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Abstract. Photosynthesis by terrestrial plants represents the majority of CO2 uptake on Earth, yet it is difficult to measure di-

rectly from space. Estimation of Gross Primary Production (GPP) from remote sensing indices represents a primary source of

uncertainty, in particular for observing seasonal variations in evergreen forests. Recent vegetation remote sensing techniques

have highlighted spectral regions sensitive to dynamic changes in leaf/needle carotenoid composition, showing promise for

tracking seasonal changes in photosynthesis of evergreen forests. However, these have mostly been investigated with intermit-5

tent field campaigns, or with narrow-band spectrometers in these ecosystems. To investigate this potential, we continuously

measured vegetation reflectance (400–900 nm) using a canopy spectrometer system, PhotoSpec, mounted on top of an eddy-

covariance flux tower in a subalpine evergreen forest at Niwot Ridge, Colorado, USA. We analyzed driving spectral components

in the measured canopy reflectance using both statistical and process-based approaches. The decomposed spectral components

co-varied with carotenoid content and GPP, supporting the interpretation of the Photochemical Reflectance Index (PRI) and10

the Chlorophyll/Carotenoid Index (CCI). Although the entire 400-900 nm range showed additional spectral changes near the

red-edge, it did not provide significant improvements in GPP predictions. We found little seasonal variation in both Normal-

ized Difference Vegetation Index (NDVI) and the Near Infrared Vegetation Index (NIRv) in this ecosystem. In addition, we

quantitatively determined needle-scale chlorophyll to carotenoid ratios as well as anthocyanin contents using full spectrum

inversions, both of which were tightly correlated with seasonal GPP changes. Reconstructing GPP from vegetation reflectance15

using Partial Least Squares Regression (PLSR) explained approximately 87% of the variability in observed GPP. Our results
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linked the seasonal variation of reflectance to the pool size of photoprotective pigments, highlighting all spectral locations

within 400–900 nm associated with GPP seasonality in evergreen forests.

1 Introduction

Terrestrial Gross Primary Production (GPP), the gross CO2 uptake through photosynthesis, is the largest uptake of atmospheric20

CO2 (Ciais et al., 2013), yet the uncertainties are large, hampering our ability to monitor and predict the response of the

terrestrial biosphere to climate change (Ahlström et al., 2012). Hence, accurately mapping GPP globally is critical. In contrast

to unevenly distributed ground-level measurements such as Fluxnet (Baldocchi et al., 2001), satellites can infer GPP globally

and uniformly. Remote sensing techniques are based on the optical response of vegetation to incoming sunlight, which can

track photosynthesis via the absorption features of photosynthetic and photoprotective pigments (Rouse Jr et al., 1974; Liu and25

Huete, 1995; Gamon et al., 1992, 2016). Progress is particularly important for evergreen forests, which can have large seasonal

dynamics in photosynthesis but low variability in canopy structure and color. However, these promising techniques still lack a

comprehensive evaluation/validation using both continuous in-situ measurements as well as process-based simulations.

GPP can be expressed as a function of photosynthetically active radiation (PAR), the fraction of PAR absorbed by the canopy

(fPAR) and Light-Use Efficiency (LUE):30

GPP = PAR · fPAR ·LUE, (1)

with LUE representing the efficiency of plants to fix carbon using absorbed light (Monteith, 1972; Monteith and Moss, 1977).

The accuracy of remote sensing derived GPP is limited by the estimation of LUE, which is more dynamic and difficult to

measure remotely than PAR and fPAR, particularly in evergreen ecosystems. There have been many studies inferring the light

absorbed by canopies (i.e. fPAR) from Vegetation Indices (VIs) that estimate the ’greenness’ of canopies (Running et al., 2004;35

Zhao et al., 2005; Robinson et al., 2018; Glenn et al., 2008), such as the Normalized Difference Vegetation Index (NDVI;

Rouse Jr et al., 1974; Tucker, 1979), the Enhanced Vegetation Index (EVI; Liu and Huete, 1995; Huete et al., 1997) and the

Near Infrared Vegetation Index (NIRv; Badgley et al., 2017). Current GPP data products derived from Eq. (1) rely on the

modulation of abiotic conditions to estimate LUE (Xiao et al., 2004). LUE is derived empirically by defining a general timing

of dormancy for all evergreen forests with the same plant functional type (e.g. Krinner et al., 2005) or the same meteorological40

thresholds (e.g. Running et al., 2004). However, within the same climate region or plant functional type, forests are not identical

- leading to uncertainties in estimated LUE (Stylinski et al., 2002; Gamon et al., 2016; Zuromski et al., 2018), which propagate

to the estimation of GPP.

Because evergreen trees retain most of their needles and chlorophyll throughout the entire year (Bowling et al., 2018), LUE

in evergreens is regulated by needle biochemistry. As LUE falls with the onset of winter due to unfavorable environmental con-45

ditions and seasonal downregulation of photosynthetic capacity, evergreen needles quench excess absorbed light via thermal

energy dissipation that involves xanthophyll cycle and other pigments (Adams and Demmig-Adams, 1994; Demmig-Adams

and Adams, 1996; Verhoeven et al., 1996; Zarter et al., 2006). Thermal energy dissipation is a primary de-excitation path-

way measured by pulse-amplitude fluorescence as non-photochemical quenching (NPQ; Schreiber et al. (1986)). At the same
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time, a small amount of radiation, Solar-Induced Fluorescence (SIF), via the de-excitation of absorbed photons is emitted by50

photosystem II (Genty et al., 1989; Krause and Weis, 1991).

