA is more widespread than underprediction (Fig. 2c). Nonetheless, there is no bias; the
ALL model predicts a mean out-of-sample BA of 2:49-<+6=2-2.54 x 10”3 compared to the expected 2.48 x 10~3. The ap-
parent overprediction is the result of plotting relative (as opposed to absolute) errors, which amplifies the fact that the ALL
model does not predict very low BA accurately:—; out-of-sample BA predictions are no lower than 2:22-<16=57.39 x 107,
while the observed BA is 6-fer-857%-0 for 85.7% of samples. Generally, extrerte-BA-is-eaptured-more-poorly-by-the-medel
than-intermediate BA-the model captures intermediate BA better than extreme BA, leading to overprediction at low and under-
prediction at high BA values. Mere-Thus, more samples are over-predicted because there are more values with low BA than

high BA, leading to many instances of slight overprediction balanced by few instances of comparatively large underprediction

(Fig. $+-52)-54, S3). The model may struggle to predict 0 BA because the random forest model consists of many smaller
decision trees. All 500 individual models would have to predict 0 to yield this value overall, which does not appear to occur
given the stochastic nature of the training process. Failure to capture extreme events well is likely due to their rarity, resulting.
in the absence of comparable training data (see also e.g. Joshi and Sukumar, 2021).

Using a combination of regional neural networks trained on fewer variables at a coarser spatial resolution of 1° > 17,
Joshi and Sukumar (2021) found a global R* score for BA prediction of 0.36. An earlier study by Thomas etal. (2014)
considered an R? score of 0.6 as indicating a robust prediction. Our results compare favourably to both. To further ensure
model robustness, we also compared the PET importances computed separately on the training and validation sets in Fig. S6.
There is no appreciable difference between the two, which is indicative of a lack of overfitting, since the model training
has not unduly prioritised certain variables based on the training set (Dankers and Pfisterer, 2020). Additionally, using the
variogram shown in Fig. S7, we carried out the B-LOO CV as detailed in Sect. 2.3 in order to investigate the influence of spatial
autocorrelation on the 1SVEG,_FAPAR model (see Fig. S8). The performance of the model drops as a larger region around
the test samples is excluded (with 30 pixels corresponding to ~900 km at the equator, which is the scale of autocorrelation
identified using Fig. 7). However, as opposed to the case study in Ploton et al. (2020). the R? score plateaus at around 0.1-0.4
beyond ~900 km instead of dropping to 0, thereby indicating the robustness of our model. Certain regions and extreme events
are poorly captured by the model, accounting for the lower end of this range. Furthermore, the model is potentially forced
to extrapolate to a larger extent as the exclusion radius is increased, leading to an overly pessimistic performance estimate.
The extrapolation-prevention procedure in Ploton et al. (2020) was not used here because it led to the exclusion of certain key
regions.

3.2 Importance of predictors

Climate variables and fuel-related vegetation indices have the strongest influence on BA in the ALL model (Table S2). Both
current and antecedent conditions are important. Current DD and MaxT are ranked +st-and-3rd-first and fifth respectively, but
antecedent DD also has a strong-moderate influence (DD 1M and DD 3M are ranked 6th-and-7th-in-impertaneel Oth and 13th in
importance, respectively). Similarly, although current FAPAR is the most important vegetation index (2nd), with both current

SIF and VOD occurring in the top +5-15 predictors, antecedent vegetation state also has a strong influence on BA. However,
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antecedent conditions > 9M are unimportant in the ALL model. Vegetation characteristics such as the cover of specific plant
types (TREE, SHRUB, HERB) er-and AGB are only moderately important in determining BA (all ranked below the top 15
predictors). Human impacts, as represented by CROP and POPD, are also only moderately important globally for BA, ranked
respectively +3th-8th and 15th. Natural ignitions ;-as represented by lightning are only ranked 26th21st, suggesting that at a
365 global climatological scale burning is not limited by lightning.
The finding that fuel build-up on timescales longer than a year is not an important predictor of BA may initially be surprising
iven that fuel build-up as a result of fire su . in the USA; Marlon et al., 2012; Pa
- The failure to detect an influence of longer-term fuel build-up on BA probably reflects the short time interval (1-2 yrs)
considered for antecedent fuel build-up, far shorter than the timescales of coarse fuel build-up in these ecosystems. The seasonal
370 differences captured by our analyses may also be unimportant in regions where long fire return times (or fire suppression
allow fuel build-up over longer periods. Wetter forests with long fire-return intervals may also be more affected by longer
term moisture deficits (Abatzoglou and Kolden, 2013) that are not captured in the limited time period analysed. However,
fuels, which supports our findings somewhat. It would be worthwhile to re-examine the influence of longer timescales on
375 BA when longer datasets are available, as, even when considering the ~20-year long MODIS record (which we do using
the 1SVEG_FAPAR_MON model), we are strongly limited by the data available to us. Predictability in boreal ecosystems
is_expected to remain very limited because the return times are many times longer than the time series, so there is a very.
large stochastic component, The lower performance of our monthly 1SVEG, FAPAR, MON model with over 19 years of data,
380  their use of 14 years of data, both support this.
Our analyses are also impacted by the influence of previous fires on current vegetation conditions, Burnt grid cells could have
a lower FAPAR, for example, as a result of prior burning within the current month. This is a problem because we are solely.
interested in how pre-fire vegetation conditions affect BA. The temporal and spatial scales of the analysis are responsible
for this: a monthly analysis cannot resolve processes that occur on the order of days. Further, the impact of previous fires on
385  spatially averaged vegetation properties is expected to be proportional to the burnt fraction of the affected grid cell. In savannah
regions of Africa and northern Australia, where on the order of 10% of 2 0.25° grid cell may burn in a given month, this could
have a significant effect on the averaged values of vegetation properties used in our analyses. Analysis using a finer spatial
scale would counteract this spatial smoothing by allowing burnt pixels to be ignored so that predictor values may be estimated
only from unburnt cells. Using a finer temporal resolution would allow the calculation of predictor variables only up to the

time of burnin

ression has been linked to large and catastrophic fires (e.

. In practice, however, while many variables (e.

resolutions, the lack of accurate, reliable fire statistics at finer scales (Abatzoglou and Kolden, 2013) limits the temporal and
spatial resolution that can usefully be achieved.

Although the limitation of the spatial (and temporal) resolution of the observations could impact the realism of our models,

as could the omission of variables that affect fuel build-up, the consistency of the vegetation relationships shown by all the

395 models (as detailed below) including antecedent conditions indicates that processes related to fuel build-up are adequately

390 . MODIS-based vegetation variables) are available at finer
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Figure 3. Global-climatologieal-seeres-Mean change in out-of-sample prediction error between the CURR and ALL models, relative to mean

observations (<Ob.>). Green regions have decreased prediction error using the ALL model compared to the CURR model, and vice versa for
the different-experimentspurple regions. Areas with high BA (see Fig. 2a) tend to experience lower changes in relative prediction error. Areas

data availability boundaries (e.g.

with very low or 0 observed BA (see Fig.

, but where

one or more of the other datasets is not available. Light grey indicates regions where mean BA is 0, with dark grey representing regions with

non:zero mean BA.

represented by the chosen set of predictors. The different importance metrics used are also in broad agreement, especiall
regarding the most important predictors like FAPAR and DD (see Fig. S1).

3.3 Models with fewer predictors

The model using the top 15 predictors from the ALL model (TOP15) performs only marginally worse than the ALL model,
with an in-the-bag R? of ©:876-0.919 and out-of-bag (OOB) R? of 0.688 for the training dataset and of-6-676-an R? of 0.685
for the validation dataset. This nearly equivalent performance reflects the fact that there is a high degree of correlation between

several of the variables (Flg S%S9) included in the ALL model#he—&b%elufewalues—md—di#efmee%efweeﬂ—ﬁmeﬁhﬁ%mﬁg

-, While also implying that the inclusion of extra

predictors in the ALL model does not improve predictive capability. Therefore, this shows that it is not necessary to include
multiple fuel-related vegetation variables in order to predict BA, provided that both current and antecedent conditions are taken
into consideration. The removal of predictor variables is however likely to reduce overfitting in the TOP15 model compared to
the ALL model Runge et al., 2019; Nowack et al., 2020; Joshi and Sukumar, 2021

3.3.1 Importance of antecedent fuel-related predictors

The importance of antecedent fuel-related vegetation indices for predicting BA is corroborated by the results from the model

that only includes predictors for the current month (CURR), where there is a large decrease in the R? for the validation dataset
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compared to either the ALL (-6-+19—0.123) or TOP15 (-0-+46—0.107) model. €omparison-The decrease in the R? for the

training dataset is smaller (—0.042) than for the validation dataset, indicating that overfitting may be more of a problem in
the CURR model than the ALL model. Analysis of the mean out-of-sample prediction error shows that 56%-54.7% of grid

cells are better predlcted in the ALL model compared to the CURR model (Fig. 3) Hewevef—&wf&deeﬁlefﬂppeaf%e%e

erformance improvements (from the CURR to the ALL model) also tend to have a larger magnitude than the performance
decreases, contributing to the improvement in the global R? aini i idati

etscore. Compared to the
ALL model, fuel-related vegetation properties are less important in the CURR model: VOD is the highest-ranked vegetation
variable but is only fifth-fourth in importance (Table S2).

