

1 Response to reviewers for **Geographic variability in freshwater methane hydrogen
2 isotope ratios and its implications for global isotopic source signatures**

3

4 Peter M.J. Douglas¹, Emerald Stratigopoulos¹, Jenny Park¹, Dawson Phan¹

5 ¹Earth and Planetary Sciences, McGill University, Montreal, H3A 0E8, Canada

6 *Correspondence to:* Peter M. J. Douglas (peter.douglas@mcgill.ca)

7

8 All of the reviewers provided excellent suggestions and feedback on the paper, and we
9 think that by addressing their concerns the paper will be greatly improved. Many of their
10 comments were complementary. Therefore we will first summarize the major revisions
11 we made to the paper before responding to each reviewer in detail:

12

13 **Major Revisions**

14 1) We have revised the freshwater isotopic dataset in response to comments from
15 Reviewer 1 and Reviewer 3. (i) For peatland sites with depth stratified sampling we have
16 decided to only include samples from the upper 50 cm, as suggested by reviewer 3, since
17 this is the depth range that is most likely to emit CH₄ to the atmosphere. This affects a
18 total of 8 sites. (ii) Reviewer 1 noted that an outlier sample from the Amazon River with
19 very high $\delta^2\text{H}$ -CH₄ and $\delta^{13}\text{C}$ -CH₄ could be derived from thermogenic methane. We agree
20 that this outlier is suspect, and therefore have decided not to include it. (iii) We also noted
21 that one sites (Mirror Lake, Florida, USA) were analyzed in two separate studies, and
22 therefore was included twice in the dataset. We have combined the data from the two
23 studies into one entry.

24

25 2) As suggested by all three reviewers, we have performed more rigorous analysis of the
26 relationship between measured and modeled $\delta^2\text{H}$ -H₂O values. Specifically we have done
27 the following: (i) In addition to annual precipitation $\delta^2\text{H}$ values, we now also analyze
28 growing season precipitation $\delta^2\text{H}$, which is defined as the amount-weighted mean $\delta^2\text{H}$ of
29 months with mean temperature greater than 0° C. This provides an opportunity to assess
30 whether seasonal variation in precipitation in the mid to high-latitudes is important in
31 controlling the environmental $\delta^2\text{H}$ -H₂O value; (ii) separately analyzing inland water and
32 wetland environments, since these are very different hydrological environments and the
33 controls on $\delta^2\text{H}$ -H₂O are potentially different.

34

35 This analysis led to the following key results (see the revised Figure 2): i) growing season
36 modeled precipitation $\delta^2\text{H}$ is a better predictor of inland water $\delta^2\text{H}$ -H₂O than annual
37 precipitation $\delta^2\text{H}$, in that the regression curve is indistinguishable from the 1:1 line. ii)
38 Annual modeled precipitation $\delta^2\text{H}$ is a better predictor of wetland $\delta^2\text{H}$ -H₂O, in that the
39 slope of the regression is indistinguishable from 1, and the R^2 value is higher. However,
40 the regression line is offset from the 1:1 line by 18.6±9‰. We interpret this as an
41 indicator of likely widespread evaporative effects on $\delta^2\text{H}$ -H₂O in wetland environments.
42 These results are consistent with isotope hydrology studies, as discusses in section 3.2.

43

44 We use these results to then develop a ‘best estimate’ for comparing $\delta^2\text{H}-\text{H}_2\text{O}$ with $\delta^2\text{H}-\text{CH}_4$. (i) For sites with measured $\delta^2\text{H}-\text{H}_2\text{O}$ values we use the measured value. (ii) For inland water sites without measured $\delta^2\text{H}-\text{H}_2\text{O}$ we use modeled growing season precipitation, since as discussed above the regression of this against measured $\delta^2\text{H}-\text{H}_2\text{O}$ is indistinguishable from the 1:1 line. (iii) For wetland sites without measured $\delta^2\text{H}-\text{H}_2\text{O}$ we estimate the $\delta^2\text{H}-\text{H}_2\text{O}$ using the regression relationship with annual precipitation $\delta^2\text{H}-\text{H}_2\text{O}$ shown in Figure 2A. We feel this approach combining measured and modeled data is consistent with that of Waldron et al., (1999a), who we note also analyzed a combination of sites with measured $\delta^2\text{H}-\text{H}_2\text{O}$ (29 out of 51 sites) and estimated $\delta^2\text{H}-\text{H}_2\text{O}$ based on precipitation isotopic measurements or estimates (22 out of 51 sites).

54

55

56 **3).** As suggested by all three reviewers, it is important to consider the effects of modeled
57 $\delta^2\text{H}-\text{H}_2\text{O}$ on the regression between $\delta^2\text{H}-\text{H}_2\text{O}$ and $\delta^2\text{H}-\text{CH}_4$. To do this carefully we
58 performed the regression analysis using four different estimates of $\delta^2\text{H}-\text{H}_2\text{O}$:

59 (i) the ‘best-estimate’ of $\delta^2\text{H}-\text{H}_2\text{O}$ as described above in Major Revision 2; (ii) measured
60 $\delta^2\text{H}-\text{H}_2\text{O}$, only analyzing sites with this measurement; (iii) modeled annual precipitation
61 $\delta^2\text{H}$; and (iv) modeled growing season precipitation $\delta^2\text{H}$. We think it is valuable to
62 continue to include the regression relationships for modeled precipitation because these
63 relationships could be used in future studies using Earth Systems Models to predict the
64 distribution of $\delta^2\text{H}-\text{CH}_4$. For each of these cases we analyzed all sites, inland waters, and
65 wetlands (See Supplemental Table 2). We compare each of these relationships with the
66 ‘in-vivo’ line of Waldron et al., (1999a)

67

68 A key point is that we have decided to use unweighted, as opposed to weighted,
69 regression. Comments by Reviewer 1 made us realize that weighting by standard error
70 was causing a few sites to strongly bias the regression results. Statistical research has
71 found that for environmental data with poorly constrained error variance unweighted
72 regression is frequently less biased than weighted regression (Fletcher and Dixon, 2012).
73 Using a statistical test proposed by that study we find that unweighted regression is a
74 good choice for our dataset. Note that in Supplemental Table 2 we apply unweighted
75 regression to the dataset of Waldron et al., (1999), in part because the specific weighting
76 methodology was not specified in that study. This produces a small difference in the
77 regression relationship shown in Supplemental Table 2 with that reported by Waldron et
78 al., (1999), but the two regression relationships are within error.

79

80 We then used analysis of covariance (ANCOVA) to examine differences between the
81 regression relationships shown in the table. Based on a multiple comparison test, none of
82 the regression relationships shown with our dataset are significantly different, nor are
83 they significantly different from the regression of Waldron et al., (1999a). Therefore we
84 conclude that (i) using modeled precipitation $\delta^2\text{H}-\text{H}_2\text{O}$ does not have a significant effect
85 on the estimate of the relationship between $\delta^2\text{H}-\text{H}_2\text{O}$ vs. $\delta^2\text{H}-\text{CH}_4$; (ii) Differences in the
86 slope of this relationship between inland waters and wetland sites are not conclusive; and
87 (iii) that since all of the regression relationships using the larger dataset produce a flatter
88 slope than that of Waldron et al., (1999a), the true global slope is likely to be flatter than

89 inferred in that study, but confirmation of this flatter global slope will require more data
90 and further analysis.

91
92 **4)** We then used the ‘best-estimate’ $\delta^2\text{H}-\text{H}_2\text{O}$ values and the regression based on those
93 values, shown in Figure 3A and Supplemental Table S2, to calculate a revised $\delta^2\text{H}-$
94 $\text{CH}_{4,\text{w}0}$ value for each site. These analyses were then applied in the subsequent analyses in
95 the paper shown in Figures 6, 8, and 9. We also calculated an alternate value for sites
96 with measured $\delta^2\text{H}-\text{H}_2\text{O}$, using the values and regression curve for those sites (Figure 3B
97 and Supplemental Table S2).

98
99 We have decided to substantially change and revise our analysis of co-variation between
100 $\delta^2\text{H}-\text{CH}_{4,\text{w}0}$ and $\delta^{13}\text{C}-\text{CH}_4$, $\delta^{13}\text{C}-\text{CO}_2$, and α_{C} . Using the revised $\delta^2\text{H}-\text{CH}_{4,\text{w}0}$ values we
101 found inconsistent results of the breakpoint regression analysis applied in the original
102 manuscript. Specifically, the identified breakpoint is not consistent when analyzing all
103 sites or only sites with measured $\delta^2\text{H}-\text{H}_2\text{O}$. Given this inconsistency, and the complexity
104 of this analysis, we decided to omit this analysis from the revised manuscript. Instead we
105 focus on simple linear regression between these variables, both for the dataset as a whole
106 and for sites disaggregated into wetlands and inland waters. This analysis implies a
107 significant correlation between $\delta^2\text{H}-\text{CH}_{4,\text{w}0}$ and both $\delta^{13}\text{C}-\text{CO}_2$, and α_{C} for wetlands in
108 particular, but only when all sites are analyzed. These relationships are not apparent when
109 only sites with measured $\delta^2\text{H}-\text{H}_2\text{O}$ are included. Therefore these correlations are clearly
110 preliminary and require further verification.

111
112 Therefore in our revised analysis we will place less emphasis on these apparent
113 correlations, and less emphasis on the relationship between methanogenic pathway and
114 $\delta^2\text{H}-\text{CH}_4$ generally, as suggested by reviewer 1. Instead we discuss four processes or
115 variables that have the potential to influence $\delta^2\text{H}-\text{CH}_4$ in freshwater environments: (i)
116 differences in methanogenic pathway; (ii) methane oxidation; (iii) isotopic fractionation
117 due to diffusion; and (iv) differential thermodynamic favorability or differential
118 enzymatic reversibility of methanogenesis. Ultimately, our conclusion is co-variation
119 with $\delta^{13}\text{C}-\text{CH}_4$, $\delta^{13}\text{C}-\text{CO}_2$, and α_{C} cannot fully resolve the complex interactions between
120 these processes on $\delta^2\text{H}-\text{CH}_4$ on a global or inter-site basis, and other approaches will be
121 necessary to determine their relative importance, or the possible importance of other
122 processes.

123
124 Given the findings mentioned above, we will also substantially revise the original Figure
125 6, which is now Figure 5. Instead of distinguishing samples by inferred methanogenic
126 pathway in this figure, we distinguish samples by environment (wetland vs. inland
127 water), show available data for cow rumen and landfills, and show data and regression
128 lines for incubation and pure culture experiments. We feel this revised analysis is very
129 informative about the likely processes controlling the slope of the regression between
130 $\delta^2\text{H}-\text{H}_2\text{O}$ and $\delta^2\text{H}-\text{CH}_4$, and supports the application of the ‘in-vitro’ line of Waldron et
131 al. (1999a) as an analogue for environmental samples. We have revised our discussion of
132 this to provide proper credit to the ideas presented in that paper.

133
134 **5)** Reviewer 2 made numerous comments about the representativeness of our $\delta^{13}\text{C}-\text{CH}_4$

135 dataset. We want to make clear that to our knowledge this is the largest database of
136 freshwater methane $\delta^{13}\text{C-CH}_4$ currently compiled. For comparison, the second largest
137 dataset, that of Sherwood et al., (2017), includes 48 freshwater sites (including rice
138 paddies), of which 16 are also included in our database. However our $\delta^{13}\text{C-CH}_4$
139 database is not comprehensive (unlike the $\delta^2\text{H-CH}_4$ database), in that it does not include
140 many measurements that are not paired with $\delta^2\text{H-CH}_4$ measurements and that have not
141 yet been compiled into a database. It is also probably not representative, because some
142 important environments, notably C₄ plant dominated ecosystems, are not well
143 represented.

144 Since the primary focus of this paper is $\delta^2\text{H-CH}_4$, it is not within its scope to provide a
145 comprehensive database of freshwater $\delta^{13}\text{C-CH}_4$, although that would be a worthwhile
146 goal for future research. In order to make our analysis as complete as possible, in our
147 revised manuscript we will include the 32 freshwater sites from Sherwood et al., (2017)
148 that were not included in our original analysis in our calculations for the upscaling
149 exercise, as well as Table 1 and Figures 7 and 8. Sherwood et al., (2017) do not provide
150 information on sample type, and we therefore did not include these additional data in the
151 analysis for Figure 9. We will also carefully discuss the likely biases in this dataset,
152 especially in terms of C₄ plant environments, and their implications for our
153 interpretations.

154

155

156 **6)** Both reviewers 2 and 3 expressed some concerns with the upscaling analysis. We
157 acknowledge that the upscaling analysis is relatively simplistic, and that some of the
158 interpretations were speculative. However, we still think it is valuable to use the
159 estimates of freshwater CH₄ isotopic composition, differentiated by latitude, produced in
160 this study to estimate global source $\delta^2\text{H-CH}_4$ and $\delta^{13}\text{C-CH}_4$, and to compare that with
161 other estimates. We wish to make clear that given uncertainties and complexity in
162 estimating sink fractionations, particularly for $\delta^2\text{H-CH}_4$, we are not attempting to
163 estimate atmospheric $\delta^2\text{H-CH}_4$ and $\delta^{13}\text{C-CH}_4$, but instead the integrated source $\delta^2\text{H-CH}_4$
164 and $\delta^{13}\text{C-CH}_4$ prior to sink fractionations. We think there is value in comparing this with
165 (i) a previous bottom-up estimate of these values (Whiticar and Schaefer, 2007); and (ii)
166 with top-down estimates reported by Rice et al., (2016), as well as simpler estimates
167 provided by Whiticar and Schaefer (2007) and Sherwood et al., (2017). We concur with
168 Reviewer 2 that the discussion of alternate emissions scenarios is too speculative and
169 simplistic, and therefore we will omit this discussion. We have also omitted our analysis
170 of the sensitivity of global source $\delta^2\text{H-CH}_4$ and $\delta^{13}\text{C-CH}_4$ to varying emissions fluxes by
171 latitude. Some of this analysis will instead appear in another paper currently in
172 preparation. We do mention previous papers that suggest errors in emissions inventories
173 based on $\delta^{13}\text{C}$ measurements, but do not attempt to resolve the findings of those studies
174 using our simple upscaling estimate. Instead, we focus on likely sources of error in the
175 isotopic source signatures, and the best ways to address these errors in future studies. We
176 note that we now express uncertainty for the Monte Carlo analysis as 2 σ standard
177 deviation, which is a more conservative estimate of uncertainty.

178

179 We disagree with Reviewer 2 that the error estimates for isotopic source signatures are
180 generally too optimistic, which we will discuss in more detail in our response to that
181 reviewer.

