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Abstract. Vegetation optical depth (VOD) from microwave satellite observations has received much attention in global vegeta-
tion studies in recent years due to its relationship to vegetation water content and biomass. We recently have shown that VOD is
related to plant productivity, i.e. gross primary production (GPP). Based on this relationship between VOD and GPP we devel-
oped a theory-based machine learning model to estimate global patterns of GPP from passive microwave VOD retrievals. The
VOD-GPP model generally showed good agreement with site observations and other global data sets in temporal dynamic but
tended to overestimate annual GPP across all latitudes. We hypothesized that the reason for the overestimation is the missing
effect of temperature on autotrophic respiration in the theory-based machine learning model. Here we aim to further assess and
enhance the robustness of the VOD-GPP model by including the effect of temperature on autotrophic respiration within the
machine learning approach and by assessing the interannual variability of the model results with respect to water availability.
We used X-band VOD from the VOD Climate Archive (VODCA) data set for estimating GPP and used global state-of-the art
GPP data sets from FLUXCOM and MODIS to assess residuals of the VOD-GPP model with respect to drought conditions as
quantified by the Standardized Precipitation and Evaporation Index (SPEI).

Our results reveal an improvement in model performance for correlation when including the temperature dependency of
autotrophic respiration —Fhis-inerease-(average correlation increase of 0.18). This improvement in temporal dynamic is largest
for-regions—outside-larger for temperate and cold regions than for the tropics. For error-ubRMSE and bias, the results are
regionally diverse and are compensated in the global average. Improvements are observed in temperate and cold regions
while decreases in performance are obtained mainly in the tropics. The overall improvement when adding temperature was

less than expected and thus may only partly explain previously observed differences between the global GPP datasets. On
interannual time scales, estimates of the VOD-GPP model agree well with GPP from FLUXCOM and MODIS. We further find

that the residuals between VOD-based GPP estimates and the other data sets do not significantly correlate with SPEI which
demonstrates that the VOD-GPP model can capture responses of GPP to water availability even without including additional
information on precipitation, soil moisture or evapotranspiration. Hewever,-some-regtonsreveal-signtficant-Exceptions from
this rule were found in some regions: significant negative correlations between VOD-GPP residuals with-SPEl—whieh-and

SPEI were observed in the US corn belt, Argentina, Eastern Europe, Russia and China, while significant positive correlations



25 were obtained in South America, Africa and Australia. In these regions, the significant correlations may indicate different plant
strategies for dealing with variations in water availability.

Overall, our findings support the robustness of global microwave-derived estimates of gross primary production for large-

scale studies on climate-vegetation interactions.
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30 1 Introduction

Vegetation optical depth (VOD) from microwave satellite observations provide-provides the opportunity for studying large-
scale vegetation dynamics due to its sensitivity to the vegetation water content and above-ground biomass. Different studies

have employed VOD for deriving various plant properties or vegetation characteristics that can be related to the plant’s water

content, including biomass estimation [Liu et al., 2015; Brandt et al., 2018; Rodriguez-Ferndndez et al., 2018; Chaparro et al., 2019;
35 Fanetal,, 2019; Frappart et al., 2020; Wigneron et al., 2020; Li et al., 20211, ctop yield [Ehaparro-et-at-2649Chaparro et al., 2018],
tree mortality [Rao et al., 2019; Sapes et al., 2019], analysis of burned area [Forkel et al., 2019]and-, ecosystem-scale isohy-
dricity [Konings and Gentine, 2017], plant water uptake during dry downs [Feldman et al, 2018] and plant water storage
[Tian et al., 2018]. VOD, or microwave satellite observations in general, are also analyzed for its potential in detecting the

impact of drought [Song et al., 2019; Crocetti et al., 2020]. Despite the sensitivity of VOD to vegetation water content, the

40 relationship between VOD and GPP has not yet been analyzed with regard to whethertt-heldstrue-atong-a-gradient-how the

relationship responds to varying conditions of dry- or wetnesseenditions.
Recently, we have shown that VOD is related to plant productivity, i.e. gross primary production (GPP) [Teubner et al.,