The-The four fuel-related vegetation variables included in the TOP15 model are correlated with one another (Fig. $3);-and
there-are-high-correlations—between-thesefour-variables-S9), especially on specific antecedent timescales. This suggests it
may be unnecessary to include all these variables to capture the influence of fuel build-up on BA. Comparison of the models
which only include current and antecedent conditions for one fuel-related vegetation variable (15VEG_FAPAR, 15VEG_LALI,
I5VEG_VOD, 15VEG_SIF) confirms this. These-models-al-However, while all these models perform better than the CURR
model (Fig. 1)~—Fhe-, only the 15VEG_FAPAR model performs better-than-similarly to the TOP15model-and-almost-as-welt

as-the-AlLl-medel-l-Al-appears-to-be-a-better-predietor, BEST15, and ALL models. Thus, considered on its own, than-either
SHer-FAPAR is the best fuel-related vegetation predictor, followed by LAI, SIF, and then VOD (Fig. 1). The-15VEG_FAPAR

relationships—However, all four fuel-related vegetation predictors produce reasonable results, and other predictors (e.g. VOD

have been found to be important in other studies (e.g. Forkel et al., 2017).
The importance of including antecedent DD is borne out by the comparison of these four experiments and the experiments

which only included current DD (CURRDD_FAPAR, CURRDD_LAI, CURRDD_VOD, CURRDD_SIF). In each case, the
predictions for the same vegetation predictor variable are worse (Fig. 1). The BEST15-
The BEST15 model contains the best combination of the fuel-related vegetation predictors (current FAPAR, FAPAR 1M,

LAI 3M, SIF 6M, VOD-SIF 9M), determined by optimising their timescales. This suggests that FAPAR is most important

on short timescales (current, 1M) with the other vegetation properties appearing to be more useful on longer timeframes. The
performance of this model, with a training R? of 6:878-0.925 and a validation R? of 8:6830.691, is only bettered by the ALL
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Figure 4. First-order ALEs for different antecedent (< 1 yr) relationships with (a) FAPAR and (b) DD in the 15VEG_FAPAR model, showing.
the underlying relationships with BA after accounting for all other variables. The shaded regions represent the standard deviation around the
mean of 100 ALEs each using 122567 random samples of the training data (~~10%). Evenly spaced guantiles were used in the construction
of the plots. Labels were calculated using the averaged quantiles of all the variables used. A clear difference between instantaneous and
antecedent relationships can be seen in both cases, with instantaneous FAPAR limiting BA while antecedent FAPAR promotes BA, and vice
versa for the dry-day period. Note that the enhancement of BA due to extreme droughts (extreme dry-day period) is apparent across time
periods.

model. The good performance of models including FAPAR is due to the fact that the parts of the world responding most strongly.
to FAPAR OM and FAPAR 1M tend to be fuel-limited, dry biomes accounting for the majority of global BA (Giglio et al., 2013)
: Therefore, globally averaged model performance metrics will tend to favour predictor variables which best represent these
dominant fire regimes. This is supported by previous analyses which have found predictability in regions with infrequent fires
like boreal regions or Europe to be poor in contrast to regions with more frequent fires (e.g. Joshi and Sukumar, 2021).

3.4 Current and antecedent relationships with BA

Current and antecedent states of both fuel-related vegetation properties and DD have different impacts on BA (Fig. 4). Current
FAPAR has a negative effect on BA, while antecedent FAPAR has a positive effect on BA (Fig. 4a);-which-is-strongest-. The

importance of current FAPAR changes most rapidly at intermediate levels of FAPAR;-while-anteeedent FAPAR -has-a-peositive
effeetonBA. The impact of antecedent FAPAR is strongest for the preceding 1 month but persists for up to 6 months; longer

lags tend to produce results more similar to the current relationship because of autocorrelation at the yearly scale. These

relationships make intuitive sense: whereas high antecedent levels of FAPAR suggest that fuel availability is not a limitin
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Figure 5. First-order ALEs for different lags (< 1 yr) from all relevant modelling experiments for the relationships between BA and FAPAR
left hand column) and LAI (right hand column). Evenly spaced quantiles were used in the construction of the plots. Notably, the relationshi

between LAI and BA is not modelled consistently by the CURR model (b), but relationships with BA are generally consistent across models

factor, hich FAPAR in the current month indicates that the vegetation has sufficient moisture to be actively growing and is
460 therefore less likely to burn.
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Current DD has a positive effect on BA (Fig. 4b), while antecedent DD has a generally negative effect except if DD is
very high when the effect becomes positive again. Whereas the positive antecedent effect of FAPAR on BA is strongest for
the preceding 1M relationship and then gets weaker, the negative impact of antecedent DD becomes gradually stronger with
anteeedent-DB-up to IM. Fheserelationships—make-intuitivesense—whereashigh-antecedentlevelsof FAPAR suggest-tha

vel-avatlab —1S-Rota m ne—fa orhigh n—the vrrent-month—xd s—tha he—vesetationhas—suff rERotsty

to-be-actively-growing-and-therefore-isless-likely-to-burn—In-—eontrast-In contrast to FAPAR, dry conditions in the current

month promote fire whereas dry conditions in preceding months reduce vegetation growth and hence fuel build-up. Although
prolonged droughts might be expected to reduce the availability of fuel, the (on average) positive relationship between BA and
DD at very high levels of DD across all antecedent states does not support this expectation. The positive impact of drought in
the current month becomes apparent for dry days > ~10 days, whereas the threshold is higher for antecedent months: BA only
increases when the number of dry days is > ~20 days for the preceding month (DD 1M) and requires > ~40 days for DD
OM. This suggests that positive large antecedent DD may reflect prolonged droughts extending into the current month, thereby

increasing fuel flammability and promoting fire.

can be seen that the negative effects of current FAPAR are most important in wet biomes, where limitation of fire activit
due to instantaneous moisture conditions would also be expected to be strongest. This panel also has strong similarities with

the results of Boer et al. (2021), with moisture-limited (dryness-limited) regions they identified corresponding broadly to the

regions where instantaneous FAPAR is dominant due to the limitation imposed by high FAPAR on BA (see Fig. S10a). In these
regions, instantaneous conditions reduce fuel available to burn due to moisture and antecedent conditions are less important
due to the lack of a seasonal fuel build-up pattern. This then shows that in moisture-limited regions, dry events are important

for enabling fire. From Fig. 7b it is apparent that on average, antecedent FAPAR is most important on a ~4 month timescale.
The-

3.4.1 Consistency of relationships

Consistent relationships between current or antecedent conditions and BA are generally reproduced in all of the RF models
(Fig. 4, 5, S4S11). However, exclusion of antecedent vegetation predictors can lead to counter-intuitive relationships between
the current vegetation state and BA. Although the CURR model produces the expected relationship between—with current
FAPAR (and SIF; Fig. 5a, S4aS11a), the relationship between current LAI (and VOD) and BA is initially positive and then flat
(Fig. 5b, S4b)—Fhis-S11b); this model does not show the expected strong negative relationship between current LAI and BA

that occurs when antecedent moisture and vegetation conditions are included.

Relationships between predictors and BA were also stable when considering the 15VEG_FAPAR_MON model (Fig. S12
which not only uses monthly instead of climatological data, but also a different BA dataset. Using random CV, a validation
R? of 0.501 and an OOB train _ R? of 0.498 were measured. Excluding the years 2009—2012, a validation R? of 0.403 and
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Figure 6. First-order EATALEsfor-differenttags-Second-order ALE plot showing the combined zeroth order (<—+rmean), first order, and
second order modelled effects of FAPAR and FAPAR 1M on BA from the 1SVEG_FAPAR model, taking into account all relevantmoedeHing

experiments-other variables. Grey boxes indicate missing data. See Fig. S13 for the relationships-sample count matrix which demonstrates
the correlation between BA-and-FAPAR(left-hand-cotummn)-the variables and EAHright-hand-cotummjthus shows that samples are unlikel
to fall into the top-left or bottom-right bins. Evenly spaced quantiles were used in the construction and labelling of the plots. Labels-were

eatenlated-using-It can be seen that the averaged-quantites-combined effect of at-the-datasetstsedFAPAR and FAPAR 1M on BA is positive
if FAPAR is low while FAPAR 1M is high.

an QOB train R? of 0.507 were measured. Excluding the final years 2016-2019, a validation R* of 0.435 and an QOB train
R? of 0.505 were measured. While these R” scores are lower than those observed for the previously discussed climatological
analyses, they demonstrate that the model is able to robustly predict BA under multiple CV scenarios. Lower R? scores are also
expected given the higher variance of this data. Additionally, the relationships identified by the model are highly consistent
are dominant as the models behave very similarly when fit on climatological and monthly data; and the main commonality.
between those data is the geographical pattern. Note also that while lightning is omitted from this experiment in contrast to the
climatological 15VEG _FAPAR experiment, lightning is also not present in the TOP15 model which performs similarly to the
ALL and BESTI15 models. Furthermore, as shown in Fig. S3, the importance of lightning and its replacement, AGB, are very.
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3.4.2  Interactions