182
183 Given comments from all three reviewers we will revise Figure 10 to only include panel
184 C, and make the comparison with other estimates of global source $\delta^2\text{H-CH}_4$ and $\delta^{13}\text{C-CH}_4$ clearer in this figure.
185

186
187 **Changes to manuscript structure:** Given the comment of Reviewer 1 on the
188 redundancy of the Results and Discussion sections we have decided to combine these
189 sections. We feel this simplifies the manuscript and improves the flow.
190

191 **Revisions to Table 1:** As described above in Major Revisions 1 and 4, we have changed
192 the data inputs to Table 1, which has changed some of the isotopic values and
193 uncertainties shown in this table.
194

195 **Additional and Revised Supplemental Material:** We have added supplemental text that
196 describes in detail isotopic vectors for different biogeochemical processes that are
197 depicted in the new version of Figure 6. We have added two supplemental figures, which
198 are versions of Figure 8A and 9A that only include sites with measured $\delta^2\text{H-H}_2\text{O}$. We
199 have added two additional supplemental tables that detail regression statistics for i)
200 regression analyses of $\delta^2\text{H-H}_2\text{O}$ vs. $\delta^2\text{H-CH}_4$ (Supplemental Table 2); and ii) regression
201 analyses of $\delta^2\text{H-CH}_{4,w0}$ vs. $\delta^{13}\text{C-CH}_4$, $\delta^{13}\text{C-CO}_2$, and α_C (Supplemental Table 4). We
202 have omitted the original Supplemental Table 2, which is replaced by the supplemental
203 text described above.
204

205 **Specific Responses to Reviewer 1:** Reviewer comments are in plain text. **Responses are**
206 **in bold text.**
207

208 **We thank Dr. Waldron for her careful and thorough review. We appreciate that**
209 **this review presented a challenging situation, and we value her honesty and**
210 **openness. We are confident that we can address her concerns in the revised**
211 **manuscript.**
212

213 Substantial conclusions are reached, but the interrogative approach has weaknesses that propagate
214 through substantial analytical reasoning and so the integrity of the conclusions is questionable. I
215 detail this further below, but until the analytical approaches are reconsidered the conclusions are
216 not securely reached
217

218 **We understand this critique, and in response we have strengthened the statistical analyses**
219 **and interrogation of the data, in particular with regards to the 1) comparison of measured**
220 **and modeled $\delta^2\text{H-H}_2\text{O}$ values, 2) the inference of a regression slope between $\delta^2\text{H-H}_2\text{O}$ and**
221 **$\delta^2\text{H-CH}_4$, and 3) the application of carbon isotope fractionation factors to evaluate the**
222 **potential effects of methane oxidation, methanogenesis pathway, or other biogeochemical**
223 **effects on $\delta^2\text{H-CH}_4$. See major revisions 2, 3, and 4 above.**
224

225 With respect to understanding isotopic compositions: the methods are not all valid, particularly

226 the reconstruction of missing δ D-H₂O for a field measurement of δ D-CH₄. The interrogation of
227 this relationship (Fig. 2) lacks statistical rigour, and its propagation - a relationship that has bias
228 and significant variability - is unconsidered in all analysis thereafter (as represented by Figs. 3-9
229 and possibly 10) and so this reasoning is flawed and the interpretations may be wrong.
230

231 **We have thoroughly re-analyzed the relationship between measured and modeled**
232 **δ^2 H-H₂O in the revised manuscript. See Major Revision 2 above. We then applied**
233 **this revised analysis forward to the remainder of the manuscript. See Major**
234 **Revisions 3 and 4.**

235
236 The authors are not consistent in identifying when processes they are interpreting are based on
237 hypothesised relationships and the impression is given such processes are certain (detailed
238 below).
239

240 **We have made it clearer in the revised manuscript where we are discussing hypothesized**
241 **relationships, as discussed in more detail below. In particular, regarding hypotheses**
242 **regarding the effects of methanogenic pathway on δ^2 H-CH₄ we are more circumspect in the**
243 **revised manuscript, and discuss alternate hypotheses in greater detail. See Major Revision**
244 **4.**

245
246 I found it difficult to follow the calculations behind α C – an important part of the manuscript –
247 when I was trying to compare other data sets with their approach.
248

249 **We are uncertain what aspect of this calculation was unclear, but we have tried to make the**
250 **description of this calculation clearer. See lines 193-194.**

251
252 Largely but not always, for example there is a large section in 4.31. that is repeating suggestions
253 made in section 1.1. of Waldron et al 1999, but this work is unreferenced and so as written
254 implies the review m/s is the first to have suggested this; the abstract does not make clear refining
255 an existing phenomena observed and described similarly previously.
256

257 **We regret the omission of references and acknowledgment to Waldron et al., 1999, in the**
258 **ideas presented in section 4.3.1. We thoroughly revised this section to provide proper credit**
259 **for these ideas, and integrated the discussion with that previously published by Waldron et**
260 **al., (1999a). This material is now incorporated in Section 3.3.1.**

261
262 Broadly but not sure how “geographic variability in freshwater methane hydrogen isotope ratios
263 has implications for microbial biogeochemistry” - the microbes are active with no knowledge
264 δ D...so this can be refined.
265

266 **We will follow this suggestion and modify the title to: *Geographic variability in freshwater***
267 ***methane hydrogen isotope ratios and its implications for global isotopic source signatures.***

268
269 It is a paper with a lot of detail and so to follow it all the reader has to concentrate deeply for the
270 results section. As such, and maybe in addition, the discussion from section 4 onwards seems in
271 places repetitive.
272

273 **We agree the results are very detailed. Given the critiques of the reviewers we will**
274 **need to add additional statistical analyses and data interrogation to the results,**

275 leading to an overall increase in detail. However, we will present this in as
276 streamlined and clear manner as possible. To do so we have combined the results
277 and discussion sections, which we feel has streamlined and simplified the article,
278 and reduces redundancy.

279
280 Broadly yes – I suggest a group whose work may be missing in the intro.
281

282 We have added the suggested citations in the introduction

283
284 Yes, very helpful, but sheet 2 could make it clearer if the data offered is used in as or these are
285 summarised data from other sources.

286
287 **Sheet 2 is omitted from the revised supplemental tables, as multiple reviewers have**
288 **questioned the value of the predicted fields for pathway and oxidation dependent**
289 **isotopic variation. Instead we provide approximate vectors of isotopic variability for**
290 **different biogeochemical processes. We emphasize that these are guidelines and are**
291 **not precise. These are summarized in Section 3.4, and in more detail in the**
292 **supplemental text.**

293
294 The substantive conclusions in this manuscript rely on a data set where δD -H₂O does not exist
295 for more than half the data: 53% of the sites do not have field measured δD -H₂O (L88). In these
296 cases, δD -H₂O is inferred from a reputable global precipitation database and a correlation
297 observed for sites where measured values exist. The authors consider this relationship sufficiently
298 robust to proceed to use the reconstructed δD -H₂O where measured values do not exist. I disagree
299 this is the case.

300
301 **We acknowledge this is an important critique. In the revised manuscript we take**
302 **steps to strengthen the analysis of the relationship between modeled and measured**
303 **δ^2H -H₂O, and carefully evaluate if using modeled values of δ^2H -H₂O leads to a bias**
304 **in the inferred relationship between δ^2H -H₂O and δ^2H -CH₄. See Major Revisions 2**
305 **and 3. Our analysis indicates that using modeled δ^2H -H₂O does not lead to a**
306 **significant difference in the regression relationship with δ^2H -CH₄. See Figure 3 and**
307 **Supplemental Table 2.**

308
309 The statistical integrity shown elsewhere in the manuscript is lacking in this section on
310 reconstructing δD -H₂O, with the authors describing their predictive relationship as showing
311 “generally good agreement” and proceeding to use it. The bias and variability in a predictive δD -
312 H₂O_p and thus how far it may be from the true δD -H₂O appear unconsidered in any further
313 analysis (no errors propagated through for estimated δD -H₂O?).

314
315 **As described above, in the revised manuscript we now carefully evaluate this**
316 **relationship. See Major Revision 2.**

317
318 Further, I note that the data in table S3 supplementary information for which there are measured
319 δD -CH₄- δDH ₂O fit closely to the in-vitro line from which Waldron et al 1999 project a global
320 relationship - but the data with estimated δDH ₂O in table S3 do not. This is important for two
321 reasons:

322

323 The reviewer has pointed to an interesting observation. The difference observed by the
324 reviewer is at odds with Figure 3A in the original manuscript, which clearly showed that the
325 regression lines for $\delta^2\text{H-H}_2\text{O}$ vs $\delta^2\text{H-CH}_4$ fully overlap whether modeled (black regression
326 line) or measured (blue regression line) $\delta^2\text{H-H}_2\text{O}$ is applied, and was not in agreement with
327 the in vivo line of Waldron et al., (1999).

328
329 On further analysis of the data, we identified that the discrepancy observed by the reviewer
330 was probably caused by two factors:
331

332 1) The weighted regression method that we used in the original manuscript was strongly
333 influenced by a few sites at high latitudes that both (a) have a large number of
334 measurements (and therefore a low standard error and a higher weight); and b) relatively
335 high $\delta^2\text{H-CH}_4$ values. We infer that this strong weighting at these sites led to a strong bias
336 in the regression. Based on statistical research involving environmental samples (Fletcher
337 and Dixon, 2012) we have decided that unweighted regression is preferable for this dataset
338 (See Major Revision 3). We assume the reviewer applied unweighted regression when
339 analyzing these data
340

341 2) The unweighted regression performed by the reviewer was likely strongly influenced by
342 the outlier site from the Amazon with very high $\delta^2\text{H-CH}_4$. When this point is removed, as
343 suggested by reviewer 1, the regression slope becomes flatter.
344

345 The two factors above effectively cancel each other out. In re-analyzing the data after
346 accounting for these two changes (See Figure 3 and Supplemental Table 2) we find that (a)
347 there is not a large or significant difference in the regression slope if measured $\delta^2\text{H-H}_2\text{O}$,
348 'best-estimate' $\delta^2\text{H-H}_2\text{O}$ (see Major Revision 2), or modeled precipitation $\delta^2\text{H-H}_2\text{O}$ is
349 used and (b) all of these regression slopes are flatter than that of Waldron et al., (1999).
350

351 1. It confirms the predictive relationship in Waldron et al 1999 for $\delta\text{D-CH}_4$ from $\delta\text{D-H}_2\text{O}$ still has
352 integrity, more so by adding in another methane-producing environment (innocula), a significant
353 time gap, and another geographic locality.
354

355 As mentioned above (Major Revision 3), our revised regression analysis continues to
356 result in flatter slopes than the predictive relationship proposed by Waldron et al.,
357 (1999), regardless of the method of estimating $\delta^2\text{H-H}_2\text{O}$ (See Figure 3 and
358 Supplemental Table 2). However, as we also discuss above, given the wide confidence
359 intervals of these relationships we do not find a significant difference with the
360 prediction of Waldron et al., 1999 using multiple group comparison ANCOVA.
361 However, given that every analysis of the larger dataset presented here results in a
362 flatter slope, we think it is probable that the global relationship has a somewhat
363 flatter slope than was inferred by Waldron et al., (1999).
364

365 2. If statement 1 is considered sound, then the poor fit of paired $\delta\text{D-CH}_4$ - $\delta\text{D-H}_2\text{O}$ with predicted
366 $\delta\text{D-H}_2\text{O}$ supports the assertion above that the relationship the authors are using here to
367 reconstruct $\delta\text{D-H}_2\text{O}$ is questionable.
368

369 As noted above, we do not see evidence that there is a significant difference in $\delta^2\text{H}$ -
370 CH_4 vs. $\delta^2\text{H}$ - H_2O based on the method of estimating/inferring $\delta^2\text{H}$ - H_2O . Therefore we
371 disagree with the assertion that the methods used to reconstruct $\delta^2\text{H}$ - H_2O
372 are questionable. However, we have revised our approach to predicting $\delta^2\text{H}$ - H_2O , as
373 explained in more detail in Major Revisions 2 and 3.

374
375 We think it is important to note that the in-vivo relationship of Waldron et al., (1999a) was
376 not based purely on sites with measured $\delta^2\text{H}$ - H_2O . Instead, that study used a combination
377 of sites with $\delta^2\text{H}$ - H_2O measurements (57%) measurements and estimates based on
378 precipitation isotope measurements (43%).

379
380 Quoting from that Waldron et al., (1999a): “Where paired $\delta\text{D}(\text{CH}_4)$ - $\delta\text{D}(\text{H}_2\text{O})$
381 measurements were not published $\delta\text{D}(\text{H}_2\text{O})$ was sourced from measured precipitation
382 values for the area, for example, the weighted mean of the precipitation samples
383 collected in south Florida over a 3-yr period (Swart et al., 1989) was used as an
384 appropriate value for $\delta\text{D}(\text{H}_2\text{O})$ for St. Marks Swamp, Florida (Happell et al., 1994).

385 Other unknown $\delta\text{D}(\text{H}_2\text{O})$ signatures (e.g., the Alaskan Lakes; Martens et al., 1992)
386 were estimated from the weighted mean value of sites close to the area sampled, that
387 participated in the global network, Isotopes in Precipitation (IAEA, 1992) or from the
388 meteoric water line (Craig, 1961). We are aware that $\delta\text{D}(\text{groundwater})$ can differ by up
389 to 30‰ from measured $\delta\text{D}(\text{precipitation})$ (e.g., Hornbrook et al., 1997; E. R. C.
390 Hornbrook, pers. comm.), but such fractionation is difficult to quantify and the logical
391 approach we have adopted provides the best estimate for $\delta\text{D}(\text{H}_2\text{O})$
392 where measured values are unavailable.”

393
394 We agree with Waldron et al., (1999a) that differences between precipitation and
395 groundwater (or lake water) can be large, and these differences can be difficult to
396 quantify. However, we do not think these potential differences negate the value of
397 estimating $\delta^2\text{H}$ - H_2O using available estimates of precipitation $\delta^2\text{H}$, along with
398 accounting for the effects of precipitation seasonality and evaporation, as described
399 in Major Revision 2. Indeed, we think our revised approach of combining measured
400 and estimated water $\delta^2\text{H}$ into a ‘best-estimate’ is a logical extension of the approach
401 used by Waldron et al., (1999a). However, we agree that a more careful evaluation
402 of this approach is warranted, and we have added this to the revised manuscript as
403 described above (Major Revisions 2, 3, and 4).

404
405 With the greatest of respect, using the predicted data produces an outcome that is like a ‘house of
406 cards’ – all subsequent analysis using this data is built on a shaky foundation. I therefore think
407 that incorporating paired δD - CH_4 - δD - H_2O_p in further analysis is flawed and offer two examples
408 why:

409 1. It creates a new global line for δD - CH_4 - δD - H_2O that may be wrong.
410 2. It could lead to artefact in interpretation, which indeed may be ‘visible’ in the dependent
411 analysis. For example, the data in Fig. 3b visually also appears to separate between paired δD -
412 CH_4 - δD - H_2O data that are predicted (inland waters) and measured (wetlands), and if this is the
413 case interpreting a biome difference here, and later in the paper, is also questionable.

414

415 **We do not agree with the house of cards analogy, but we do agree that it is**
416 **important to provide more confidence in our underlying analyses. As mentioned**
417 **above (Major Revision 3; Supplemental Table 2), we do not observe a significant**
418 **difference in $\delta^2\text{H}$ - CH_4 vs. $\delta^2\text{H}$ - H_2O whether modeled or measured $\delta^2\text{H}$ - H_2O is used.**
419 **Therefore we disagree that there is a 'shaky foundation' to our subsequent analysis.**
420 **However, as discussed above we have revised our data analysis to use the 'best-estimate'**
421 **$\delta^2\text{H}$ - H_2O value, including measured values where available.**
422

423 **We note that in the original Figure 3B the reviewer likely misinterpreted the data**
424 **presented. All of the data shown in this figure are based on modeled $\delta^2\text{H}$ - H_2O . Therefore**
425 **the observed difference between inland waters and wetlands cannot be related to**
426 **differences in the source of $\delta^2\text{H}$ - H_2O data. Supplemental Table 2 shows that there are**
427 **consistent differences between wetlands and inland waters in the slope of the regression line**
428 **regardless of the method used to estimate $\delta^2\text{H}$ - H_2O , but also that these differences are**
429 **small and statistically insignificant. Therefore in our revised manuscript we state that we**
430 **cannot confidently infer a difference in the relationship between these environments.**
431

432 With respect to the redefining of a new global δD - CH_4 - δD - H_2O and consideration of how this has
433 changed from the relationship offered in Waldron et al 1999: unless the authors can produce a
434 more robust estimation of δD - H_2O_p , the data that uses δD - CH_4 paired with predicted δD - H_2O
435 needs to be removed - for as noted earlier, there is insufficient confidence this is an accurate
436 representation of the field situation and may create a false outcome. I suspect this will change the
437 global relationship and increase the slope as paired data with δD - H_2O_p visually appears to
438 dominate the enriched samples.
439

440 **We believe the approach taken by our Major Revision 2 and 3 effectively addresses**
441 **this critique. We now take an approach similar to that of Waldron et al., (1999a),**
442 **namely combining measured and modeled $\delta^2\text{H}$ - H_2O values to produce a best-**
443 **estimate value for each site.**
444

445 **As noted above, we do not observe a significant difference in the $\delta^2\text{H}$ - CH_4 vs. $\delta^2\text{H}$ -**
446 **H_2O relationship whether modeled or measured $\delta^2\text{H}$ - H_2O , or a combination of the two is**
447 **used (See Figure 3 and Supplemental Table 2). Furthermore, when only analyzing sites with**
448 **measured $\delta^2\text{H}$ - H_2O we still observe a slope flatter than that of Waldron et al.,**
449 **(1999a) (Figure 3B).**
450

451 Please plot both the in-vitro and in-vivo relationship, and for the former its prediction intervals -
452 which are missing from 3b and so give the sense of a poorer fit of Waldron et al 1999 to the bgd
453 expanded field data set here.
454

455 **We have included a more robust comparison with the data from Waldron et al**
456 **(1999) in the revised Figure 3 including confidence intervals. We argue that**
457 **confidence intervals are the more appropriate metric, since this gives the**
458 **uncertainty of the regression relationship, as opposed to the predicted range of**
459 **observations. We are more interested in comparing the underlying regression**
460 **relationships, as opposed to the predicted range of observations.**
461

462 **Figure 3 is relatively complex did not include the in-vitro relationship in this figure.**
463 **However, we have included a comparison with the in-vitro relationship in the**
464 **revised Figure 5, and make a strong point of its similarity with the inferred**
465 **environmental regression relationships for both wetlands and inland waters,**
466 **especially in terms of the slope.**

467
468 Compare whether the in-vivo line is statistically different to the relationship generated from the
469 data set presented in the bgd manuscript. This will allow confidence in any further discussion on
470 how the relationship has been redefined (than just comparing slopes etc). If the two relationships
471 are indistinguishable statistically, nuanced statements about differences in slope etc are
472 meaningless – all that has happened is that the expanded data set has redefined better the field
473 relationship for $\delta\text{D-CH}_4$ - $\delta\text{D-H}_2\text{O}$ (as indicated likely in Waldron et al, 1999) - noting that this
474 field relationship does not wholly reflect the relationship at production (see next point).

