General Response to all Referee Comments

Many thanks to the referees for detailed and constructive reviews of the
manuscript. The comments have greatly helped us to improve our submission.

The referees raised following major issues:

1) lack of a clear introduction on the hypothesis/novelty/significance of this study
2) the misconceptions caused by using multiple definitions inconsistently on Light
Use Efficiency (LUE)

3) unclear explanation on relative SIF

4) unnecessary and erroneous elements in the plots

5) some figures were not properly referenced in the text.

We have addressed all of the issues in the responses to individual referees and in
the revised manuscript.

In general,

1) We have clarified that the central goal of our study is to mechanistically
explain where, when, and why certain wavelength regions are sensitive to
the canopy LUE, instead of only comparing the performance of any of our
methods to the existing vegetation indices (VIs). To achieve this goal, we
hypothesized that measuring hyperspectral reflectance at the canopy level
can track the LUE at a sub-alpine evergreen forest. Uniqueness of our study
lies in the integration of empirical analyses and process-based simulations
using simultaneously measured reflectance, Solar-Induced Fluorescence
(SIF), and pigment contents at the canopy level.

2) We now use GPPmax as the only proxy for LUE in the main text, where the
other proxies of LUE at a low light intensity and daily average have been
condensed and referred to the supplementary material. The relevant data and
plots have also been moved to the supplementary material.

3) We rewrote the introduction to SIF and relative SIF to explain the
significance and meaning of relative SIF.

4) We corrected all captions and legends in figures. The redundant legends
were removed as well.



5) We reorganized the text to include necessary references to figures. The necessary
analyses in the responses to referees have been added to the supplementary
material.

The detailed point-to-point responses for the referee’s comments are given below and
reflected in the change-tracked manuscript.

Detailed response to referee #1’s comments and suggestions

General comments: The manuscript "Decomposing reflectance spectra to track gross
primary production in a subalpine evergreen forest" aims to investigate the link
between seasonal changes in the canopy reflectance (400-900 nm) of a boreal forest
and the GPP changes, measured from flux tower measurements. To do so, the authors
apply a technique for decomposing the reflectance into independent components (ICA)
and derive a PLSR-based factor for explaining the link with the parameter
“LUEs/GPPmax”.

We thank you for reviewing our work. Please find a point-by-point response below. All
the changes have been reflected in the revised draft. The line numbers mentioned
correspond to the revised manuscript with tracked changes.

Although the manuscript contains several interesting elements, a clear hypothesis is
missing (including novel research questions) and several definitions and underlying
mechanisms should be better explained.

Thank you for pointing out the lack of clarity in our hypothesis. We have made sure to
clarify our hypothesis in the revised draft. The changes have been made accordingly in
the abstract and introduction. In summary, we hypothesized that measuring hyperspectral
reflectance at the canopy level is able to track the Light Use Efficiency (LUE) at a sub-
alpine evergreen forest. For this, we used reflectance as a proxy for the contents of
photosynthetic/photoprotective pigments, which was then linked to the photosynthetic
LUE.

The first novelty in our study is that we continuously measured hyperspectral reflectance
at the canopy level (L68-69). In previous studies, canopy level reflectance was either only
simulated with radiative models or observed sparsely and mostly performed at discrete
broad spectral bands. Coincident with our year-long reflectance measurements, pigments
were sampled across the canopy so that we could track the onset and cessation of
photosynthesis and seek to provide a direct link between changes in canopy reflectance
and pigment contents at the canopy scale.

The second novelty is a comprehensive scheme to link the seasonality of photosynthesis
at the canopy scale to photoprotective pigments (L66-67). This exploratory scheme
includes empirical methods as well as process-based analysis. Previous studies have used
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one of the two methods. However, the availability of reflectance observation, pigment
samples, and flux measurements allowed us to test our hypothesis both empirically and
physically.

Additionally, the PhotoSpec system we used also measures Solar-Induced-Fluorescence
(SIF), which was shown to track the seasonality of photosynthetic LUE from previous
studies. Thus, we included the SIF analysis to our work in order to highlight the different
de-excitation pathways of excited chlorophylls by photoprotective pigments and SIF
(L87-90).

For example, the authors are interested in the red-edge region where the chlorophylls
absorb but don’t present a clear strategy for detecting chlorophyll pigment changes
(although they are later retrieved by inversion).

Thank you for asking this question. We have added the measurement of chlorophyll
content in section 2.4 (L183). We measured the chlorophyll content along with
xanthophyll content and carotenoid content. The chlorophyll content was used in the
calculation of the car/chl ratio and the comparison against the PROSAIL inversion results.
In fact, there are some changes around the red edge but the absence of clear changes in
the peak Chl absorption regions points to small Chl changes throughout the season.
However, these changes around the red edge could be related to Chl-a and Chl-b or
structural changes. This is still an open question.

It is well known that the Car/Chl ratio is the main driver of photosynthetic behavior on
a seasonal scale (L59-61), i.e. altering the ratio between energy dissipation and energy
harvesting. Hence, on a seasonal scale the spectral variability would be expected to
occur in the pigment absorption regions of those pigments. The authors should
highlight which information can be potentially provided by their technique and how it
improves (?) the tracking of GPP compared to the standardly used methods (e.g. VIs).

Our empirical methods showed and agreed on the spectral features in the reflectance were
attributed to the pigments which are responsible for the photosynthetic seasonality, which
was further validated by the process-based analysis using PROSAIL inversion. We have
further highlighted the link among car/chl, spectral features in the reflectance, and LUE
in section 3.3 (L326-331).

Although we showed the performance of our empirical methods and well-established
Vegetation Indices (VIs), our goal was not to achieve a higher correlation coefficient from
our method than the VIs. We have rephrased the misleading sentences (L10, L69-72),
Instead, our work focuses on mechanistically explaining where, when, and why certain
wavelength regions are sensitive to the canopy LUE, which validated the high/low
correlation coefficients from the VIs (L63-66).

Further, the authors aim to evaluate the pigment driven spectral changes (where, when



and why). In this regard the authors could further highlight the seasonal dynamics of
the detected components in respect to the spring recovery in boreal forests. Does it
provide more info compared to the VI dynamics?

Thanks again for pointing out our unclear discussion on comparing our methods with VIs.
We strengthened our discussion in the revision (L46-53, L353-356). In section 3.5
comparison across methods, what we really wanted to highlight is the difference between
the reflectance change driven by the pigments and SIF. Since the spectral shape and CCI
(the representatives of other VIs) both related to the chl:car ratio, the same behavior from
the spectral change and CCI are, in fact, expected in Figure 9. Interestingly, the PLSR
and ICA decompositions didn’t significantly improve (or provide more info) to the ability
of existing VIs. This is important because it validates the idea that ‘simpler’ approaches
might be sufficient for tracking the seasonality in evergreen systems.

Finally, there are several jumps in the storyline, use of unclear terminology/method
descriptions (L141-143, L190-194) and missing parameters definitions (L187). The
presentation of the results is sometimes fragmented (L183-185) or not clear from the
graphs (L217-L218, GPPmax is not shown). All these aspects need to be thoroughly
reviewed before acceptance of the manuscript.

Thank you for the comment. In the revision, we have corrected the definitions, kept the
consistency of terminology, and made sure the plots are explanatory to the text. Please
see the change tracked revision for details. Some of the changes are made in L163-166,
L226-229, L216-219, L.209-L212, and L243-253 with respect to the examples that the
referee mentioned.

Specific comments From 1L43-48 it could be misunderstood that LUE of deciduous
forests is not affected by biotic factors, while LUE changes due to e.g. pigment
composition occur in combination with structural changes, which in fact you can also
term a "biotic" factor. The term "biotic" refers to higher-level ecosystem interactions
and 1s less appropriate in the LUE-photosynthesis terminology here. Please rephrase.

Thanks for this comment. We have referred to changes in pigment compositions as
‘needle biochemistry’ (L47).

What is the link with the “differentiation in NPQ pathways” and SIF, which are
suddenly mentioned at L75. Is this relevant for seasonal patterns/this manuscript?

We have rewritten this section in the revised manuscript and explained the necessity of
the comparison of SIF and reflectance spectra (L46-53, L.82-90), where the definition of
NPQ has been carefully rephrased. SIF has been shown to track the photosynthetic
seasonality in previous studies. However, SIF and the spectral change in reflectance
represent different de-excitation pathways of excited chlorophyll. PhotoSpec measures



both hyperspectral reflectance and SIF, which enables us to compare the seasonality
captured by these pathways.

L77: you are comparing fluorescence radiance with reflectance, which varies strongly
in the 400-900 region and is moreover a ratio, not a radiance to compare SIF with.

In the analysis, we used relative SIF, which is SIF normalized by the reflected near-
infrared radiation. In the revision, we have rephrased the paragraph and introduced the
relative SIF in this section (L82-90). Relative SIF is used to account for sunlit/shaded
fraction within our observation FOV, since it provides an indicator of how ‘bright’ the
area of interest is.

L215-216: why would low PAR not drive photosynthesis? Please reformulate this
sentence, pointing to the controlling factors in winter/spring.

Thanks. The original sentence was trying to inform the readers that GPP was near zero in
winter, although the PAR level in winter is not. This matches with the strong seasonality
of our LUE measurement, GPPmax. And figure S3 shows that instead of PAR, Tair is one
of the controlling factors in winter. We have rephrased it in the revision (L239-242) to
make it clearer.

L78-81: The mechanisms are not clearly explained here. What about the seasonal
radiance budget, i.e. the "abiotic" factors?

Thank you for pointing out the missing part of SIF. In the revised draft, we have
elaborated on the explanation of SIF mechanisms and introduced relative SIF (L52-53,
82-90). While there is still enough light to drive photochemistry in winter, frozen boles
limit water transport as needles must dissipate excess energy as heat. The primary
mechanism for increased NPQ is through sustained energy dissipation by photoprotective
pigments which co-varies seasonally with SIF (Magney et al., 2019).

Methodology After filtering the data based on light conditions and snow, how many
winter days actually remain? Please mention the amount of samples, for both winter
and growing season, also in Fig. 1.

We have 96 days of spectral samples between DOY 100-300 and 115 days of spectral
samples in the rest of 165 “winter” days.

In the pigment analysis, we have 6 days of both spectral and pigment samples between
DOY 100-300 and 4 days in the rest of 165 “winter” days.



In figure 1, there are 39 days in the growing season and 113 days in the dormancy.

‘ These statistics have been included in the revision (L132 and Fig. 1).

Relative SIF: please elaborate on how the normalization is done (raw data, wavelength
range). Since you argued in the introduction that the structural changes are less an issue
for coniferous forest, what is the true (or expected) impact of this normalization for
SIF? What is the difference with not normalizing? Did you quantify this?