Although it is informative to consider the impact of individual predictor variables on BA, the expression of these relationships
in the real world is likely to be conditioned by interactions with other variables. For example, low values of current FAPAR are
associated with high BA (Fig. 4a), but this association occurs only when antecedent FAPAR is high (Fig. 6). Low FAPAR in the
current month reflects unsuitable conditions for plant growth, for example during the dry season;-and-. Therefore, fuel build-up
during the preceding months is therefere-a prerequisite for fire to occur. The strong autocorrelation between current and preced-
ing FAPAR values means that the occurrence of low current FAPAR coupled with high antecedent FAPAR is not widespread,
being largely confined to shrublands in Africa. However, there is a significant interaction between current DD and current
FAPAR (Fig. $5S14), with positive reinforcement of their mutual influence on BA when DD is high and FAPAR is low and a
negative influence on BA when DD is high and FAPAR is high. Increased BA for high DD and low FAPAR is consistent with

strong drought-induced fire in low productivity environments of sub-Saharan Africa, northern Australia, and isolated regions

bordering the African tropical rainforests. These findings therefore support previous results, e.g. by van der Werf et al. (2008)

for Australia, where it was found that antecedent precipitation coupled with instantaneous drying was important for fire activity.
Decreased BA as a result of increased DD and increased FAPAR is likely a sign of high-productivity environments that are not

fire-prone, despite occasional drought.

3.4.3 Geographically varying timescales of importance

The timescales of both fuel build-up and fuel drying are influenced by fuel type and are therefore expected to vary across
biomes. Current fuel-related vegetation properties, such as FAPAR (Fig. 7a), have an important effect in tropical regions,
particularly dry tropical regions, but are less important in temperate forest regions. Antecedent FAPAR (Fig. 7b) is important
in most regions, with the strongest influence from the antecedent 3—6 months. Current DD (Fig. 7¢) is generally more important
than antecedent DD, although the impact on BA varies geographically: tropical and boreal regions show decreased BA as a
result of low current DD, while northwestern Australia, extra-tropical Africa, the Cerrado of Brazil, and the western USA
experience increased burning as a result of tew-high current DD (Fig. $6510c). The timescale on which antecedent drought

affects BA (Fig. 7d) is more variable than that for fuel-related vegetation properties, ranging from 1-3 months in boreal forests,

parts of sub-Saharan Africa, and northern Australia, to ~4 months in the tropics, and ~6 months or longer in more arid regions.

4 Conclusions
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(a) FAPAR (with current FAPAR) (c) DD (with current DD)

Figure 7.
of influence of FAPAR and FAPAR—M-DD on BA. The plots show the period that is most important for determining BA from the
15VEG_FAPAR model ;-taking-into-aceount-ath-other-variablesfor (a) FAPAR and (c) DD. Grey-boxes-indieate-missing-dataPlots (b) and (d)
show which antecedent period is most important by disregarding the influence of current conditions during plotting. SeeFigMoister biomes
are seen to be more influenced by current FAPAR (a), while current DD has a large influence globally (c). -S7for-Note that the sample
Wﬂ%&dem%%wwﬁgmme eeffeia&eﬁbefweeﬂ—sm the vaﬁab{es—aﬂekﬂm&shw&%hat—safﬂp}es
regions where mean BA is 0, with dark grey representing regions with non-zero mean BA.

Many-studies By using random forest algorithms to model the dependence of BA on multiple climatic and biophysical variables,
we have shown that antecedent vegetation conditions that influence fuel build-up and antecedent conditions that influence
fuel drying significantly improved model performance when predicting BA in a given month. FAPAR was shown to be the
most significant vegetation variable, and only a single vegetation variable is required for accurate BA prediction if antecedent
conditions are included. Dry-day period and maximum temperature were the most significant climatic variables influencing
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BA. This supports previous studies which have shown that
predietors-current climate and vegetation properties are important overall determinants of BA {e-ge—Addersley-et-al; 204 Bistinas-et-al520-

A R A N1E Minan ha +a A natiqg ariah RPN Aaan

ing(e.g. Aldersley etal., 2011; Bistinas et al., 2014;
- The influence of antecedent climate conditions on both fuel buildup and fuel drying has also been identified as crucial in many.
regions (e.g. Van Wilgen et al.. 2000; Griffin et al., 1983; Westerling et al., 2003; Swetnam and Betancourt, 1998; Jenkins et al., 2020; Ar
-Indeed, the geographical patterning of BA can be linked to the spatial variability of fuel loads and fuel moisture (Archibald et al., 2009; Bo

~

Our model-based analyses allowed us to distinguish between the immediate and antecedent impacts of fuel loads and fuel
dryness on BA, while also allowing their relative contributions to be determined. We have shown-that-the-inelusion-of-both

BA in opposite but intuitively understandable ways: for example, wet conditions in antecedent months lead to more fuel
buildup in fuel limited regions and promote increased BA whereas wet conditions during any given month reduce fuel dryness
and thus limit BA. Furthermore, we have demonstrated that antecedent conditions >1 year are not important on a global
scale. A similar conclusion was reached by Forkel et al. (2017). The-eritical-timeseale-for-fuel-butld-up-varies-Important and
intuitive interactions between instantaneous and antecedent variables were captured by the models, for example supporting

revious findings that increased antecedent productivity (FAPAR) coupled with instantaneous drying (Dry Days) promotes fire
activity (e.g. van der Werf et al,, 2008).

A clear contrast between fuel- and moisture-limited regions was also identified using the spatial variation of the relationship
between antecedent FAPAR and BA. The critical timescales involyed varied with vegetation types—with-longertimeseales
being-more important longer timescales (~~4 months) were more important for fuel build-up in temperate regions and reeent

conditions-being-more-impertant-while recent conditions were more important for fuel drying in the tropics. The effect of
vegetation variables is also biome-dependent because of differing climatic constraints. The length of the dry-day period in the

current month has-had the largest impact on BA but antecedent DD ean-also-be-was also important, particularly in temperate

regions.
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605 tagged refationships:—/elear-eontrast-betweenfuel—Future work could re-calibrate the models for each set of variables to
otentially improve their performance. Approaches like B-LOO CV or our combined variable importance metric could also be
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ehimatepotentially tune the model hyperparameters, given that these methods are currently very computationally intensive.
Finally, the findings presented herein have the potential to improve the modelling of fire at a global scale in order to improve
the way that Earth System Models depict the interactions between climate, vegetation, and fire.

Code availability. Computer code can be found in the empirical-fire-modelling package (Kuhn-Régnier, 2021a). ALE plots were generated
using the ALEPython package (Kuhn-Régnier et al., 2021). Data analysis was carried out using the Python 3.7 (Van Rossum and Drake,
2009) packages SciPy (Virtanen et al., 2020), Matplotlib (Hunter, 2007), NumPy (Oliphant, 2006), Iris (Met Office, 2010), Dask (Dask
Development Team, 2016), Jupyter notebooks (Kluyver et al., 2016), wildfires (Kuhn-Régnier, 2021b), and eraSanalysis (Kuhn-Régnier,
2020). GFED4 data was read using pyhdf (https://github.com/ths/pyhdf, wraps NCSA HDF version 4).

Author contributions. Conceptualization, AKR, AV, ICP, SPH; Methodology, AKR; Software, AKR; Validation, AKR; Formal Analysis,
AKR; Investigation, AKR, SPH; Data Curation, AKR, MF; Writing — Original Draft, AKR; Writing — Review & Editing, AKR, AV, PN, MF,
ICP, SPH; Visualization, AKR; Supervision, AV, PN, ICP, SPH.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. AKR acknowledges support from the NERC Centre for Doctoral Training in Quantitative and Modelling skills in Ecol-
ogy and Evolution (QMEE, grant reference NE/P012345/1). ICP acknowledges support from the ERC-funded project REALM (grant number
787203). SPH acknowledges support from the ERC-funded project GC2.0 (Global Change 2.0: Unlocking the past for a clearer future, grant

number 694481). This research was partially funded by the Leverhulme Centre for Wildfires, Environment, and Society through the Lever-

hulme Trust, grant number RC-2018-023. The authors would like to thank Kees Klein Goldewijk for contributing an updated HYDE dataset.

28


https://github.com/fhs/pyhdf

630

635

640

645

650

655

660

References

Abarca, S. F.,, Corbosiero, K. L., and Galarneau, T. J.: An Evaluation of the Worldwide Lightning Location Network (WWLLN) Using the

National Lightning Detection Network (NLDN) as Ground Truth, J. Geophys. Res., 115, D18 206, https://doi.org/10.1029/2009JD01341 1,
2010.