Some vegetation indices are sensitive to photoprotective pigments (e.g. carotenoids) and can characterize the seasonality

of evergreen LUE with some success. For instance, the Photochemical Reflectance Index (PRI; Gamon et al., 1992, 1997)

and Chlorophyll/Carotenoid Index (CCI; Gamon et al., 2016) both use wavelength regions that represent carotenoid absorption

features around 531 nm at the leaf level (Wong et al., 2019; Wong and Gamon, 2015a, b) and show great promise for estimating55

photosynthetic seasonality (Hall et al., 2008; Hilker et al., 2011a). Due to the relatively invariant canopy structure in evergreen

forests, CCI and PRI have been applied at the canopy level as well (Gamon et al., 2016; Garbulsky et al., 2011; Middleton et al.,

2016). In addition, the Green Chromatic Coordinate (GCC; Richardson et al., 2009, 2018; Sonnentag et al., 2012), an index de-

rived from the brightness levels of RGB canopy images, is also capable of tracking the seasonality of evergreen GPP (Bowling

et al., 2018). However, the full potential of spectrally resolved reflectance measurements to explore the photosynthetic phe-60

nology of evergreens has not been comprehensively explored at the canopy scale. The evaluation of pigment-driven spectral

changes in evergreen forests over the course of a season is necessary to determine where, when, and why certain wavelength re-

gions could advance our mechanistic understanding of canopy photosynthetic and photoprotective pigments. However, this has

not been done with both empirical and process-based methods using continuously measured canopy hyperspectral reflectance

and in situ pigment samples.65

Here, we used continuous measurements in both spectral space (full spectrum between 400–900 nm) and time (daily over

an entire year) to evaluate the potential of hyperspectral canopy reflectance for better understanding the sensitivity of VIs to

pigment changes that regulate GPP in evergreen forests. Continuous measurements of spectrally resolved reflectance at the

canopy scale have so far been sparse at evergreen forest sites (Gamon et al., 2006; Hilker et al., 2011b; Porcar-Castell et al.,

2015; Rautiainen et al., 2018; Wong et al., 2020). There are only a few empirical studies on hyperspectral canopy reflectance70

in evergreen forests (Smith et al., 2002; Singh et al., 2015). Yet, empirically decomposed canopy spectral reflectance has been

used as a predictor of maximum photosynthetic capacity (Serbin et al., 2012; Barnes et al., 2017; Dechant et al., 2017; Silva-

Perez et al., 2018; Meacham-Hensold et al., 2019), GPP (Matthes et al., 2015; Huemmrich et al., 2017; DuBois et al., 2018;

Huemmrich et al., 2019; Dechant et al., 2019), and other physiological properties (Ustin et al., 2004, 2009; Asner et al., 2011;

Serbin et al., 2014).75

In contrast to empirical methods, process-based approaches, such as canopy Radiative Transfer Models (RTMs) can help

to quantitatively link canopy photosynthesis with leaf-level contents of photosynthetic/photoprotective pigments (Feret et al.,

2008; Jacquemoud et al., 2009). With RTMs, we can use spectrally resolved reflectance to directly derive leaf pigment contents

(Féret et al., 2017; Jacquemoud et al., 1995) and plant traits (Féret et al., 2019) .

In addition to seasonal changes in pigment concentrations, canopy SIF was found to correlate significantly with the season-80

ality of photoprotective pigment content in a subalpine coniferous forest (Magney et al., 2019). Steady state SIF is regulated

by NPQ and photochemistry (Porcar-Castell et al., 2014), and it provides complementary information on canopy GPP. Yang

and van der Tol (2018) justified that the relative SIF, SIF normalized by the reflected near-infrared radiation, is more represen-

tative of the physiological variations of SIF as it is comparable to a SIF yield (Guanter et al., 2014; Genty et al., 1989). Our
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continuous optical measurements make it possible to differentiate mechanisms undergoing seasonal changes by comparing the85

decomposed reflectance spectrum against relative far-red SIF. Additionally, using relative SIF can effectively correct for in-

coming irradiance and account for the sunlit/shade fraction within the observation Field of View (FOV) of PhotoSpec (Magney

et al., 2019).

In the present study, we analyzed continuous canopy reflectance data from PhotoSpec at a subalpine evergreen forest at the

Niwot Ridge AmeriFlux site (US-NR1) in Colorado, US, and sought to understand the mechanisms controlling the seasonality90

of photosynthesis using continuous hyperspectral remote sensing. We first explored empirical techniques to study all seasonal

variations in reflectance spectra, identified specific spectral regions that best explained the seasonal changes in GPP, and

then linked these spectral features to pigment absorption features that impacted both biochemical and biophysical traits. We

also used full spectral inversions using a canopy RTM to infer quantitative estimates of leaf pigment pool sizes. Finally, we

compared the spring onset of photosynthesis captured by different methods, VIs, and relative SIF to determine the underlying95

mechanisms that contributed to photosynthetic phenology.

2 Material and methods

2.1 Study site

The high-altitude (3050 m above sea level) subalpine evergreen forest near Niwot Ridge, Colorado, US, is an active AmeriFlux

site (US-NR1, Lat: 40.0329 ◦N, Lon: 105.5464 ◦W; tower height: 26 m; Monson et al., 2002; Burns et al., 2015, 2016; Blanken100

et al., 2019). Three species dominate: subalpine fir (Abies lasiocarpa var. bifolia), Englemann spruce (Picea engelmannii), and

lodgepole pine (Pinus contorta) with an average height of 11.5 m, a leaf area index of 4.2 (Burns et al., 2016), and minimal

understory. The annual mean precipitation and air temperature are 800 mm and 1.5 ◦C, respectively (Monson et al., 2002). The

high elevation creates an environment with cold winters (with snow present more than half the year), while the relatively low

latitude (40◦N) allows for year-round high solar irradiation (Monson et al., 2002). Thus, trees have to dissipate a considerable105

amount of excess sunlight during winter dormancy, which makes this forest an ideal site for studying seasonal variation of

NPQ including the sustained component of it during dormancy (Bowling et al., 2018; Magney et al., 2019).