475
476 **We used analysis of covariance (ANCOVA) to statistically compare differences in**
477 **regression relationships. As discussed in Major Revision 3, multiple group**
478 **comparison with ANCOVA does not indicate a significant difference in slope**
479 **between our dataset and that of Waldron et al. (1999a). However, regardless of the**
480 **method of estimating $\delta^2\text{H-H}_2\text{O}$ used, the analysis of the larger dataset produces a**
481 **flatter slope. Therefore we infer that the ‘true’ global slope is likely to be flatter**
482 **than that inferred by Waldron et al., (1999a), but also that more data and further**
483 **analysis is needed to confirm this and reduce the uncertainty of the slope.**

484
485 Assess whether the expanded field data set is predominantly ^{13}C -enriched compared to the in-vivo
486 relationship described in Waldron et al 1999, and therefore consistent with an interpretation that
487 differences in field $\delta\text{D-CH}_4$ may be an artefact of fractionating processes post-production than
488 pathway per se This is advocated as I am still unaware of experimental evidence methanogenic
489 pathway in shallow freshwaters changes $\delta\text{D-CH}_4$, but there is evidence of processes, oxidation
490 and mixing, causing enrichment, and so this approach is consistent with scientific principle of
491 parsimony and interpreting data using the simplest approach.

492
493 **We have assessed this and in fact the opposite is the case. The data from sites**
494 **included in Waldron et al., (1999a) is somewhat higher in $\delta^{13}\text{C-CH}_4$ (-60.8±0.9‰**
495 **SEM) relative to the total dataset (-62.6±0.6‰) or to the sites that were not included**
496 **in Waldron et al., (1999) (-63.4±0.8‰). We do not think it is likely that there is**
497 **systematic difference in these sets of sites in terms of post-production processes,**
498 **which we take to mean oxidation, diffusive fractionation, and mixing of different**
499 **CH_4 reservoirs. We agree that such processes can lead to variation in $\delta^2\text{H-CH}_4$ (see**
500 **Major revision 4 above), but see no evidence that this explains the difference**
501 **between our dataset and that of Waldron et al., (1999a). Instead this difference is**
502 **most likely a function of the much larger dataset from the high latitudes in this**
503 **study, which we discuss in the revised manuscript.**

504
505 To explore why the paired $\delta\text{D-CH}_4$ - $\delta\text{D-H}_2\text{O}$ measurements are not fully described by the best fit
506 line, the authors explore whether a difference in (dominant) methanogenic pathway is evident in
507 the data. With no evidence from paired $\delta\text{D-CH}_4$ - $\delta^{13}\text{CH}_4$ the authors draw on α_c as a proxy for
508 methanogenic pathway to assess this. Step-wise regression is used to explore this. I think this is
509 interesting and something to revisit when the paired data relying on predicted $\delta\text{D-H}_2\text{O}$ has been

510 removed, but currently it is the next floor in the ‘house-of-cards’, reliant on data that we do not
511 know to be accurate, and therefore the significant relationships that the authors infer changes in
512 methanogenic pathway from, we do not know to be true.

513
514 We have re-assessed the step-wise regression relationship between α_c and $\delta^{2\text{H}}\text{-CH}_4, w_0$
515 using revised values for the latter as described above (Major Revision 4). Indeed to ensure
516 this relationship is robust we tested it using two different approaches: 1) $\delta^{2\text{H}}\text{-CH}_{4,w_0}$ using
517 the ‘best estimate’ for $\delta^{2\text{H}}\text{-H}_2\text{O}$, as described above; 2) $\delta^{2\text{H}}\text{-CH}_{4,w_0}$ using only sites with
518 measured $\delta^{2\text{H}}\text{-H}_2\text{O}$. Both of these approaches indicated a step-wise linear relationship.
519 However, the two relationships generated were not consistent in the breakpoint, and the
520 linear relationships were not all statistically significant. Given this result we agree that it is
521 prudent to focus less on methanogenic pathway as an explanation of residual variability in
522 $\delta^{2\text{H}}\text{-CH}_4$, and instead discuss the complex interrelationship of multiple variables and
523 processes that can influence $\delta^{2\text{H}}\text{-CH}_4$, namely i) methanogenic pathway; (ii) methane
524 oxidation; (iii) isotopic fractionation due to diffusion; and (iv) differential
525 thermodynamic favorability of methanogenesis, or differential enzymatic
526 reversibility.

527
528 We have also decided to omit the step-wise regression results, as they were
529 inconsistent and difficult to interpret with this revised analysis. We have instead
530 focused on simple linear regression, and have focused on an interpretation that the
531 residual variation in $\delta^{2\text{H}}\text{-CH}_4$ is complex and cannot be explained by a single
532 biogeochemical variable or process.

533
534 The authors in their revision should be careful in the value of thinking about α_c for the following
535 reasons: some of the literature generating α_c relies on assumption of differences in methanogenic
536 pathway interpreted from differences in $\delta^{2\text{D}}\text{-CH}_4$, but there is competing evidence $\delta^{2\text{D}}\text{-CH}_4$ cannot
537 be interpreted in this way (so α_c using α_c to infer methanogenic pathway in $\delta^{2\text{D}}\text{-CH}_4$ when $\delta^{2\text{D}}\text{-CH}_4$
538 has been used to infer methanogenic pathway becomes a circular, self-supporting and flawed
539 approach).

540
541 We do not agree with the reviewer’s contention of circular reasoning here. While both α_c
542 and $\delta^{2\text{H}}\text{-CH}_4$ have in the past been used to infer methanogenic pathway, the use of α_c is
543 primarily based on theoretical predictions of fractionation factors for these pathways, and
544 to our knowledge has not been ‘validated’ via analysis of $\delta^{2\text{H}}\text{-CH}_4$. There is evidence from
545 culturing studies (e.g. Valentine et al., 2004; Penning et al., 2006a), and from studies that
546 isolate specific pathways in the environment (e.g. Penning et al., 2006a,b; Galand et al.,
547 2010), that α_c varies in relation to differences in methanogenic pathway.

548
549 However, we do note that other variables related to methanogenesis have the potential to
550 influence α_c , including enzymatic reversibility and the thermodynamic favorability of
551 methanogenesis, as well as diffusive fractionation and methane oxidation. In addition,
552 sources and sinks of CO_2 in natural environments that are independent of methanogenesis
553 will also influence measured α_c . We discussed this possibility in the original manuscript
554 (Lines 510 to 518), and have given more emphasis to this in the revised manuscript (Section
555 3.4). See Planned Major Revision 4 above.

556
557 To help here I would advise the authors to consider Waldron et al 1998 (Geomicrobiology, 15,

558 157-169), which contributes to the in-vitro line in Waldron et al 1999, but the authors do not cite
559 so I am unsure if they are aware of the detail in this.

560 Here dominance of methanogenic pathway was changed in mixed culture (as would be found in
561 the field) incubations, and $\delta D\text{-CH}_4$ monitored with time – so not just one measurement as may be
562 misinterpreted from Waldron et al 1999. Except for one measurement broadly within analytical
563 uncertainty, $\delta D\text{-CH}_4$ remained constant. However, $\delta^{13}\text{CH}_4$ did change and consistently with
564 fractionation ranges for the methanogenic pathways thought to be dominant (as assessed from
565 independent measurements of substrate turnover). I advise the authors to consult Waldron 1998
566 for two reasons:

567 1. The authors approach in the bgd paper to draw on $\delta D\text{-CH}_4$ to represent differences in
568 methanogenic pathway would be stronger if they can provide an explanation for the constancy in
569 $\delta D\text{-CH}_4$ while $\delta^{13}\text{CH}_4$ changes.

570 **This is an important study and we appreciate the reviewer highlighting it. We cite and**
571 **discuss it in the revised manuscript. The finding of constant $\delta^2\text{H}\text{-CH}_4$ is intriguing. Recent**
572 **pure culture studies have clearly shown that acetoclastic methanogenesis differs in**
573 **hydrogen isotope fractionation from hydrogenotrophic methanogenesis under the same**
574 **conditions (i.e. Gruen et al., 2018), implying that acetate-methyl hydrogen does not fully**
575 **exchange with water during methanogenesis. See the revised Figure 5 which demonstrates**
576 **this. Therefore we infer that the effect observed in Waldron et al., (1998) likely results from**
577 **hydrogen isotope exchange with water during production of acetate from butyrate or other**
578 **substrates. The constancy of the $\delta^2\text{H}\text{-CH}_4$ would therefore imply that the isotopic**
579 **fractionation of H-exchange between water and the acetate methyl group effectively**
580 **compensates for the difference in hydrogen isotope fractionation between acetoclastic**
581 **methanogenesis and hydrogenotrophic methanogenesis. Clearly, this is an interesting result**
582 **that merits further study to resolve with the results of pure culture experiments. However,**
583 **we do not feel that this study on its own negates the potential for differential net hydrogen**
584 **isotope fractionation between acetoclastic methanogenesis and hydrogenotrophic**
585 **methanogenesis. But as we note in Section 3.3.1, this difference likely varies in different**
586 **environments as a function of differences in the $\delta^2\text{H}$ of acetate, as well as differences in net**
587 **kinetic isotope effects associated with both pathways of methanogenesis.**

589 **As discussed above in Major Revision 4, the revised manuscript focuses less on the role**
590 **methanogenic pathway in controlling $\delta^2\text{H}\text{-CH}_4$, and emphasize the complexities induced by**
591 **multiple mechanisms influencing hydrogen isotope fractionation during and after**
592 **methanogenesis.**

594 2. Waldron et al can also be used to calculate a_c (both from CO_2 and from estimated substrate
595 composition). a_c $\text{CO}_2\text{-CH}_4$ generates values of 1.057 for the period when CO_2 reduction is
596 considered dominant (i) and 1.055 when acetoclastic methanogenesis is considered dominant (ii).
597 These are very similar and it would be valuable to understand how the authors interpret this when
598 they infer much wider ranges in a_c . For clarity $\delta^{13}\text{CO}_2$ and $\delta^{13}\text{CH}_4$ respectively for (i) were -8.3 ‰
599 and -62 ‰, and for (ii) were 1.55 ‰ and -47.5 ‰

601 **This is also an interesting result. We think there could be some complicating factors that**
602 **influence $\delta^{13}\text{C}\text{-CO}_2$ in this study in particular. We note that the headspace concentration of**
603 **CO_2 decreased through the experiment, which would not be the expected stoichiometric**
604 **result of a net shift from hydrogenotrophic to acetoclastic methanogenesis. This suggests**
605 **that there were additional sinks of CO_2 in the experiment that became more prevalent as**
606 **the experiment proceeded, and this may have led to the observed enrichment in $\delta^{13}\text{C}\text{-CO}_2$.**

608 In particular we are curious about the possible role of increased homoacetogenesis,
609 although this is difficult to evaluate based on the results of the study.
610

611 Overall, we do not think this finding necessarily negates the use of α_C as an indicator of
612 differences in methanogenic pathway, which is supported by other studies (e.g. Penning et
613 al., 2006a,b; Galand et al., 2010). But it does point to the potential for other variables to
614 complicate the relationship between α_C and the relative proportion of different pathways.
615 In the revised manuscript we will highlight these complications to some extent, including
616 citing this paper. See major revision 4.
617

618 Abstract: Is clear and summarises the paper but projects a future methane emissions scenario
619 (L25-26) before the modelling and assessment of how well this approach can reconstruct current
620 estimates (L27-30) and this seems in the wrong order to me, given the former has a reliance on
621 the latter. Further, the abstract does not acknowledge this research is augmenting the research that
622 historically first documented the global relationship between $\delta D-CH_4$ and $\delta D-H_2O$ easily
623 addressed for example by changing L12 to ‘We have refined the existing global relationship
624 between $\delta D-CH_4$ - $\delta D-H_2O$ by the compilation of a more extensive global dataset....’
625

626 We agree with these suggestions, and we have revised the abstract accordingly. We note
627 that based on the suggestions of the other reviewers there will be other changes to the
628 abstract, including a modification of the description of the upscaling component of the
629 manuscript. In particular we have omitted a discussion of future emissions scenarios, as this
630 was highly speculative.
631

632 L28: The authors postulate the mismatch is dependent only on the work of others (emission
633 inventories, etc) and not possibly an error in their approach. Scientifically this is not correct –
634 both ‘sides’ could have errors.
635

636 We have changed this language, and have focused on possible errors in our analysis, and
637 errors in isotopic signals generally.
638

639 L19: results do not imply; one interprets data to generate a ‘result’.
640

641 This line was deleted.
642

643 L22: high (more ^{13}C -enriched) in rivers and bogs - this is the dataset that has more $\delta D-H_2O$
644 projected, so is this an artefact of the modelling than a real biome-specific difference?
645

646 We are not sure what the reviewer means by ‘this is the dataset that has more $\delta D-H_2O$
647 projected.’ 81% of bog sites have δ^2H-H_2O measurements, while 37% of river sites have
648 this measurement. For the dataset as a whole the percentage is 48%.
649

650 As discussed above (Major Revision 3) we carefully assess the use of modeled precipitation
651 δ^2H-H_2O , and find it does not have a major impact on the regression relationship between
652 δ^2H-H_2O and δ^2H-CH_4 . Therefore we do not believe this result is an artifact. But the result
653 is not significant, and therefore remains preliminary. Regardless, we have revised our
654 analysis of differences by ecosystem using the ‘best-estimate’ δ^2H-H_2O and resulting
655 $\delta^2H-CH_{4,w0}$. We also provide an additional analysis using only sites with measured
656 δ^2H-H_2O , shown in Supplemental Figure 1.
657

658 L27: integrated (by mass balance) not combined (which is used when sources are added) – which
659 I know the authors have done (L204) but the descriptor is incorrect here.
660

661 **This line was deleted.**
662

663 L36: I think the following references is missing: Variability in Atmospheric Methane From Fossil
664 Fuel and Microbial Sources Over the Last Three Decades. / Thompson et al: Geophysical
665 Research Letters, Vol. 45, No. 20, 28.10.2018, p. 11499-11508 (and I invite the authors to
666 wonder if also some of the work from the Royal Holloway group should augment L47-51)
667

668 **We thank the reviewer for this suggestion, and we have added the suggested reference and
669 citations to other work from the Royal Holloway group in the introduction.**
670

671 L59 & L83 Citations are given in chronological order of 1999b and 1999a which seems not
672 typical convention to me (uncertain of the referencing convention for BG but for example the two
673 references for Walter K are not in chronological order in the reference list so the in-paper
674 citations would not be b then a due to this convention in the reference list?)
675

676 **We were relying on EndNote for citation management, and there were errors with the
677 citation format in the software. We have corrected this.**
678

679 L68: Logic only follows that impact on $\delta^{13}\text{CH}_4$ can affect geographic provenancing if reader
680 knows it can also affect $\delta\text{D-CH}_4$, so does this need to be made explicit?
681

682 **We do not understand the reviewer's comment here. The hypothesized geographic variation
683 in $\delta^{13}\text{C-CH}_4$ is independent of variation in $\delta^2\text{H-CH}_4$, as they are controlled by different
684 mechanisms. We will make this clearer in the revised text.**
685

686 L70: this implies that different ecosystems have different methanogenic pathways. More accurate
687 text would be “differentiated geographically based on ecosystem differences in the relative
688 strengths of different methanogenic pathways and $\delta^{13}\text{C}$ of source organic matter” (as per the
689 introduction of the Ganesam paper). Noting relative strengths is important, as a common mistake
690 propagated in the literature and again here (L???) is to assume methanogenesis proceeds by one
691 methanogenic pathway only – this would be rare, with field-based methane production
692 contemporaneous from CO_2 and acetate, and varying temporally in strength as input of fresh OM
693 changes seasonally (or not).
694

695 **The reviewer raises an important point here, and we have made it clear that the difference
696 is in the relative strength of the pathways operating in difference ecosystems, and not
697 different pathways per se.**
698

699 L84-85: sounds a bit defensive? How about “We have advanced existing compilations of
700 freshwater $\delta\text{D-CH}_4$ by 1,2,3 ...? I would remove significantly (statistical connotations) and just
701 say larger as the number speak for themselves.
702

703 **We agree with this suggestion and have made the suggested change.**
704

705 L91: The aims are clear (good) but ‘then’ and ‘potential’ not needed – the latter as embedded in
706 implications that there is a potential for impact
707

708 **We have made this change**

709
710 L106 & L117, 9L206 and possibly elsewhere): small w for where, as this follows from an
711 unfinished sentence in both cases with the equation used in between
712