We have added the description of relative SIF in L152-155. Relative SIF is SIF
normalized by the reflected near-infrared radiance at 755 nm. This normalization will
make SIF more comparable to a ‘SIF yield’, as it is a ratio effectively correcting for
incoming irradiance, and sunlit/shaded fraction (see above). It also eliminates most of
the directional effects within the canopy. The attached plot (added to supplementary
material) is similar as we did in Figure 5d but with SIF and relative SIF. The seasonal
cycles of relative SIF and SIF are well correlated. Relative SIF is more correlated with
the GPPmax in seasonal variations. However, the sub-seasonal change in the growing
season is captured more by relative SIF.
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LUElightL/LUEtotal: these are supposingly daily values? How APAR was
defined/calculated based on the raw data and show a plot of the methodology described
in L160. Moreover these parameters are not clearly presented later on and Fig.2 does
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not give a sufficient visual on the calculation/importance of these parameters. Are they
relevant for the story?

GPPmax, LUElightt, and LUEotal are light use efficiencies (LUE) at different abiotic status:
1) GPPmax: light-saturated LUE; 2) LUElighw: light-limited LUE; 3) LUEotal: mean status
LUE. They are all calculated as daily values. To make the discussion concise and clear in
the revised draft, we only showed the results of GPPmax to represent LUE in the main text
as it is more representative than LUEIighee and more physiology-driven than LUEwtl. We
have made sure the terminology of using LUE and GPPmax is consistent throughout the
draft. We also added sections on how APAR, LUEIighiL, and LUEwtal were calculated in
the appendix with visualized explanations.

APAR was calculated from seven pairs of PAR sensors installed. One pair of sensors was
installed above the canopy on the same tower where PhotoSpec is located (measuring
incoming PAR and reflected PAR). The other six pairs of sensors were installed below
the canopy (measuring reflected and transmitted par). The derivation of APAR is shown
in the following graph.

‘ Upward PAR sensor

Q Downward PAR sensor ‘ PARgpy,,

Canopy

PARbelowu,,,i
® 6 6 o o o
@ ¢ ¢ ¢ & O
PARbelowd,,w,.,i

6
1
(PARabyy, =~ PARaby0n) = € (PARbelon, i — PARbe,owd,,wn,i)]

i=1

APAR =

Here is a demonstration of how LUEIight. and LUErwtal were calculated. Given a day (DOY
=278 as an example), we selected the GPP measurements when the PAR level is between
100-500 pmol m-2 s-1. Then, we did a linear regression of those GPP measurements with
their APAR levels (the cyan dots and dashed line). The slope of this regression is
LUEIight. On the same day, all the GPP measurements that happened when the PAR level
is above 100 umol m-2 s-1 are the orange crosses in the plot. We calculate the ratio of
GPP and APAR of those orange points, and the daily mean of the ratio is the LUEotal.
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L155: It is claimed that PAR levels between 1000 and 1500 pmol m-2 s-1 are reached
throughout the whole year, but that is not what is seen from Fig. 3, showing PAR
values hardly exceeding 1000 mol m-2 s-1. LUEs: this parameter suddenly appears at
L187, without any previous definition! Also, what does the reader need to understand
from the LUEs/GPPmax parameter? Please, elaborate the choice of this parameter and
how it should be interpreted in terms of vegetation dynamics.

In Fig.3, PAR is low because it was calculated as the daily averaged PAR of above 100
pumol m-2 s-1. In the calculations of GPPmax, LUElighit, and LUEtotal, PAR and APAR are
half-hourly data.

Thank you for catching this error. LUEs referred to LUEiightt and LUEiotal in the
discussion paper. And LUEs/GPPmax refers to GPP and LUEs. GPPmax, LUElightt, and
LUEtwtal are light use efficiencies (LUE) at different light regimes: 1) GPPmax: light-
saturated LUE; 2) LUEiighi: light-limited LUE; 3) LUEtotal: mean status LUE. We did all
the analysis with these three parameters. The results were quite similar in terms of the
seasonal cycle. As we explained in section 3.1 (L168-171 and section 2 in the
supplementary material), GPPmax is a better proxy for LUE as it is more representative
than LUElighe and physiology-driven than LUEwtal. Thus, we decided to only keep GPPmax
in the main text. In the revision, we made sure to use GPPmax consistently.

Pigment contents: is there a reason why Chlorophyll content is lacking? This does not
follow the line of the objectives.

‘ We didn’t show chlorophyll content in figure 7 because Bowling et al (2018) and Magney
| etal (2019) have shown chlorophyll content didn’t vary with the season in our study site. |
However, we agree with your suggestion that it is important to include it to
comprehensively discuss the importance of car and chl:car ratio to the seasonality of
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photosynthesis. We have discussed the measurement of chl (L183, L216-218, L.339-341)
in the revision.

L190: rephrase this sentence for a better understanding of the final aim. The resulting
coefficient is given somewhere or expected later in the results? Which four PLSR
components are you referring to?

Four PLSR components we mentioned are the parameters used when we trained the PLSR
algorithms. We have rephrased the paragraph to explicitly describe the PLSR coefficient
and its role in our analysis with mathematical expressions and clarified terminology
(L204-221).

L203: the raw input reflectance data is unclear here. Also, please further highlight
which pigments you are inverting from the reflectance and why.

Thank you for comments. When we calculated the Jacobians, we used the log-scaled
daily-averaged reflectance from PhotoSpec. In PROSAIL inversion, we used the daily-
averaged reflectance without log scaling. The inverted pigments are chlorophylls,
carotenoids, and anthocyanin. We compared the inverted pigment contents of chlorophyll
and carotenoids as well as their ratio to the measurements from needle samples. We
clarified this in the revised draft (L230-231) and provided all averaged reflectance data
as supporting online material.

Results Section 3.1: this whole section refers to results about GPP max without clearly
referring to results on this parameter. Please refer better to the results shown in Fig. 3
and check why LUElighL and LUEtotal are not shown in the graph (but mentioned in
the legend).

L226: please refer first to the observations in the figure in the main text, and for further
details refer in addition to the supplementary figures.

Thank you for catching the misleading legend (Fig. 3). We have removed it and referred
to the plots in the supplementary in the revision.

Fig. 4: “Annual mean reflectance”: correct this as the “Annual mean log scaled R”
Thanks. We have corrected it in the revision (Fig. 4).

Section 3.2: The link between the seasonality of the spectral components and GPP max
seems interesting, but there is a clear difference in the onset of the components 1 and
2 (the more dynamic ones) which might be in addition highlighted and of scientific
interest.



Thank you for catching this. We are not sure the origin of the abrupt onset near DOY 50
in component 1. This abrupt change happens in all three components in Fig. 4. We suspect
the change was caused by background noise, such as snow from the ground, given that
the PhotoSpec system operated normally during that period. However, we cannot identify
the reason and suggested this as mere speculation in the revisions (L297-300).

Section 3.3: The explanation of the methodology in this section needs to be improved.
We have elaborated the implementation of PLSR analysis in the revision (L204-L218).

Please be more concrete in terminology (L278: transition period, noise) and what
exactly you are referring to.

The transition period refers to the onset and cessation of growing season shown in
GPPmax. The noise refers day-to-day fluctuations in winter. GPPmax was consistently near
0+1 pmol m-2 s-1 before DOY 100, while PLSR reconstructed GPPmax varies from -2 to 5
umol m-2 s-1 in the same period. This large variation is from the noisy input of reflectance,
which can be seen in the ICA components. We rephrased the sentence to be more specific
(L305-309).

L279-L281: What do you mean with that the high-frequency variations are not
captured by any method? The PRI captures the variation of the most dominant feature
in the PLSR coefficients. So why would these variations not be related to pigment
content?

The high-frequency variations refer to the day-to-day fluctuations within growing season.
Both PRI and PLSR coefficients are relatively flat during the growing season. They did
not follow the day-to-day variations within the season. As both PRI and PLSR use the
pigment absorption feature, their invariance suggests these variations are less relevant to
pigment. The specific changes have been made in L305-309.

Section 3.4: L302: Please refer to the graphs.

Thank you for the comment. The sentence has referred to Figure 8(c) (L338-339).

Detailed response to referee #2’s comments and suggestions

This paper presents an exploratory study of a very nice data set studying 400-900 nm
reflectance, fluorescence, and GPP along with other ancillary measurements including
carotenoid composition at leaf scale at the Niwot Ridge, Colorado, USA site in a sub-
alpine evergreen forest. As I don’t believe this complement of data has been presented
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at such a site, the data analysis is appropriate for publication in Biogeoscience.
However, there are several details that must be addressed before the paper is acceptable
for publication. As the first reviewer provided a number of suggestions, this reviewer
will try to present a few points not already covered there. The paper contained many
small errors that, while minor, led to making the paper a difficult read. Hopefully this
will be fixed in a revision. Otherwise I found the paper to be very informative and
interesting.

Thank you very much for your generous comments. We appreciate you recognized the
novelties in our work. We apologize for all the confusion from mislabeled plots and
complex phrases. We have included a point-by-point response. The line numbers
mentioned correspond to the revised manuscript with tracked changes. The corrected
plots, as well as responses, have been incorporated in the updated version of our

manuscript.

General comments: [ have two main issues with the paper. The first is that SIF contains
a component of PAR while reflectance does not. This makes it a bit unfair to compare
any of the reflectance- based quantities directly with GPPmax (similarly affected by
PAR as is SIF) and also to derive the PLSR reconstruction of GPPmax without
consideration of PAR. It may be fine to do the reconstruction of other quantities
(related to pigments) without account of PAR, but generally not GPPmax. A much
better result may come from normalizing GPPmax with respect to PAR (or daily
averaged PAR or daily averaged potential PAR) and performing the reconstruction on
this quantity. This is particularly important in Fig. 9. Some statements may need to be
modified after taking into account PAR (e.g., paragraph starting on L. 320).

We apologize that we did not properly introduce the relative SIF in the introduction. In
figure 5(d) and figure 9, we accounted for PAR impact on SIF by using relative SIF,
which is SIF normalized by the reflected near-infrared. We have rewritten the
introduction as well as methods on relative SIF to clarify this (L52-53, L82-90, 152-155).

We agree with you that normalization is necessary. We used Eq. (1) to derive light use
efficiency (LUE), which is inevitably conditioned on PAR and fPAR. Benefiting from
the APAR measurements we have, we can use in situ APAR as the normalization factor
instead of PAR and presumed fPAR in previous studies. According to the light response
curve of photosynthesis (figure 2), we summarized three different scenarios LUE: 1)
light-limited (low light, LUEl1ignt); 2) carboxylation rate-limited (high light, GPPmax); and
3) daily average (LUE:total).

LUEiighw is the fitted slope of GPP and APAR when PAR is between 100-500 pmol m-2
s-1. The fit was forced to go through the origin as the equation has no intercept.
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LUE:total is the daily average of GPP/APAR during the day.