2.2 Continuous tower-based measurements of canopy reflectance

PhotoSpec (Grossmann et al., 2018) is a 2D scanning telescope spectrometer unit originally designed to measure SIF. It also

features a broad-band Flame-S spectrometer (Ocean Optics, Inc., Florida, USA), used to measure reflectance from 400 to 900110

nm at a moderate (full-width-at-half-maximum = 1.2 nm) spectral resolution with a FOV of 0.7◦ (more details in Grossmann

et al. (2018); Magney et al. (2019)). In the summer of 2017, we installed a PhotoSpec system on the top of the US-NR1

eddy-covariance tower, from where we can scan the canopy by changing both viewing azimuth angle and zenith angles.

On every other summer day and every winter day, PhotoSpec scans the canopy by changing view zenith angle with small

increments at fixed view azimuth angles, i.e. elevation scans. Only one azimuth position is kept after Oct 18, 2017 to protect115
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the mechanism from potentially damaging winter conditions at the site. Spectrally resolved reflectance was calculated using

direct solar irradiance measurements via a cosine diffuser mounted in the upward nadir direction (Grossmann et al., 2018) as

well as reflected radiance from the canopy. The reflectance data used in this study are from Jun 16, 2017, to Jun 15, 2018.

Here, we integrated all elevation scans to daily-averaged reflectance (every other day before Oct 18, 2017) by using all

scanning viewing directions with vegetation in the field of view over the course of a day, filtering for both low light conditions120

and thick clouds by requiring PAR to be both at least 100 µmol m−2s−1 and 60% of theoretical clear-sky PAR. A detailed de-

scription of data processing can be found in appendix B. To further test whether bi-directional reflectance effects impacted our

daily averages, we compared the NDVI and NIRv at various canopy positions given a range of solar zenith and azimuth angles

(Fig. A1-3). Neither of the daily averaged VIs was substantially impacted by the solar geometry supporting the robustness of

daily averaged canopy reflectance. An additional analysis (Fig. A4) has also shown the variation in phase angle at a daily time125

step is not a critical factor for the change in reflectance.

About 49 winter days exhibited significantly higher reflectances, attributable to snow within the field of view, which we

corroborated with canopy RGB imagery from the tower. After removing data strongly affected by snow and excluding the days

of instrument outages, 211 valid sample days remained, among which 96 valid sample days were between DOY 100-300. The

daily-averaged reflectance was computed as the median reflectance from all selected scans for a single day, which was then130

smoothed by a 10-point (3.7 nm) box-car filter over the spectral dimension (400 - 900 nm) to remove the noise in the spectra.

Figure 1(a) shows the seasonally averaged and spectrally resolved canopy reflectances measured by PhotoSpec.
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Figure 1. (a) Seasonally averaged canopy reflectance in winter dormancy (red) and the growing season (black) from PhotoSpec. (b) Season-

ally averaged negative logarithm transformation of reflectance (400 - 900 nm). For comparison, we normalized the reflectance by the value

at 800 nm on each day. Here, we referred to Nov 13 - Apr 18 as dormancy, and Jun 2 - Aug 21 as the main growing season. The seasonal

averaged canopy reflectance is composed of 39 daily-average reflectance in the growing season and 113 daily-averaged reflectance in the

dormancy.

To further emphasize the change in reflectance as a result of changes in pigment contents, we transformed the reflectance

(shown asRλ) using the negative logarithm (Eq. (2)), as light intensity diminishes exponentially with pigment contents (Horler

et al., 1983).135

Rλ ∝ exp(−C ·σ(λ)) (2a)

C ·σ(λ)∝−log(Rλ) (2b)

with σ = absorption cross section of pigments.
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Therefore, the log-transformed reflectance (Fig. 1(b)) should correlate more linearly with pigment contents (shown as C).

We also considered a variety of typical VIs using the reflectance data from PhotoSpec, such as:140

NDVI =
R800−R670

R800 +R670
(Rouse Jr et al., 1974) (3a)

NIRv = NDVI ∗R800 (Badgley et al., 2017) (3b)

PRI =
R531−R570

R531 +R570
(Gamon et al., 1992) (3c)

CCI =
R526−536−R620−670

R526−536 +R620−670
(Gamon et al., 2016) (3d)

GCC =
RGreen

RRed+RGreen+RBlue
(Richardson et al., 2009). (3e)145

In order to calculate GCC, we convolved the reflectance using the instrumental spectral response function (Fig. S1; Wingate

et al., 2015) of the StarDot NetCam SC 5 MP IR (StarDot Technologies, Buena Park, CA, USA), which is the standard camera

model used by the PhenoCam Network protocol (Sonnentag et al., 2012).

In addition to the reflectance measurments, we also included relative SIF, far-red SIF normalized by the reflected near-

infrared radiance at 755 nm. The far-red SIF (745–758 nm, Grossmann et al., 2018) was measured simultaneously with re-150

flectance with a QEPro spectrometer (Ocean Optics, Inc., Florida, USA). The daily relative SIF was processed in the same

fashion as the reflectance.

2.3 Eddy covariance measurements and LUE

Observations of Net Ecosystem Exchange (net flux of CO2, NEE), PAR, and meteorological variables made at the US-NR1

tower are part of the official AmeriFlux Network data (Burns et al., 2016). GPP was estimated in half-hourly intervals (Re-155

ichstein et al., 2005) using the REddyProc package (Wutzler et al., 2018), allowing us to compute LUE (Goulden et al., 1996;

Gamon et al., 2016) at half-hourly intervals.