2018]. Based on these findings, we developed a theory-guided machine learning model to estimate GPP from VOD (VOD-GPP
model) and trained the model using eddy covariance estimates of GPP from the FLUXNET network [Teubner et al., 2019].
45 The VOD-GPP model relies on estimating carbon sink terms, i.e. net primary production (NPP) and autotrophic respiration
(Ra), based on VOD as a proxy for aboveground-above-ground living biomass. The VOD-GPP model thus represents a carbon
sink-driven approach. Bue-to-the-tititization-ef-Since the VOD-GPP model uses biomass as main inputte-the-VODB-GPP-medet,
the estimation of GPP does not rely on input variables that are commonly used in source-driven approaches, e.g. absorption of
photosynthetically active radiation as primary input term or vapor pressure deficit as controlling factor for stomatal conductance
50 [Running et al., 2000; Turner et al., 2005; Goodrich et al., 2015; Zhang et al., 2016, 2017]. Although different studies are
tackling the question of how much information on biomass is actually contained in the VOD signal [Momen et al., 2017,
Vreugdenhil et al., 2018; Zhang et al., 2019], it might be worth noting that the water content can be seen as a-neeessity-for

eur-medel-sinee-an important aspect in our model approach since it presents the living part of the vegetation and only living
cellsthat-contain-water, which contain water, are able to respire. We have shown that the VOD-GPP model can well represent

AN AN AAANARR

55 temporal dynamics of GPP but that it overestimates GPP especially in temperate and boreal regions [Teubner et al., 2019].
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We hypothesize that this overestimation may be caused by a missing representation of temperature dependency of autotrophic
respiration in the VOD-GPP model.

Ra is the process through which chemical energy that was stored by building up carbohydrates during photosynthesis is
gained by converting carbohydrates back into carbon dioxide. It is generally known that Ra is a temperature-dependent process
[e.g., Atkin and Tjoelker, 2003]. Modelling the response of Ra to temperature, however, is complex due to the existence of
thermal acclimation [Atkin and Tjoelker, 2003]. Ra is commonly represented through an exponential function with Q10 as
base which is multiplied with a basal respiration rate [e.g., Smith and Dukes, 2013]. The base value Q10 describes how much
Ra changes when temperature changes by 10°C [e.g., Atkin et al., 2008]. Although global models often use constant values for
either one parameter or both parameters [Gifford, 2003; Smith and Dukes, 2013], studies have shown that both basal respiration
rate and Q10 may vary with temperature [Tjoelker et al., 2001; Wythers et al., 2013]. The implementation of such temperature
acclimation yields a functional representation that decreases again at higher temperatures and thus takes into account that
respiration may decrease outside an optimum temperature range [Smith and Dukes, 2013].

Here we aim to assess the impact of the temperature dependency of Ra in the VOD-GPP model and if it can improve model
performance. Furthermore, we will test the plausibility of the model by comparing the estimated interannual variability of
GPP with independent state-of-the art global data sets of GPP and by assessing model residuals with respect to variations in
climatological water availability as represented by the Standardized Precipitation and Evaporation Index (SPEI). Since source-
(GPP) and sink-terms (NPP + Ra) should theoretically be in balance, any differences between the two approaches that are
related to variations in water availability may give insight into different plant strategies for dealing with dry or wet conditions

and thus may be of interest for ecological or plant-physiological studies at large-scale.

2 Data and methods

We-analysed-
2.1 Choice of microwave frequenc

The VOD-GPP model relies on biomass as input, Nevertheless, the choice of microwave frequency for estimating GPP may.
look counterintuitive. On the one hand, VOD from low microwave frequencies like L-band have been demonstrated to be
better suited as proxy for mapping total above-ground biomass than high frequency VOD, i.e. X-band YOD, as L-band VOD
saturates less at high biomass values [Chaparro et al., 2019; Frappart et al., 2020; Li et al., 2021]. On the other hand, previous
analyses demonstrated that X-band VOD shows a closer agreement with GPP [Teubner et al., 2018, 2019; Kumar et al., 2020].
In Figure Al we further corroborated this observation by a correlation analysis between in situ GPP and VOD from L- and
X-band, respectively. Despite the high fraction (38%) of forest pixels used for this computation, higher correlations were
obtained for X-band than for I-band. An explanation could be that whole plant biomass was found to be less suited for
estimating GPP as opposed to biomass of metabolically active plant parts like leaves and fine roots [Lizton et al., 2007]. Based
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on these findings, we concluded that higher frequency VOD appears to be better suited for estimating GPP and therefore we
used X-band VOD in our analysis.