Abatzoglou, J. T. and Kolden, C. A.: Relationships between Climate and Macroscale Area Burned in the Western United States, Int. J.
Wildland Fire, 22, 1003-1020, https://doi.org/10.1071/WF13019, 2013.

o and Williame—A P - Tmps Anthroposeni

Abatzoglou, J. T., Williams, A. P, Boschetti, L., Zubkova, M., and Kolden, C. A.: Global Patterns of Interannual Climate-Fire Relationships,
Glob Change Biol, 24, 5164-5175, https://doi.org/10.1111/gcb.14405, 2018.

Abatzoglou, J. T., Williams, A. P., and Barbero, R.: Global Emergence of Anthropogenic Climate Change in Fire Weather Indices, Geophys.
Res. Lett., 46, 326-336, https://doi.org/10.1029/2018GL080959, 2019.

Albergel, C., Riidiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E.: From Near-
Surface to Root-Zone Soil Moisture Using an Exponential Filter: An Assessment of the Method Based on in-Situ Observations and Model
Simulations, Hydrol. Earth Syst. Sci., 12, 1323-1337, https://doi.org/10.5194/hess-12-1323-2008, 2008.

Aldersley, A., Murray, S. J., and Cornell, S. E.: Global and Regional Analysis of Climate and Human Drivers of Wildfire, Science of The
Total Environment, 409, 3472-3481, https://doi.org/10.1016/j.scitotenv.2011.05.032, 2011.

Alvarado, S. T., Andela, N, Silva, T. S. F., and Archibald, S.: Thresholds of Fire Response to Moisture and Fuel Load Differ between Tropical
Savannas and Grasslands across Continents, Global Ecol Biogeogr, 29, 331-344, https://doi.org/10.1111/geb.13034, 2020.

Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster,
S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., and Randerson, J. T.: A Human-Driven Decline in
Global Burned Area, Science, 356, 1356—1362, https://doi.org/10.1126/science.aal4108, 2017.

Apley, D. W. and Zhu, J.: Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models, J. R. Stat. Soc. Ser. B
Stat. Methodol., 82, 1059-1086, https://doi.org/10.1111/rssb.12377, 2020.

Archibald, S., Roy, D. P., van Wilgen, B. W., and Scholes, R. J.: What Limits Fire? An Examination of Drivers of Burnt Area in Southern
Africa, Glob. Change Biol., 15, 613-630, https://doi.org/10.1111/j.1365-2486.2008.01754.x, 2009.

Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N.,
Berry, N. J., Boeckx, P., de Jong, B. H. J., DeVries, B., Girardin, C. A. J., Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R.,
Malhi, Y., Morel, A., Mitchard, E. T. A., Nagy, L., Qie, L., Quinones, M. J., Ryan, C. M., Ferry, S. J. W., Sunderland, T., Laurin, G. V.,
Gatti, R. C., Valentini, R., Verbeeck, H., Wijaya, A., and Willcock, S.: An Integrated Pan-Tropical Biomass Map Using Multiple Reference
Datasets, Glob. Change Biol., 22, 1406-1420, https://doi.org/10.1111/gcb.13139, 2016.

Barbero, R., Abatzoglou, J. T., Larkin, N. K., Kolden, C. A., and Stocks, B.: Climate Change Presents Increased Potential for Very Large
Fires in the Contiguous United States, Int. J. Wildland Fire, 24, 892-899, https://doi.org/10.1071/WF15083, 2015.

Beck, P. S. A., Atzberger, C., Hgeda, K. A., A. K.:

Dynamics at Very High Latitudes: A New Method Using MODIS NDVI, Remote Sensing of Environment, 100, 321-334
https://doi.org/10.1016/j.rse.2005.10.021, 2006.

Johansen, B., and Skidmore, Improved Monitoring of Vegetation

29


https://doi.org/10.1029/2009JD013411
https://doi.org/10.1071/WF13019
https://doi.org/10.1111/gcb.14405
https://doi.org/10.1029/2018GL080959
https://doi.org/10.5194/hess-12-1323-2008
https://doi.org/10.1016/j.scitotenv.2011.05.032
https://doi.org/10.1111/geb.13034
https://doi.org/10.1126/science.aal4108
https://doi.org/10.1111/rssb.12377
https://doi.org/10.1111/j.1365-2486.2008.01754.x
https://doi.org/10.1111/gcb.13139
https://doi.org/10.1071/WF15083
https://doi.org/10.1016/j.rse.2005.10.021

665

670

675

680

685

690

695

700

Bedia, J., Herrera, S., Gutiérrez, J. M., Benali, A., Brands, S., Mota, B., and Moreno, J. M.: Global Patterns in the Sensitiv-
ity of Burned Area to Fire-Weather: Implications for Climate Change, Agricultural and Forest Meteorology, 214-215, 369-379,
https://doi.org/10.1016/j.agrformet.2015.09.002, 2015.

747-762, https://doi.org/10.2307/1939341, 1995.

Bistinas, 1., Harrison, S. P., Prentice, 1. C., and Pereira, J. M. C.: Causal Relationships versus Emergent Patterns in the Global Controls of
Fire Frequency, Biogeosciences, 11, 5087-5101, https://doi.org/10.5194/bg-11-5087-2014, 2014.

Boer, M. M., Dios, V. R. D., Stefaniak, E., and Bradstock, R. A.: A Hydroclimatic Model for the Distribution of Fire on Earth, Environ. Res.
Commun., https://doi.org/10.1088/2515-7620/abec1f, 2021.

Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’ Antonio, C. M., DeFries, R., Johnston, F. H., Keeley, J. E.,
Krawchuk, M. A., Kull, C. A., Mack, M., Moritz, M. A., Pyne, S., Roos, C. I, Scott, A. C., Sodhi, N. S., and Swetnam, T. W.: The Human

Dimension of Fire Regimes on Earth, J. Biogeogr., 38, 2223-2236, https://doi.org/10.1111/j.1365-2699.2011.02595 %, 2011.

DN\ Milliameon Alnc

Breiman, L.: Random Forests, Machine Learning, 45, 5-32, https://doi.org/10.1023/A:1010933404324, 2001.

Biirgesser, R. E.: Assessment of the World Wide Lightning Location Network (WWLLN) Detection Efficiency by Comparison to

the Lightning Imaging Sensor (LIS): WWLLN Detection Efficiency Relative to LIS, Q.J.R. Meteorol. Soc, 143, 2809-2817,
https://doi.org/10.1002/qj.3129, 2017.

Burton, C., Betts, R. A., Jones, C. D., and Williams, K.: Will Fire Danger Be Reduced by Using Solar Radiation Management to Limit Global
Warming to 1.5 °C Compared to 2.0 °C?, Geophys. Res. Lett., 45, 3644-3652, https://doi.org/10.1002/2018GL077848, 2018.

Copernicus Climate Change Service (C3S): ERAS: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate . Copernicus
Climate Change Service Climate Data Store (CDS), https://cds.climate.copernicus.eu/cdsapp#!/home, 2017.

Dask Development Team: Dask: Library for Dynamic Task Scheduling, 2016.

Dormann, C. F, Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitdo,
P. J., Miinkemiiller, T., McClean, C., Osborne, P. E., Reineking, B., Schroder, B., Skidmore, A. K., Zurell, D., and Lautenbach, S.:
Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance, Ecography, 36, 27-46,
https://doi.org/10.1111/j.1600-0587.2012.07348.x, 2013.

Forkel, M., Dorigo, W., Lasslop, G., Teubner, 1., Chuvieco, E., and Thonicke, K.: A Data-Driven Approach to Identify Controls on Global
Fire Activity from Satellite and Climate Observations (SOFIA V1), Geosci. Model Dev., 10, 4443-4476, https://doi.org/10.5194/gmd-10-
4443-2017, 2017.

Forkel, M., Andela, N., Harrison, S. P, Lasslop, G., van-Martevan Marle, M., Chuvieco, E., Dorigo, W., Forrest, M., Hantson, S., Heil, A., Li,
F., Melton, J., Sitch, S., Yue, C., and Arneth, A.: Emergent Relationships en-with Respect to Burned Area in Global Satellite Observations
and Fire-Enabled Vegetation Models, BiogeosciencesbBiseussspp——3+-, 16, 57-76, https://doi.org/10.5194/bg-16-57-2019, 2019a.

Forkel, M., Dorigo, W., Lasslop, G., Chuvieco, E., Hantson, S., Heil, A., Teubner, 1., Thonicke, K., and Harrison, S. P.: Recent
Global and Regional Trends in Burned Area and Their Compensating Environmental Controls, Environ. Res. Commun., 1, 051 005,

https://doi.org/10.1088/2515-7620/ab25d2, 2019b.