According to the light response curves, GPP is a nonlinear function of PAR (Fig. 2; Harbinson, 2012). Magney et al. (2019)

showed that fPAR does not significantly vary with seasons. We started to observe a photosynthetic saturation between 500-

1000 µmol m−2s−1 of PAR (Fig. 2), when the carboxylation rate, driven by maximum carboxylation rate (Vcmax), became the160

limiting factor (Farquhar et al., 1980). Thus, we defined the light-saturated GPP (GPPmax), as the mean half-hourly GPP at PAR

levels between 1000 and 1500 µmol m−2s−1, a range which was covered throughout the year (Fig. 2), even in winter. There-

fore, GPPmax was less susceptible to short term changes in PAR. Yet, due to the lower light intensity during storms, GPPmax

was not always available. As suggested by the low PAR value at which light saturation happened, plants remained in a light

saturated condition for most of the daytime. A higher GPPmax indicates a greater Vcmax and maximum electron transport rate165

(Jmax) when the variation of GPPmax is independent from stomatal conductance and intercellular CO2 concentration (Leuning,

1995). Therefore, GPPmax was closely correlated with daily LUE driven by physiology (see section 2.4 in the supplementary

material).
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We refrained from normalizing GPPmax by APAR due to some of APAR measurements (see section 2.1 in the supplementary

material) not available in the beginning of growing season. GPPmax was significantly linearly correlated with normalized170

GPPmax by APAR (Fig. S2c).

We also included Air Temperature (Tair) and Vapor Pressure Deficit (VPD) provided from the AmeriFlux network data.

Daytime daily mean Tair and VPD were computed from averaging the half-hourly Tair and VPD when PAR was greater than

100 µmol m−2s−1.

Figure 2. Half-hourly GPP as a function of PAR during the measurement period. Points were colored by month. Bold points were the median

GPP when PAR was binned every 100 µmol m−2s−1 approximately. The solid lines represent the canopy light response curve.

2.4 Pigment measurements175

To link canopy reflectance with variations in pigment contents, we used pigment data (Bowling et al., 2018; Bowling and

Logan, 2019; Magney et al., 2019) at monthly intervals over the course of the sampling period. Here, we focused on the

xanthophyll cycle pool size (Violaxanthin + Antheraxanthin + Zeaxanthin, V+A+Z), total carotenoid content (car) and total

chlorophyll content (chl) measured on Pinus contorta and Picea engelmannii needles with units of moles per unit fresh mass.

car includes V+A+Z, lutein, neoxanthin, and beta-carotene. We also computed the ratio of chlorophyll to carotenoid contents180

(chl:car), because CCI derived from Moderate Resolution Imaging Spectroradiometer (MODIS) can track chl:car (Gamon

et al., 2016). Overall, we can match 10 individual leaf-level sampling days for both pine and spruce samples with reflectance

measured within ± 2 days. Among these 10 valid sample days, 6 sample days are between DOY 100-300.
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2.5 Data-driven spectral decomposition

We assumed that the spectrally resolved reflectance is a result of mixed absorption processes by different pigments. This185

allowed us to apply an Independent Component Analysis (ICA; Hyvärinen and Oja, 2000) to decompose the log-transformed

reflectance matrix (day of the year in rows and spectral dimension in columns) into its independent components. An advantage

of the ICA is that it can separate a multivariate signal into additive subcomponents that are maximally independent, without the

condition of orthogonality (Comon, 1994). We extracted three independent components, which explained more than 99.99% of

the variance, using the ICA algorithm (fastICA, python package scikit-learn v0.21.0; section 4 in the supplementary material),190

such as:

−log(Rλ,DOY) =
∑

i=1,2,3

(spectral component iλ · temporal loading iDOY). (4)

where i is the i’th component in spectral space.

The decomposed spectral components revealed characteristic features that explain most of the variance in the reflectance

matrix, which dictated the time-independent spectral shapes of pigment absorption features based on Eq. (2). The correspond-195

ing temporal loadings showed temporal variations of these spectral features, i.e. the variations of pigment contents. We will

introduce the method of extracting pigment absorption features in a quantitative model-driven approach in section 2.6.

In addition to analyzing the transformed reflectance alone, we empirically correlated the reflectance with GPPmax using

Partial Least Squares Regression (PLSR, python package scikit-learn v0.21.0). PLSR is a predictive regression model which

solves for a coefficient that can maximally explain the linear covariance of the predictor with multiple variables (Wold et al.,200

1984; Geladi and Kowalski, 1986). PLSR has been used to successfully predict photosynthetic properties using reflectance

matrices in previous studies from the leaf to canopy scales (e.g. Serbin et al., 2012, 2015; Barnes et al., 2017; Silva-Perez

et al., 2018; Woodgate et al., 2019). Applying the PLSR to the hyperspectral canopy reflectance and GPPmax resulted in a

time-independent coefficient that emphasizes the key wavelength regions which contribute to the covariation of reflectance and

GPPmax, such as:205

GPPmax,DOY =−log(Rλ,DOY)×PLSR coefficientGPPmax
λ . (5)

We implemented another set of PLSR analyses on the reflectance with individual pigment measurement as the target variable,

such as the mean values of V+A+Z, car, and chl:car, such as:

pigment measurement =−log(Rλ,DOY)×PLSR coefficientpigment measurement
λ . (6)

We did not include chl as one of the target variables in this PLSR analysis since Bowling et al. (2018) and Magney et al. (2019)210

have already shown chl did not vary seasonally in our study site. Fitting the minimal variance in chl will lead to over fitting the

PLSR model.

Comparing the PLSR coefficient of pigment measurements at the leaf level with the PLSR coefficient of GPPmax connected

the changes in GPPmax to the pool size of photoprotective pigments, because the reflectance is regulated by the absorption of

pigments.215
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2.6 Process-based methods

PROSPECT+SAIL (PROSAIL, Jacquemoud et al., 2009) is a process-based 1-D canopy RTM that models canopy reflectance,

given canopy structure information (SAIL) as well as leaf pigment contents (PROSPECT) (Jacquemoud and Baret, 1990;

Vilfan et al., 2018).