713 **We have made this change**
714

715 L136: the five ecosystem categories are not clear from this sentence: 'lakes' and 'rivers' and then
716 there are five wetlands listed. Further, it is debatable that floodplains are aligned with rivers as
717 CH₄ production would only occur when sediments are deoxygenated from standing water. So I
718 would say more with ponds as the recession of water can be slow and could be like a pond drying
719 in some situations. Noteworthy here is that gas loss from rivers is velocity dependent (see Long et
720 al (2015) Hydraulics are a first order control on CO₂ efflux from fluvial systems Journal of
721 Geophysical Research – Biogeosciences, 120, (doi:10.1002/2015JG002955), and similar
722 references. This will also be the case with methane – possibly more so as insoluble, and may
723 cause an isotope fractionation independent of degassing, and may also be a reason the Amazon
724 rivers in Fig. 5 plot differently.
725

726 **We note that there was an error in this text and it is actually six categories. We have added**
727 **a numbered list to make this clearer. We note that essentially all of the river data come**
728 **from floodplain lakes or deltas, with one exception, and most of the data are from the**
729 **Amazon. We think it is valid to continue to differentiate these environments from other**
730 **lakes and ponds, since they are different from typical lakes and ponds in a number of ways**
731 **(overturning and redox regimes, nutrient inputs, dynamics of gas loss and hydraulics). The**
732 **reference on gas loss being velocity dependent is interesting, but we doubt this process has a**
733 **large effect on our dataset since, as mentioned above, very few data are from fluvial systems,**
734 **and of those data almost all are from low-velocity environments like floodplain lakes or**
735 **deltas.**
736

737 L139: Similarly, I question the scientific integrity in lumping lakes with rivers here – gas loss
738 from river systems is controlled by hydrological processes primarily and there could be
739 fractionations during emission from lotic systems that are different to lentic systems where
740 diffusion and wind of lake thermal orographic processes control turnover. This starts to become
741 important where these mean sources are used to simulate a resultant atmospheric composition e.g.
742 L227. Thus, the authors should think about how to provide added confidence of the robustness of
743 their categorisation.
744

745 **See above. We are primarily analyzing floodplain lakes and deltas in the river category. We**
746 **make this clearer in the revised manuscript (line 143)**
747

748 **However, the basis of this categorization is essentially to align with flux inventories (Saunois**
749 **et al., 2020), which specifically define an 'inland water' category that includes rivers and**
750 **lakes, as well as reservoirs. We keep to this categorization in order to be able to compare**
751 **with the flux estimates. We do discuss possible differences between the river and lake sites**
752 **in Section 3.6 of the revised manuscript.**
753

754 L145-148: Such categorisation is good, and the open access data set is very welcome. This
755 categorisation relies on the integrity of the interpretation, but this integrity is important as the data
756 analysis relies on this. With 131 sites it is impossible for the reviewer to know each site and so as
757 a check I can only look at my own data: L61 in the excel files. These methane samples were
758 collected in-situ from porewater diffusing into samplers embedded in the peat (the GBC abstract
759 notes in-situ and the methods clarifies at depth sampling) so I would classify as more aligned with

760 dissolved porewater than diffusive flux (which is normally associated with the potential for
761 oxidation and change in $\delta_{\text{v}_\text{a}_\text{l}_\text{u}_\text{e}_\text{s}_\text{}}$). Further I comment in the GBC paper there is a
762 dynamic zone and interpret that is the section from which gas can be emitted. Mean $\delta\text{D-CH}_4$ here
763 is $-332 \pm 17\text{\textperthousand}$, more depleted than the $-294 \pm 39\text{\textperthousand}$ used in the table and subsequent data analysis.
764 Thus, some feedback from the authors in the revised manuscript that their interpretations are not
765 sensitive to the variation in their interpretation of environment and which data to use would be
766 valuable.

767
768 **The reviewer raises a valid point about the complexities of each site. This complements the**
769 **comments of reviewer 3 about the validity of including data from deep peat samples. As**
770 **discussed in our response to reviewer 3 we think this is a valid concern and we have decided**
771 **to limit our data from peatlands to the uppermost 50 cm. See Major Revision 1. This**
772 **coincides approximately with the dynamic zone mentioned by reviewer 1.**

773
774 **We note that peatlands (bogs and fens) were the only environments to be sampled on depth**
775 **gradients, and that similar issues are unlikely to affect the interpretation of data from other**
776 **ecosystem categories. We will change the entry in the Table for Waldron et al. 1999b to**
777 **Dissolved-Pore Water. Since we group diffusive flux and dissolved pore water, this**
778 **distinction does not make a difference to our analysis.**

779
780 L152 – typically small – as this manuscript relies on several source of data estimation (here,
781 $\delta_2\text{H}_2\text{O}$, it would be good to provide estimates as to what the maximum is this would manifest in
782 δD (recognising that it changes with resolution and scale of figure and so this is challenging, but
783 saying small is insufficient).

784
785 **We have provided a quantitative estimate of the likely error produced by this analysis, as a**
786 **percent error, and then translate that to $\delta^2\text{H}$ values (lines 166-168)**

787
788 L177: the authors need to unpick for the reader the statement more as they have with L179
789 onwards. I am thus left to interpret the reasoning. I assume it is based on considerations that
790 methanogenic pathway influences $\delta\text{D-CH}_4$? If so please see earlier substantive comments on this
791 and decide whether to proceed in the revised manuscript.

792
793 **Based on the reviewers comments here and below we have omitted this section from the**
794 **methods, and instead discuss likely effects of different biogeochemical variables on $\delta^2\text{H-CH}_4$**
795 **in Section 3.4, with more detail provided in the Supplemental Text. In general**
796 **we place less emphasis on methanogenic pathway in the revised manuscript. See**
797 **Major Revision 4 above.**

798
799 L200: Clarify where the flux estimate comes from at this point – I presume from Saunois et al as
800 in L209, but this should be clarified when first introduced. I am not expert enough to judge if the
801 methodology for the bottom up flux section is sound, but it seems reasonable to me.

802
803 **We have clarified the source of the flux estimates earlier in this section. It is indeed Saunois**
804 **et al., 2020.**

805
806 L 267: given the statistical approaches such as Monte Carlo bootstrapping used with the flux
807 estimate section previously I would have expected more rigorous comparison should be
808 undertaken here to show if there is a statistical offset between measured and predicted $\delta\text{D-H}_2\text{O}$
809 than relying on descriptors of “generally good agreement” and using RMSE. The RMSE is a red

810 herring if the lines generating 19 and 23 ‰ do not overlap - ?
811

812 **As discussed above, we now provide a more detailed analysis of the comparison of measured**
813 **and modeled $\delta^2\text{H-H}_2\text{O}$. See Major Revision 1.**

814
815 Fig 2: Should the predicted (postulated and therefore dependent) not be regressed onto the
816 measured (the true field value, so measured and independent and as a control of $\delta\text{D-CH}_4$ the one
817 to get as close to the true value as possible)?

818
819 **This depends on the goal of the regression. In this case we are attempting to develop a**
820 **regression relationship that predicts measured $\delta^2\text{H-H}_2\text{O}$ as a function of modeled**
821 **precipitation $\delta^2\text{H-H}_2\text{O}$, in order to use this as a predictive tool for sites without $\delta^2\text{H-H}_2\text{O}$**
822 **measurements, and to assess the goodness of fit. Therefore it makes sense to have**
823 **measured $\delta^2\text{H-H}_2\text{O}$ on the y-axis in this case, and we have kept this orientation for the**
824 **revised Figure 2.**

825
826 Fig 3B: this needs revisited once the $\delta\text{D-CH}_4$ - $\delta\text{D-H}_2\text{O}$ predicted data has been removed as
827 described above. There may still be an inland water specific difference here, but again that this
828 may not be controlled by anything more complex than lentic and lotic freshwater systems having
829 generalised differences in gas transport mechanism (ebullition or diffusion). These would be
830 influenced by atmospheric and sediment interface boundary layer dynamics, transit time, depth of
831 oxidative zone, lake stratification, and surface roughness, with the latter in turn influenced by
832 wind speed, depth of water, and river flow velocity, slope. In other words, considerable methane
833 isotope fractionation (enrichment) is possible, or not.

834
835 **Based on our revised analysis, we find that we cannot detect a significant difference in the**
836 **regression relationship between inland waters and wetlands (See Major Revision 3 above).**
837 **The difference inferred in the original manuscript is likely partly a result of the**
838 **hydrological differences in these environments, and resulting differences in the regression**
839 **of modeled vs measured $\delta^2\text{H-H}_2\text{O}$ (see Major Revision 2). Therefore we revised this section**
840 **of the manuscript to reflect this revised understanding (now section 3.3).**

841
842 Fig 4. It is good to see this plotted but not surprising given $\delta\text{D-H}_2\text{O}$ varies with latitude and $\delta\text{D-CH}_4$
843 varies with $\delta\text{D-H}_2\text{O}$. The same difficulties in estimating field $\delta\text{D-H}_2\text{O}$ from modelled $\delta\text{D-H}_2\text{O}$ are evident
844 when considering $\delta\text{D-CH}_4$ as a function of predicted $\delta\text{D-H}_2\text{O}$. The authors need
845 to note here that there may be an imbalance of where methane is sampled from globally and so if
846 more measurements existed from the higher latitudes then there may be as much scatter as with
847 the lower latitudes.

848
849 **We are glad the reviewer agrees with us on the utility of plotting the data in this way. We**
850 **did note the uneven geographic distribution of data at several points in the manuscript, but**
851 **further emphasize the likelihood of similar scatter at all latitudes with more sampling in the**
852 **revised manuscript. We are assuming the reviewer meant to say there is greater scatter at**
853 **high latitudes, which is what we observe.**

854
855 Section 3.4 jumps to something completely different with L313 “shifts to being controlled by
856 changes in methanogenic pathway to being controlled by”. There has not been clear
857 discussion from the authors to date they are considering changes in methanogenic pathway of $\delta\text{D-CH}_4$
858 so this seems out of context. And yet L317 goes on to consider this in more detail. The key
859 message in the Waldron et al 1999 paper is that considering methanogenic pathway a control on

860 $\delta\text{D-CH}_4$ is misplaced and that “that 50% of the variation in natural $\delta\text{D-CH}_4$ samples can be
861 explained by $\delta\text{D-H}_2\text{O}$, with isotopic fractionation post-production, or mixing with gas already
862 fractionated likely responsible for most of the noise in the natural system”. The analysis prior to
863 section 3.4 may be more likely to support this interpretation than refute it, particularly when the
864 data in Fig. 3.2. is appropriately compared (as described earlier), and so now considering data as a
865 function of methanogenic pathway seems to be ignoring this. Indeed the authors observe they find
866 no relationship between $\delta^{13}\text{C-CH}_4$ and $\delta\text{D-CH}_4$ which would be expected if $\delta\text{D-CH}_4$ was
867 influenced by methanogenic pathway as $\delta^{13}\text{C-CH}_4$ is (Fig. 5a). Thus, the authors should not make
868 clearer statements such as L312 of “shifts from being controlled by variation in methanogenesis
869 pathway” are inferred controls.

870 **This is clearly a key point of concern for the reviewer, and we understand the reservations**
871 **about inferring that variability is a function of methanogenic pathway. However, we think it**
872 **is unlikely that all of the remaining variability not explained by $\delta^2\text{H-H}_2\text{O}$ is controlled by**
873 **“isotopic fractionation post-production, or mixing with gas already fractionated”.** First, it is
874 **important to be clear about what these post-production processes are. To our knowledge**
875 **there are two key post-production processes that can affect methane isotopic composition:**
876 **methane oxidation (either aerobic or anaerobic) or isotopic fractionation caused by**
877 **diffusive gas transport. We are unaware of other important processes. Both of these**
878 **processes would be likely to lead to higher $\delta^2\text{H-CH}_4$, and lead to positive co-variation with**
879 **$\delta^{13}\text{C-CH}_4$. Oxidation will also lead to negative co-variation with α_c , because CH_4 is**
880 **invariably oxidized to CO_2 , leading to a smaller isotopic difference between these gases.**

881 **Diffusion will also lead to negative co-variation with α_c (See Revised Figure 6). Mixing**
882 **effects will depend on the mixing end-members. Unless there is a large proportion of non-**
883 **microbial methane present, which we argue is unlikely in most circumstances, mixing will**
884 **not alter the overall isotopic signature of microbial methane in the ecosystem. It is possible**
885 **to have mixing with ‘gas already fractionated’, but in this case the underlying fractionation**
886 **is the key process controlling the isotopic composition of the resulting gas, and again to our**
887 **knowledge this would have to be the result of oxidation or diffusion.**

888 **It is unclear on what basis Waldron et al (1999) ascribed the remaining ~50% of variability**
889 **in $\delta^2\text{H-CH}_4$ to these post-production processes, and we would argue that this assertion is**
890 **untested.**

891 **We do agree that our focus on methanogenic pathway did not include other plausible**
892 **mechanisms for co-variation between $\delta^2\text{H-CH}_4$ and α_c . We have expanded our discussion**
893 **to take other processes, namely (i) diffusion and (ii) differences in enzymatic reversibility,**
894 **into account in Section 3.4. Ultimately our revised conclusion is that these processes or**
895 **variables cannot be clearly differentiated on a global scale on the basis of isotopic data.**

896 Figs. 5b=c. The uncertainty around what α_c should be for different methanogenic pathways has
897 been described earlier in this review. But additionally, although breakpoint analysis was used,
898 there is a high dependence in this on data set that has enriched $\delta\text{D-CH}_4$ to generate opposing
899 trends. The eye is drawn by the projected pathways, but if these were not included as we cannot be
900 sure it is oxidation¹ and all the remaining data was considered in a weighted regression would
901 there be trends?

902 ¹If the high $\delta\text{D-CH}_4$ is from the Amazonian rivers, there are shales in this basin that fuel C
903 cycling (Vihermaa et al) and this could be thermogenic: $\delta\text{D-CH}_4$ is also consistent with this.

908 Vihermaa L.E., Waldron S. , Garnett M.H., and Newton J. (2014) Old carbon contributes to
909 aquatic emissions of carbon dioxide in the Amazon. Biogeosciences, 11, 3635-3645. (doi:
910 10.5194/bgd-11-1773-2014).

911
912 **We acknowledge concerns about the ‘predicted trends’, both by reviewer 1 and 2, and**
913 **therefore we will remove them from the revised manuscript. We will instead focus on the**
914 **patterns of co-variation, and potential explanations for them. We do present approximate**
915 **vectors of isotopic co-variation for four different biogeochemical variables (mentioned in**
916 **Major Revision 4), but emphasize these are approximate and imprecise. We think they are**
917 **valuable to indicate the direction and likely magnitude of co-variation. As discussed above**
918 **(Major Revision 4) we will focus less on methanogenic pathway, and increase our focus on**
919 **other mechanisms.**

920
921 **We agree that the one outlying point with very high $\delta^2\text{H-CH}_4$ (and $\delta^{13}\text{C-CH}_4$) is**
922 **questionable, and may be thermogenic methane. It is indeed from the Amazon. We**
923 **therefore removes this from our dataset (Major Revision 1)**

924
925 **As noted above, weighted regression is leading to biases in this analysis, and is not generally**
926 **preferable to unweighted regression (Fletcher and Dixon, 2012), and therefore we used**
927 **unweighted regression in the revised manuscript.**

928
929 It is remarkable Fig 7 is so consistent – this is very interesting. Is it what we would expect?
930

931 **We assume the reviewer is referring to Figure 7B. This is not necessarily what we would**
932 **expect based on other studies. We already provided some discussion of this in section 4.4 of**
933 **the original manuscript, but have revised this in response to questions from reviewer 2,**
934 **especially focusing on possible biases in the $\delta^{13}\text{C-CH}_4$ dataset. See Major Revision 5, and**
935 **the revised Section 3.5.**

936
937 L370 discussion is over-interpretations given the differences between sites are not statistically
938 significant. It would be ok to say the prevalence of more depleted CH_4 is greater in the
939 ecosystems sampled but for example this could represent accessibility of field sites, or differential
940 investment into research measurements in these areas, than group compositional differences per
941 se. Ecosystem types are not evenly distributed by latitude (L370) – nor is resource for investment
942 in field research with tropical regions of the Earth lacking measurement due to access or financial
943 constraints – we need to start recognising what we have not measured is as important as what we
944 measure.