2.2 Data sets

We analyzed different GPP data sets derived from microwave and optical sensors as well as SPEI. As input to the VOD-GPP
model, we used X-band VOD data from the VOD Climate Archive (VODCA). Since global coverage for VODCA X-band data
starts in 2003 [Moesinger et al., 2020] and SPEI data are available through 2015, we used the common period from 2003 to
2015 for our analysis. Temporal median maps for the global GPP data sets are displayed in the supplement (Figure A2).

2.2.1 VODCA

VOD

s-retrievals from single sensors

often span only a certain period in time, which may hamper the analysis of longer periods. To overcome this problem, we used

we-ased-VODPCAX-band-VOD-to-estimate-GPP-VODCA [Moesinger et al., 2020] X-band (VODCAX) contains passive VOD
derived from TMI (10.7 GHz), AMSR-E (10.7 GHz), WindSat (10.7 GHz) and AMSR2 (10.7 GHz). The VOD input data are
obtained from the Land Parameter Retrieval Model [LPRM; van der Schalie et al., 2017]. VODCAX is derived from nighttime
observations from TMI (variable overpass time), AMSR-E (descending 1:30 am), WindSat (descending 6:00 am) and AMSR2
(descending 1:30 am). The use of nighttime observations on the one hand meets the LPRM assumption of homogeneous
temperature conditions [Owe et al., 2001] and on the other hand is better suited as proxy for plant water status than daytime
observations. Due to diurnal differences in plant water status and the refilling during the night [El Hajj et al., 2019; Konings
and Gentine, 2017], nighttime observations are closer to the predawn water potential which is commonly used as estimator
for the daily vegetation water status [Konings and Gentine, 2017; Konings et al., 2019]. During data-preecessing-data—were

the processing of VODCAX, data are masked for radio frequency interference (RFI) [Moesinger et al., 2020] since RFI can
introduce spurious retrievals [Li et al., 2004; Njoku et al., 2005]. Data are available at daily resolution and 0.25° grid spacing.

2.2.2 Independent global GPP data sets

The MOD17A2H v006 product provides global estimates of GPP which are derived from surface reflectances [Running et al.,
2004, 2015]. The algorithm is based on the light-use efficiency concept by Monteith [1972] and uses the fraction of Photosyn-
thetically Absorbed Radiation for deriving plant productivity [Running et al., 1999, 2000]. Data are produced as 8-daily GPP
estimates at 500 m resolution.

FLUXCOM presents an upscaling of GPP from eddy covariance measurements using an ensemble of machine learning

approaches [Jung et al., 2020]. The data set is available at 8-daily resolution and 10 km grid spacing. FLUXCOM estimates
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are produced in two setups: the FLUXCOM RS is based on remote sensing data as input to the machine learning models and
the FLUXCOM RS+METEO uses meteorological data and only the mean seasonal cycle of remote sensing data [Jung et al.,
2020]. Since our approach is mainly based on remote sensing data, i.e. VOD observations, we used FLUXCOM RS in our
analysis. The FLUXCOM algorithm uses the following MODIS variables as input: Enhanced Vegetation Index, Leaf Area
Index, MODIS band 7 - Middle Infrared Reflectance, Normalized Difference Vegetation Index and Normalized Difference
Water Index.

2.2.3 Insitu GPP estimation from FLUXNET

The Fluxnet2015 data set [Gilberto et al., 2020] provides daily in situ estimates of carbon, water and heat fluxes, which are
determined using the eddy covariance technique. GPP estimates are available for two flux partitioning methods, i.e. daytime
and nighttime partitioning method. We used the mean of both partitioning methods, as suggested in [Gilberto et al., 2020],
with variable friction velocity threshold (GPP_DT_VUT_REF, GPP_NT_VUT_REF) from the freely available station data set
(Tierl v1). Since data are available until 2014, we used data for the period from 2003 to 2014 as training data for estimating

GPP based on VOD. An overview of the FLUXNET sites is given in Figure A3 and Table Al.
2.24 SPEI