We used PROSAIL (with PROSPECT-D, Féret et al., 2017) to compute the derivative of the daily-averaged negative loga-220

rithm transformed reflectance with respect to individual pigment contents, namely chlorophyll content (chlorophyll Jacobian,
∂−log(R)
∂Cchl

) and carotenoid content (carotenoid Jacobian, ∂−log(R)
∂Ccar

) (Dutta et al., 2019). This helped explain the decomposed

spectral components from the empirical analysis.

We also used PROSAIL to infer pigment contents (i.e. Cchl, Ccar, Cant) by optimizing the agreement between PROSAIL-

modeled reflectance and measured canopy daily-mean reflectance from PhotoSpec. We fixed canopy structural parameters (e.g.225

the LAI to 4.2, as reported in Burns et al. (2015)) and fitted leaf pigment compositions as well as a low order polynomial for

soil reflectance (appendix C), similar to Vilfan et al. (2018) and Féret et al. (2017). The cost function J in Eq. (7) represents a

least-squares approach, where R̂ is the modeled reflectance.

J =
800nm∑

λ=450nm

(Rλ− R̂λ)2. (7)

We used the spectral range between 450 and 800 nm, which encompasses most pigment absorption features.230

3 Results and discussion

3.1 Seasonal cycle of GPPmax and environmental conditions

As can be seen in Fig. 3, the subalpine evergreen forest at Niwot Ridge exhibits strong seasonal variation in GPP, Tair, VPD,

GPPmax, and PAR. GPP and GPPmax dropped to zero while sufficient PAR, required for photosynthesis, was still available in

the dormancy, which suggests that the abiotic environmental factors impact photosynthesis seasonality nonlinearly and jointly.235

Abiotic factors played a strong role in regulating GPPmax in this subalpine evergreen forest over the course of the season. For

instance, there was a strong dependence of GPPmax with Tair. However, photosynthesis completely shut down during dormancy,

even when the Tair exceeded 5◦C (Fig. 3). During the onset and cessation periods of photosynthesis, GPPmax rapidly increased

with temperature (Fig. S3a left panel), potentially because needle temperature co-varied with Tair, and needle temperature

controls the activity of photosynthetic enzymes which affect Vcmax. Spring warming approaches the optimal temperature for240

photosynthetic enzymes, leading to activation of photosynthesis, while cooling in the early winter inhibits these enzymes

(Rook, 1969). Warming in spring melted frozen boles and made them available for water uptake (Bowling et al., 2018), and

thus caused the recovery of GPPmax (Monson et al., 2005). Once the temperature was around the optimum (in the growing

season), Tair was no longer the determining factor for photosynthesis. Higher VPD caused by rising Tair can stress the plants

such that stomata closed, intercellular CO2 reduced and photosynthesis decreased (Fig. S3a right panel). When intercellular245

CO2 concentration was not a limiting factor, GPPmax was more representative of Vcmax and did not vary T significantly.
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Figure 4. A set of three spectral components (top, colored) and corresponding temporal loadings (bottom, colored) from ICA decomposition.

The first spectral component is overlaid with the chlorophyll Jacobian ( ∂−log(R)
∂Cchl

, dash-dotted), and the second spectral component is overlaid

with the carotenoid Jacobian ( ∂−log(R)
∂Ccar

, dotted). The third spectral component is overlaid on the annual mean shape of transformed reflectance

spectra. Temporal loadings are overlaid with GPPmax (grey line). The axis of Jacobians is not shown because its magnitude is arbitrary here.

The vertical dashed line divides the observations from DOY for year 2017 and 2018.

3.2 Seasonal cycle of reflectance

In Fig. 4, the Jacobians show the maximum sensitivity of the reflectance spectral shape to carotenoid content at 524 nm, and

near 566 nm and 700 nm for chlorophyll. The first peak of the chlorophyll Jacobian covers a wide spectral range in the visible,

while the second peak around the red edge is narrower.250
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It can be seen that the first spectral ICA component has a similar shape as the chlorophyll Jacobian. The corresponding

temporal loading has a range between -0.2 to 0.2 without any obvious seasonal variation, consistent with a negligible seasonal

cycle in chlorophyll content as shown in the pigment analysis. However, there is a gradual increase before DOY 50 in the first

temporal loading, which appears to be anti-correlated with the temporal loading of the second ICA structure.

Two major features in the second spectral component can be observed. One is a negative peak centered around 530 nm,255

which aligns with the carotenoid Jacobian. At the negative logarithm scale, the negative values resulting from the negative ICA

spectral peak multiplied by the positive ICA temporal loadings (growing season in Fig. 4 middle plots) indicate there were fewer

carotenoids during the growing season (Eq. (2) and Eq. (4)). Conversely, positive values resulting from a negative spectral peak

multiplied by the negative temporal loadings (dormancy in Fig. 4 middle plots) indicate there were more carotenoids during

dormancy (i.e. sustained photoprotection via the xanthophyll pigments; Bowling et al., 2018). Another feature is the valley-260

trough shape, which is co-located with the chlorophyll Jacobian center at the longer wavelength in the red-edge region. The

center of this feature occurs at the shorter-wavelength edge of the chlorophyll Jacobian but does not easily explain changes in

total chlorophyll content, which should show equal changes around 600 nm. The corresponding temporal loading apparently

varied seasonally with GPPmax.

The second temporal loading transitioned more gradually from dormancy to the peak growing season than GPPmax. Unfor-265

tunately, we were missing data to evaluate the relative timing of GPPmax cessation.

The third spectral component is similar to the mean shape of reflectance spectra. Its temporal loading held around zero

throughout the year.

Overall, the second ICA spectral component is more representative of the seasonal variation in the magnitude of total canopy

reflectance than the other spectral components. The spectral changes around the red-edge in the second component is interesting270

and might be related to structural needle changes in chlorophyll-a and chlorophyll-b contributions (de Tomás Marín et al., 2016;

Rautiainen et al., 2018), which are not separated in PROSPECT.