945
946 **We agree that this analysis is preliminary given the small sample sizes for each ecosystem.**
947 **We emphasized this in the original manuscript, and noted that the possible differences**
948 **represented hypotheses that merited further testing. We further emphasize this uncertainty**
949 **in the revised manuscript. We emphasize that more investigation of tropical ecosystems is**
950 **especially important, namely in Section 3.8.**

951
952 Fig. 10 is tiny and needs to be bigger
953

954 **We have revised Figure 10 to simplify it based on comments from reviewers 2 and 3 on the**
955 **upscaling exercise. We have reduced it to a single panel (equivalent to Figure 10C), which**
956 **makes it more legible.**

957

958 L426 “roughly as strong a predictor”. Too big a leap: explain how – from ice core gases “roughly
959 is a colloquialism”
960

961 **We do not fully understand this comment, but we agree that this language is imprecise, and**
962 **we have changed this (Section 3.3).**

963

964 L487 – as noted earlier, the paired measured values plot on Waldron et al 1999 In-vitro line,
965 consolidating further the significant of this line. Please acknowledge this.
966

967 **We are assuming the reviewer meant the in-vivo line here. As discussed above, we have**
968 **provided a more thorough comparison of the Waldron in-vivo line with the results of this**
969 **study, and have represented this in the revised Figure 3 and Section 3.3. Our analysis**
970 **(Figure 3B) shows that the paired measured values do not plot on the Waldron et al (1999)**
971 **in vivo line, and have a flatter slope. This difference is not significant based on ANCOVA,**
972 **but we infer that the larger dataset consistently implies a flatter global slope.**
973

974 L508 – in the revised manuscript please detail the % variation explained by δD -H₂O and then
975 additionally by a_c should this prove to still be important
976

977 **We have decided to omit the multivariate regression given the complications described in**
978 **Major Revision 4 above.**

979

980 L510 – this is the crux of what is new to explore in isotope biogeochemistry of methane and also
981 the role of methanol substrates.
982

983 **We agree with the reviewer that CH₄ isotopic variability related to enzymatic reversibility is**
984 **an important topic, and based on other comments we have expanded discussion of this in**
985 **the revised manuscript, especially in Section 3.4. At this point there is little we can say about**
986 **methanol substrates, but we mention it briefly as another variable that merits consideration**
987 **in Section 3.4.**

988

989 L519 – same comments as before about is there really a relationship, but why more points
990 classified as oxidised with this pairing than with a_c ?
991

992 **This is an interesting question, and we don't know the answer. We would speculate that it is**
993 **because sources of CO₂ can be very variable, and this may be adding noise to the original**
994 **Figure 5C that is not present in figure 5B. As discussed above we have substantially revised**
995 **this aspect of the paper (Major Revision 4) and no longer attempt to differentiate samples**
996 **influenced by oxidation.**

997

998 L551- Much of 4.31. is repeating statements first described in Waldron et al 1999 section 1.1.,
999 paragraph starting “In addition...” but this is not referenced and as written implies the authors are
1000 the primary source of this thinking. This is not the case and should be referenced appropriately to
1001 indicate this was first noted 20+ years ago.
1002

1003 **We regret that we did not acknowledge the earlier statement of these ideas. We have**
1004 **thoroughly revised this discussion to provide credit to Waldron et al., (1999) for the ideas**
1005 **that are presented there, which now appears in Section 3.3.1**
1006

1007 L564 – please note pure cultures are not representative of the field processes of methane
1008 production and thus the batch cultures and other experimental data collated in Waldron et al 1998,
1009 1999 are. This is not clear from the statement.

1010
1011 **We agree that pure cultures are not representative of methanogenesis in the environment.**
1012 **We are not sure that batch cultures or incubations are truly representative either, in that**
1013 **they do not necessarily fully represent the processes occurring in natural environments, but**
1014 **agree they are clearly a closer approximation than pure cultures. We did try to make this**
1015 **distinction clear in the original manuscript, and have further clarified in the revised**
1016 **manuscript (Section 3.3.1). However, we do feel that inferences from pure cultures are**
1017 **important for understanding the more complex processes that occur in batch cultures or**
1018 **natural environments. For example, a very flat slope for $\delta^2\text{H}-\text{H}_2\text{O}$ vs. $\delta^2\text{H}-\text{CH}_4$ is**
1019 **observed in pure culture experiments with acetoclastic methanogenesis (i.e. Gruen et al.,**
1020 **2018; Valentine et al., 2004). This implies that acetate methyl hydrogen is not fully**
1021 **equilibrated with water during the methanogenesis reaction itself. This is reflected in the**
1022 **revised Figure 5, and Section 3.3.1.**

1023
1024 L569, please reverse the order of the references or remove Whiticar 1999. The Waldron 1999
1025 paper is the one that is particularly focussed on the global relationship between $\delta\text{D}-\text{CH}_4$ - $\delta\text{D}-\text{H}_2\text{O}$,
1026 and constructs the first global relationship, which this paper finds with new data is similar. This
1027 gives appropriate credit to the conceptual understanding. The Whiticar paper coplots $\delta\text{D}-\text{CH}_4$ - $\delta\text{D}-\text{H}_2\text{O}$ but does not assert that “ $\delta_2\text{H}-\text{H}_2\text{O}$ is a primary determinant of $\delta_2\text{H}-\text{CH}_4$ on a global scale”,
1028 rather the focus is on the interpretation of how $\delta_2\text{H}-\text{CH}_4$ reflects methanogenic pathway or marine
1029 vs. freshwater.

1030
1031
1032 **There seems to be an error in the page numbering, and we are not sure which citation the**
1033 **reviewer is referring to. However, we have made clear in the revised manuscript that**
1034 **Waldron et al., (1999) first proposed and found evidence for the global relationship between**
1035 **$\delta\text{D}-\text{CH}_4$ - $\delta\text{D}-\text{H}_2\text{O}$.**

1036
1037 To conclude: this has been an uncomfortable review for me to undertake as my position of not
1038 anonymising the review puts me up for public scrutiny, and a misinterpreted that I am trying to
1039 defend my work and am unwilling to accept an addition to this. This does not represent my
1040 professional scientific principles, I would urge the authors to accept this is not the case - indeed in
1041 the 1999 GCA paper I welcome refinement of my work. However, the authors have still not
1042 presented here compelling evidence that $\delta\text{D}-\text{CH}_4$ can represent well different methanogenic
1043 pathways and so the reliance of this in the manuscript I find troubling. I consider the ac approach
1044 may be valuable in helping constrain the signal in $\delta\text{D}-\text{CH}_4$ that is not defined by $\delta\text{D}-\text{H}_2\text{O}$, but the
1045 current manuscript is not constraining uncertainty sufficiently and the approach is therefore
1046 flawed. I would urge the authors to find a way to better constrain projected $\delta\text{D}-\text{H}_2\text{O}$ and revisit
1047 this, or work with only measured data and revisit this. Their refined analysis should undertake
1048 rigorous statistical comparison with the existing field $\delta\text{D}-\text{CH}_4$ - $\delta\text{D}-\text{H}_2\text{O}$ relationship from
1049 Waldron et al 1999 to say whether it is different (although the new larger dataset will likely be a
1050 more representative relationship that the community can go forward with), and adopt a
1051 parsimonious interpretation of variation within the data set, as that is least likely to induce an
1052 erroneous interpretation. The biome specific considerations and upscaling should also be revisited
1053 if the removal of biased and inaccurate data pairings changes the source bulk compositions, and
1054 further thought should be given to the basis for source differentiation based on scenarios of
1055 methane production and loss in this upscaling.

1056

1057 Once again, we regret that this has been an uncomfortable review process. We appreciate
1058 the frank and detailed signed review, and the collaborative nature of the comments. We
1059 agree with many of the suggested improvements to the manuscript, and have made these
1060 changes in a thoroughly revised manuscript. See the Major Revisions above for a summary
1061 of these changes.

1062
1063 We believe that these changes will address the reviewer's concerns and will greatly
1064 strengthen the conclusions of the manuscript.

1065
1066
1067
1068
1069
1070
1071
1072 **Specific Responses to Reviewer 2:** Reviewer comments are in plain text. **Responses are in**
1073 **bold text.**

1074 The paper investigates the relation between the hydrogen isotopic composition of
1075 methane emitted from freshwaters on the global scale and the isotopic composition of
1076 water and/or modeled precipitation, as well the carbon isotopic composition of methane
1077 and carbon dioxide. The authors analyze data from a large number of previous studies
1078 and apply statistical methods in order to evaluate correlations between the various
1079 signatures. The statistics are applied in a straightforward manner.

1080
1081 **We thank the reviewer for their assessment.**

1082 I am missing a more detailed/critical scientific analysis of differences between the results
1083 of this study and previous studies. This has two aspects: 1) The study uses more sites than
1084 previous studies for dD, and it uses modeled fields of dD in precipitation. Which of these
1085 differences is primarily responsible for the differences to the previous literature (or is it
1086 both)?

1087
1088
1089 **This is a good question and similar questions were raised by reviewers 1 and 3.**
1090 **In response to these questions we present a much more detailed comparison of the**
1091 **previous literature (Waldron et al., 1999a) in comparison with our study. See Major**
1092 **Revisions 2 and 3 for more details on this. The short answer is that regardless of**
1093 **which water isotope values are used, our dataset produces a flatter slope between**
1094 **$\delta^2\text{H-H}_2\text{O}$ and $\delta^2\text{H-CH}_4$ than that of Waldron et al., (1999). However, analysis of**
1095 **covariance (ANCOVA) indicates this difference in slope is not significant. We**
1096 **attribute this apparent difference to the inclusion of many more sites from high-**
1097 **latitude environments in this study. Our analysis is that the relatively small number**
1098 **of high-latitude sites analyzed by Waldron et al., (1999a) were biased toward**
1099 **relatively low $\delta^2\text{H-CH}_4$ values.**

1100
1101
1102 2) The study uses less sites than previous studies for d13C. Are the results
1103 from these sites still adequate to be used in a global extrapolation?

1104

1105 These are important points for clarification. However, we disagree that this study
1106 uses less sites than previous studies for $\delta^{13}\text{C-CH}_4$. See our comments on Major
1107 Revision 5. We noted that the dataset was not comprehensive for $\delta^{13}\text{C-CH}_4$ (i.e. it
1108 does not include all published data), whereas it is comprehensive for $\delta^2\text{H-CH}_4$.
1109 However, our $\delta^{13}\text{C-CH}_4$ dataset for freshwater environments is substantially larger
1110 than the largest previously published dataset that we are aware of (Sherwood et al.,
1111 2017). We include $\delta^{13}\text{C-CH}_4$ data for 129 freshwater sites, whereas the database of
1112 Sherwood et al. (2017) included 48. Of these, 16 are included in both databases. In
1113 order to make our $\delta^{13}\text{C-CH}_4$ analysis more accurate we now include all sites from
1114 Sherwood et al., (2017) in our analysis of $\delta^{13}\text{C-CH}_4$ variability. This expands the
1115 number of sites included to 161. There is a clear need for a larger effort to compile
1116 freshwater CH_4 $\delta^{13}\text{C-CH}_4$ data into a comprehensive database, but such an effort is
1117 beyond the scope of this paper. We highlight the importance of this for future
1118 research in our revised manuscript in Sections 3.5, 3.6, 3.7, and 3.8.
1119

1120 The derived global average ^{13}C source signature derived by the authors is almost
1121 certainly too light, given what we know about the fractionation in the sinks. Furthermore,
1122 I think that the errors assumed for the bottom-up determination of the global average the
1123 source signatures are too optimistic, and the discussion on the implications for the
1124 atmospheric isotope budget in section 4.6 and too simplistic. See detailed comments
1125 below.

1126
1127 We agree that it is too light, which was a key point of our analysis in the original
1128 manuscript (Line numbers 617-638). Based on the comments of reviewer 2, as well
1129 as reviewer 3, it is clear that the upscaling exercise in the original version of the
1130 paper is too speculative. However, we also feel that a more detailed upscaling
1131 exercise is beyond the scope of this paper, which as mentioned by Reviewer 1 is long
1132 and ambitious in scope. We think it is still worthwhile to perform the mixing model
1133 calculations for global methane source isotope signatures, and to compare these with
1134 previous estimates. See Major Revision 6 for more details on this. Our revised
1135 analysis (Section 3.8) focuses on the likely sources of error or bias in isotopic source
1136 signatures, and make recommendations to improve isotopic source signal estimates.
1137 We disagree in general that our uncertainties for the isotopic source signatures are
1138 too optimistic. We will provide more details on this below.
1139

1140 L37: I suggest citing Worden et al., 2017, where this point is shown particularly well.
1141

1142 We thank the reviewer for bringing this to our attention, and we have cited this
1143 paper and modified the text accordingly (line 41).
1144

1145 L64: Maybe you want to include here, or later in the discussion section, that there
1146 are also other lines of evidence that the hydrogen isotopic composition of CH_4 (and
1147 other trace gases) depends on the isotopic composition of the precipitation, e.g., CH_4
1148 from biomass burning across climatic zones (Umezawa et al.2011), CH_4 produced by
1149 UV irradiation of leaves that were grown with isotopically distinct waters (Vigano et
1150 al., 2010) or molecular H_2 produced in the combustion of wood from different climatic

1151 zones (Röckmann et al., 2010).

1152
1153 **We appreciate this suggestion. We reference these studies in the introduction and**
1154 **two of them in the results (Section 3.3.1)**

1155
1156 L109: Replace the factor 1000 by 1, the delta value is defined the correct way in line
1157 105, and no factor 1000 is necessary.

1158
1159 **Thanks for this reminder, we have made the suggested change.**

1160
1161 L136: What are the 5 categories? This is not clear, to me it sounds like 4 categories.

1162
1163 **The list of categories is clarified in the manuscript with a numbered list. In fact it is**
1164 **six categories: 1) lakes and ponds; 2) rivers and floodplains; 3) bogs; 4) fens; 5)**
1165 **swamps and marshes; and 6) rice paddies.**

1166
1167 L159: Is the annual average dD value of precipitation really the best estimator for a
1168 source that very likely has a strong seasonality?

1169
1170 **This is an important question, and given this comment as well as those of reviewer 1**
1171 **clearly needs more attention. See our detailed comments on Major Revision 2 that**
1172 **discuss this at length. In short, we take seasonality into account in our revised**
1173 **manuscript, and we find that it is important for inland water environments in**
1174 **particular.**

1175
1176 L253, Figure 1: Many of the sites are hidden behind others so I cannot see the colors.
1177 Would this improve if the figure is enlarged? It may be useful to show by color or shape
1178 for which of the sites you have measured dD-H₂O and for which not.

1179
1180 **This is challenging because many of the sites are very close to one another, and it is**
1181 **difficult to resolve the individual sites, while also showing the global distribution.**
1182 **We included the colors to give a sense of how the values vary globally, but for a**
1183 **more in-depth picture of geographic variability Figure 4 is probably more useful.**

1184
1185 **To respond to the reviewer's comment we provided a higher resolution map of**
1186 **North America, which encompasses the majority of sites. We also show the sites**
1187 **with water $\delta^2\text{H}$ measurements with a different shape, (i.e. a triangle).**

1188
1189 L244, Table 1: The d13C signatures for wetland have an opposite “latitudinal order”
1190 compared to what is usually assumed, i.e. they are higher at high latitudes and lower
1191 at low latitudes. The data in Table 1 for wetlands do not agree with the data presented
1192 in Figure 7. Please explain the difference. You mention that the dataset evaluated
1193 here is different from what other studies have used for d13C, so is your dataset now
1194 representative? Should this limited set of values be used in the upscaling later? The
1195 errors presented for the different source categories are too optimistic, especially for the
1196 fossil sources at the bottom of the table, but probably also for the wetland category.