Theoretically, we could calculate GPPmax similar to what we did for LUEiign, i.e.
regressing GPP against APAR when PAR is saturated. Unfortunately, there is a 26-day
gap in APAR measurement in the beginning period of our study. We could also normalize
GPP by PAR, as you suggested. Yet, it requires assumptions about fPAR, which brings
uncertainties.

Considering GPP often flats out when PAR is greater than 1000 pmol m-2 s-1, the slope
of fits could be biased by the spread of data point. Thus, we defined GPPmax, the average
GPP within a moderately narrow window of PAR (1000-1500 pmol m-2 s-1), to represent
the LUE when the carboxylation rate is limited. In this way, we achieved normalizing
GPP without missing more data because of APAR.

Those two different definitions of GPPmax are significantly linearly correlated (in
fig. AC2.1 in this response document). If GPPmax is defined as the average of normalized
GPP by PAR (y-axis), the analyses on the seasonal cycle will differ little from GPPmax
defined as mean GPP at high PAR (x-axis). Although GPP normalized by PAR results in
the correct unit of LUE, it is easily mistaken as fPAR has been considered. To avoid this
confusion, we chose to use mean GPP at PAR between 1000 and 1500 pmol m-2 s-1.

1000 < PAR < 1500 umolm—2s—*
r’ =0.99

0,020 y = X * 0.00082

0.015 A

0.010 A

GPP
A,

0.005 A

0.000 A

—0.005 4

0.0 25 5.0 75 10.0 125 15.0 175
GPP

Figure.AC2.1 Two ways to calculate GPPmax.
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We also tested the LUE defined in three scenarios: LUElightL, GPPmax, and LUEtotal for all
the analyses in the manuscript. They behave similarly. We considered that needles spent
more time at highlight intensity in the daytime. Hence, we decided to use GPPmax as the
only proxy of LUE in the main text. We kept the other two matrices to the supplementary.
The labels were misleading in the main text. We have cleaned them up in the updated
draft (Fig. 3).

The second comment relates to the terminology around the component analysis. It
would be helpful if the reflectance can be written in the form of equations explaining
the decomposition. Then it may be more clear to express what is being plotted. In my
understanding of the terminology, a coefficient should be a number multiplied by a
particular spectral component to reconstruct a given spectrum. The term temporal
component is confusing to me as this is not what has been decomposed, but rather it is
the coefficient of a given spectral component to reconstruct a spectrum observed at a
particular time if I have understood correctly. The labeling of Fig. 6 is particularly
difficult to understand since panel (a) shows much more than PLSR coefficients. The
line labeled GPP_max would be more clear if it had PLSR coefficient in the label.

Thank you for the advice. We have changed “temporal components” to “temporal
loading” (Eq. (4) and L201). We added the following expressions to the draft:

ICA:

—log(Rxpoy) = (spectral component ’ - temporal loading Loy ).
i=1,2,3

PLSR:

GPPoaxpoy = —log(Rx poy) X PLSR coefficient §FFmx.

Specific comments:

L. 118. VI’s are normalized such that at least some of the solar geometry effects are
removed. This may not be the case for reflectance in general.

Thank you for pointing this out. We agree the experiment related to this sentence is not
enough to clarify the BRDF impact on reflectance. Thus, we did a PLSR analysis on
individual measurements of phase angle and reflectance for 3 summer days (2017-7-1 to
2017-7-3), such as fig. AC2.2.

13



PLSR of phase angle and reflectance PLSR reconstruction
100

75 1
100 4

80

25

60

PLSR coefficient
o
phase angle by PLSR

-75
2041

-100 T T T T T T T T T
400 500 600 700 800 900 20 40 60 80 100
wavelength (nm) phase angle

Figure. AC2.2 PLSR analysis on phase angle and reflectance.

Indeed, the reflectance has different sensitivities to the phase angle. However, the poor
correlation of PLSR reconstructed phase angle and the measurement one suggests the
variations in phase angle should not be the critical factor for the change in reflectance. In
our manuscript, we primarily removed the bi-directional impact by averaging all the
individual reflectance that was measured at different solar geometry and viewing
geometry. This analysis has been referred in L128-129 in the revision.

L. 142. Normalized at which wavelength(s) exactly? I’'m not sure I agree that normal-
izing by reflected radiation is going to properly “account for the complexity of signal

due to canopy structure” at this particular site. Please provide more justification of this
statement.

Thanks for pointing out this misleading sentence. SIF was normalized by reflected near-
infrared radiation (755 nm) to account for the sunlit/shaded fraction within our
observation FOV. Benefiting from the small FOV of PhotoSpec, we think the complexity
of canopy structure has minimal impact on our signal. We have clarified the statement in
L85-90.

Since it is mentioned on L. 183 that 3 components explain more than 99.99% of vari-
ance, can you state how much variance is explained by each of the components shown.

Because ICA minimizes the dependencies of the second-order moment (variance) and
higher, the randomness during the minimization makes the explained variance and order
of individual component unclear. In our calculation, the ICA algorithm reduced the
dimension of the input matrix by eigenvalue decomposition first, from which the first
three second-order independent/orthogonal components yielded 99.99% of the variance.
Then, the algorithm extracted the independent components of high-order moments from
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these orthogonal components. We have included this explanation in section 4 in the
supplementary material.

L. 261, it is mentioned that Tair and VPD covary with GPPmax. Please provide some
numbers here such as correlations.

We have cross referenced the figures in the supplementary in the draft (L246, L252) while
we also included the following the Pearson-r2 value of correlations.

During the growing season:
GPPmax and VPD = 0.34
GPPmax and Tair = 0.24

PRI and VPD = 0.04

PRI and Tair = 0.02

I am confused as to what is meant by “short-term” on line 262 as a few lines above it
is said to be the smoothest. Some may take short-term to mean daily. In that case, we
wouldn’t expect it to be smooth.

Thanks for the feedback. We meant to use “short-term” and smoothness to refer day to
day or sub-seasonal variations. We have revised the paragraph with a consistent
description in the updated manuscript (L305-309).

Have you definitively shown here that the green band captures variations in LUE? Isn’t
this only inferred?

Yes, we inferred the green band capturing LUE by the good performance of GCC. We
changed the word “show” to “suggest” (L294).

Fig. 5, something appears incorrect with the r2 value shown in panel (f).

We found a bug in the calculation and corrected it (Fig. 5). The correct r2 values of
GPPmax with CCI, PRI, GCC, relative SIF, NDVI, and NIRv are 0.85, 0.81, 0.73, 0.87,
0.06, and 0.40, respectively.

L. 319, What exactly is meant by diurnal? The most common use of this word in my
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field pertains to “of or during the day” which is commonly taken to mean sub-daily.

Yes, it means day-to-day/sub-daily variations here, similar to the previous comment. we
have made sure the wording is accurate and consistent (LL353-357).

Same paragraph: In this work, it is not definitively shown that SIF tracks seasonal or
diurnal variations better than reflectance. While SIF shows slightly higher 12, the
differences were not shown to be statistically significant. It is curious that CCI gives a
higher r2 value with respect to GPPmax than the PLSR analysis and the PRI gives the
same value as PLSR. Also the sample of points looks different in Figs. 5 and 6.

Thanks for the suggestion. The phrase appears to make readers think we are competing
with existing methods, which is misleading. Our study focuses on mechanistically
explaining where, when, and why certain wavelength regions are sensitive to canopy LUE
seasonality. Thus, a similar performance from CCI and PLSR is expected as CCI uses the
most sensitivity band. Although SIF represents a different process from the reflectance-
based methods the good performance of relative SIF has been discussed in Magney et al.,
2019, which makes Niwot Ridge a very interesting site to study.

After we corrected the calculation, relative SIF and PLSR (r2= 0.87) have the highest r2
compared to other indices, although not significantly. CCI and PRI are comparable but
less correlated with respect to GPPmax than PLSR. The different reference bands used by
CCI and PRI might cause the slight difference in their correlation with PLSR.

The difference in Figs. 5 and 6 were because We only plotted the observed GPPmax when
the reflectance is also available in Fig 6, while all the observed GPPmax was plotted in Fig
5. In the revised draft, these two plots are consistent as Fig 5.

Fig. 9: There is no goodness of fit metric here relative to measurement uncertainties.
To make it more clear the fits should be shown with the observations and the residuals
and fit properly evaluated with standard metrics. Otherwise the differences are not
convincing.

Thank you for the suggestion. We attached a plot of individual fittings and their
evaluations (fig.AC2.3, Fig.D1). The fitted curve has been expressed as the derivation in
Appendix D. The pearson-r2 and p values listed in each subplot were calculated from the
correlation of observed and fitted variables. The residual was calculated as the average
L2 norm of the difference between observed and fitted variables normalized by the
observation. The fittings are overall good. Because the ICA component lacks a clear
sigmoid shape, ICA has a larger residual.
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Figure. AC2.3. Individual sigmoid fits of timeseries of interest. The fitted curves are

expressed in the format as appendix D. The pearson-r2 and p values are for the observed
and fitted variables. The residual is

EOC

b

where x is the observed value and X is the fitted value.

L. 334, I may have missed something but I didn’t see how this feature was shown to

be directly related to LUE in the paper. This may be inferred but it wasn’t directly
shown.

We are now more precise in phrasing. The sentence (L371-373) has been changed to “The
main spectral feature centered around 530 nm is most important for inferring the seasonal

cycle of reflectance (400 — 900 nm) and LUE, which corresponds to changes in carotenoid
content.”

Detailed comments:

There are a number of typos that need to be fixed, for example subscripts (L. 1, L. 226,
L. 234, Fig. 3, Fig. 6 panel (b)).

Thanks a lot for catching them. We have corrected the typos and made sure all the
subscripts are coded correctly in the revision (L1, L239, 1.244, Fig. 3, and Fig. 6(b)).
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There are a number of statements that need to be clarified or corrected for language
(see L. 2, for example, “Estimating . . . is a primary uncertainty” would be better
phrased as “Estimation of...corresponds to a primary source of uncertainty” or similar).
See also lines 11-12 (unclear sentence, L. 14, etc.).

We have rephrased those unclear sentences and be more precise (L2, L10-13).

Line 21: Satellites do not measure GPP, rather GPP can be inferred and usually make
use of other data.

The sentence is now more precise in the updated draft (L24).

It’s a little confusing in L. 159 to start with “To implement Eq. (1), then define a
particular case for Eq. (1). Please rephrase.

We rephrased the sentence as “We followed the format of Eq. (1) to define light-limited
LUE (LUElgn) as...” This paragraph has been presented in section 2.2 in the
supplementary instead of main text.

L. 164-166. It’s not clear at this point what the meteorological data are included for.
L. 165 would be more clear to say that daily mean . .. were computed from .. ..

We replaced “meteorological variables” with “Air Temperature (Tair) and Vapor Pressure
Deficit (VPD)” in L148. And, rephrase L164-166 as daily Tair and VPD were computed
from averaging half-hourly Tair and VPD when...” The rephrased sentences are in L176-
178 in the revised manuscript.