CCI and PRI(Fig. 5(a-b)) followed the seasonal cycle of GPPmax closely. CCI and PRI use reflectance near the center of the

530 nm valley feature (Eq. (3)c-d), the spectral range that is most sensitive to the change of carotenoid content, so that they

matched changes in GPPmax very well. PRI was the smoothest throughout the year, without any significant fluctuations within275

the growing season, as opposite to what was observed in GPPmax, which co-varied with Tair and VPD (Fig. S3a and S3b). This

performance is intriguing given that PRI was originally developed to track short term variations in LUE (Gamon et al., 1992),

such as day-to-day and sub-seasonal scales.

GCC (Fig. 5(c)) also correlated well with GPPmax, but less than CCI and PRI. As can be seen in Fig. S1, the peak of the

green channel used for GCC is close to the carotenoid Jacobian peak, while the red channel feature covers a part of chlorophyll280

Jacobian feature. This explained the sensitivity of the GCC to changes in both carotenoid content as well as chlorophyll. The

bands used in GCC are broader than the ones used by PRI and CCI, however it still captured these variations and can be

computed using RGB imagery. Gentine and Alemohammad (2018) found that the green band helps to reconstruct variations in

SIF using reflectances from MODIS. While they speculated that most variations in SIF are related to variations in PAR · fPAR

(Gentine and Alemohammad, 2018), we suggest here that the green band indeed captures variations in LUE as well.285
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NDVI (Fig. 5(e)) and NIRv (Fig. 5(f)) did not show an obvious seasonal variability.

Similar to the ICA components, all VIs were quite noisy during dormancy, especially prior to DOY 50. This noise may

be due to snow because we only removed the reflectance when the canopy was snow covered. Scattered photons possibly

still reached the telescope when there was snow on the ground, which is true for our study site as snowpack exists in winter

(Bowling et al., 2018).290

3.3 PLSR coefficients of reflectance with GPPmax and pigment measurements

The spectral shape of the PLSR coefficient with GPPmax highlighted a peak (centering at 532 nm) near that of the carotenoid

Jacobian with the same valley-trough feature observed near the second peak of the chlorophyll Jacobian (Fig. 6(a)).

The reconstructed GPPmax captured the onset and cessation of growth, while the day-to-day noise in reflectance during

dormancy propagated to the reconstructed GPPmax (-2 to 5 µmol m−2s−1). During the growing season, the day-to-day varia-295

tions in GPPmax were not captured by any of the methods using pigment absorption features (Fig. 5(a-c) and Fig. 6(b)), which

indicates those variations were not related to pigment content, but rather changes in environmental conditions that lead to

day-to-day changes in photosynthesis (Fig. S3a). Overall, the observed GPPmax was significantly correlated with the PLSR

reconstruction (Pearson-r2=0.87), but very similar compared to CCI and PRI. A similar PLSR model of reflectance but with

pigment measurements (Fig. 7) showed a direct link between pigment contents and reflectance. It can be seen that the PLSR co-300

efficients of reflectance are very similar, irrespective of the target variable. They feature a valley near the peak of the carotenoid

Jacobian and a valley-trough feature near the peak at the longer wavelength of chlorophyll Jacobian. This spectral shape is

also very similar to the second ICA spectral component and PLSR coefficients of GPPmax. V+A+Z, chl:car, and car were all

nicely reconstructed by using the PLSR coefficients and reflectance (Fig. 7(b)). The reconstructed V+A+Z, car, and chl:car are

correlated with the measured ones with Pearson-r2 values of 0.84, 0.71 and 0.93, respectively.305

The second ICA component and PLSR empirically showed the seasonality of reflectance using two different empirical

frameworks. ICA only used the reflectance, while the PLSR model accounts for variations in both reflectance and GPPmax

or pigment content. Yet, both ICA and PLSR agreed on similar spectral features that co-varied seasonally with GPPmax. This

indicates that the resulting spectral features were primarily responsible for representing this seasonal cycle. The overlap of these

features with the chlorophyll/carotenoid absorption features showed that the seasonality of GPPmax was related to variation in310

pigment content at the canopy scale, which was directly validated with similar PLSR coefficient of reflectance and pigment

contents. These results are consistent with leaf-level measurements of a higher ratio of chlorophyll to carotenoid content during

the growing season in this forest (Fig. 7).

The highlighted spectral feature around 530 nm from ICA and PLSR closely overlaps with one of the bands used in CCI, PRI

and GCC (Eq. (3)) which provides a justification that these VIs can remarkably capture the LUE seasonality. The comparable315

Pearson r2 values of PLSR, CCI, and PRI with GPPmax suggest the pigment-driven seasonal cycle of GPPmax is sufficiently

represented by CCI and PRI. The spectral feature around the red-edge does not make PLSR significantly more correlated with

GPPmax than CCI or PRI, which implies the feature is not driven by total chlorophyll or carotenoid contents.
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Figure 5. Magenta points are time series of VIs: (a) CCI, (b) PRI, (c) GCC, (d) relative SIF (e) NDVI (f) NIRv.The grey points in the

background show GPPmax. The Pearson-r2 values of regressing VIs and GPPmax are noted in each plot. The p values of all correlations in this

figure are less than 0.005. The vertical dashed line divides the observations from DOY for year 2017 and 2018.
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Figure 6. (a) The PLSR coefficient of reflectance with GPPmax is the blue line. The overlaid dash-dotted and dotted lines are chlorophyll and

carotenoid Jacobians, respectively. The overlaid orange solid line is the second ICA spectral component, which was scaled to fit to the plot

without a y-axis. (b) The reconstructed GPPmax (blue) by PLSR is overlaid with the observed GPPmax (red). The vertical dashed line divides

the observations from DOY for year 2017 and 2018.
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Figure 7. (a) PLSR coefficients of reflectance and three pigment measurements. The overlaid dash-dotted and dotted lines are chlorophyll

and carotenoid Jacobians, respectively. The overlaid solid grey line is the second ICA spectral component, which is scaled to fit to the plot

without a y-axis. (b) The reconstructed pigment measurements (blue) by PLSR is overlaid with the measured mean pigment measurements