1197
1198 The reviewer raises some key aspects of the table that are not clear.
1199

1200 The opposite order of the $\delta^{13}\text{C-CH}_4$ data in the wetlands is simply what the data
1201 indicate. The uncertainties overlap, and our analysis therefore implies that we
1202 cannot confidently infer a latitudinal difference in $\delta^{13}\text{C-CH}_4$ in wetlands based on
1203 currently compiled data. This is also shown in Figure 7. We note here and elsewhere
1204 in our response that there is an important absence of data from C₄ plant ecosystems
1205 in this dataset and other databases. Including more data from such ecosystems
1206 would probably lead tropical sites to have a higher $\delta^{13}\text{C-CH}_4$ value. We discuss this
1207 in more detail in the methods, and the results/discussion. As discussed in Major
1208 Revision 5, we include additional $\delta^{13}\text{C-CH}_4$ data from Sherwood et al., (2017).
1209 However, this does not change the observation of no significant latitudinal
1210 differences in wetland $\delta^{13}\text{C-CH}_4$ values.
1211

1212 The differences between Table 1 and Figure 7 are a result of the Table presenting
1213 mean values, whereas the original Figure 7 presented median values. We presented
1214 mean values in Table 1 because it is simpler to express uncertainty for the mean,
1215 and because when thinking about atmospheric contributions we think the mean is
1216 the best estimate of the isotopic source signal. In boxplots like Figure 7 it is more
1217 common to depict the median value. However, to avoid confusion and for the sake of
1218 comparison we now also plot the mean and its standard error in Figure 7 (and also
1219 do so in Figures 8 and 9).
1220

1221 It is not clear to us what the reviewer means when they say the errors are too
1222 optimistic for the fossil fuel categories. The error estimates are 95% confidence
1223 intervals for the mean values for these categories based on the fossil fuel database of
1224 Sherwood et al., (2017). We consider the 95% confidence interval of the mean to be
1225 a well-established metric for characterizing the uncertainty in the mean value of
1226 these sources. We have categorized the fossil fuel sources slightly differently than
1227 Sherwood et al., (2017), to align with the emissions categories of Saunois et al.,
1228 (2020), but our uncertainty estimates are essentially the same as, and actually
1229 somewhat larger than, those of the original study (see Table 5 in Sherwood et al.,
1230 2017). Note Sherwood et al., (2017) presents standard errors of the mean. 95% CI is
1231 derived by multiplying this value by 1.96. In addition, our uncertainties for the
1232 $\delta^{13}\text{C-CH}_4$ source signal for fossil fuels is very similar to those used by Worden et al.,
1233 (2017). Without further details, it is unclear why the reviewer considers these error
1234 estimates to be too small or optimistic.
1235

1236 We used the same approach in our estimates of uncertainty in the wetland source
1237 signatures, and other source categories, and therefore also disagree that these
1238 estimates are too optimistic.
1239

1240 L276, Fig 2 and related text: This is a key figure for the following analysis. In principle
1241 it is an interesting approach to use modeled dD values in case measurements are not
1242 available, but it is also a source of error. Although there is a generally good agreement,

1243 the slope is lower than 1 and this may contribute to the differences and thus may affect
1244 some of the further analysis.

1245
1246 **We agree this is a key figure and requires more in-depth analysis, which we provide**
1247 **in the revised manuscript. See our Major Revision 2. We agree with the reviewer**
1248 **that the slope being lower than 1 is concerning. In our revised analysis we find that**
1249 **applying annual precipitation $\delta^2\text{H}$ to wetland environments, and growing season**
1250 **precipitation $\delta^2\text{H}$ to inland water environments, results in slopes that are within**
1251 **error of 1.**

1252
1253 L284: Maybe you could state briefly whether you can reproduce the slope of Waldron
1254 et al. when you use the same dataset. Just as a baseline.

1255
1256 **This is a valuable suggestion. Please see our response in Major Revision 3. We have**
1257 **included a much more careful comparison of our dataset with that of Waldron et al**
1258 **(1999). It is important to note that the analysis of Waldron et al. (1999a) also**
1259 **included key assumptions that influence the regression relationship produced with**
1260 **that dataset. Specifically, that study included sites with measured water $\delta^2\text{H}$ (57%)**
1261 **and sites with estimated water $\delta^2\text{H}$ based on regional precipitation measurements**
1262 **(43%). To perform a robust comparison we re-analyze the Waldron et al dataset,**
1263 **which is discussed in our Planned Major Revision 3. Because the exact details of the**
1264 **weighted regression method used by Waldron et al., 1999 are not provided, we did**
1265 **not precisely reproduce their regression relationship [see Supplemental Table 2].**
1266 **But when using unweighted regression we produced a relationship that is**
1267 **statistically indistinguishable. We note that a previous paper that re-analyzed the**
1268 **data of Waldron et al using unweighted regression (Chanton et al., 2006) found the**
1269 **same regression relationship that we did.**

1270
1271 L292: Figure 3a: It looks like the lower slope is caused by a lot of points where you
1272 have only modeled but no measured dD data near the low dD-H₂O end. And these
1273 are mostly inland waters (Figure 3b). Can you evaluate this in more detail? Can this
1274 be caused by a bias in the modeled dD_p? Probably not, but it is useful to investigate
1275 further to strengthen your argument.

1276
1277 The reviewer correctly noted that the reported regression line for inland waters was
1278 not a good visual fit to the data, and this influenced the overall regression line. This
1279 was also noted by reviewer 1. We note that in the original Figure 4a the two
1280 regression lines were very similar, so this effect was not a result of bias in modeled
1281 $\delta^2\text{H}_p$, since a very similar regression was produced when only analyzing sites with
1282 measured water $\delta^2\text{H-H}_2\text{O}$.

1283
1284 After analyzing this more closely we realized that this is a result of the weighted
1285 regression methods we were using. Specifically, a few high-latitude sites with 1)
1286 many measurements (and therefore a low standard error) and 2) high $\delta^2\text{H-CH}_4$
1287 values, were heavily weighted and had a large effect on the regression relationship.
1288 We therefore decided that a more accurate regression relationship would be

1289 produced using unweighted regression. This is supported by studies on the efficacy
1290 of unweighted regression in analyzing environmental data, which in many cases is
1291 less biased than weighted regression (Fletcher and Dixon, 2012). See more details in
1292 Major Revision 3.

1293
1294 The unweighted regression provides a somewhat steeper slope for the overall
1295 dataset, as well as for inland waters. It also indicates there is not a significant
1296 difference in the regression whether measured $\delta^2\text{H}-\text{H}_2\text{O}$ or modeled $\delta^2\text{H}-\text{H}_2\text{O}$, or a
1297 combination of the two (i.e. a ‘best-estimate’) is used. See Major Revision 3, Section
1298 3.3 and Supplemental Table 2.

1299
1300 L308: Would you find a correlation if you took the slope of Waldron et al. for calculating
1301 CH₄,W₀?

1302
1303 We have significantly revised this analysis, as discussed in Major Revision 4 above.
1304 As described above, we have decided to omit the piece-wise regression analysis.

1305
1306 The slope of Waldron et al., (1999) is not a good fit to the overall dataset (Figure
1307 3.3), and therefore we do not think it makes sense to apply this to calculate $\delta^2\text{H}-$
1308 CH_{4,w0}.

1309
1310
1311 L323, Figure 5: Does it make sense that in b) only few points are classified as oxidation
1312 influenced and in c) many more points? Does it make sense that in c) the very lowest
1313 dD value is in the group of the oxidation influenced points? I find the “pathway trend”
1314 concept a bit confusing, this indicates a smooth transition of dD-CH₄,W₀ with alpha_C
1315 or d¹³C_CO₂. Is this a real trend, or rather a consequence of two different groups
1316 of data (acetoclastic and hydrogenotrophic sites)? Wouldn’t it be useful in this case
1317 to show these two groups with two different colors, separated by the potential break
1318 points, rather than the trend areas?

1319
1320 The reviewer raises important questions about the predicted trends that we
1321 presented in Figure 5. Reviewer 1 also raised important questions about this, and
1322 given these comments we have decided that we should not present predicted trends.
1323 We do present approximate vectors of isotopic co-variation for different
1324 biogeochemical variables (Revised Figure 6), but emphasize that these are guidelines
1325 of the sign and magnitude of isotope effects and should not be interpreted as precise
1326 predictions.

1327
1328 Our revised analysis focuses on the overall co-variance (or lack thereof) between
1329 $\delta^2\text{H}-\text{CH}_{4,w0}$, $\delta^{13}\text{C}-\text{CH}_4$, α_C , and $\delta^{13}\text{C}-\text{CO}_2$, and multiple mechanisms that could
1330 influence this co-variation in freshwater ecosystems. Our ultimate conclusion is that
1331 patterns of co-variation cannot definitively resolve which mechanisms for $\delta^2\text{H}-\text{CH}_4$
1332 are most important when comparing between sites. See Section 3.4.

1333
1334 L350 and Figure 7b, wetlands: These numbers do not agree with the data in Table 1.

1335
1336 **As noted above, these are median values, whereas Table 1 presents mean values. To**
1337 **clarify this we will also plot mean values in Figure 7.**

1338
1339 L374-379: I get a bit confused by the diverging statements on significance with different
1340 tests, please try to reformulate, or add a sentence to synthesize.

1341
1342 **We have simplified this section to clarify that we are focusing on the pair-wise**
1343 **comparison between wetlands and inland waters first and then the multiple group**
1344 **comparison between all ecosystem categories. See Section 3.6.**

1345
1346 L395-397: See points above: Are the uncertainties for the different categories adequate?
1347 Is there an issue with the difference between values in the text and table 1? Is
1348 the rather heavy d13C value for high latitude wetlands appropriate?

1349
1350 **See our response to comments on Table 1. It is unclear what difference between the**
1351 **table and text is being referred to- we assume this is the difference between median**
1352 **values (Figure 7) and mean values (Table 1). The heavy value for high latitude**
1353 **wetlands is the mean value of this dataset, and therefore we argue it is appropriate.**
1354 **In our revised manuscript we include additional data from Sherwood et al., (2017),**
1355 **as discussed above, which includes 5 additional high latitude wetland sites. This**
1356 **makes the mean $\delta^{13}\text{C-CH}_4$ value 0.5‰ lower, but does not change the median value.**
1357 **We include this value in the revised Monte Carlo analysis, but in essence this**
1358 **additional data does not change our conclusion. Based on our analysis, an**
1359 **assumption of low $\delta^{13}\text{C-CH}_4$ in high latitude wetlands is not supported by the**
1360 **available data, and we think this assumption requires further empirical validation.**
1361 **But we also note important caveats for this interpretation based on atmospheric**
1362 **measurements (see Section 3.5)**

1363
1364 L431 ff: The differences to the previously published values from Waldron et al. should
1365 be discussed in some more detail. E.g., is there an influence from the modeled dD_p
1366 values, or a certain sampling region? L439 ff: Same for the discussion of the environment
1367 type

1368
1369 **See our responses above and Major Revisions 2 and 3. Our conclusion is that the**
1370 **difference is largely controlled by the small number of high-latitude sites in the**
1371 **Waldron et al (1999) dataset, and that those sites were skewed towards relatively**
1372 **low $\delta^2\text{H-CH}_4$ values. We do not observe a significant difference in the regression**
1373 **relationship when modeled or measured $\delta^2\text{H-H}_2\text{O}$ values are used (see Figure 3 and**
1374 **Supplemental Table 2).**

1375
1376 L465, section 4.2.1: See comments above on the representativeness of the dataset
1377 analyzed here and possible consequences. You write that the dataset is not
1378 comprehensive
1379 or d13C, so should it be considered as representative? In this case, what have
1380 other studies potentially missed?

1381
1382 **See Major Revision 5 above. As mentioned above, it is the largest compiled dataset**
1383 **available, but it is not comprehensive because there is a large amount of $\delta^{13}\text{C-CH}_4$**
1384 **data that has not yet been compiled into a database. It is also probably not**
1385 **representative, with a notable lack of data from C₄ plant ecosystems. Given that it is**
1386 **the largest dataset available, we proceed with analyzing it. However, in the revised**
1387 **manuscript we give more attention to the likely sources of error, and key data gaps**
1388 **that should be addressed.**

1389
1390 L483 ff: You may want to refer here to the studies I mentioned in the beginning that
1391 looked at other (non-microbial) sources.

1392
1393 **Thanks for this suggestion, we mention the two studies focused on methane in this**
1394 **discussion (now in Section 3.5.1).**

1395
1396 L519 ff: The authors state that they do not observe a correlation between dD and d13C
1397 of CH₄. Nevertheless, the vast majority of the points in Fig 5a seem to fall in the range
1398 of the “pathway trend” (I find the term misleading, see comments above). Does this not
1399 mean that the two groups (acetate fermentation and CO₂ reduction) still form distinct
1400 distributions?

1401
1402 **As mentioned above, there are concerns with the ‘pathway trend’ noted by**
1403 **Reviewer 2, as well as Reviewer 1 and we have decided to omit this from the revised**
1404 **manuscript. Our primary concern is whether $\delta^{13}\text{C-CH}_4$ is a strong predictor of $\delta^2\text{H-CH}_4$,**
1405 **and our analysis indicates that it is not. We now note that there is a (very)**
1406 **weak negative correlation when looking at all data. This is consistent with an effect**
1407 **of methanogenesis pathway, but given the weakness of the correlation we do not**
1408 **emphasize this.**

1409
1410 L549: the remark on the intercepts does not add much and is rather trivial when the
1411 slope is different.

1412
1413 **This discussion is now be heavily modified, as discussed in Major Revision 5. We**
1414 **will not focus on the role of methanogenic pathway as much in the revised**
1415 **manuscript. We use analysis of covariance (ANCOVA) for any comparison of**
1416 **regression relationships in the revised manuscript. We do discuss differences in**
1417 **intercept when the slope is similar and the intercept is significantly different.**

1418
1419 L555 - 561: I am also not aware of dD measurements in natural acetate, but the method
1420 from Greule et al. (2008) has been used in Vigano et al. (2010) to measure dD in
1421 methoxyl groups which were compared to produced CH₄ and modeled dD in water.

1422
1423 **We appreciate these suggested references. We include the Vigano reference in our**
1424 **revised discussion (Section 3.3.1).**

1425
1426 L574 – 578: Why do you explain the variability for bogs by the pathway difference, and

1427 the high values in rivers by oxidation. Can oxidation not also cause large differences
1428 for bogs?

1429

1430 **This inference was based on the differences in both $\delta^{13}\text{C-CH}_4$ and $\delta^2\text{H-CH}_4$. Since**
1431 **bogs have higher $\delta^2\text{H-CH}_4$ on average, but lower $\delta^{13}\text{C-CH}_4$, we inferred this was**
1432 **related to a pathway difference. We were also influenced by previous studies (i.e.**
1433 **Ganesan et al., 2018) that had suggested bogs have a higher proportion of**
1434 **hydrogenotrophic methanogenesis. In contrast, rivers are higher in both $\delta^2\text{H-CH}_4$**
1435 **and $\delta^{13}\text{C-CH}_4$, which we inferred to be a signal of oxidation. We make this analysis**
1436 **clearer in the revised manuscript, but also add additional caveats.**

1437

1438 L599: Why should the oxidation signal only be apparent for dD and not for d13C (L603-
1439 604)?

1440

1441 **Overall dissolved CH₄ from inland waters is also shifted to higher $\delta^{13}\text{C-CH}_4$ values,**
1442 **although this is not a significant difference. We note in the revised manuscript that**
1443 **greater oxidation would be expected to lead to higher $\delta^{13}\text{C-CH}_4$ values, and the**
1444 **absence of a strong signal in $\delta^{13}\text{C-CH}_4$ may be inconsistent with our hypothesis.**

1445

1446 L606: I do not understand how you can conclude that “::: that the relative balance
1447 of diffusive vs. ebullition gas fluxes should not have a large effect on the isotopic
1448 composition of freshwater CH₄ emissions.”. The chance for oxidative effects is much
1449 larger for a slow process like diffusion compared to the fast process of ebullition.

1450

1451 **This statement is simply a reflection of the available data, as shown in Figure 9a and**
1452 **b, which do not show a clear difference between these two sample types in their**
1453 **isotopic composition. We note that several caveats moderate this conclusion, and**
1454 **that the question deserves more study (Section 3.7). We added that the likely greater**
1455 **effect of oxidation on diffusive fluxes as an additional area that requires further**
1456 **empirical validation.**

1457

1458 L611: The analysis in this section has much less scientific rigor than the previous sections
1459 and presents some sensitivity calculations involving highly improbable assumptions,
1460 see following points.

1461

1462 **We acknowledge that the sensitivity calculations and scenarios were somewhat**
1463 **simplistic and loosely defined. As discussed above, our solution to this is to scale**
1464 **back this section to focus on the results of a global source mixing model calculation,**
1465 **to compare that with previous estimates of global source signals, and to discuss key**
1466 **data gaps that are likely leading to biases in this estimate (See major revision 6).**
1467 **Therefore the revised manuscript does not include the sensitivity calculations,**
1468 **which will be left for future work.**

1469

1470 L619 ff: See comments above on the depleted d13C source signature. Here you argue
1471 that three factors may explain this difference. I am quite convinced that the first one
1472 (errors in the sink fractionation factors) cannot explain the large difference. The two

published studies for the fractionation in the CH₄ + OH reaction (Cantrell et al, 1990, Saueressig et al, 2001) are 5.4 and 3.9 per mill, respectively. A contribution from Cl may increase this a bit, but not enough to support a global average source signature of -56.4 per mill. So I think that the reason should come from the other two processes mentioned. Given the discrepancy to previous studies I wonder whether it is not mainly the choice of signatures in this study. In line 625 you already show that changing one parameter leads to a change of the global average source signature of 1.3 per mill, which is almost the entire uncertainty range reported.

We acknowledge the point the reviewer is making. As discussed above, we have revised this section (now Section 3.8) to limit our interpretation to comparison with previous estimates and possible biases in isotopic source signals, and not focus on sink fractionations, which are not a focus of this study. We will also mention possible errors in flux inventories, but not highlight them as much as in the original manuscript.