The first reviewer was unclear about what LUEs/GPPmax is. I think I figured it out
but it took a lot of time and was very unclear.

Thanks for taking the time to sort it out. We apologize for the confusion. In the updated
draft, we have clarified the usage of acronym LUE with GPPmax as the only proxy for
LUE in the main text. The results for LUElightt. and LUEotal are put in the supplementary.

Line 217. Is LUElight the same as LUElightL defined above?
Yes. Sorry about the typo.

L. 226: Confusion regarding Fig. 3 (not S3) but also most of which is repeated in Fig.
S2 but with the lines that are referred to in Fig. 3. Suggest to include only one figure
with all the lines (in the main manuscript). A similar thing happens with Fig. 9 and D1.
Suggest to include only one of these.
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We have only included Fig.3 and Fig.9 in the main draft and eliminated Fig.S2 and
Fig.D1.

Fig. 3: Specify that these are daily-averaged quantities?

We have specified them in both the caption in Fig. 3.

Fig. 4 caption: Only the 2nd component shows the carotenoid Jacobian.

Yes, because we want to emphasize the similarity of component 1 with the chlorophyll
jacobian only. We have corrected the caption in Fig.4 and made sure it is consistent with
the plot.

Sect. 3.2, first par. There is a lot of information in this paragraph. It might be more
effective if it was split up.

Yes, we agree with you that is too tedious to read. We have split it into paragraphs and
rephrased with the equations of ICA so that it is more clear.

L. 268, the word “thus” here is confusing.
We have removed “thus” from the sentence (L293).

Fig. 6: Panel (a) labeling is very confusing. First, the title of panel (a) as well as the
label on right side is confusing as these are not really coefficients are they, they are
either components of combinations of components (caption is also unclear)? The
caption states that the overlaid solid line is the 2nd ICA component, but there are two
solid lines. The blue line in the legend is labeled as GPPmax, but it isn’t really GPPmax
as labeled in the bottom. Would suggest to just remove the titles of both panels.

Thank you for pointing this out. In fig. 6(a), we have changed the label of “GPPmax” to
“PLSR coefficient”. The blue curve indeed is the coefficient when the PLSR is written in
a fashion of linear model, such as:

GPPax,poy = —log(Rx poy) X PLSR coefﬁcientfppmax.

However, the y-axis on the right is only for PLSR coefficient not for ICA. We clarified
that both Jacobians and ICA component were scaled in the caption in Fig. 6.

The solid blue line is the PLSR coefficient. The solid orange line is the 2nd ICA
component. We have clarified them in the revised draft. The titles were also removed.
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| L. 297 should be “support”. |
We have corrected it (L333).
| It would be better to subscript the small letters in Cchl, Ccar, and Cant. |

We have subscripted them in the revision.

| Fig. B1 caption should say theoretical maximum (or clear sky) |

We have changed it to “theoretical maximum” in the revision (L410 and Fig. B1).
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Decomposing reflectance spectra to track gross primary production
in a subalpine evergreen forest
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Abstract. Photosynthesis by terrestrial plants represents the majority of [..! |CO, uptake on Earth, yet it is difficult to mea-
sure directly from space. [..> ]Estimation of Gross Primary Production (GPP) from remote sensing indices [..* |represents
a primary source of uncertainty, in particular for observing seasonal variations in evergreen forests. Recent vegetation re-
mote sensing techniques have highlighted spectral regions sensitive to dynamic changes in leaf/needle carotenoid composition,
showing promise for tracking seasonal changes in photosynthesis of evergreen forests. However, [..* Jthese have mostly been
investigated with intermittent field campaigns, or with narrow-band spectrometers in these ecosystems. To investigate this
potential, we continuously measured vegetation reflectance (400-900 nm) using a canopy spectrometer system, PhotoSpec,
mounted on top of an eddy-covariance flux tower in a subalpine evergreen forest at Niwot Ridge, Colorado, USA. We ana-
lyzed driving spectral components in the measured canopy reflectance using both statistical and process-based approaches. The
decomposed spectral components [..° Jco-varied with carotenoid content and GPP, supporting the interpretation of the Photo-
chemical Reflectance Index (PRI) and the Chlorophyll/Carotenoid Index (CCI). [..° JAlthough the entire 400-900 nm range [ ..’
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Jshowed additional spectral changes near the [..* Jred-edge, it did not provide significant improvements in GPP predictions.
We found little seasonal variation in both Normalized Difference Vegetation Index (NDVI) and the Near Infrared Vegeta-
tion Index (NIRv) in this ecosystem. In addition, we [..° Jquantitatively determined needle-scale chlorophyll to carotenoid
ratios as well as anthocyanin contents using full spectrum inversions, both of which were tightly correlated with seasonal GPP
changes. Reconstructing GPP from vegetation reflectance using Partial Least Squares Regression (PLSR) explained approxi-
mately 87% of the variability in observed GPP. Our results [..!° linked the seasonal variation of reflectance to the pool size of
photoprotective pigments, highlighting all spectral locations within 400-900 nm associated with GPP seasonality in evergreen

forests.

1 Introduction

Terrestrial Gross Primary Production (GPP), the gross CO- uptake through photosynthesis, is the largest uptake of atmospheric
CO; (Ciais et al., 2013), yet the uncertainties are large, hampering our ability to monitor and predict the response of the
terrestrial biosphere to climate change (Ahlstrom et al., 2012). Hence, accurately mapping GPP globally is critical. In contrast
to unevenly distributed ground-level measurements such as Fluxnet (Baldocchi et al., 2001), satellites can [.."" ]infer GPP
globally and uniformly. Remote sensing techniques are based on the optical response of vegetation to incoming sunlight|.."?
], which can track photosynthesis via the absorption features of photosynthetic and photoprotective pigments (Rouse Jr
et al., 1974; Liu and Huete, 1995; Gamon et al., 1992, 2016). [.."? JProgress is particularly important for evergreen forests,
which can have large seasonal dynamics in photosynthesis but low variability in canopy structure and color. However, these
promising techniques still lack a comprehensive evaluation/validation using both continuous in-situ measurements as well as
process-based simulations.

GPP can be expressed as a function of photosynthetically active radiation (PAR), the fraction of PAR absorbed by the canopy
(fPAR) and Light-Use Efficiency (LUE):

[.¥]GPP = [..""]PAR - [.."“]fPAR - [..""]LUE, v

with LUE representing the efficiency of plants to fix carbon using absorbed light (Monteith, 1972; Monteith and Moss, 1977).
The accuracy of remote sensing derived GPP is limited by the estimation of LUE, which is more dynamic and difficult to
measure remotely than PAR and fPAR, particularly in evergreen ecosystems. There have been [..'8 |many studies inferring
the light absorbed by canopies (i.e. fPAR) from Vegetation Indices (VIs) that estimate the ’greenness’ of canopies (Running
et al., 2004; Zhao et al., 2005; Robinson et al., 2018; Glenn et al., 2008), such as the Normalized Difference Vegetation Index
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(NDVT; Rouse Jr et al., 1974; Tucker, 1979), the Enhanced Vegetation Index (EVI; Liu and Huete, 1995; Huete et al., 1997) and
the Near Infrared Vegetation Index (NIRv; Badgley et al., 2017). Current GPP data products derived from Eq. (1) rely on the
modulation of abiotic conditions to estimate LUE (Xiao et al., 2004). LUE is derived empirically by defining a general timing
of dormancy for all evergreen forests with the same plant functional type (e.g. Krinner et al., 2005) or the same meteorological
thresholds (e.g. Running et al., 2004). However, within the same climate region or plant functional type, forests are not identical
- leading to uncertainties in estimated LUE (Stylinski et al., 2002; Gamon et al., 2016; Zuromski et al., 2018), which propagate
to the estimation of GPP.

[..!” |Because evergreen trees retain most of their needles and chlorophyll throughout the entire year [.. ](Bowling et al.,
2018), LUE in evergreens is regulated by needle biochemistry. As LUE falls with the onset of winter due to unfavorable
environmental conditions and seasonal downregulation of photosynthetic capacity, evergreen needles [..>' Jquench excess
absorbed light via thermal energy dissipation that involves xanthophyll cycle and other pigments (Adams and Demmig-
Adams, 1994; Demmig-Adams and Adams, 1996; Verhoeven et al., 1996; Zarter et al., 2006). Thermal energy dissipation
is .. ]a primary de-excitation pathway measured by pulse-amplitude fluorescence as non-photochemical quenching
(NPQI..>* ; Schreiber et al. (1986)). At the same time, a small amount of radiation, Solar-Induced Fluorescence (SIF),
via the de-excitation of absorbed photons is emitted by photosystem Il (Genty et al., 1989; Krause and Weis, 1991).

Some vegetation indices are sensitive to photoprotective pigments (e.g. carotenoids) and can characterize the seasonality of
evergreen LUE with some success. For instance, the Photochemical Reflectance Index (PRI; Gamon et al., 1992, 1997) and
Chlorophyll/Carotenoid Index (CCI; Gamon et al., 2016) both use wavelength regions that represent carotenoid absorption fea-
tures around 531 nm at the leaf level (Wong et al., 2019; Wong and Gamon, 2015a, b) and show great promise for estimating
photosynthetic seasonality (Hall et al., 2008; Hilker et al., 2011a). [..>* |Due to the relatively invariant canopy structure in
evergreen forests, CCI and PRI have been applied at the canopy level as well (Gamon et al., 2016; Garbulsky et al., 2011; Mid-
dleton et al., 2016). In addition, the [..>> ]Green Chromatic Coordinate (GCC; Richardson et al., 2009, 2018; Sonnentag et al.,
2012), an index derived from [..?° ]the brightness levels of RGB canopy images, is also capable of tracking the seasonality of
evergreen GPP (Bowling et al., 2018). However, the full potential of spectrally resolved reflectance measurements to explore
the photosynthetic phenology of evergreens has not been comprehensively explored at the canopy scale. The evaluation of [..>

|pigment-driven spectral changes in evergreen forests over the course of a season is necessary to [..>* ]determine where, when,
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and why certain wavelength regions could advance our mechanistic understanding of canopy photosynthetic and photopro-
tective pigments. However, this has not been done with both empirical and process-based methods using continuously
measured canopy hyperspectral reflectance and in situ pigment samples.