(red). The error bar is one standard deviation of the measurements. The vertical dashed line divides the observations from DOY for year 2017

and 2018.
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3.4 Process-based estimation of pigment content

PROSAIL inversion results further supported the link between canopy reflectance, pigment contents and GPPmax. Figure 8320

shows a continuous time-series of Cchl, Ccar, Anthocyanin content (Cant), and Cchl

Ccar
derived from the PROSAIL canopy RTM

inversion model. Examples of simulated and measured reflectance spectra shown are in Fig. C1. Anthocyanins are another

type of photoprotective pigment (Pietrini et al., 2002; Lee and Gould, 2002; Gould, 2004) that protects the plants from high

light intensity (Hughes, 2011). The pigment inversions closely matched the seasonality of GPPmax. Cchl

Ccar
showed the greatest

sensitivity in capturing the seasonal cycle, with the strongest correlation to leaf level measurements (Fig. 8 (c)). The inverted325

Cchl had the weakest empirical relationship with the measured one (Fig. 8(a) right panel). Apparently, some of the inversion

errors of individual Ccar and Cchl contents canceled out in the ratio, making the ratio more stable. Cant performed similarly as

Ccar, since they both are photoprotective, and the anthocyanins absorb at 550 nm (Sims and Gamon, 2002), which is close to the

center of carotenoid absorption feature. Even though we lacked field measurements of anthocyanins to validate anthocyanins

retrievals, the inversions showed that more than just carotenoid content can be obtained from full-spectral inversions.330

Strictly speaking, the complex canopy structure of evergreens makes the application of 1D canopy RTMs such as PROSAIL

difficult (Jacquemoud et al., 2009; Zarco-Tejada et al., 2019). Yet, Moorthy et al. (2008); Ali et al. (2016); Zarco-Tejada et al.

(2019) reasonably discussed the pigment retrieval in conifer forests with careful applications. In our study, the reflectance

was collected from needles with a very small FOV, and our study site has a very stable canopy structure throughout a year

(Burns et al., 2016). Thus, the inversion results are meaningful for discussing the seasonality of pigment contents. In the future,335

radiative transfer models that properly describe conifer forests, such as LIBERTY (Dawson et al., 1998), could be used.

3.5 Comparison across methods

Although decomposing the hyperspectral canopy reflectance and using relative SIF (Fig. 5(d)) both successfully tracked the

seasonal cycle of evergreen LUE, they underlie different de-excitation processes. During the growing season, environmental

conditions primarily drove the day-to-day variations in GPPmax. Relative SIF responded to such environmental stresses (van340

der Tol et al., 2014) so that it appeared to track sub-seasonal variations better than reflectance, particularly during the growing

season (Fig. S5f). Yet, reflectance decompositions and VIs were less sensitive to such day-to-day variations (Fig.6, Fig. S3b).

There was also some variability between reflectance-based methods and relative SIF during the transition periods between

the growing season and dormancy. We focused on the growing season onset since the reflectance measurements were not

available during the cessation period. The onset (DOY 60 to 166) described by all the methods mentioned above as well as the345

relative SIF are compared in Fig. 9, using a sigmoid fit to available data (Fig. D1). The observed GPPmax had the most rapid

yet latest growing onset. The methods and VIs derived from or related to the pigment contents increased earlier than GPPmax -

such as the ICA component, PLSR coefficient, PROSAIL Cchl

Ccar
and CCI. However, they built up slowly to reach the maximum,

which suggests that reduction of the carotenoid content is a slower process than the recovery of LUE. Reflectance-based VIs

(Fig. 5) and decomposing methods (Fig. 4 and 8(b,c)) had a slower growing season onset than GPPmax, as found in Bowling350

et al. (2018) as well. On the other hand, relative SIF started the onset at almost the same time as the GPPmax, and it quickly
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Figure 8. The left panels are the estimations of (a) Cchl, (b) Ccar, Cant and (c) Cchl
Ccar

from the PROSAIL overlaid with the GPPmax. We

normalized two metrics because they report the pigment contents in different units. The vertical dashed line divides the observations from

DOY for year 2017 and 2018. The plots on the right compare the pigment contents from leaf-level measurements and using PROSAIL: (a)

chl vs. Cchl, (b) car vs. Ccar, and (c) chl:car vs. Cchl
Ccar

. The correlations are statistically significant except Cchl.
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reached the maximum. Therefore, using both SIF and reflectance to constrain the LUE prediction (van der Tol et al., 2014) can

further improve the prediction accuracy.
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Figure 9. Temporal evolution of the growing season onset using sigmoid fits (scaled) of PLSR, ICA, CCI, chlorophyll to carotenoid ratio

and relative SIF.

4 Conclusion and future work

In this study, we analyzed seasonal co-variation of GPP and the spectrally resolved visible and near infrared reflectance signal,355

as well as several commonly used VIs. The main spectral feature centered around 530 nm is most important for inferring the

seasonal cycle of reflectance (400 – 900 nm) and LUE, which corresponds to changes in carotenoid content. This explains why

CCI, PRI, and GCC track GPP seasonality so well, as most variations are driven by carotenoid pool changes. Our analysis in-

cluded RTM simulation and in-situ pigment measurements throughout the season, confirming the link between reflectance/VIs

and pigment contents. The comparison of reflectance/VIs and relative SIF reveals differences in the timing of the growing360

season onset, pigment changes and SIF, indicating the potential of using both reflectance and SIF to track the seasonality of

photosynthesis. However, the close correspondence between both SIF and reflectance suggest that hyperspectral reflectance

alone provides mechanistic evidence for a robust approach to track photosynthetic phenology of evergreen systems. Because

seasonal variation in pigment concentration plays a strong role in regulating the seasonality of photosynthesis in evergreen

systems, our work will help to inform future studies using hyperspectral reflectance to achieve accurate monitoring of these365

ecosystems. While indices like PRI and CCI are performing sufficiently as our methods which uses the full spectrum analysis

at the canopy scale, the application of the full spectrum might be more robust for space-based measurements. In addition,

we found seasonal changes of canopy reflectance near the red-edge region, which could be related to leaf structural changes

or chlorophyll-a and b changes. Our PLSR coefficients are good references for customizing VIs to infer the photosynthetic

seasonality in evergreen forest when there are restrictions to use the specific bands from currently existing VIs (such as PRI370
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and CCI). While our current study is limited to a subalpine evergreen forest and canopy-scale measurements, applications to

other regions, vegetation types and observational platforms will be a focus for future research.