L628: Rather arbitrarily changing big sources by a factor of 2 is a huge adjustment of the atmospheric CH₄ budget. This investigation on the effect on the atmospheric isotopic composition is too simplistic.

We understand this critique, and as discussed above we avoid performing this analysis in the revised paper. This analysis was based on the work of Schwietzke et al., (2016), who make a similar, but more precise adjustment. We now mention the possibility of higher fossil fuel emissions than in inventories, as discussed by Schwietzke et al., (2016), but leave a detailed analysis resolving this with $\delta^2\text{H-CH}_4$ measurements to future studies.

L634 ff: Same comment for the bb source, this should be discussed in a more detailed way. Worden et al. (2017) illustrate the strong influence of the bb source.

As discussed above, we feel it is best to omit the discussion of specific different emissions scenarios from the discussion. We now briefly discuss the results of the Worden et al., (2017) study, and mention biomass burning emissions as an influential variable for isotopic source signatures that merits further study.

L660f: The statement “This flatter slope may be the result of the inclusion of a greater proportion of inland water sites in our dataset.” requires more underlying analysis. I think that the “may be” can be replaced by “is likely”, but this should be investigated. See also other points above.

Based on the comments of all three reviewers we have thoroughly revised our comparison of our results with that of Waldron et al (1999a). Therefore this part of the conclusions was changed to reflect this revised comparison, and likely causes of the different slope. Our revised analysis implies that differences between inland waters and wetlands is probably not primarily responsible for this difference (See

1518 **Figure 3 and Supplemental Table 2), and that a greater amount of data from high-**
1519 **latitude environments is more important.**

1520
1521 L662: If possible make more concrete after reevaluation of the impact of modeled data.

1522
1523 **We also revised this statement after a more thorough analysis of the differences in**
1524 **the regression relationship for modeled and measured $\delta^2\text{H}-\text{H}_2\text{O}$. Our revised**
1525 **analysis shows that using modeled $\delta^2\text{H}-\text{H}_2\text{O}$ provides a good estimate of the**
1526 **relationship between $\delta^2\text{H}-\text{H}_2\text{O}$ and $\delta^2\text{H}-\text{CH}_4$, and supports the use of isotope-**
1527 **enabled Earth Systems Models to predict $\delta^2\text{H}-\text{CH}_4$.**

1528
1529 L686: Here the second argument of the three presented before (see comment on L619)
1530 has disappeared, but as argued above it may be the most important one and particularly
1531 the sink argument does likely not explain (at least exclusively) the difference.

1532
1533 **As discussed above, we have substantially revised and scale back the upscaling**
1534 **estimates. Therefore this conclusion has been omitted.**

1535
1536 **Specific Responses to Reviewer 3:** Reviewer comments are in plain text. **Responses are**
1537 **in bold text.**

1538
1539 During the past two decades, there has been limited progress in advancing understanding
1540 of controls on $d_2\text{H}(\text{CH}_4)$ values in freshwater environments and improving estimates of
1541 $d_2\text{H}$ values of CH_4 emissions. This study: (i) updates and attempts to refine the
1542 relationship between $d_2\text{H}(\text{H}_2\text{O})$ and $d_2\text{H}(\text{CH}_4)$ first reported by Waldron et al. (1999b),
1543 (ii) evaluates the extent to which factors other than $d_2\text{H}(\text{H}_2\text{O})$ may influence $d_2\text{H}(\text{CH}_4)$
1544 values in freshwater environments, (iii) uses the refined relationships to estimate new
1545 $d_2\text{H}$ values for CH_4 emissions from freshwatersources, and (iv) weights CH_4 fluxes
1546 reported by Saunois et al. (2020) with a mixture of old and new $d_2\text{H}$ and $d_{13}\text{C}$ values to
1547 estimate global $d_2\text{H}$ and $d_{13}\text{C}$ values for atmospheric CH_4 . In my opinion, the study offers
1548 new insights that are worthy of publication pending revision.

1549
1550 **We thank Dr. Hornibrook for his detailed review, and we are heartened to hear his**
1551 **opinion that the study is worthy of publication pending revision.**

1552
1553 Site level mean values - The study has produced a thorough compilation of stable isotope
1554 data related to CH_4 from freshwater environments. The availability of $d_2\text{H}(\text{CH}_4)$ values
1555 presumably was the key criterion for inclusion in the data base. The supplemental file
1556 contains a summary of the data, showing the number of samples from each site and site-
1557 level mean isotopic values as described in section 2.3.1. While I appreciate the
1558 motivation to avoid introducing bias towards sites that have larger datasets, this approach
1559 does limit the extent to which the study can comment meaningfully on differences
1560 between environments. $d_2\text{H}(\text{CH}_4)$, $d_{13}\text{C}(\text{CH}_4)$ and $d_{13}\text{C}(\text{CO}_2)$ values all exhibit
1561 significant ranges and trends with depth in the subsurface of wetlands. That information
1562 is lost when profiles of d -values are averaged. In peatlands where CH_4 production
1563 pathways change with depth or CH_4 oxidation occurs, d -values determined from an

1564 average of shallow and deep layers has little meaning in the context of production
1565 pathways or evidence for CH₄ alteration. The pooled **d**-values also do not take into
1566 account differences in the amount of CH₄ or CO₂ at different depths. Moreover, **d**-values
1567 from deep peat typically will have little bearing on the stable isotope composition of CH₄
1568 emitted from a wetland. Venting of accumulated gas bubbles from deep peat can occur
1569 (e.g., Glaser et al, 2004) but there is little evidence that such events are common. The
1570 bulk of CH₄ production occurs at shallow depths (from water table level to ~50 cm depth)
1571 where the supply of labile substrates from plant roots is greatest and temperature is
1572 highest during summer. The residence time of CH₄ at those depths is shortest (e.g.,
1573 Lombardi et al., 1997; Bowes and Hornbrook, 2006) and most of the CH₄ produced
1574 seasonally is either consumed or evaded to the atmosphere. If subsurface data must be
1575 averaged to avoid bias, then I suggest using a consistent depth range (e.g., 0 to 50 cm) to
1576 (i) generate mean **d**-values that are more likely to represent **d**-values of CH₄ emissions,
1577 and (ii) enable analysis of **ac** and **a_H** values that are more likely to be related to one
1578 methanogenic pathway or exhibit the influence of methane oxidation rather than a blend
1579 of pathways and processes across a range of depths. An important advance in this study
1580 was the attempt to discern the relative impact of factors other than **d₂H(H₂O)** on
1581 **d₂H(CH₄)** values. Use of site level means for **d**-values raises concern about the validity of
1582 the **ac** and **a_H** values calculated to assess breakpoints in CH₄ production pathways and
1583 oxidation.

1584
1585 **The reviewer raises an important point about $\delta^2\text{H}$ -CH₄ variability with depth in**
1586 **peatlands, and potential biases that are introduced by averaging values across depth**
1587 **profiles. The primary goal of our study is to investigate spatial variability between**
1588 **sites, and therefore we think it is important to provide a single value for each site. In**
1589 **addition, one of the key goals is to characterize the $\delta^2\text{H}$ values of CH₄ emitted to the**
1590 **atmosphere. Therefore, we agree with the reviewer's suggestion to use a consistent**
1591 **depth range (0-50 cm) when averaging data from peatlands with depth-resolved**
1592 **sampling. See Major Revision 1 above. This change affects 8 sites, from 5**
1593 **publications (Hornbrook et al., 1997; Waldron et al., 1999; Chasar et al., 2000;**
1594 **Chanton et al., 2006; Alstad and Whiticar, 2011). Other studies included in our**
1595 **dataset sampled peatlands at shallow depths. To our knowledge all studies in other**
1596 **wetland environments also sampled shallow (< 50 cm) soils.**

1597
1598 'Bottom-up' mixing model - I appreciate that considerable effort was invested in
1599 attempting to upscale **d₂H(CH₄)** and **d₁₃C(CH₄)** values; however, it is questionable
1600 whether that portion of the manuscript has potential to advance discourse on global
1601 isotope-weighted CH₄ budgets. A more valuable outcome of this work would have been
1602 the one identified by that authors in lines 441- 443: "A logical next step in predicting
1603 global freshwater $\delta^2\text{H}$ -CH₄ source signatures would be to combine high-resolution
1604 mapping of wetlands and inland waters, maps of the global distribution of $\delta^2\text{H}_p$, and
1605 regression relationships between $\delta^2\text{H}$ -CH₄ vs. $\delta^2\text{H}_p$." In my view, production of a
1606 global gridded map of **d₂H(CH₄)** values for freshwater environments would have a more
1607 suitable application of the outcomes from the data analysis. It would provide a useful
1608 counterpart to the **d₁₃C(CH₄)** global map for wetlands published by Ganesan et al. (2018).
1609 I realize at this stage in the process that would take the second half of the manuscript in a

1610 very different direction. As things stand, the weighted atmospheric $d_2H(CH_4)$ and
1611 $d_{13}C(CH_4)$ values that were calculated are difficult to reconcile with atmospheric data and
1612 KIEs associated with sinks for atmospheric CH₄. It's possible that the values may be
1613 offering new insights but it seems more likely that there are issues with attribution of d_2H
1614 and $d_{13}C$ values to CH₄ sources.

1615

1616 **We understand the reviewer's concerns about the upscaling results. Reviewer 2**
1617 **made similar comments. We note that we specifically did not directly compare these**
1618 **results with atmospheric data, given the uncertainties related to sink KIEs, but**
1619 **instead compared them with previously published estimates of global source isotopic**
1620 **values that are based on atmospheric data and models of sink fractionations (Rice et**
1621 **al., 2016, Figure 10C in the original manuscript). We have made this clearer in the**
1622 **revised manuscript, and have expanded the comparison to other top-down and**
1623 **bottom-up estimates. We highlight the associated uncertainties to a greater degree.**

1624

1625 **We have decided to substantially revise this part of the manuscript. See Major**
1626 **Revision 6. We think it is still worthwhile to present estimates of global methane**
1627 **source δ^2H and $\delta^{13}C$ that include the results of our data analysis, and to compare**
1628 **this with previous bottom-up and top-down estimates of global isotopic source**
1629 **signatures. We then focus on an assessment of the largest areas of uncertainty in the**
1630 **isotopic source signatures, and not dwell on uncertainties in sink fractionations,**
1631 **since these are not the focus of this paper. We mention possible errors in flux**
1632 **inventories, but devote less focus to this than possible biases in isotopic signatures.**
1633 **In particular we direct more focus on the problem of a lack of data from C₄ plant**
1634 **dominated ecosystems in synthetic datasets, which may compromise data-based**
1635 **estimates of freshwater $\delta^{13}C$ -CH₄ signatures.**

1636

1637 **Creating a gridded map of freshwater δ^2H -CH₄ values entails a substantial amount**
1638 **of additional work and additional expertise, and this is beyond the scope of the**
1639 **revisions for this paper, which as reviewer 1 noted is already quite extensive and**
1640 **ambitious. However, this is the goal of collaborative research that is currently**
1641 **ongoing. This research in development will also look more closely at comparisons**
1642 **with atmospheric data.**

1643

1644 Citations within the text do not appear to be listed consistently either alphabetically or
1645 chronologically.

1646

1647 **We thank the reviewer for noting this. It was a problem with the EndNote citation**
1648 **style, and we fix this in the revised version.**

1649

1650 Line 38: 'clearly' = 'unequivocally' ?

1651

1652 **We agree this makes this sentence clearer and made the change.**

1653

1654 Lines 51-52: 'recent technological developments'. An additional sentence or two about
1655 laser based methods would be helpful for a broader readership.

1656
1657 **That is a good idea and we have added a sentence new laser based methodologies**
1658 **(line 59).**
1659
1660 Lines 53-57: Rigby et al. (2012) also demonstrated the utility of a multi-isotope approach
1661 for global methane cycle characterization.
1662
1663 **We thank the reviewer for bringing this paper to our attention. We have revised this**
1664 **paragraph to include the conclusions of that study (line 66).**
1665
1666 Lines 87-88 (and elsewhere): 'data is' should be 'data are'
1667
1668 **We have adjusted this here and throughout the manuscript.**
1669
1670 Line 105: A citation for Coplen (2011) could be added for the definition of delta that
1671 (correctly)
1672 does not include a 'x 1000' factor.
1673
1674 **We have added the suggested citation**
1675
1676 L129: The citation for John Lansdown's thesis should be:
1677 Lansdown J. M. (1992) The carbon and hydrogen stable isotope composition of methane released
1678 from natural wetlands and ruminants. Ph.D. dissertation, Univ. of Washington.
1679 (The citation can be confirmed at: <https://dggs.alaska.gov/pubs/id/28259>)
1680
1681 **We thank the reviewer for this correction, and have edited the references and**
1682 **citations.**
1683
1684 L156 – Is the annual estimate of $\delta_2\text{H}_\text{p}$ weighted by the relative amounts of precipitation
1685 during different seasons?
1686
1687 **Yes, the annual estimates from the model are amount-weighted values (See Bowen**
1688 **and Wilkinson 2002 for specifics on the methodology). We have clarified this in the**
1689 **methods (Line 175).**
1690
1691 L200: d_2H (superscript missing)
1692
1693 **We have fixed this error**
1694
1695 L258-L259 "55 sites are classified as wetlands, including 16 bogs, 14 swamps and
1696 marshes, 12 fens, and 8 rice paddies."
1697 >> Are the classifications for bogs and fens based upon pore water chemistry and
1698 vegetation surveys? The word 'bog' sometimes is used in site names that are other
1699 wetland types, in particular, fens.
1700
1701 **This is a good point. We have done our best to be careful about the wetland**
1702 **classifications, but we have primarily relied on the classification of the original**

1703 study. Of the 16 bog sites, 14 came from studies that specifically differentiate
1704 between bogs and fens (Chanton et al., 2006; Lansdown, 1992 (thesis), Alstad and
1705 Whiticar, 2011, Waldron et al., 1999; Chasar et al., 2000), or provide detailed
1706 information on vegetation and/or soil pH (Lansdown et al., 1992; Hornbrook et al.,
1707 1996). One other paper (Whiticar et al., 1986) provides data from Volo Bog, Illinois,
1708 which based on other studies is an ombrotrophic, sphagnum-dominated bog. The
1709 only remaining bog site is a West Virginia Bog, from Wahlen, (1994), which did not
1710 provide enough information to verify this classification. Given that this original
1711 classification is all we have to go on we continue to use it for this sample.

1712
1713 Table 1: Origins of some data are unclear. When indicated as ‘no specific measurement
1714 in database’, what does it mean to say ‘we used the isotopic values and uncertainties for
1715 X’? Which literature source? Also, only C3 $\delta^{13}\text{C}$ values appear to be used for biomass
1716 burning. Grassland and savanna wildfires presumably generate CH₄ that has more
1717 positive $\delta^{13}\text{C}$ values from burning of C4 grasses.

1718
1719 Thank you for raising these ambiguities in Table 1. Reviewer 2 has brought up
1720 similar concerns and we will make this table and the underlying data clearer in the
1721 revised manuscript. The database being referred to is the Global Gas Geochemistry
1722 Isotope Database (Sherwood et al., 2017), as referenced in section 2.4. We have
1723 made this clearer in the notes for the table. This was the source for all isotopic
1724 estimates, with the exception of biogenic marine methane, which we derived from
1725 Whiticar et al., (1999).

1726
1727 The Global Gas Geochemistry Database was our basis for the biomass burning
1728 $\delta^{13}\text{C}$ -CH₄ values. Out of 24 biomass burning $\delta^{13}\text{C}$ -CH₄ values, only 2 are ostensibly
1729 from C₄ plants and have a higher $\delta^{13}\text{C}$ -CH₄ value. These were included in our
1730 analysis. In keeping with our data centered approach, we did not attempt to weight
1731 these values in our analysis. However, in the revised manuscript we will mention
1732 this as a possible source of error in our discussion, and highlight the importance of
1733 more data on methane from C₄ plant ecosystems, both for biomass burning and
1734 microbial emissions. We include an additional estimate of global source $\delta^{13}\text{C}$ -CH₄
1735 that accounts for emissions from C₄ plant dominated wetlands and biomass
1736 burning, using estimates from Ganesan et al., (2018) and Schwietzke et al., (2016).

1737
1738 L266-L271 The comparison of modelled $\delta_2\text{H}_p$ values and measured $\delta_2\text{H}(\text{H}_2\text{O})$ values for
1739 62 sites is important for validating the approach on which estimating $\delta_2\text{H}(\text{CH}_4)$ relies.
1740 The text is not clear though with respect to causes in deviation from a 1:1 relationship.
1741 Presumably “ $\delta_2\text{H}-\text{H}_2\text{O}$ is generally higher” means 2H -enrichment is evident in the
1742 measured data. Is the statement about ‘overall smaller water volumes’ meant to infer
1743 evaporative enrichment of 2H ?