Here, we [..”° Jused continuous measurements in both spectral space (full spectrum between 400-900 nm) and time ([..*°
|daily over an entire year) to evaluate the potential of hyperspectral canopy reflectance for better understanding [..>' Jthe
sensitivity of VIs to pigment changes that regulate GPP in evergreen forests. Continuous measurements of spectrally resolved
reflectance at the canopy scale have so far been sparse at evergreen forest sites [..>> [(Gamon et al., 2006; Hilker et al.,
2011b; Porcar-Castell et al., 2015; Rautiainen et al., 2018; Wong et al., 2020). There are only a few empirical studies
on hyperspectral canopy reflectance in evergreen forests (Smith et al., 2002; Singh et al., 2015). Yet, empirically decomposed
canopy spectral reflectance has been used as a predictor of maximum photosynthetic capacity (Serbin et al., 2012; Barnes et al.,
2017; Dechant et al., 2017; Silva-Perez et al., 2018; Meacham-Hensold et al., 2019), GPP (Matthes et al., 2015; Huemmrich
etal., 2017; DuBois et al., 2018; Huemmrich et al., 2019; Dechant et al., 2019), and other physiological properties (Ustin et al.,
2004, 2009; Asner et al., 2011; Serbin et al., 2014).

In contrast to empirical methods, process-based approaches, such as canopy Radiative Transfer Models (RTMs) can help
to quantitatively link canopy photosynthesis with leaf-level contents of photosynthetic/photoprotective pigments (Feret et al.,
2008; Jacquemoud et al., 2009). With RTMs, we can use spectrally resolved reflectance to directly derive leaf pigment contents
(Féret et al., 2017; Jacquemoud et al., 1995) and plant traits (Féret et al., 2019) .

[..3 ]In addition to seasonal changes in pigment concentrations, canopy SIF was found to correlate significantly with
the seasonality of photoprotective pigment content in a subalpine coniferous forest (Magney et al., 2019). Steady state
SIF is regulated by NPQ and photochemistry (Porcar-Castell et al., 2014)[..>* |, and it provides complementary information on
canopy GPP. [..*> ]Yang and van der Tol (2018) justified that the relative SIF, SIF normalized by the reflected near-infrared
radiation, is more representative of the physiological variations of SIF as it is comparable to a SIF yield (Guanter et al.,
2014; Genty et al., 1989). Our continuous optical measurements make it possible to differentiate mechanisms undergoing
seasonal changes by comparing the decomposed reflectance spectrum against relative far-red SIF. Additionally, using
relative SIF can effectively correct for incoming irradiance and account for the sunlit/shade fraction within the observation
Field of View (FOV) of PhotoSpec (Magney et al., 2019).
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In the present study, we [..°° Janalyzed continuous canopy reflectance data from PhotoSpec at a subalpine evergreen forest
at the Niwot Ridge AmeriFlux site (US-NR1) in Colorado, US, and [..*” Jsought to understand the mechanisms controlling
the seasonality of photosynthesis using continuous hyperspectral remote sensing. We first [..** Jexplored empirical techniques
to study all seasonal variations in reflectance spectra, [..** Jidentified specific spectral regions that best [..*’ Jexplained the
seasonal changes in GPP, and then [..*! ]linked these spectral features to pigment absorption features that [..*> Jimpacted
both biochemical and biophysical traits. We also [..** Jused full spectral inversions using a canopy RTM to infer quantitative
estimates of leaf pigment pool sizes. Finally, we [..** Jcompared the spring onset of photosynthesis captured by different

methods[..** ], Vs, and relative SIF to determine the underlying mechanisms [..* Jthat contributed to photosynthetic phenol-

ogy.

2 Material and methods
2.1 Study site

The high-altitude (3050 m above sea level) subalpine evergreen forest near Niwot Ridge, Colorado, US, is an active AmeriFlux
site (US-NR1, Lat: 40.0329 °N, Lon: 105.5464 °W; tower height: 26 m; Monson et al., 2002; Burns et al., 2015, 2016; Blanken
etal., 2019). Three species dominate: subalpine fir (Abies lasiocarpa var. bifolia), Englemann spruce (Picea engelmannii), and
lodgepole pine (Pinus contorta) with an average height of 11.5 m, a leaf area index of 4.2 (Burns et al., 2016), and minimal
understory. The annual mean precipitation and air temperature are 800 mm and 1.5 °C, respectively (Monson et al., 2002). The
high elevation creates an environment with cold winters (with snow present more than half the year), while the relatively low
latitude (40°N) allows for year-round high solar irradiation (Monson et al., 2002). Thus, trees have to dissipate a considerable
amount of excess sunlight during [..*’ |winter dormancy, which makes this forest an ideal site for studying seasonal variation

of NPQ including the sustained component of it during dormancy (Bowling et al., 2018; Magney et al., 2019).
2.2 Continuous tower-based measurements of canopy reflectance

PhotoSpec (Grossmann et al., 2018) is a 2D scanning telescope spectrometer unit originally designed to measure SIF. It also

features a broad-band Flame-S spectrometer (Ocean Optics, Inc., Florida, USA), used to measure reflectance from 400 to
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900 nm at a moderate (full-width-at-half-maximum = 1.2 nm) spectral resolution with a [..*8 JFOV of 0.7° (more details in
Grossmann et al. (2018); Magney et al. (2019)). In the summer of 2017, we installed a PhotoSpec system on the top of the US-
NR1 eddy-covariance tower, from where we can scan the canopy by changing both viewing azimuth angle and zenith angles.
On every other summer day and every winter day, PhotoSpec scans the canopy by changing [..*’ |view zenith angle with small
increments at fixed view azimuth angles, i.e. elevation scans. Only one azimuth position is kept after Oct 18, 2017 to protect
the mechanism from potentially damaging winter conditions at the site. Spectrally resolved reflectance was calculated using
direct solar irradiance measurements via a cosine diffuser mounted in the upward nadir direction (Grossmann et al., 2018) as
well as reflected radiance from the canopy. The reflectance data used in this study are from Jun 16, 2017, to Jun 15, 2018.

Here, we integrated all elevation scans to daily-averaged [.."° Jreflectance (every other day before Oct 18, 2017) by using all
scanning viewing directions with vegetation in the field of view over the course of a day, filtering for both low light conditions
and thick clouds by requiring PAR to be both at least 100 ymol m~2s~! and 60% of theoretical clear-sky PAR. A detailed
description of data processing can be found in appendix B. To further test whether bi-directional reflectance effects impacted
our daily averages, we compared the NDVI and NIRv at various canopy positions given a range of solar zenith and azimuth
angles ([..°" |Fig. A1-3). Neither of the daily averaged VIs was substantially impacted by the solar geometry supporting the
robustness of daily averaged canopy reflectance. An additional analysis (Fig. A4) has also shown the variation in phase
angle at a daily time step is not a critical factor for the change in reflectance.

About 49 winter days exhibited significantly higher reflectances, attributable to snow within the field of view, which we
corroborated with canopy RGB imagery from the tower. After removing data strongly affected by snow and excluding the days
of instrument outages, 211 valid sample days remained, among which 96 valid sample days were between DOY 100-300.
The daily-averaged reflectance was computed as the median reflectance from all selected scans for a single day, which was
then smoothed by a 10-point (3.7 nm) box-car filter over the spectral dimension (400 - 900 nm) to remove the noise in the

spectra. Figure 1(a) shows the seasonally averaged and spectrally resolved canopy reflectances measured by PhotoSpec.

“8removed: field of view (FOV )
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Mean Reflectance by Season

1.2F

(a)

1.0F

0.8

0.6f

scaled reflectance

0.4r

0.2

growing

dormancy

2.5r

1.5F

1.0r

-log(scaled reflectance)

0.5F

0.0r

L rowin:
2.0 gseasong

dormancy

(b)

00 700
wavelength (nm)

800

Figure 1. (a) Seasonally averaged canopy reflectance in winter dormancy (red) and the growing season (black) from PhotoSpec. (b) Season-

ally averaged negative logarithm transformation of reflectance (400 - 900 nm). For comparison, we normalized the reflectance by the value

at 800 nm on each day. Here, we [..°> Jreferred to Nov 13 - Apr 18 as dormancy, and Jun 2 - Aug 21 [..> ]as the main growing season. The

seasonal averaged canopy reflectance is composed of 39 daily-average reflectance in the growing season and 113 daily-averaged

reflectance in the dormancy.

To further emphasize the change in reflectance as a result of changes in pigment contents, we transformed the reflectance

(shown as [..* |R)) using the negative logarithm (Eq. (2)), as light intensity diminishes exponentially with pigment contents

(Horler et al., 1983).

Ry x exp(—C-o(X))
C-o(N) x —log(Ry)

with o = absorption cross section of pigments.

S4removed: Ry

(2a)
(2b)
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Therefore, the log-transformed reflectance (Fig. 1(b)) should correlate more linearly with pigment contents (shown as [..>

]C'). We also considered a variety of typical VIs using the reflectance data from PhotoSpec, such as:

Rgoo — Rero
.INDVI = —=———>" (Rouse Jr et al., 1974) (3a)
-] Rgoo + Rero
.57INIRv = [..|NDVI % Rgoo (Badgley et al., 2017) (3b)

. Rs31 — R
[L59PRI = [..90] 22— 2570 (Gamon et al., 1992) (3c)
Rs31 + Rs7o
.occr = R526-530 ~ Ho20-670 Gamon et al., 2016) (3d)
Rs26_536 + Re20-670
R reen .

[.#]GCC = < (Richardson et al., 2009). (3e)

Rped + Rareen + RBlue
In order to calculate GCC, we convolved the reflectance using the instrumental spectral response function (Fig. S1; Wingate
et al., 2015) of the StarDot NetCam SC 5 MP IR (StarDot Technologies, Buena Park, CA, USA), which is the standard camera
model [..%* Jused by the PhenoCam Network protocol (Sonnentag et al., 2012).
In addition to the reflectance measurments, we also included relative SIF[..%* ], far-red SIF normalized by the reflected [..%
Inear-infrared radiance at 755 nm. The far-red SIF (745-758 nm, Grossmann et al., 2018) was measured simultaneously
with reflectance with a QEPro spectrometer (Ocean Optics, Inc., Florida, USA). The daily relative SIF was processed in

the same fashion as the reflectance.

2.3 Eddy covariance measurements and LUE

[.%]

Observations of Net Ecosystem Exchange (net flux of COy, NEE), PAR, and meteorological variables made at the US-
NR1 tower are part of the official AmeriFlux Network data (Burns et al., 2016). GPP was estimated in half-hourly intervals
(Reichstein et al., 2005) using the REddyProc package (Wutzler et al., 2018), allowing us to compute LUE (Goulden et al.,
1996; Gamon et al., 2016) at half-hourly intervals.