For analyzing the impact of variations in water availability, we used SPEI from the SPEIbase [Begueria et al., 2017; Vicente-
Serrano et al., 2010]. The climatological water balance is calculated on different time scales ranging from 1 up to 48 months.
Since drought can act on different time scales, we used SPEI at two different aggregations, 3- and 12-month, for investigating
the response to dry and wet conditions. The 3-month SPEI (SPEIO3) represents short-term effects, while the 12-month SPEI
(SPEI12) relates to dry or wet conditions at annual time scale. Although SPEI cannot be used to express actual water shortage
for plants, it allows to indicate relative deviations from mean conditions. Because of the use of both precipitation and tempera-
ture, SPEI further enables the comparison between different biomes [Vicente-Serrano et al., 2010]. The SPEI data has monthly

resolution and a grid spacing of 0.5°.
2.2.5 ERAS-Land

ERAS5-Land produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) [C3S, 2019; Mufioz-Sabater,
2019] provides a reanalysis data set of meteorological parameters. ERAS uses a 4D variational data assimilation scheme and
a Simplified Extended Kalman Filter [Hersbach et al., 2020]. We used skin temperature and snow data for masking VOD.
In the VOD-GPP model, we incorporated 2m air temperature (F2M7'2)/) for representing the temperature dependency of
autotrophic respiration. T2M-T'2)/ was used in our analysis, since this parameter is most common for describing the tem-
perature dependency of autotrophic respiration for aboveground-vegetation-above-ground vegetation [e.g., Ryan et al., 1997;
Running et al., 2000; Ceschia et al., 2002; Drake et al., 2016]. The data has hourly resolution and 9 km spatial sampling.
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2.3 Data processing

VODCAX data were masked for low temperature (skin temperature < 0°C) and snow cover (snow depth > Ocm) and then aggre-
gated to 8-daily estimates by computing the mean over 8 days to match the temporal resolution of GPPmodis and GPPfluxcom.
These 8-daily values were then used as input to the VOD-GPP model and for further analysis throughout the study. GPPflux-
com and GPPmodis were aggregated to 0.25° to match the spatial sampling of VODCAX. For the comparison with SPEI,
8-daily GPP estimates were further resampled to monthly resolution while SPEI was spatially resampled to 0.25° using the

nearest neighbour method.
2.4 GPP estimation based on VOD

The approach of estimating GPP based on microwave radiation is-and the corresponding equations are described in de-
tail in Teubner et al. [2019]. In short, the VOD-GPP model uses VOD as a proxy for-abeveground-tiving-biomass-and-of
above-ground living biomass (Equation 1). It determines GPP by estimating sinks for carbohydrates, i.e. the sum of NPP and
Ra, which are represented through different YOD-variables:VOD-time-series;-VOD-derived variables: 1) time series of the

bulk VOD signal (VOD; 8-daily aggregated native VOD time series), 2) time series of the temporal change in VOD (AVOD
AVOD; AVOD, =VOD; —VOD;_1 computed from the smoothed 8-daily aggregated VOD time series) and 3) and-the

grid cell median of VOD (mdaVOB+-mdnV O D; calculated over the entire VOD time series of the grid cell; used as a proxy
for vegetation cover). While NPP is related to AYOPAVOD, Ra is related to both VOB-and-AVOB-VOD and AVOD

using the concept proposed by Ryan et al. [1997] of dividing Ra into maintenance and growth respiration —Fhis—previous

moedeHormulation(Equation 2). By assuming that belowground biomass terms are proportional to above-ground biomass (i.e.
biomass B can be expressed through above ground biomass AG B) and by adding a static term ¢ supporting the conversion in
Equation 2, GPP can be represented through a differential equation with VOD as input (Equation 3).

AGB = f(VOD) = VOD (1)
dB dB dB
GPP =NPP +Ra= (dt—HOSS terms) + <a0 E—H}O ) ~a E—’_bB 2)
/-\_5 o
app—a VOP L\ TOD 4o 3)

The formulation in GAM for this previous model, which uses only VOD variables as input (GPPvod; Equation 4), thus-then

reads:

GPPvod = s(VOBV QD) + s(AVOBV QD) + s(mdaVODmdnV QD) (4)
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where s denotes spline terms for representing the 2-dimenstonal-functions between each input variable and the response
variable GPP in the 2-dimensional space.

For adding the temperature dependency of Ra, we are considering the two terms of Ra, i.e. maintenance and growth respi-
ration. Since the temperature sensitivity mainly applies to the maintenance term [Ryan et al., 1997], we are only incorporating
an interaction term with temperature for the maintenance part of the model formulation. Although all terms potentially may be
dependent on temperature due to the general temperature dependency of enzymatic activity, the temperature dependency for
modelling growth related sink terms (growth respiration and net primary production) may be of less importance. For the current

model formulation (GPPvodtemp; Equation 5), we now introduced an interaction term between VOB-V O D and temperature:

GPPvodtemp = te(VOBV OD,T2MT2M) 4+ s(AVYOBV OD) + s(mdaVOBmdnV OD) 3)

where te stands for a tensor term, which represents the interaction between YOB-VOD and temperature and spans a
3-dimensionalsurface surface in the 3-dimensional space.