30


https://doi.org/10.1016/j.agrformet.2015.09.002
https://doi.org/10.2307/1939341
https://doi.org/10.5194/bg-11-5087-2014
https://doi.org/10.1088/2515-7620/abec1f
https://doi.org/10.1111/j.1365-2699.2011.02595.x
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1002/qj.3129
https://doi.org/10.1002/2018GL077848
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.5194/gmd-10-4443-2017
https://doi.org/10.5194/gmd-10-4443-2017
https://doi.org/10.5194/gmd-10-4443-2017
https://doi.org/10.5194/bg-16-57-2019
https://doi.org/10.1088/2515-7620/ab25d2

705

710

715

720

725

730

735

Fox, E. W., Hill, R. A, Leibowitz, S. G., Olsen, A. R., Thornbrugh, D. J., and Weber, M. H.: Assessing the Accuracy and Stability of Variable
Selection Methods for Random Forest Modeling in Ecology, Environ Monit Assess, 189, 316, https://doi.org/10.1007/s10661-017-6025-0,
2017,

Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of Daily, Monthly, and Annual Burned Area Using the Fourth-Generation
Global Fire Emissions Database (GFED4), J. Geophys. Res. Biogeosciences, 118, 317-328, https://doi.org/10.1002/jgrg.20042, 2013.
lio, L., Boschetti, L., Ro,

Product, Remote Sensing of Environment, 217, 72-85, https://doi.org/10.1016/j.rse.2018.08.005, 2018,

Goss, M., Swain, D. L., Abatzoglou, J. T., Sarhadi, A., Kolden, C., Williams, A. P., and Diffenbaugh, N. S.: Climate Change Is Increasing
the Risk of Extreme Autumn Wildfire Conditions across California, Environ. Res. Lett., https://doi.org/10.1088/1748-9326/ab83a7, 2020.

Griffin, G., Price, N., and Portlock, H.: Wildfires in the Central Australian Rangelands, 1970-1980., J. Environ. Manage., 17, 311-323, 1983.

Gi , D. P, Humber, M. L., and Justice, C. O.: The Collection 6 MODIS Burned Area Mapping Algorithm and

Hantson, S., Kelley, D. 1., Arneth, A., Harrison, S. P., Archibald, S., Bachelet, D., Forrest, M., Hickler, T., Lasslop, G., Li, F., Mangeon, S.,
Melton, J. R., Nieradzik, L., Rabin, S. S., Prentice, I. C., Sheehan, T., Sitch, S., Teckentrup, L., Voulgarakis, A., and Yue, C.: Quantita-
tive Assessment of Fire and Vegetation Properties in Historical Simulations with Fire-Enabled Vegetation Models from the Fire Model
Intercomparison Project, Preprint, Biogeosciences, https://doi.org/10.5194/gmd-2019-261, 2020.

Harris, L., Jones, P., Osborn, T., and Lister, D.: Updated High-resolution Grids of Monthly Climatic Observations — the CRU TS3.10 Dataset,
Int. J. Climatol., 34, 623—642, https://doi.org/10.1002/joc.3711, 2014.

Higuera, P. E., Abatzoglou, J. T., Littell, J. S., and Morgan, P.: The Changing Strength and Nature of Fire-Climate Relationships in the
Northern Rocky Mountains, U.S.A., 1902-2008, PLOS ONE, 10, 0127 563, https://doi.org/10.1371/journal.pone.0127563, 2015.

Hooker, G. and Mentch, L.: Please Stop Permuting Features: An Explanation and Alternatives, ArXiv190503151 Cs Stat, 2019.

Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 9, 90-95, 2007.

Jenkins, M. E., Bedward, M., Price, O., and Bradstock, R. A.: Modelling Bushfire Fuel Hazard Using Biophysical Parameters, Forests, 11,
925, https://doi.org/10.3390/f11090925, 2020,

Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., and Bowman, D. M. J. S.: Climate-Induced
Variations in Global Wildfire Danger from 1979 to 2013, Nat. Commun., 6, 7537, https://doi.org/10.1038/ncomms8537, 2015.
https://doi.org/10.1038/s41598-021-81233-4, 2021.

Kaplan, J. O. and Lau, H.-K:: The WGLC Global Gridded Monthly Lightning Stroke Density and Climatology,
https://doi.org/10.1594/PANGAEA.904253, 2019.

Keane, R. E., Burgan, R., and van Wagtendonk, J.: Mapping Wildland Fuels for Fire Management across Multiple Scales: Integrating Remote
Sensing, GIS, and Biophysical Modeling, Int. J. Wildland Fire, 10, 301, https://doi.org/10.1071/WF01028, 2001.

Kelley, D. 1., Bistinas, 1., Whitley, R., Burton, C., Marthews, T. R., and Dong, N.: How Contemporary Bioclimatic and Human Controls
Change Global Fire Regimes, Nat. Clim. Chang., 9, 690-696, https://doi.org/10.1038/s41558-019-0540-7, 2019.

Klein Goldewijk, C.: Anthropogenic Land-Use Estimates for the Holocene; HYDE 3.2, https://doi.org/10.17026/DANS-25G-GEZ3, 2017.

Kloster, S. and Lasslop, G.: Historical and Future Fire Occurrence (1850 to 2100) Simulated in CMIP5 Earth System Models, Global and
Planetary Change, 150, 58—-69, https://doi.org/10.1016/j.gloplacha.2016.12.017, 2017.

Kloster, S., Mahowald, N. M., Randerson, J. T., and Lawrence, P. J.: The Impacts of Climate, Land Use, and Demography on Fires during
the 21st Century Simulated by CLM-CN, Biogeosciences, 9, 509-525, https://doi.org/10.5194/bg-9-509-2012, 2012.

31


https://doi.org/10.1007/s10661-017-6025-0
https://doi.org/10.1002/jgrg.20042
https://doi.org/10.1016/j.rse.2018.08.005
https://doi.org/10.1088/1748-9326/ab83a7
https://doi.org/10.5194/gmd-2019-261
https://doi.org/10.1002/joc.3711
https://doi.org/10.1371/journal.pone.0127563
https://doi.org/10.3390/f11090925
https://doi.org/10.1038/ncomms8537
https://doi.org/10.1038/s41598-021-81233-4
https://doi.org/10.1594/PANGAEA.904253
https://doi.org/10.1071/WF01028
https://doi.org/10.1038/s41558-019-0540-7
https://doi.org/10.17026/DANS-25G-GEZ3
https://doi.org/10.1016/j.gloplacha.2016.12.017
https://doi.org/10.5194/bg-9-509-2012

740

745

750

755

760

765

770

775

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov,
P, Avila, D., Abdalla, S., and Willing, C.: Jupyter Notebooks — a Publishing Format for Reproducible Computational Workflows, in:
Positioning and Power in Academic Publishing: Players, Agents and Agendas, edited by Loizides, F. and Schmidt, B., pp. 87-90, I0S
Press, 2016.

Knorr, W., Jiang, L., and Arneth, A.: Climate, CO, and Human Population Impacts on Global Wildfire Emissions, Biogeosciences, 13,
267-282, https://doi.org/10.5194/bg-13-267-2016, 2016.

Kohler, P., Guanter, L., and Joiner, J.: A Linear Method for the Retrieval of Sun-Induced Chlorophyll Fluorescence from GOME-2 and
SCIAMACHY Data, Atmospheric Meas. Tech., 8, 2589-2608, https://doi.org/10.5194/amt-8-2589-2015, 2015.

Krawchuk, M. A. and Moritz, M. A.: Constraints on Global Fire Activity Var
https://doi.org/10.1890/09-1843.1, 2011,

Kuohn-RegnierKuhn-Régnier, A.: eraSanalysis (Version 0.2.1), Zenodo, https://doi.org/10.5281/zenodo.4173493, 2626-2020.
2626https://doi.org/10.5281/zenodo0.4739596, 2021a.

Kuhn-RegnierKuhn-Régnier, A.: wildfires (Version 0.10.2), Zenodo, -2626https://doi.org/10.5281/zenodo0.4739193, 2021b.

Kuhn-RegnierKuhn-Régnier, A., Jumelle, M., and Rajaratnam, S.: ALEPython (Version 0.5.5), Zenodo, 2626
https://doi.org/10.5281/zenodo.4739201, 2021.

across a Resource Gradient, Ecology, 92, 121-132,

Lasslop, G., Coppola, A. L., Voulgarakis, A., Yue, C., and Veraverbeke, S.: Influence of Fire on the Carbon Cycle and Climate, Curr Clim
Change Rep, 5, 112-123, https://doi.org/10.1007/s40641-019-00128-9, 2019.

Li, W., MacBean, N., Ciais, P., Defourny, P., Lamarche, C., Bontemps, S., Moreau, 1., Houghton, R. A., and Peng, S.: Gross and Net Land
Cover Changes in the Main Plant Functional Types Derived from the Annual ESA CCI Land Cover Maps (1992-2015), Earth Syst. Sci.
Data, 10, 219-234, https://doi.org/10.5194/essd-10-219-2018, 2018.

Littell, J. S., McKenzie, D., Peterson, D. L., and Westerling, A. L.: Climate and Wildfire Area Burned in Western U.S. Ecoprovinces,

1916-2003, Ecol. Appl., 19, 1003-1021, https://doi.org/10.1890/07-1183.1, 2009.
Lundberg, S. and Lee, S.-1.: A Unified Approach to Interpreting Model Predictions, in: Advances in Neural Information Processing Systems,

edited by Guyon, 1., Fergus, R., Wallach, H., von Luxburg, U., Garnett, R., Vishwanathan, S., and Bengio, S., vol. 2017-December, pp.
4766-4775, Neural information processing systems foundation, 2017.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S.-I.: From Local
Explanations to Global Understanding with Explainable Al for Trees, Nat. Mach. Intell., 2, 56-67, https://doi.org/10.1038/s42256-019-
0138-9, 2020.