Code and data availability. Our data presented in this paper are provided at https://data.caltech.edu/records/1597 and https://data.caltech.

edu/records/1231. The PROSAIL model in the Julia programming language used in our study can be obtained from https://github.com/

climate-machine/LSM-SPAM.375

Appendix A: Bi-directional reflectance effect

A1 NDVI and NIRv

The impact of geometry and small FOV are relatively negligible. First, our method only used the scans when FOV is on the

needles by setting a NDVI threshold. Second, we plotted the NDVI and NIRv against the solar geometry at each individual tree

targets throughout a year. NDVI/NIRv are quite homogeneous regardless of various solar geometries as shown in the following380

figures.
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Figure A1. NDVI and NIRv of all scans targeting on a pine at different solar azimuth angles and solar zenith angles throughout a year.
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Figure A2. NDVI and NIRv of all scans targeting on a fir at different solar azimuth angles and solar zenith angles throughout a year.
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Figure A3. NDVI and NIRv of all scans targeting on a spruce at different solar azimuth angles and solar zenith angles throughout a year.

A2 PLSR on phase angle and reflectance

We did a PLSR analysis on individual measurements of phase angle and reflectance for 3 summer days (2017-7-1 to 2017-7-3).

The results are the same from other sample days. Indeed, the reflectance has different sensitivities to the phase angle. However,

the poor correlation of PLSR reconstructed phase angle and the measured one suggests the variations in phase angle should not385

be the critical factor for the change in reflectance. In our study, we primarily removed the bi-directional impact by averaging

all the individual reflectance that was measured at different solar geometry and viewing geometry.
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Figure A4. PLSR analysis on phase angle and reflectance.

Appendix B: Detailed processes on integrating daily-averaged canopy reflectance

First, we chose scans targeting vegetation only by requiring an NDVI greater than 0.6. Second, it is important to ensure that

the solar irradiation did not change between the acquisition of the solar irradiance and the reflected radiance measurement. To390

achieve this, we matched the timestamps of a PAR sensor (LI-COR LI-190SA, LI-COR Environmental, Lincoln, Nebraska,

US) to the timestamps of PhotoSpec, and compared the PAR value from the PAR sensor during the PhotoSpec irradiance

acquisition with PAR during the actual target scan of the reflected radiance from vegetation. We only used the scans when the

ratio of the two was 1.0±0.1, ensuring stable PAR conditions. Third, in order to avoid unstable PAR because of clouds (Dye,

2004), we also removed cloudy scenes by requiring PAR to be at least 60% of a theoretical maximum driven by solar geometry395

(Fig. B1). Further, only data when PAR was greater than 100 µmol m−2s−1 were considered to eliminate the impact of low

solar angles on reflectance data. The VIs shown in Fig. 5 were extracted in the same fashion as above.
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Figure B1. The distribution of ratio the measured PAR to the PAR at theoretical maximum from all individual scans.

Appendix C: PROSAIL fits

We used the following range constraints for variables included in the state vector of PROSAIL inversion:

– Leaf mesophyll structure (N): 0.9–1.1400

– Chlorophyll content (Cchl): 0–120 µmol cm−2

– Carotenoid content(Ccar): 0–70 µmol cm−2

– Anthocyanin content(Cant): 0–10 µmol cm−2

– Brown pigments(Cbrown): 0–0.6

– Water content (Cw): 0–0.2 cm405

– Dry matter content (Cm): 0–0.2 g cm−2

– Xanthophyll cycle status (Cx) 0–1

– Leaf area index (LAI): fixed to 4.2
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Figure C1. The observed and fitted reflectance spectra at low (left) and high (right) Cchl
Ccar

Appendix D: Sigmoid fit

The sigmoid equation is:410

y = b+
a− b

1+ exp(d−xc )

In this form, a and b represent the maximum and minimum values of the sigmoid fit. And d is the half maximum of the fit. We

obtained the optimal values of these parameters.

Proof:

If x→+∞, exp(d−xc )→ 0. So,415

lim
x→+∞

y = a

If x→−∞, exp(d−xc )→+∞. So,

lim
x→−∞

y = b

The first derivative of y is

dy

dx
=

a− b
(1+ exp(d−xc ))2

exp(
d−x
c

)
1

c
420

At the half maximum point (x = xhalf), y = a+b
2 . Therefore, we need to solve:

a+ b

2
= b+

a− b
1+ exp(

d−xhalf

c )

Hence, xhalf = d.
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formed data analyses. RC, TSM, DD, DRB, BAL, SPB, PDB, KG, SL, ADR, JS, and CF wrote the paper.425
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Figure D1. Individual sigmoid fits of the onset of growth from different methods and more VIs. The fitted curve has been expressed as

the derivation as above. The pearson-r2 and p values listed in each subplot were calculated from the correlation of observed and fitted

variables. The residual was calculated as the average L2 norm of the difference between observed (y) and fitted variables (ŷ) normalized

by the observation, i.e. 1
n

∑
i(

y−ŷ
y

)2. The fittings are overall good. Because the ICA loading lacks a clear sigmoid shape, ICA has a larger

residual.
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