Consistent with our previous model, we used GAM as regression method for deriving GPP. pyGAM [Servén and Brummitt,
2018] version 0.8.0 provides the possibility of adding an interaction term. An advantage of GAM is that the relationships
between input variables and response variable are not required to be known beforehand, but instead can be estimated from
the data itself [Hastie and Tibshirani, 1987]. Since the relationship between VOD and GPP as well as its relationship with

temperature is difficult to determine a priori, this method is well suited for our approach.

the smoothing factor, which yields strong smoothing for high values and low smoothing for low values. For the current models
we used a smoothing factor of 2, which is lower than for the previous-model-model in Teubner et al. [2019]. This was done

since the response function for the tensor term was too smooth using the default number of 10 splines for tensor terms and
resulted in unrealistically high GPP values at high VOBV OD. For AVOD, the default number of 20 splines for spline terms

were used, while for mdnVOB-mdnV OD we reduced the number of splines to 5 in order to obtain a smooth relationship.
2.5 Statistical analysis

For model comparison, we computed Pearson correlation, unbiased Root Mean Square Error (ubRMSE) and bias. For studying

the error characteristics, ubRMSE was used instead of RMSE to exclude the impact of bias, which was observed during our

analysis. In addition, cross validation was computed for the above metrics using the leave-site-out method, where the model
erformance is evaluated at each site by omitting the respective site data from model training and then using the left-out data

for computing the statistics. The analysis was carried out for the full signal and the anomalies from the mean seasonal cycle.
In case of analyzing annual GPP anomalies as a measure for interannual variability and residuals of the VOD-GPP model,

we based our analysis on standardized annual or 8-daily time series data (z-scores). This was done in order to analyze GPP
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data in the absence of systematic differences between the data sets. The standardization for the 8-daily or the annual data was
applied to each grid cell time series by subtracting the mean and dividing by the standard deviation.

For aid-generating the smoothed time series in the calculation of AV O D and for aiding visual comparison in the-time series
plots, we applied a savitzky-gelay-Savitzky-Golay filter with window size of 11 data points.

3 Results
3.1 Model representation of temperature dependency

We find that the sensitivity of YOB-V OD to GPP increases with temperature as shown by the partial dependency plots
(Figure 1). For low temperatures, the sensitivity of the VOD-GPP-relationship is relatively low (Figure 1a). As temperature
increases, the sensitivity also increases and further exhibits an optimum behavior. At high temperatures, however, the maxima
of the curves are lower than for moderate temperatures. The partial dependency for T2M-T2M (Figure 1d) shows an optimum
behavior with a peak around 20°C, which slightly differs between the VODB-V O D values. The partial dependencies for AVOD
and-mdaVOB-AV OD and mdnV OD (Figure 1b,c) are consistent with the previous model and yield a-pesitive-an increasing
relationship with GPP for AVOB-AV OD in the middle part of the value range and a general decreasing relationship for
mdaVODmdnV OD.

In addition to identifying the underlying relationships, we can further assess the magnitude of the contribution to GPP for the
input variables based on the data range in the partial dependency plots. The main contribution to GPP in the model comes from
the interaction term between VOD-and T2M-V O D and T2 with a range of about 12 gC m™ d!, which is followed by AVOD
AV OD with a range of about 6 g€ m? d'! and mdaVOD-mdnV OD with a range of about 4 gC m™ d''. The contribution of
the maintenance part, as represented through the interaction term, thus, is higher than for AVOB-AV O D which represents the
sum of NPP and the growth term in Ra.

3.2 Evaluation at site-level

At FLUXNET in situ stations, GPPvedtemp;-GPPluxcom-and-GPPmeodis-global GPP datasets overall show similar results (Fig-
ure 2). Despite-the-overat-agreement GPPyod exhibits a slight accumulation of GPP values at around 4 g C m? d”!, while the
density for GPPvodtemp is relatively smooth and comparable to GPPfluxcom and GPPmodis. Both GPPvod and GPPvodtemp
show a relatively high number of non-zero GPP at around zero GPPfluxnet, which is less pronounced for GPPvodtemp than
for GPPvod. Cross validation results in Table A2 further confirm a higher performance of GPPvodtemp compared to GPPvod.
For the full signal as well as for the anomalies from the mean cycle, correlation, ubRMSE and bias generally yield higher
performance for GPPvodtemp. The increase in performance is more pronounced for the full signal than for the anomalies.