Mansfield, L. A., Nowack, P. J., Kasoar, M., Everitt, R. G., Collins, W. J., and Voulgarakis, A.: Predicting Global Patterns of Long-Term Cli-
mate Change from Short-Term Simulations Using Machine Learning, Npj Clim. Atmospheric Sci., 3, 1-9, https://doi.org/10.1038/s41612-
020-00148-5, 2020.

Marlon, J. R., Bartlein, P. J., Gavin, D. G., Long, C. J., Anderson, R. S., Briles, C. E., Brown, K. J., Colombaroli, D., Hallett, D. J.,
Power, M. J., Scharf, E. A., and Walsh, M. K.: Long-Term Perspective on Wildfires in the Western USA, PNAS, 109, E535-E543,
https://doi.org/10.1073/pnas.1112839109, 2012.

Martinez, J., Vega-Garcia, C., and Chuvieco, E.: Human-Caused Wildfire Risk Rating for Prevention Planning in Spain, Journal of Environ-

mental Management, 90, 1241-1252, https://doi.org/10.1016/j.jenvman.2008.07.005, 2009.

32


https://doi.org/10.5194/bg-13-267-2016
https://doi.org/10.5194/amt-8-2589-2015
https://doi.org/10.1890/09-1843.1
https://doi.org/10.5281/zenodo.4173493
https://doi.org/10.5281/zenodo.4739596
https://doi.org/10.5281/zenodo.4739193
https://doi.org/10.5281/zenodo.4739201
https://doi.org/10.1007/s40641-019-00128-9
https://doi.org/10.5194/essd-10-219-2018
https://doi.org/10.1890/07-1183.1
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s41612-020-00148-5
https://doi.org/10.1038/s41612-020-00148-5
https://doi.org/10.1038/s41612-020-00148-5
https://doi.org/10.1073/pnas.1112839109
https://doi.org/10.1016/j.jenvman.2008.07.005

780

785

790

795

800

805

810

Met Office: Iris: A Python Library for Analysing and Visualising Meteorological and Oceanographic Data Sets, Exeter, Devon, v2.4 edn.,
2010.

Meyer, H., Reudenbach, C., Wollauer, S., and Nauss, T.: Importance of Spatial Predictor Variable Selection in Machine

Learning Applications — Moving from Data Reproduction to Spatial Prediction, Ecological Modelling, 411, 108815,
https://doi.org/10.1016/j.ecolmodel.2019.108815, 2019,

Moesinger, L., Dorigo, W., De Jeu, R., Van der Schalie, R., Scanlon, T., Teubner, 1., and Forkel, M.: The Global Long-Term Microwave
Vegetation Optical Depth Climate Archive VODCA (Version 1.0) [Data Set], https://doi.org/10.5281/zenod0.2575599, 2019.

Moesinger, L., Dorigo, W., de Jeu, R., van der Schalie, R., Scanlon, T., Teubner, 1., and Forkel, M.: The Global Long-Term Microwave
Vegetation Optical Depth Climate Archive (VODCA), Earth Syst. Sci. Data, 12, 177-196, https://doi.org/10.5194/essd-12-177-2020,
2020.

Mohammed, G. H., Colombo, R., Middleton, E. M., Rascher, U., van der Tol, C., Nedbal, L., Goulas, Y., Pérez-Priego, O., Damm, A.,
Meroni, M., Joiner, J., Cogliati, S., Verhoef, W., Malenovsky, Z., Gastellu-Etchegorry, J.-P., Miller, J. R., Guanter, L., Moreno, J., Moya,
L., Berry, J. A., Frankenberg, C., and Zarco-Tejada, P. J.: Remote Sensing of Solar-Induced Chlorophyll Fluorescence (SIF) in Vegetation:
50 years of Progress, Remote Sensing of Environment, 231, 111 177, https://doi.org/10.1016/j.rse.2019.04.030, 2019.

Molnar, C.: Interpretable Machine Learning, 2020.

Myneni, R., Knyazikhin, Y., and Park, T.. MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006,
https://doi.org/10.5067/MODIS/MOD15A2H.006, 2015.

Nowack, P., Braesicke, P., Haigh, J., Abraham, N. L., Pyle, J., and Voulgarakis, A.: Using Machine Learning to Build Temperature-Based
Ozone Parameterizations for Climate Sensitivity Simulations, Environ. Res. Lett., 13, 104 016, https://doi.org/10.1088/1748-9326/aae2be,
2018.

Nowack, P, Runge, J., Eyring, V., and Haigh, J. D.: Causal Networks for Climate Model Evaluation and Constrained Projections, Nat.
Commun., 11, 1415, https://doi.org/10.1038/s41467-020-15195-y, 2020.
https://doi.org/10.1038/s41598-020-67530-4, 2020.

Ogutu, B. O., Dash, J., and Dawson, T. P.: Evaluation of the Influence of Two Operational Fraction of Absorbed Photosynthet-
ically Active Radiation (FAPAR) Products on Terrestrial Ecosystem Productivity Modelling, Int. J. Remote Sens., 35, 321-340,
https://doi.org/10.1080/01431161.2013.871083, 2014.

Oliphant, T. E.: A Guide to NumPy, vol. 1, Trelgol Publishing USA, 2006.

Parks, S. A., Miller, C., Parisien, M.-A., Holsinger, L. M., Dobrowski, S. Z., and Abatzoglou, J.: Wildland Fire Deficit and Surplus in the
Western United States, 1984-2012, Ecosphere, 6, 1-13, https://doi.org/10.1890/ES15-00294.1, 2015.

Pechonv—O—and-Shinde D - Drivine—F VDA obal-Wildfresoverthe Past Millenni

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-Learn: Machine Learning in Python, J.
Mach. Learn. Res., 12, 2825-2830, 2011.

Pettinari, M. L. and Chuvieco, E.: Generation of a Global Fuel Data Set Using the Fuel Characteristic Classification System, Biogeosciences,

13,2061-2076, https://doi.org/10.5194/bg-13-2061-2016, 2016.

33


https://doi.org/10.1016/j.ecolmodel.2019.108815
https://doi.org/10.5281/zenodo.2575599
https://doi.org/10.5194/essd-12-177-2020
https://doi.org/10.1016/j.rse.2019.04.030
https://doi.org/10.5067/MODIS/MOD15A2H.006
https://doi.org/10.1088/1748-9326/aae2be
https://doi.org/10.1038/s41467-020-15195-y
https://doi.org/10.1038/s41598-020-67530-4
https://doi.org/10.1080/01431161.2013.871083
https://doi.org/10.1890/ES15-00294.1
https://doi.org/10.5194/bg-13-2061-2016

815

820

825

830

835

840

845

850

Ploton, P., Mortier, E., Réjou-Méchain, M., Barbier, N., Picard, N., Rossi, V., Dormann, C., Cornu, G., Viennois, G., Bayol, N., Lyapustin, A.

Gourlet-Fleury, S., and Pélissier, R.: Spatial Validation Reveals Poor Predictive Performance of Large-Scale Ecological Mapping Models
Nat. Commun,, 11, 4540, https://doi.org/10.1038/s41467-020-18321-y, 2020.

Poulter, B., MacBean, N., Hartley, A., Khlystova, L., Arino, O., Betts, R., Bontemps, S., Boettcher, M., Brockmann, C., Defourny, P., Hage-

mann, S., Herold, M., Kirches, G., Lamarche, C., Lederer, D., Ottlé, C., Peters, M., and Peylin, P.: Plant Functional Type Classification
for Earth System Models: Results from the European Space Agency’s Land Cover Climate Change Initiative, Geosci. Model Dev., 8,
2315-2328, https://doi.org/10.5194/gmd-8-2315-2015, 2015.

Randerson, J. T., van der Werf, G. R., Collatz, G. J., Giglio, L., Still, C. J., Kasibhatla, P., Miller, J. B., White, J. W. C., DeFries, R. S.,
§13C02, Glob. Biogeochem. Cycles, 19, https://doi.org/10.1029/2004GB002366, 2005.

Rodger, C. J., Brundell, J. B., Dowden, R. L., and Thomson, N. R.: Location Accuracy of Long Distance VLF Li

htning Locationnetwork,

Ann. Geophys., 22, 747758, https://doi.org/10.5194/angeo-22-747-2004, 2004,

Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic, D.: Detecting and Quantifying Causal Associations in Large Nonlinear
Time Series Datasets, Sci. Adv., 5, eaau4996, https://doi.org/10.1126/sciadv.aau4996, 2019.

Ryu, Y., Berry, J. A., and Baldocchi, D. D.: What Is Global Photosynthesis? History, Uncertainties and Opportunities, Remote Sensing of
Environment, 223, 95-114, https://doi.org/10.1016/j.rse.2019.01.016, 2019.