[..°7 JAccording to the light response curves[..°® ], GPP is a nonlinear function of PAR (Fig. 2; Harbinson, 2012). Magney
et al. (2019) showed that fPAR does not significantly vary with seasons. [..% |We started to observe a photosynthetic

saturation between 500-1000 pmol m~2s~1 of PAR (Fig. 2), when the carboxylation rate, driven by maximum carboxylation
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%4removed: as well. Yang and van der Tol (2018) justified that the relative SIF,
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removed: radiation, is more representative for the physiological variations of SIF since it accounts for the complexity of signal due to canopy structure.
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fPAR in half-hourly intervals. fPAR was smoothed with an 8-point (4 hour) running mean and 20-day running mean to remove the noise in the measure-

ments.The first fPAR measurement started on Aug 8, 2017 (DOY 220).
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rate (V[..” |emax), became the limiting factor (Farquhar et al., 1980). Thus, we defined the [..”" |light-saturated GPP (GPP,y),
as the mean half-hourly GPP at PAR levels between 1000 and 1500 zmol m~2s~!, a range which [..”> Jwas covered throughout
the year (Fig. 2), even in winter. Therefore, GPP,, [..”* Jwas less susceptible to short term changes in PAR. Yet, [..”* ]due
to the lower light intensity during storms, GPP,ox was not always available. As suggested by the low PAR value at which
light saturation happened, plants remained in a light saturated condition for most of the daytime. A higher GPP,,y [..”
Jindicates a greater V[..”° |smax and maximum electron transport rate (Ji,.x) when the variation of GPP,,, is independent from
stomatal conductance and intercellular CO, concentration (Leuning, 1995). [..”7 ][..”® |Therefore, GPP[..”” |nax Was closely
correlated with daily LUE driven by physiology (see section 2.4 in the supplementary material).

We refrained from normalizing GPPnax by APAR due to some of APAR measurements (see section 2.1 in the sup-
plementary material) not available in the beginning of growing season. GPP,.x was significantly linearly correlated with
normalized GPPnax by APAR (Fig. S2c).

We also included [..50 JAir Temperature (T,;;) and Vapor Pressure Deficit (VPD) provided from the AmeriFlux network
data. Daytime daily mean T,; and VPD were [..%! Jcomputed from averaging the half-hourly T,;; and VPD when PAR was

greater than 100 gmol m =25~ 1.
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"removed: , we defined the light limited LUE (LUEj;gnq.) as the fitted slope of APAR against GPP at PAR between 100 and 500 pimol m~=2s~1. We

calculated GPPiax and LUEjjgp., from half-hourly GPPand APAR for each day. We also defined a more generalized effective daily LUE (LUE ) as the daily

averaged ratio of
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Canopy Light Response Curve
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Figure 2. Half-hourly GPP as a function of PAR during the measurement period. Points [..** Jwere colored by month. Bold points [..** Jwere
the median GPP when PAR [..* Jwas binned every 100 umol m~2s~! approximately. The solid lines represent the canopy light response

curve.

2.4 Pigment measurements

To link canopy reflectance with variations in pigment contents, we used pigment data (Bowling et al., 2018; Bowling and
Logan, 2019; Magney et al., 2019) at monthly intervals over the course of the sampling period. Here, we focused on the [..%
Ixanthophyll cycle pool size (Violaxanthin + Antheraxanthin + Zeaxanthin, V+A+Z)[..5° ], total carotenoid content ([..* |car)
and total chlorophyll content (chl) measured on Pinus contorta and Picea engelmannii needles with units of moles per unit
fresh mass. [..*¥ Jcar includes V+A+Z, lutein, neoxanthin, and beta-carotene. We also [..*> Jcomputed the ratio of chlorophyll
to carotenoid contents ([..°° |chl:car), because CCI derived from Moderate Resolution Imaging Spectroradiometer (MODIS)
can track chl:car (Gamon et al., 2016). Overall, we can match 10 individual leaf-level sampling days for both pine and spruce
samples with reflectance measured within + 2 days. Among these 10 valid sample days, 6 sample days are between DOY
100-300.
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2.5 Data-driven spectral decomposition

We [..°! Jassumed that the spectrally resolved reflectance is a result of mixed absorption processes by different pigments.
This [..°? Jallowed us to apply an Independent Component Analysis (ICA; Hyvirinen and Oja, 2000) to decompose the log-
transformed reflectance matrix (day of the year in rows and spectral dimension in columns) into its independent components. An
advantage of the ICA is that it can separate a multivariate signal into additive subcomponents that are maximally independent,
without the condition of orthogonality (Comon, 1994). [..°} |We extracted three independent components, which explained
more than 99.99% of the variance, using the ICA algorithm (fastICA, python package scikit-learn v0.21.0[..”* ]; section 4 in

the supplementary material), such as:

—log(Rx,poy) = Z (spectral component’, - temporal loading by ). (€))
i=1,2,3
where i is the i'th component in spectral space.

The decomposed spectral components revealed characteristic features that explain most of the variance in the re-
flectance matrix, which dictated the time-independent spectral shapes of pigment absorption features [..”> |based on Eq.
(2). The corresponding temporal loadings showed temporal variations of these spectral features, i.e. the variations of pig-
ment contents. We will introduce the method of extracting pigment absorption features in a quantitative model-driven approach
in section 2.6.

In addition to analyzing the transformed reflectance alone, we empirically correlated the reflectance with [..”° |GPP,.
using Partial Least Squares Regression (PLSR, python package scikit-learn v0.21.0). PLSR is a predictive regression model
which solves for a coefficient that can maximally explain the linear covariance of the predictor with multiple variables (Wold
et al., 1984; Geladi and Kowalski, 1986). [..”7 JPLSR has been used to successfully predict photosynthetic properties using
reflectance matrices in previous studies from the leaf to canopy scales (e.g. Serbin et al., 2012, 2015; Barnes et al., 2017; Silva-
Perez et al., 2018; Woodgate et al., 2019). [..”® JApplying the PLSR to the hyperspectral canopy reflectance and GPP .y
resulted in a time-independent coefficient that emphasizes the key wavelength regions which contribute to the covariation

of reflectance and GPPp,,y, such as:

GPPpaxpoy = —log(Rx poy) x PLSR coefficient ™. (5)
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We implemented another set of PLSR analyses on the reflectance with individual pigment measurement as the target variable,

such as the mean values of V+A+Z, car, and chl:car[..”° ], such as:

pigment measurement = —log(Rx poy) x PLSR coefﬁcient‘f\i"gmem measurement (6)

We did not include chl as one of the target variables in this PLSR analysis since Bowling et al. (2018) and Magney et al.
(2019) have already shown chl did not vary seasonally in our study site. Fitting the minimal variance in chl will lead to
over fitting the PLSR model.

Comparing the PLSR coefficient of pigment measurements at the leaf level with the PLSR coefficient of [..'"" |GPP 5 con-
nected the changes in [..!°" |GPP,, to the pool size of [..'"> Jphotoprotective pigments, because the reflectance is regulated

by the absorption of pigments.
2.6 Process-based methods

PROSPECT+SAIL (PROSAIL, Jacquemoud et al., 2009) is a process-based 1-D canopy [..!%* JRTM that models canopy
reflectance, given canopy structure information (SAIL) as well as leaf pigment contents (PROSPECT) (Jacquemoud and Baret,
1990; Vilfan et al., 2018).

We [..1%* Jused PROSAIL (with PROSPECT-D, Féret et al., 2017) to compute the derivative of the daily-averaged negative
logarithm transformed reflectance with respect to individual pigment contents, namely chlorophyll content (chlorophyll Jaco-
bian, [..'% ]8_(,;2,75;;1%)) and carotenoid content (carotenoid Jacobian, [..!% ]‘9_61873513)) (Dutta et al., 2019). This helped explain
the decomposed spectral components from the empirical analysis.

We also [.."97 Jused PROSAIL to infer pigment contents (i.e. Ceni, Cears Cant) by optimizing the agreement between
PROSAIL-modeled reflectance and measured canopy daily-mean reflectance from PhotoSpec. We fixed canopy structural
parameters (e.g. the LAI to 4.2, as reported in Burns et al. (2015)) and fitted leaf pigment compositions as well as a low order
polynomial for soil reflectance (appendix C), similar to Vilfan et al. (2018) and Féret et al. (2017). The cost function J in Eq.

(7) represents a least-squares approach, where R is the modeled reflectance.

800nm

L= > (Ra— Ry (7)

A=450nm

We used the spectral range between 450 and 800 nm, which encompasses most pigment absorption features.
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3 Results and discussion
3.1 Seasonal cycle of GPP,,,x and environmental conditions

[..19 ]As can be seen in Fig. 3, the subalpine evergreen forest at Niwot Ridge exhibits strong seasonal variation in GPP, Ty,
VPD, GPP,,.x, and PAR[..""* ]. GPP and GPP 1

thesis, was still available in the dormancy, which suggests that the abiotic environmental factors impact photosynthesis

max L-''* 1dropped to zero while sufficient PAR, required for photosyn-
seasonality nonlinearly and jointly.

[..'"3][..11% ]Abiotic factors played a strong role in regulating GPP,,, in this subalpine evergreen forest over the course of the
season. For instance, [..!"> Jthere was a strong dependence of GPP,,,, with T[..''® ],;. However, photosynthesis completely
shut down during dormancy, even when the [..""" ] T, exceeded 5°C [..''® |(Fig. 3). During the onset and cessation periods
of photosynthesis, GPP,x rapidly [..!" Jincreased with temperature (Fig. S3a left panel), potentially because needle tem-
perature [..'?° Jco-varied with Ty, and needle temperature controls the activity of photosynthetic enzymes which [..'*! ]affect
Vemax- Spring warming approaches the optimal temperature for photosynthetic enzymes, leading to activation of photosynthe-
sis, while cooling in the early winter inhibits these enzymes (Rook, 1969). Warming in spring melted frozen boles and made
them available for water uptake (Bowling et al., 2018), and thus caused the recovery of GPPnax (Monson et al., 2005).
Once the temperature [..'?”> Jwas around the optimum (in the growing season), Ty [..'>* Jwas no longer the determining factor

for photosynthesis. [..">* JHigher VPD caused by rising T, can stress the plants such that stomata closed, intercellular

109
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removed: (which is still sufficiently high to drive photosynthesis in winter)(Fig. 3 and Fig. S2). Needles use light most efficiently at low light levels (LUE
removed: ) for a fraction of the day. We start to observe a photosynthetic saturation at low PARvalues (~ 500 pmol m~2s~1; Fig. 2), which is

represented by GPPpax, resulting in low efficiencies under high light conditions. LUE, represents the mean light use scheme throughout the day. Hence,
LUEjjgnc was slightly higher than LUE o during most of the growing season (Fig. S2). There were only a few days when PAR is so low that LUE did not
reach light saturation for most of the day, when LUE;a is more comparable to LUEj;g. Therefore, we only show the results of GPPrax in the rest of our
analysis in the main text as it is more representative than LUEj;gn1, and more physiology-driven than LUE . In addition, LUE;jghq. and LUE ., have more

missing data than GPPpax. Yet, due to the lower light intensity during storms, GPPnax is not always available.