1744
1745 This comment, as well as those of reviewers 1 and 2, made it clear that we needed to
1746 more thoroughly evaluate the relationship between empirical $\delta^2\text{H}-\text{H}_2\text{O}$ and modeled
1747 $\delta^2\text{H}_p$ values in this paper. We have done so, including considering wetlands and

1748 inland waters separately, and examining whether modeled annual precipitation or
1749 growing season precipitation is a better predictor of the empirical $\delta^2\text{H-H}_2\text{O}$
1750 values. See our Major Revision 2 above.

1751
1752 The comment about higher $\delta^2\text{H-H}_2\text{O}$ in mid-latitude sites was based on thinking
1753 that in wetlands the residence time of water would be lower, and therefore there is
1754 more seasonal variability in $\delta^2\text{H-H}_2\text{O}$. Since almost all samples were collected in
1755 summer, when $\delta^2\text{H}_p$ is higher than average in higher-latitude settings, this would
1756 lead these values to be higher than annual precipitation. However, our more
1757 detailed analysis, and further reading on this topic, does not support this contention,
1758 and instead implies that evaporation is likely leading to water $\delta^2\text{H-H}_2\text{O}$ values that
1759 are higher than precipitation in wetlands specifically. In fact, seasonality is likely
1760 less important in wetlands than in inland waters. See Major Revision 2 above,
1761 Section 3.2, and Figure 2.

1762
1763 L282-L283 “Both relationships result in a large amount of unexplained residual
1764 variability, implying the importance of other variables in controlling $\delta_2\text{H-CH}_4$.”

1765
1766 I'll expand here on the point raised in my general comments. The extent to which residual
1767 variability exists is likely underestimated because of the use of site-level means. There
1768 are relatively few data sets globally that contain subsurface profiles of both $\text{d}_2\text{H}(\text{H}_2\text{O})$
1769 and $\text{d}_2\text{H}(\text{CH}_4)$ values. Four of those data sets are shown in the enclosed figure which was
1770 published in Hornibrook and Aravena (2010): Turnagain Bog (open triangles; Chanton et
1771 al. 2006), Sifton Bog (open diamonds; Hornibrook et al. 1997), Point Pelee Marsh (open
1772 circles; Hornibrook et al. 1997) and Ellergower Moss (open squares; Waldron et al.
1773 1999a). The arrows indicate the direction of increasing depth in peat for Turnagain Bog,
1774 Sifton Bog, Point Pelee Marsh and Ellergower Marsh. The figure also includes d_2H
1775 values of coexisting CH_4 and H_2O values from Alaskan peatlands along a N-S transect
1776 (filled triangles; Chanton et al. 2006) and regression equations (Table 6.2 from
1777 Hornibrook and Aravena, 2010 also enclosed) from a number of studies including
1778 Waldron et al. (1999b; line 5) and Whiticar et al. (1986; lines 1 and 2).

1779 The approach of using site-level means reduces each of those depth trends to a single
1780 point in $\text{d}_2\text{H}(\text{H}_2\text{O})$ vs. $\text{d}_2\text{H}(\text{CH}_4)$ space. The d_2H values of CH_4 emitted to the atmosphere
1781 are likely to be similar to the most 2H -depleted values in each trend which corresponds to
1782 CH_4 in shallow peat near the water-air interface and within the root zone where CH_4 may
1783 be transported to the atmosphere via plant aerenchyma. Averaging $\text{d}_2\text{H}(\text{CH}_4)$ values from
1784 all depths (2 m for Sifton Bog and Pelee Marsh; 6 m for Ellergower moss) yields a mean
1785 that is substantially more 2H -rich. Again, I appreciate the goal of not biasing the analysis
1786 to these larger data sets but a single mean for each site does not reflect the considerable
1787 residual variability that exists with depth as $\text{d}_2\text{H}(\text{CH}_4)$ values shift away from the global
1788 $\text{d}_2\text{H}(\text{H}_2\text{O})$ vs. $\text{d}_2\text{H}(\text{CH}_4)$ regression line. Moreover, the $\text{d}_{13}\text{C}(\text{CH}_4)$ and $\text{d}_{13}\text{C}(\text{CO}_2)$ depth
1789 trends from these sites yield systematic shifts in ac values that are lost when the d_{13}C
1790 values similarly are reduced to unitary site-level means.

1791
1792 We thank the reviewer for the detailed explanation of their argument on this issue.
1793 As we discussed above, the primary goals of this paper are to explore inter-site

1794 **geographic variability in the $\delta^2\text{H-CH}_4$ emitted to the atmosphere. Therefore, while**
1795 **intra-site variability is of great interest, we do not want to add an additional layer of**
1796 **complexity to this paper by considering this. We feel the reviewer's earlier**
1797 **suggestion of limiting samples from the upper 50 cm of peat is a good solution to this**
1798 **issue, and we have followed this suggestion in our revised analysis. See Major**
1799 **Revision 1. There is certainly scope for considering intra-site variability in a**
1800 **subsequent study, and we would like to do so.**

1801
1802 L308-L309 “We do not find evidence for a piece-wise linear relationship between $\delta^{13}\text{C-CH}_4$
1803 and $\delta_2\text{H-CH}_4,w_0$ (Fig. 5a), nor did we find a significant simple linear correlation
1804 between these variables.”

1805 >> It may be worth exploring whether any relationships exist in the full data sets rather
1806 than site level means.

1807
1808 **This is an interesting suggestion, though we have concerns that such an analysis**
1809 **might be biased by over-representing sites that have a large number of**
1810 **measurements. It will also require a large amount of additional data analysis, since**
1811 **the $\delta^2\text{H-CH}_4,w_0$ estimates are not currently disaggregated on a per sample basis.**
1812 **Given that the focus of this work is on variability between sites, we will leave this**
1813 **analysis for future work focused on intra-site isotopic variation. Note that in the**
1814 **revised manuscript we are no longer analyzing piece-wise regression results, as the**
1815 **results of our revised analysis were inconclusive.**

1816
1817 L441-L443: “A logical next step in predicting global freshwater $\delta_2\text{H-CH}_4$ source
1818 signatures would be to combine high-resolution mapping of wetlands and inland waters,
1819 maps of the global distribution of $\delta_2\text{H}_p$, and regression relationships between $\delta_2\text{H-CH}_4$ vs.
1820 $\delta_2\text{H}_p$.”>> I agree with the authors and suggest this would be a worthwhile output to
1821 include in this manuscript instead of the global upscaling estimate.

1822
1823 **We appreciate this suggestion. As mentioned above, adding this output to this**
1824 **manuscript would entail substantial additional work, as well as additional expertise.**
1825 **We have however begun a collaboration with another research group to perform**
1826 **this analysis, and this will be the focus of a future publication.**

1827
1828 L445-L464 Section 4.2. This section would benefit from acknowledging and discussing
1829 the study by Rigby et al. (2012).

1830
1831 **We thank the reviewer again for this suggestion. From our reading of Rigby et al.**
1832 **(2012) there was not a focus on latitudinal variation in microbial or freshwater $\delta^2\text{H-CH}_4$, so we did not reference this study here. But we do reference it at several points**
1833 **when discussing upscaling and uncertainties in isotopic source signatures in Section**
1834 **3.8.**

1835
1836
1837 L500-L504 In addition to the caveat noted that CH₄ data exhibiting ²H-enrichment due to
1838 methane oxidation are uncommon, the amount of CH₄ emitted to the atmosphere bearing
1839 the effects of methanotrophy is likely to be small. Bacteria oxidation is highly efficient in

1840 the subsurface of wetlands and little CH₄ tends to escape to the atmosphere via diffusion
1841 through porewater. This comment applies to peatlands. The situation is different in inland
1842 water environments.

1843
1844 **This is an important point. As discussed in Major Revision 4, we are now less**
1845 **confident that the observed variation in $\delta^2\text{H-CH}_{4,w0}$ can be primarily ascribed to**
1846 **differences in methanogenic pathway. Therefore our discussion of relative**
1847 **importance of these mechanisms, as well as other possibly influential processes, is**
1848 **quite different in the revised manuscript. We do discuss that oxidation does not**
1849 **seem to be a dominant factor in controlling $\delta^2\text{H-CH}_4$ in wetlands in the revised**
1850 **Section 3.4.**

1851
1852 L510–L518 I was pleased to see incorporation of these alternate explanations for
1853 relationships between $d_2\text{H}$ and $d_{13}\text{C}$ values of CH₄. Methanogenic pathways are not the
1854 only potential explanation.

1855
1856 **We are glad to see that there is a positive reception to this. Based on this comment**
1857 **and those of reviewer 1 we are planning to focus on alternate explanations to a**
1858 **greater degree in the revised manuscript. See Major Revision 4.**

1859
1860 L592–L593 – Bellisario et al. (1999) provides a good example of how $d_{13}\text{C(CH}_4)$ values
1861 vary along a trophic gradient in a wetland complex. Differences in $d_{13}\text{C}$ values of CH₄
1862 emissions and porewater CH₄ values in minerotrophic vs. ombrotrophic wetland are
1863 demonstrated in Hornibrook and Bowes (2007) and Hornibrook (2009). Landscape scale
1864 measurements (atmospheric inversions and aircraft measurements; Fisher et al., 2017)
1865 also show that northern wetlands contain sources of ¹³C-poor CH₄ that differ from values
1866 of ~-62 to -58 permil typically attributed to northern peatlands in isotope-weight CH₄
1867 budgets. Characterization of sites as ombrotrophic or minerotrophic on the basis of water
1868 chemistry and vegetation surveys is essential for making these distinctions.

1869
1870 **We thank the reviewer for these insights. While it is difficult for us to make**
1871 **distinctions between minerotrophic and ombrotrophic peatlands in this dataset, we**
1872 **note the importance of this distinction in Sections 3.5 and 3.6. In addition to the**
1873 **absence of C₄ plant ecosystems, this is an additional potential bias in the $\delta^{13}\text{C}$**
1874 **database assembled in this study. We acknowledge this, including the observations**
1875 **from atmospheric measurements that point to a depleted source in the high latitudes,**
1876 **and discuss how it could be addressed with future research.**

1877
1878 L617 to L622 It is unclear how a more negative than expected value for estimated
1879 $d_{13}\text{C(CH}_4)$ can be explained by (2) source signatures being biased toward more positive
1880 $d_{13}\text{C}$ values.

1881
1882 **This was a mistake. We meant to say ‘¹³C depleted values’ and ‘¹³C depleted sources’.**
1883 **Regardless, this section of the discussion has been thoroughly revised based on the**
1884 **suggestions of reviewers 2 and 3, with less emphasis on discrepancies with**
1885 **atmospheric measurements. See major revision 6.**

1886
1887 **References Cited:**
1888
1889 Alstad, K. P., and Whiticar, M. J.: Carbon and hydrogen isotope ratio characterization of
1890 methane dynamics for Fluxnet Peatland Ecosystems, *Org Geochem*, 42, 548-558, 2011.
1891
1892 Bowen, G. J., and Wilkinson, B.: Spatial distribution of $\delta^{18}\text{O}$ in meteoric precipitation,
1893 *Geology*, 30, 315-318, 2002.
1894
1895 Chasar, L., Chanton, J., Glaser, P. H., and Siegel, D.: Methane concentration and stable
1896 isotope distribution as evidence of rhizospheric processes: Comparison of a fen and bog
1897 in the Glacial Lake Agassiz Peatland complex, *Annals of Botany*, 86, 655-663, 2000.
1898
1899 Chanton, J. P., Fields, D., and Hines, M. E.: Controls on the hydrogen isotopic
1900 composition of biogenic methane from high-latitude terrestrial wetlands, *Journal of*
1901 *Geophysical Research: Biogeosciences* (2005–2012), 111, 2006.
1902
1903 Chanton, Jeffrey P. "The effect of gas transport on the isotope signature of methane in wetlands." *Organic Geochemistry* 36.5 (2005): 753-768.
1904
1905
1906
1907 Fletcher, D., & Dixon, P. M. (2012). Modelling data from different sites, times or studies:
1908 weighted vs. unweighted regression. *Methods in Ecology and Evolution*, 3(1), 168-176.
1909
1910 Galand, P. E., Kim Yrjälä, and Ralf Conrad. "Stable carbon isotope fractionation during
1911 methanogenesis in three boreal peatland ecosystems." *Biogeosciences* 7.11 (2010): 3893-3900.
1912
1913 Gruen, Danielle S., David T. Wang, Martin Könneke, Begüm D. Topçuoğlu, Lucy C. Stewart,
1914 Tobias Goldhammer, James F. Holden, Kai-Uwe Hinrichs, and Shuhei Ono. "Experimental
1915 investigation on the controls of clumped isotopologue and hydrogen isotope ratios in microbial
1916 methane." *Geochimica et Cosmochimica Acta* 237 (2018): 339-356.
1917
1918
1919 Lansdown, J., Quay, P., and King, S.: CH₄ production via CO₂ reduction in a temperate
1920 bog: A source of ¹³C-depleted CH₄, *Geochim Cosmochim Ac*, 56, 3493-3503, 1992.
1921
1922 Lansdown J. M. (1992) The carbon and hydrogen stable isotope composition of methane released
1923 from natural wetlands and ruminants. Ph.D. dissertation, Univ. of Washington.
1924
1925 Hornibrook, E. R., Longstaffe, F. J., and Fyfe, W. S.: Spatial distribution of microbial
1926 methane production pathways in temperate zone wetland soils: stable carbon and
1927 hydrogen isotope evidence, *Geochim Cosmochim Ac*, 61, 745-753, 1997.
1928
1929 Penning, H., Claus, P., Casper, P., & Conrad, R. (2006). Carbon isotope fractionation during
1930 acetoclastic methanogenesis by *Methanosaeta concilii* in culture and a lake sediment. *Applied and*
1931 *Environmental Microbiology*, 72(8), 5648-5652.
1932

1933 Penning, H., S. C. Tyler, and R. Conrad. "Determination of isotope fractionation factors and
1934 quantification of carbon flow by stable carbon isotope signatures in a methanogenic rice root
1935 model system." *Geobiology* 4.2 (2006): 109-121.

1936

1937 Rice, A. L., Butenhoff, C. L., Team, D. G., Röger, F. H., Khalil, M. A. K., and
1938 Rasmussen, R. A.: Atmospheric methane isotopic record favors fossil sources flat in
1939 1980s and 1990s with recent increase, *Proceedings of the National Academy of Sciences*,
1940 113, 10791-10796, 2016.

1941

1942 Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond,
1943 P. A., Dlugokencky, E. J., Houweling, S., and Patra, P. K.: The global methane budget 2000–
1944 2017, *Earth System Science Data*, 12, 1561-1623, 2020.

1945

1946

1947 Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M., Miller, J. B., Etiopic, G.,
1948 Dlugokencky, E. J., Michel, S. E., Arling, V. A., Vaughn, B. H., and White, J. W.:
1949 Upward revision of global fossil fuel methane emissions based on isotope database,
1950 *Nature*, 538, 88-91, 2016.

1951

1952 Sherwood, O. A., Schwietzke, S., Arling, V. A., and Etiopic, G.: Global inventory of gas
1953 geochemistry data from fossil fuel, microbial and burning sources, version 2017, *Earth*
1954 *System Science Data*, 9, 2017.

1955

1956 Valentine, D. L., Chidthaisong, A., Rice, A., Reeburgh, W. S., & Tyler, S. C. (2004). Carbon and
1957 hydrogen isotope fractionation by moderately thermophilic methanogens. *Geochimica et*
1958 *Cosmochimica Acta*, 68(7), 1571-1590.

1959

1960 Wahlen, M.: Carbon dioxide, carbon monoxide and methane in the atmosphere:
1961 abundance and isotopic composition, *Stable isotopes in ecology and environmental*
1962 *science*, 93-113, 1994.

1963

1964 Waldron, S., Lansdown, J., Scott, E., Fallick, A., and Hall, A.: The global influence of
1965 the hydrogen isotope composition of water on that of bacteriogenic methane from
1966 shallow freshwater environments, *Geochim Cosmochim Ac*, 63, 2237-2245, 1999a.

1967

1968 Waldron, S., Hall, A. J., and Fallick, A. E.: Enigmatic stable isotope dynamics of deep
1969 peat methane, *Global Biogeochem Cy*, 13, 93-100, 1999b.

1970

1971 Whiticar, M. J., Faber, E., and Schoell, M.: Biogenic methane formation in marine and
1972 freshwater environments: CO₂ reduction *vs.* acetate fermentation—Isotope evidence,
1973 *Geochim Cosmochim Ac*, 50, 693-709, 1986.

1974

1975 Whiticar, M. J.: Carbon and hydrogen isotope systematics of bacterial formation and
1976 oxidation of methane, *Chem Geol*, 161, 291-314, 199

1977