Sanderson, B. M. and Fisher, R. A.: A Fiery Wake-up Call for Climate Science, Nat. Clim. Chang., 10, 175-177,
https://doi.org/10.1038/s41558-020-0707-2, 2020.

Spessa, A., McBeth, B., and Prentice, C.: Relationships among Fire Frequenc

of Northern Australia: An Analysis Based on NOAA-AVHRR Data, Glob. Ecol. Biogeogr., 14, 439-454, https://doi.org/10.1111/j.1466-
822x.2005.00174.x, 2005.

Swetnam, T. W. and Betancourt, J. L.: Mesoscale Disturbance and Ecological Response to Decadal Climatic Variability in the American
Southwest, J. Clim., 11, 3128-3147, https://doi.org/10.1175/1520-0442(1998)011<3128:MDAERT>2.0.CO;2, 1998.

Teckentrup, L., Harrison, S. P., Hantson, S., Heil, A., Melton, J. R., Forrest, M., Li, F., Yue, C., Arneth, A., Hickler, T., Sitch, S., and Lasslop,

Rainfall and Vegetation Patterns in the Wet—Dry Tropics

G.: Response of Simulated Burned Area to Historical Changes in Environmental and Anthropogenic Factors: A Comparison of Seven Fire
Models, Biogeosciences, 16, 3883-3910, https://doi.org/10.5194/bg-16-3883-2019, 2019.

Teubner, 1. E., Forkel, M., Jung, M., Liu, Y. Y., Miralles, D. G., Parinussa, R., van der Schalie, R., Vreugdenhil, M., Schwalm, C. R.,
Tramontana, G., Camps-Valls, G., and Dorigo, W. A.: Assessing the Relationship between Microwave Vegetation Optical Depth and
Gross Primary Production, Int. J. Appl. Earth Obs. Geoinformation, 65, 79-91, https://doi.org/10.1016/j.jag.2017.10.006, 2018.

Thomas, P. B., Watson, P. J., Bradstock, R. A., Penman

Gradients in Eucalypt Forests of South-Eastern Australia, Ecography, 37, 827-837, https://doi.org/10.1111/ecog.00445, 2014,
Thurner, M., Beer, C., Santoro, M., Carvalhais, N., Wutzler, T., Schepaschenko, D., Shvidenko, A., Kompter, E., Ahrens, B., Levick,

T. D., and Price, O. F.: Modelling Surface Fine Fuel Dynamics across Climate

S. R., and Schmullius, C.: Carbon Stock and Density of Northern Boreal and Temperate Forests, Glob. Ecol. Biogeogr., 23, 297-310,
https://doi.org/10.1111/geb.12125, 2014.

Turco, M., Rosa-Cédnovas, J. J., Bedia, J., Jerez, S., Montdvez, J. P., Llasat, M. C., and Provenzale, A.: Exacerbated Fires in
Mediterranean Europe Due to Anthropogenic Warming Projected with Non-Stationary Climate-Fire Models, Nat Commun, 9, 3821,
https://doi.org/10.1038/s41467-018-06358-z, 2018.

34


https://doi.org/10.1038/s41467-020-18321-y
https://doi.org/10.5194/gmd-8-2315-2015
https://doi.org/10.1029/2004GB002366
https://doi.org/10.5194/angeo-22-747-2004
https://doi.org/10.1126/sciadv.aau4996
https://doi.org/10.1016/j.rse.2019.01.016
https://doi.org/10.1038/s41558-020-0707-2
https://doi.org/10.1111/j.1466-822x.2005.00174.x
https://doi.org/10.1111/j.1466-822x.2005.00174.x
https://doi.org/10.1111/j.1466-822x.2005.00174.x
https://doi.org/10.1175/1520-0442(1998)011%3C3128:MDAERT%3E2.0.CO;2
https://doi.org/10.5194/bg-16-3883-2019
https://doi.org/10.1016/j.jag.2017.10.006
https://doi.org/10.1111/ecog.00445
https://doi.org/10.1111/geb.12125
https://doi.org/10.1038/s41467-018-06358-z

855

860

865

870

van der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N., and Dolman, A. J.: Climate Controls on the Variability of Fires in the Tropics

and Subtropics, Glob, Biogeochem. Cycles, 22, https://doi.org/10.1029/2007GB003122, 2008.

van Oldenborgh, G. J., Krikken, F., Lewis, S., Leach, N. J., Lehner, F., Saunders, K. R., van Weele, M., Haustein, K., Li, S., Wallom, D.,
Sparrow, S., Arrighi, J., Singh, R. P., van Aalst, M. K., Philip, S. Y., Vautard, R., and Otto, F. E. L.: Attribution of the Australian Bushfire
Risk to Anthropogenic Climate Change, Nat. Hazards Earth Syst. Sci. Discuss., pp. 1-46, https://doi.org/10.5194/nhess-2020-69, 2020.

Van Rossum, G. and Drake, F. L.: Python 3 Reference Manual, CreateSpace, Scotts Valley, CA, 2009.

Van Wilgen, B. W., Bi

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C.,
Polat, 1., Feng, Y., Moore, E. W., Vand erPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, 1., Quintero, E. A., Harris, C. R.,
Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and Contributors, S. . .: SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python, Nat. Methods, https://doi.org/10.1038/s41592-019-0686-2, 2020.

Voulgarakis, A. and Field, R. D.: Fire Influences on Atmospheric Composition, Air Quality and Climate, Curr Pollution Rep, 1, 70-81,
https://doi.org/10.1007/s40726-015-0007-z, 2015.

Wagner, W., Lemoine, G., and Rott, H.: A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data, Remote Sensing of
Environment, 70, 191-207, https://doi.org/10.1016/S0034-4257(99)00036-X, 1999.

Westerling, A. L.: Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity, Science, 313, 940-943,
https://doi.org/10.1126/science.1128834, 2006.

s, H., O’Regan, S. P., and Mare, N.: Fire History of the Savanna Ecosystems in the Kruger National Park, South

Westerling, A. L., Gershunov, A, Brown, T. J., Ei—YCayan, D. R., and Waﬁg«%—SpaﬁaF&ﬁdJFempef&l—P&&eﬂMf—G}eb&FBumed—Afeaﬁﬁ
Re%peﬁ%e%e—Amhfepegeme—&ﬁd—Efweﬁmeﬂtﬂl—Faﬁ%Dettm er, M. D.: Climate and Wildfire Global-Fire Historyfor-the

—in the Western United States, Bull. Am. Meteorol.

Soc., 84, 595-604, https://doi.org/10.1175/BAMS-84-5-595, 2003,

RARARAFRASAAANAA

35


https://doi.org/10.1029/2007GB003122
https://doi.org/10.5194/nhess-2020-69
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/s40726-015-0007-z
https://doi.org/10.1016/S0034-4257(99)00036-X
https://doi.org/10.1126/science.1128834
https://doi.org/10.1175/BAMS-84-5-595

Table S1. Variables used in the experiments. ‘C’ denotes current-month variables, ‘all A’ represents all antecedent months (1M—-24M), and
1M represents one-month antecedent variables, with similar notation for other antecedent months.

DD SWI MaxT DTR Light- CROP POPD HERB SHRUB TREE AGB VOD FAPAR LAI SIF
ning
C& C& C& C& C&
ALL all A ¢ ¢ ¢ all A all A all A all A
C& C& C& C& C&
ALL_NN all A ¢ ¢ ¢ all A all A all A all A
CURR C C C C C C C C
C, 1M,
BESTI5 3M, 6M, C C C, 1M M 6M, OM
M
C, 1M, C, 1M,
TOPI15 3M. 9M C M C, 1M IM,3M C
C, 1M, C, 1M,
15VEG_FAPAR 3M, 6M, C C 3M, 6M,
M IM
C, 1M, C, IM,
115\/}151\?—FAPAR' 3M, 6M, C 3M, 6M,
- M M
C, 1M, C, 1M,
15VEG_LAI 3M, 6M, C C 3M, 6M,
M IM
C, 1M, C, 1M,
15VEG_SIF 3M, 6M, C C 3M, 6M,
M IM
C, 1M, C, 1M,
15VEG_VOD 3M, 6M, C C 3M, 6M,
M M
C, IM,
CURRDD_FAPAR C C C C 3M, 6M,
IM
C, 1M,
CURRDD_LAI C C C C 3M, 6M,
IM
C, 1M,
CURRDD_SIF C C C C 3M, 6M,
IM
C, IM,
CURRDD_VOD C C C C 3M, 6M,

M




Table S2. Ranked importance of variables in the RF experiments according to the composite importance measure introduced in Sect. 2.4.