13 removed: Time series of Air Temperature (Ty;,), Vapor Pressure Deficit (VPD), Photosynthetically Active Radiation (PAR), Gross Primary Production
(GPP), and GPPp,x. DOY 166 (2017) is the first day of observation. The vertical dashed line divides the observations from Day of Year (DOY) for year 2017
and 2018.
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Figure 3. Daily-averaged time series of Air Temperature (Tair), Vapor Pressure Deficit (VPD), Photosynthetically Active Radiation (PAR),
Gross Primary Production (GPP) from half-hourly data when PAR was greater than 100 umol m 25~ !, and time series of GPPpax.
DOY 166 (2017) was the first day of observation. The vertical dashed line divides the observations from Day of Year (DQOY) for year
2017 and 2018.

CO, reduced and photosynthesis decreased (Fig. S3a right panel). When intercellular CO, concentration [..'>> Jwas not a

limiting factor, GPP,,, [..'%° Jwas more representative of [..'” [V¢max and did not vary T significantly.
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Figure 4. A set of three spectral components (top, colored) and corresponding temporal [.. ° Jloadings (bottom, colored) from ICA decom-

position. The first [.1% ]spectral [.1%0 Jcomponent is overlaid with the chlorophyll Jacobian (.17 ]%QLR), dash-dotted), and the second

132 ]a—log(R)

spectral component is overlaid with the carotenoid Jacobian ([.. G dotted). The third spectral component is overlaid on the

133

annual mean shape of transformed reflectance spectra. Temporal [.."”” ]Jloadings are overlaid with GPPn.x (grey line). The axis of Jacobians

is not shown because its magnitude is arbitrary here. The vertical dashed line divides the observations from DOY for year 2017 and 2018.

3.2 Seasonal cycle of reflectance

In Fig. 4, the Jacobians show the maximum sensitivity of the reflectance spectral shape to carotenoid content at 524 nm, and
near 566 nm and 700 nm for chlorophyll. The first peak of the chlorophyll Jacobian covers a wide spectral range in the visible,

while the second peak around the red edge is narrower.
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It can be seen that the first spectral ICA component has a similar shape as the chlorophyll Jacobian. The corresponding
temporal [.."** Jloading has a range between -0.2 to 0.2 without any obvious seasonal variation, consistent with a negligible
seasonal cycle in chlorophyll content as shown in the pigment analysis. However, there is a gradual increase before DOY 50
in the first temporal [..'*° ]Jloading, which appears to be anti-correlated with the temporal [..'*® Jloading of the second ICA
structure.

Two major features in the second spectral component can be observed. One is a negative peak centered around 530 nm,
which aligns with the carotenoid Jacobian. At the negative logarithm scale, the negative values resulting from the negative
ICA spectral peak multiplied by the positive ICA temporal [.."*” Jloadings (growing season in Fig. 4 middle plots) indicate
there were fewer carotenoids during the growing season [.."*® |(Eq. (2) and Eq. (4)). Conversely, positive values resulting
from a negative spectral peak multiplied by the negative temporal [..!** Jloadings (dormancy in Fig. 4 middle plots) indicate
there were more carotenoids during dormancy (i.e. sustained photoprotection via the xanthophyll pigments; Bowling et al.,
2018). Another feature [..'*" Jis the valley-trough shape, which is co-located with the chlorophyll Jacobian center at the longer
wavelength [..!*! ]in the red-edge region. The center of this feature occurs at the shorter-wavelength edge of the chlorophyll
Jacobian but does not easily explain changes in total chlorophyll content, which should show equal changes around 600 nm.
The corresponding temporal [..'** Jloading apparently varied seasonally with GPPpy. [..14 ]

The second temporal loading transitioned more gradually from dormancy to the peak growing season than GPPpy,s. Un-
fortunately, we [..'** Jwere missing data to evaluate the relative timing of GPP,,, cessation.

The third spectral component is similar to the mean shape of reflectance spectra. Its temporal [..'* ]Jloading held around
zero throughout the year.

Overall, the second ICA spectral component is more representative of the seasonal variation in the magnitude of total canopy
reflectance than the other spectral components. The spectral changes around the red-edge in the second component is interesting
and might be related to structural needle changes in chlorophyll-a and chlorophyll-b contributions (de Toméas Marin et al., 2016;
Rautiainen et al., 2018), which are not separated in PROSPECT.

CCI [..'*¢ Jand PRI(Fig. 5([..'"*" ]a-b)) followed the seasonal cycle of GPP,,, closely. CCI and PRI use reflectance near the

center of the 530 nm valley feature (Eq. (3)c-d), the spectral range that is most sensitive to the change of carotenoid content,
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so that they [.."*® Jmatched changes in GPPy,, very well. PRI [..'* Jwas the smoothest throughout the year, without any
significant fluctuations within the growing season, as [.."°° Jopposite to what was observed in GPP,,y, which co-varied with
Tair and VPD [.."°! |(Fig. S3a and S3b). This performance is [..!>? Jintriguing given that PRI was originally developed to track
short term [..'>3 Jvariations in LUE (Gamon et al., 1992)[..">* ], such as day-to-day and sub-seasonal scales.

GCC (Fig. 5(c)) also correlated well with GPP,,,, but less than CCI and PRI. As can be seen in Fig. S1, the peak of
the green channel used for GCC is close to the carotenoid Jacobian peak, while the red channel feature covers a part of
chlorophyll Jacobian feature. This [.." ]explained the sensitivity of the GCC to changes in both carotenoid content as well
as chlorophyll. The bands used in GCC [.."* Jare broader than the ones used by PRI and CCI, however it still [..">” ]captured
these variations and can be computed using RGB imagery. Gentine and Alemohammad (2018) found that the green band helps
to reconstruct variations in SIF using reflectances from MODIS. While they speculated that most variations in SIF are [..!>®
Jrelated to variations in [.."°° JPAR - fPAR (Gentine and Alemohammad, 2018), we [..'°° |suggest here that the green band
indeed captures variations in LUE as well.

NDVI (Fig. 5(e)) and NIRv (Fig. 5(f)) [.."°! ]did not show an obvious seasonal variability.

162 Jwere quite noisy during dormancy][..'%® ], especially prior to DOY 50. This

Similar to the ICA components, all VIs [..
noise may be due to snow because we only removed the reflectance when the canopy was snow covered. Scattered photons
possibly still reached the telescope when there was snow [..!%* Jon the ground, which is true for our study site as snowpack

[..' Jexists in winter (Bowling et al., 2018).
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Figure 5. Magenta points are time series of VIs: (a) CCI, (b) PRI, (c) GCC, (d) relative SIF (e) NDVI (f) NIRv.The grey points in the
background show GPPp.x. The Pearson-r® values of regressing VIs and GPPpx are noted in each plot. The p values of all correlations in this

figure are less than 0.005. The vertical dashed line divides the observations from DOY for year 2017 and 2018.
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3.3 PLSR coefficients of reflectance with GPP,,,, and pigment measurements

The spectral shape of the PLSR coefficient with GPP,,, [..'%° ]highlighted a peak (centering at [..'®” ]532 nm) near that of the
carotenoid Jacobian with the same valley-trough feature observed near the second peak of the chlorophyll Jacobian (Fig. 6(a)).
[..168 ]

The reconstructed GPP,, [..'%” ]captured the onset and cessation of growth, while the day-to-day noise in reflectance
during dormancy [..'”" |propagated to the reconstructed GPP, [..'”" (-2 to 5 umol m~2s~!). During the growing season,
the day-to-day variations in GPPp,, [..'”*> Jwere not captured by any of the methods using pigment absorption features
(Fig. 5(a-c) and Fig. 6(b)), which indicates those [..!”* Jvariations were not related to pigment content, but rather changes
in environmental conditions that lead to [..'”* ]day-to-day changes in photosynthesis [..'”> ](Fig. S3a). Overall, the observed
GPP,ux [..17¢ Jwas significantly correlated with the PLSR reconstruction (Pearson-r=0.87), but very similar compared to CCI
and PRI. A similar PLSR model of reflectance but with pigment measurements (Fig. 7) [..'”® ]showed a direct link between
pigment contents and reflectance. It can be seen that the PLSR coefficients of reflectance are very similar, irrespective of the
target variable. They feature a valley near the peak of the carotenoid Jacobian and a valley-trough feature near the peak at the
longer wavelength of chlorophyll Jacobian. This spectral shape is also very similar to the second ICA spectral component and
PLSR coefficients of GPP,,,. V+A+Z, chl:car, and car [..'” ]were all nicely reconstructed by using the PLSR coefficients
and reflectance (Fig. 7(b)). The reconstructed V+A+Z, car, and chl:car are correlated with the measured ones with Pearson-r2
values of 0.84, 0.71 and 0.93, respectively.

180]

The second ICA component and PLSR empirically [.."*” ]showed the seasonality of reflectance using two different empirical

frameworks. ICA only used the reflectance, while the PLSR model accounts for variations in both reflectance and GPPy,,x or
pigment content. Yet, both ICA and PLSR agreed on similar spectral features that [..'3! ]co-varied seasonally with GPPy.

L.ISQ

This indicates that the resulting spectral features |were primarily responsible for [..'* Jrepresenting this seasonal cycle.

The overlap of these features with the chlorophyll/carotenoid absorption features [..'** |showed that the seasonality of GPPy.x
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Figure 6. (a) The PLSR [..'"7 Jcoefficient of reflectance with GPPa, is the blue line. The overlaid dash-dotted and dotted lines are chloro-
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to the plot without a y-axis. (b) The reconstructed GPPpx (blue) by PLSR is overlaid with the observed GPPyax (red). The vertical dashed
line divides the observations from DOY for year 2017 and 2018.
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[.."%5 ]was related to variation in pigment content at the canopy scale, which [..'%¢ Jwas directly validated with similar PLSR
coefficient of reflectance and pigment contents. These results are consistent with leaf-level measurements of [..'*7 ]a higher
ratio of chlorophyll to carotenoid content during the growing season [..'%® Jin this forest (Fig. 7).

The highlighted spectral feature around 530 nm from ICA and PLSR closely overlaps with one of the bands used in
CCl, PRI and GCC (Eg. (3)) which provides a justification that these Vls can remarkably capture the LUE seasonality. The
comparable Pearson r? values of PLSR, CCI, and PRI with GPP .« suggest the pigment-driven seasonal cycle of GPPpay
is sufficiently represented by CCI and PRI. The spectral feature around the red-edge does not make PLSR significantly
more correlated with GPPno« than CCl or PRI, which implies the feature is not driven by total chlorophyll or carotenoid

contents.
3.4 Process-based estimation of pigment content

PROSAIL inversion results further [..'%° |supported the link between canopy reflectance, pigment contents and GPP,,,,. Figure
8 shows a continuous time-series of /.."”" JCgp, [..'°! ]Ccar, Anthocyanin content (/..""> JCany), and [..'%3 ]% derived from
the PROSAIL canopy RTM inversion model. Examples of simulated and measured reflectance spectra shown are in Fig. C1.
Anthocyanins are another type of photoprotective pigment (Pietrini et al., 2002; Lee and Gould, 2002; Gould, 2004) that
protects the plants from high light intensity (Hughes, 2011). The pigment inversions closely [..!”* Jmatched the seasonality of
GPPa. [/ ]% showed the greatest sensitivity in capturing the seasonal cycle, with the strongest correlation to leaf level
measurements [..'°° |(Fig. 8 (c)). The inverted /.."”7 JCqy [..!”% Jhad the weakest empirical relationship with the measured
one (Fig. 8(a) right panel). Apparently, some of the inversion errors of individual /.."”” JCcy and /..”"Y JCgp contents [..%°!
Jcanceled out in the ratio, making the ratio more stable. /..>"> JCan [..°°° |performed similarly as /..>** /Cqar, since they both

are photoprotective, and the anthocyanins absorb at 550 nm (Sims and Gamon, 2002), which is close to the center of carotenoid
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absorption feature. Even though we [..°>° Jlacked field measurements of anthocyanins to validate anthocyanins retrievals, the

inversions [..20° ]

showed that more than just carotenoid content can be obtained from full-spectral inversions.

Strictly speaking, the complex canopy structure of evergreens makes the application of 1D canopy RTMs such as PROSAIL
difficult (Jacquemoud et al., 2009; Zarco-Tejada et al., 2019). Yet, Moorthy et al. (2008); Ali et al. (2016); Zarco-Tejada et al.
(2019) reasonably discussed the pigment retrieval in conifer forests with careful applications. In our study, the reflectance
was collected from needles with a very small FOV, and our study site has a very stable canopy structure throughout a year
(Burns et al., 2016). Thus, the inversion results are meaningful for discussing the seasonality of pigment contents. In the future,

radiative transfer models that properly describe conifer forests, such as LIBERTY (Dawson et al., 1998), could be used.
3.5 Comparison across methods

Although decomposing the hyperspectral canopy reflectance and using relative SIF (Fig. 5(d)) both successfully [..%!* ]tracked
the seasonal cycle of evergreen LUE, they underlie different de-excitation processes. During the growing season, environmental
conditions primarily [..'* ]drove the day-to-day variations in GPP,,,,. Relative SIF [..>'> Jresponded to such environmental
stresses (vander Tol et al., 2014) so that it [..>!° Jappeared to track sub-seasonal variations better than reflectance[..>'” |,
particularly during the growing season (Fig. S5f). Yet, reflectance decompositions and VlIs were less sensitive to such
day-to-day variations (Fig.6, Fig. S3b).

There [..>'® Jwas also some variability between reflectance-based methods and relative SIF during the transition periods
between the growing season and dormancy. We [..°!” Jfocused on the growing season onset since the reflectance measurements
[..>%Y Jwere not available during the cessation period. The onset (DOY 60 to 166) described by all the methods mentioned above
as well as the relative SIF [..**! Jare compared in Fig. 9, using a sigmoid fit to available data [..>**> |(Fig. D1). The observed
GPPy.x [..7*° had the most rapid yet latest growing onset. The methods and VIs derived from or related to the pigment contents
increased earlier than GPP,,, - such as the ICA component, PLSR coefficient, PROSAIL [..*** ]g—’i and CCI. However, they
[..>% ]built up slowly to reach the maximum, which suggests that reduction of the carotenoid content is a slower process than

the recovery of LUE. Reflectance-based VIs (Fig. 5) and decomposing methods (Fig. 4 and 8(b,c)) [..>*° ]had a slower growing
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season onset than GPP,,,,x, as found in Bowling et al. (2018) as well. On the other hand, relative SIF started the onset at almost
the same time as the GPPy,,x, and it quickly reached the maximum. Therefore, using both SIF and reflectance to constrain the

LUE prediction (van der Tol et al., 2014) can further improve the prediction accuracy.
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227

Figure 9. Temporal evolution of [..”*" ]Jthe growing season onset using sigmoid fits (scaled) of PLSR, ICA, CCI, chlorophyll to carotenoid

ratio and relative SIF.

4 Conclusion and future work

In this study, we analyzed seasonal co-variation of GPP and the spectrally resolved [..>*® Jvisible and near infrared reflectance

signal, as well as several commonly used VIs. The main spectral feature centered around 530 [..>* |

nm is most important
for [..2*° Jinferring the seasonal cycle of reflectance (400 — 900 nm) and LUE, which corresponds to changes in carotenoid
content. This explains why CCI, PRI, and GCC track GPP seasonality so well, as most variations are driven by carotenoid pool
changes. Our analysis included RTM simulation and in-situ pigment measurements throughout the season[..>*! ], confirming
the link between reflectance/VIs and pigment contents. The comparison of reflectance/VIs and relative SIF reveals differences
in the timing of the growing season onset, pigment changes and SIF, indicating the potential of using both reflectance and
SIF to track the seasonality of photosynthesis. However, the close correspondence between both SIF and reflectance suggest
that hyperspectral reflectance alone provides mechanistic evidence for a robust approach to track photosynthetic phenology

of evergreen systems. Because seasonal variation in pigment concentration plays a strong role in regulating the seasonality of

photosynthesis in evergreen systems, our work will help to inform future studies using hyperspectral reflectance to achieve
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accurate monitoring of these ecosystems. While indices like PRI and CCI are performing [..>*? ]sufficiently as our methods
which uses the full spectrum analysis at the canopy scale, the application of the full spectrum might be more robust for space-
based measurements. In addition, we [..>** ]found seasonal changes of canopy reflectance [..>** |near the red-edge region,
which could be related to leaf structural changes or chlorophyll-a and b changes. Our PLSR coefficients are good references
for customizing VIs to infer the photosynthetic seasonality in evergreen forest when there are restrictions to use the specific
bands from currently existing VIs (such as PRI and CCI). While our current study is limited to a subalpine evergreen forest
and canopy-scale measurements, applications to other regions, vegetation types and observational platforms will be a focus for

future research.

Code and data availability. Our data presented in this paper are provided at https://data.caltech.edu. The PROSAIL model in the Julia
programming language used in our study can be obtained from https://github.com/climate-machine/LSM-SPAM.

Appendix A: Bi-directional reflectance effect

Al NDVIand NIRv

The impact of geometry and small FOV are relatively negligible. First, our method only used the scans when FOV is on the
needles by setting a NDVI threshold. Second, we plotted the NDVI and NIRv against the solar geometry at each individual tree
targets throughout a year. NDVI/NIRv are quite homogeneous regardless of various solar geometries as shown in the following

figures.
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Figure A1. NDVI and NIRv of all scans targeting on a pine at different solar [..” ]Jazimuth angles and solar zenith angles throughout a

year.
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Figure A2. NDVI and NIRv of all scans targeting on a fir at different solar [ Jazimuth angles and solar zenith angles throughout a year.
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Figure A3. NDVI and NIRv of all scans targeting on a spruce at different solar [..>*” Jazimuth angles and solar zenith angles throughout a

year.

A2 PLSR on phase angle and reflectance

We did a PLSR analysis on individual measurements of phase angle and reflectance for 3 summer days (2017-7-1 to
2017-7-3). The results are the same from other sample days. Indeed, the reflectance has different sensitivities to the
400 phase angle. However, the poor correlation of PLSR reconstructed phase angle and the measured one suggests the
variations in phase angle should not be the critical factor for the change in reflectance. In our study, we primarily removed
the bi-directional impact by averaging all the individual reflectance that was measured at different solar geometry and

viewing geometry.
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Figure A4. PLSR analysis on phase angle and reflectance.

Appendix B: Detailed processes on integrating daily-averaged canopy reflectance

405 First, we chose scans targeting vegetation only by requiring an NDVI greater than 0.6. Second, it is important to ensure that
the solar irradiation did not change between the acquisition of the solar irradiance and the reflected radiance measurement. To
achieve this, we matched the timestamps of a PAR sensor (LI-COR LI-190SA, LI-COR Environmental, Lincoln, Nebraska,
US) to the timestamps of PhotoSpec, and compared the PAR value from the PAR sensor during the PhotoSpec irradiance
acquisition with PAR during the actual target scan of the reflected radiance from vegetation. We only used the scans when the

410 ratio of the two was 1.0£0.1, ensuring stable PAR conditions. Third, in order to avoid unstable PAR because of clouds (Dye,
2004), we also removed cloudy scenes by requiring PAR to be at least 60% of a theoretical maximum driven by solar geometry
(Fig. B1). Further, only data when PAR was greater than 100 gmol m~2s~! were considered to eliminate the impact of low

solar angles on reflectance data. The VIs shown in Fig. 5 were extracted in the same fashion as above.
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Appendix C: PROSAIL fits
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238 Jthe PAR at theoretical maximum from all individual scans.

415 We used the following range constraints for variables included in the state vector of PROSAIL inversion:

— Leaf mesophyll structure (N): 0.9-1.1

— Chlorophyll content ([..>*° |C;7): 0~120 pgmol cm—2

— Carotenoid content([..>** ]C,.,.): 0=70 gmol cm™

- Anthocyanin content([..>*' ]Cy,,;): 010 pzmol cm™

420 — Brown pigments([..>*? 1Chrown): 0-0.6

— Water content ([..>* ]C,,): 0-0.2 cm

— Dry matter content ([..>** ]C,,,): 0-0.2 gcm ™2
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- [..?» ]Xanthophyll cycle status ([..>*® ]C,,) 0-1

— Leaf area index (LAI): fixed to 4.2
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Figure C1. The observed and fitted reflectance spectra at low (left) and high (right) [..>* J%

425 Appendix D: Sigmoid fit

The sigmoid equation is:
a—>b
=-bh4+ —
Y 1+ exp(£2)

In this form, a and b represent the maximum and minimum values of the sigmoid fit. And d is the half maximum of the fit. We

obtained the optimal values of these parameters.
430 Proof:

If 2 — 400, exp(4=2) — 0. So,

C

If £ — —o0, e:vp(d;x) — +00. So,
lim y=b
Tr—r—00

435 The first derivative of y is

dy a—>b (d—x)l
dy _ o 1
dr ~ (Lt erp(52)2 " e e

At the half maximum point (X = Xpyyf), y = “T“’ Therefore, we need to solve:

a+b b a—>b
2 =0+ d—Zpaif
1+ exp(—2L2L)

c
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Figure D1. [.>*¥ JIndividual sigmoid fits of the onset of growth from different methods and more VIs. The [..>* |fitted curve has been ex-
pressed as the [..>°° |derivation as above. The pearson-r? and p values listed in each subplot were calculated from the [..°' Jcorrelation

of [..%% Jobserved and fitted variables. The residual was calculated as the average L2 norm of the difference between observed (y)
1

n

and fitted variables (y) normalized by the observation, i.e. Zi(%@)z. The fittings are overall good. Because the ICA loading lacks a

clear sigmoid shape, ICA has a larger residual.

Hence, Xhalf = d.
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