ALL ALL_NN TOPI5 CURR ISVEG_FAPAR  15VEG_LAI 15VEG_SIF ISVEG_VOD CURRDD_FAPAR CURRDD_LAI CURRDD_SIF CURRDD_VOD BESTIS
1 DD DD FAPAR DD FAPAR LAI SIF VOD IM FAPAR IM LAI SIF VOD IM FAPAR
2 FAPAR FAPAR DD MaxT DD DD DD DD FAPAR LALIM DD VoD DD
3 VODIM VOD 3M MaxT TREE FAPAR IM LAIIM MaxT VoD DD DD MaxT VOD 3M FAPAR IM
4 VOD3M VOD IM VOD3M  VOD MaxT LAI3M CROP VOD 3M MaxT LAI3M SIF 3M DD LAI3M
5 MaxT MaxT SIF SWI CROP MaxT SIF 6M MaxT FAPAR 6M MaxT SIF 6M MaxT CROP
6 SIF SIF DD 9M LAI DD IM CROP DD IM VOD 9M FAPAR 3M LAI6M SIF IM VOD 9M MaxT
7  FAPAR IM VoD LAI IM SIF DD 3M LAI6M DD 3M DD 9M CROP HERB SIF 9M VOD 6M SIF 9M
8 CROP FAPAR IM VoD FAPAR  FAPAR 6M DD IM SIF 9M CROP FAPAR OM LAI9M TREE AGB DD IM
9 VoD LAI IM DD IM HERB FAPAR 9M DD 3M SIF 3M DD 3M HERB CROP CROP DTR POPD
10 DD IM DD IM FAPAR IM DTR FAPAR 3M DD 9M SIF IM VOD 6M Lightning Lightning Lightning Lightning DD 9M
11 LAIIM LAI3M CROP Lightning DD 6M LAIOM DD 6M DD IM DTR DTR DTR HERB DD 6M
12 LAI3M CROP LAI 3M AGB DD 9M DD 6M DD 9M DD 6M SWI SHRUB SWI SHRUB Lightning
13 DD3M POPD VOD IM  CROP POPD POPD DTR POPD SHRUB SWI SHRUB SWI SIF 6M
14 DD9M DD 9M DD 3M SHRUB  Lightning Lightning  Lightning ~ DTR TREE TREE HERB TREE DD 3M
15 POPD DD 3M POPD POPD DTR DTR POPD Lightning AGB AGB AGB CROP DTR
16 SIF9M FAPAR 6M
17 FAPAR 6M SIF 9M
18 LAI DD 6M
19 DD6M VOD 9M
20 VOD9M Lightning
21 Lightning LAI
22 DIR FAPAR 9M
23 AGB FAPAR 3M
24 SHRUB DD Al2M
25  FAPAR 9M DTR
26 SIF6M AGB
27 LAI6M LAI6M
28 SWI SWI
29 FAPAR3M SHRUB
30 VOD AI2M  SIF6M
31 DD AI2M LAI9M
32 SIF3M SIF 3M
33 LAI9M VOD 6M
34 VOD6M VOD A12M
35 VOD A24M  SIF IM
36 VOD AISM  HERB
37 SIFIM TREE
38 LAl A24M VOD A24M
39 TREE LAI A12M
40 FAPAR A24M  SIF A24M
41 HERB DD A24M
42 SIF A24M LAI A24M
43 FAPAR A12M FAPAR A24M
44 SIF AISM SIF A18M
45 SIF AI2M SIF A12M
46 DD A24M FAPAR A 12M
47 DD AISM VOD A 18M
48 LAIAIM LAI A18M
49 FAPAR AISM DD A18M
50 LAIAISM FAPAR A18M
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Figure S1. Transformed variable importance metrics (Gini, PFI, SHAP, and LOCO) for the (a) ALL, (b) ALL_NN, and (c) I5SVEG_FAPAR
models. The 15 most important variables (with others omitted for clarity) are sorted by their combined importance with the most important
on the left. Uncertainties using the standard deviation are indicated using shaded regions. The uncertainty magnitudes differ between the
metrics due to the way they are calculated; SHAP values are calculated for every sample, Gini importances are calculated based on splits
for individual decision trees, PFI calculations are repeated after permuting the original dataset, and LOCO importances are only calculated
once. Therefore, based on the number of samples used for their calculation, the SHAP importances are expected to have the highest variance,
followed by the Gini and then PFI importances and lastly the LOCO importances without any quantification of the error.
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Figure S2. The fraction of filled samples for FAPAR (January 2008 to April 2015) at a given location for each month, with yellow indicating
that all occurrences of a given month at a given location were filled and purple indicating no filling was done. Filling is mostly carried out in
winter in northern latitudes.
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Figure S3. Sorted variable importance metrics (Gini, SHAP, PFI, and LOCO) for the ALL model, with the highest variable importance
according to each metric on the left. The dotted red line indicates the 15th variable. Uncertainties are calculated using the standard deviation

and indicated using the shaded regions.



1071
104
1072
. 103
<
< g
T 1073 2
o ] 10?2 £
@ wn
o
1074 4
1 10!
107> o
10°
10-¢ . - .
II""""I- T LR | T T L | T LI | T TorTTTTTT
01075 107* 1073 1072 1071 10°

Observed (BA)

Figure S4. Out-of-sample BA predictions by the ALL model and corresponding observations. Note that logarithmic scales are used through-
out except for the lower end of the x-axis, where a linear scale is used.
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Figure S5. Mean difference between the out-of-sample observed (Ob.) and predicted (Pr.; by the ALL model) BA. The major spatial patterns
follow the magnitude of mean BA (see Fig. 2a), with (on average) underprediction most prevalent in regions with large mean BA and vice
versa. Note that sharp data availability boundaries (e.g. in western Asia, southern Australia) are introduced by the AGB dataset. Grey shading
indicates regions with fire data availability, but where one or more of the other datasets is not available. Light grey indicates regions where
mean BA is 0, with dark grey representing regions with non-zero mean BA.
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Figure S6. PFI importances for the 15VEG_FAPAR model computed separately on the training and validation sets. The error bars originate
from repeated shuffling of the investigated variable.
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Figure S7. Variogram of mean GFED4 BA (June 1995 to December 2016) using all 237373 available samples. Semivariance can be seen to
increase until ~1000 km. Note that a logarithmic scale is used for the sample counts at the top.
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Figure S8. R? scores for burnt area (BA) prediction on test samples for different exclusion radii around the test samples using the
15VEG_FAPAR model. Each of the 10 lines represents the R? score for 400 test samples computed for the shown radii, where each in-
dividual test sample is chosen randomly and surrounded by a circular region of ignored data that is not used for training, with varying radii
as shown. The disagreement between the lines is indicative of the statistical uncertainty, regional variability, and potentially different degrees
of model extrapolation.
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Figure S9. Pearson correlations between all variables used in the analysis for the time period from January 2010 to April 2015. Especially
large positive correlations exist between variable pairs separated by multiples of 12 months and between FAPAR, LAI, SIF, and VOD. The
largest negative correlations are found between SWI and DD (instantaneous, 12 month, 24 month), SWI and DTR, and CROP and TREE.
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Figure S10. Spatial distribution of individual peak combinations for SHAP values as in Fig. 7. The sign of the maximum effect on BA at a
certain antecedent month is indicated in parentheses after each month. The peak combinations are shown here such that their ordering has no
significance (i.e. 0(+)|3(+) equals 3(+)|0(+)). Dominant antecedent periods are apparent from Fig. 7. Most clearly, the general limitation
of BA by instantaneous DD in tropical and boreal regions is seen in (c), combined with the positive effect of instantaneous DD on burning in
the remaining regions. The limitation of BA by instantaneous DD shown in (c) generally agrees with the enhancement of BA by three-month
antecedent FAPAR shown in (b), as well as the enhancement by one-month antecedent DD in (d). Note that sharp data availability boundaries
(e.g. in western Asia, southern Australia) are introduced by the AGB dataset. Grey shading indicates regions with fire data availability, but
where one or more of the other datasets is not available. Light grey indicates regions where mean BA is 0, with dark grey representing regions
with non-zero mean BA.
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Figure S11. First-order LAI ALEs for different lags (< 1 yr) from all relevant modelling experiments for the relationships between BA and
SIF (left hand columns) and VOD (right hand columns). Evenly spaced quantiles were used in the construction of the plots.
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Figure S12. First-order ALE plots showing the effect of FAPAR (a, b) and the 3-month antecedent dry-day period (DD 3M; c, d) on burnt
area (BA) in the 15VEG_FAPAR model (a, ¢) and the 15VEG_FAPAR_MON model (b, d) after accounting for all other variables. The
shaded regions represent the standard deviation around the mean of 100 ALEs each using 122567 random samples of the training data.
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Figure S13. Second-order ALE plot showing the combined zeroth order (mean), first order, and second order modelled effects of FAPAR
and FAPAR 1M on BA from the 15VEG_FAPAR model, taking into account all other variables. Grey boxes indicate missing data. The
diagonal structure of the sample count matrix demonstrates the correlation between these variables. Evenly spaced quantiles were used in the
construction and labelling of the plots.
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Figure S14. Second-order ALE plot showing the combined zeroth order (mean), first order, and second order modelled effects of DD and
FAPAR on BA from the 15VEG_FAPAR model, taking into account all other variables. The diagonal structure of the sample count matrix
demonstrates the anticorrelation between these variables. Evenly spaced quantiles were used in the construction and labelling of the plots.
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