Despite an overall agreement of GPPvodtemp, GPPfluxcom and GPPmodis with in situ GPP, all three data sets exhibit an
underestimation of GPP at high values of GPP compared with in situ GPPfluxnet. At annual time scale, the difference with

GPPfluxnet at high GPP becomes much lower for GPPvodtemp compared to GPPfluxcom and GPPmodis (Figure A4), which
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Figure 1. Partial dependency plot for GPPvodtemp for each input variable: (a) VOD, (b) AVOD, (¢) mdnV OD and (d) T2M . The model

was trained with data from the period 2003-2014. Dashed lines in (b) and (c) denote the 95% confidence interval. The interaction between

YOb-VOD and T2MT2M (a,d), which represents a 3D-surface in the 3-dimensional space, is displayed as projection on the 2D plane for

each of the two input variables. For this, the parameter space was divided into 10 equally spaced bins between minimum and maximum of

the respective variable. The bin edges are displayed as colored lines as indicated in the legend.
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Figure 2. Scatter plots of 8-daily in situ GPPfluxnet versus global GPP data sets (a) GPPvodtemp,
GPPmodis for the period 2003-2014.

b) GPPvod, (c) GPPfluxcom and (d)

{b) GPPvod, (¢) (

indicates on the one hand that GPPvodtemp is able to match the in situ training data and on the other hand suggests that
differences in GPP already exist between the training data set used in our study and the independent global GPP data sets,
which may contribute to differences at global scale. At-The observed overestimation of GPP for GPPvodtemp at low in situ
GPP . we observe that GPPvodtemp tends to-overestimate GPP-compared to-the other data setswhich can also be observed
at annual time scale. This everestimation-atlew—GPP-may be an explanation for the general tendency for overestimation of
microwave-derived GPP estimates and appears to-not-be-not to be entirely related to the temperature sensitivity of Ra, since it

AN
is still present for GPPvodtemp.
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3.3 Impact of adding temperature dependency at the global scale

Performance metrics for GPPvod and GPPvodtemp were assessed with respect to both GPPfluxcom and GPPmodis. Since the
results for GPPfluxcom and GPPmodis are similar, we are only showing results for GPPfluxcom.

Correlations with GPPfluxcom (Figure 3a) reveal widespread strongly positive values with a global mean of 0.63. Some areas
in the tropics and in the Australian desert exhibit an inverse temporal dynamic with GPPfluxcom. Compared with GPPvod,
correlations increase in large parts of the world (Figure 3b) with a global average difference of 0.18. Regions that benefit most
from adding temperature as input are temperate and cold regions, which could be expected since these regions per definition are
strongly controlled by temperature. Tropics and subtropics, however, mainly show only minor changes in correlation coefficient
with a few exceptions of decreasing correlations. Since the annual temperature amplitude in these regions is low, the model’s
sensitivity to temperature is also low, which makes the interaction term mainly controlled by VOD.

The global average for ubRMSE between GPPvodtemp and GPPfluxcom (Figure 3c) yields a value of 1.20. Consistent with
the increase in performance for the correlation, areas in the temperate and cold region show an improvement in error, i.e. a
decrease of ubRMSE compared to GPPvod (Figure 3d). Other regions, however, exhibit an increase in ubRMSE. The global
average of the difference between results for GPPvodtemp and GPPvod is -0.05. Therefore, gains and losses in error are largely
compensated at the global scale.

The bias between GPPvodtemp and GPPfluxcom (Figure 3c) is generally positive everywhere with a global average of
1.64. This finding is also evident from the higher range in the median maps for GPPvodtemp compared with GPPfluxcom and
GPPmodis (Figure A2). Comparing the results for GPPvod and GPPvodtemp, the addition of temperature shows an increase in
bias mainly in the tropics (Figure 3d), which is also evident for the difference of the median maps (Figure A2e). Despite this
increase in the tropics, also regions with a reduction in bias exist, which are mainly found in temperate and cold regions. On
the global scale, decreases and increases in bias compensate and yield an average difference of -0.05.

The latitudinal distribution of annual GPP (Figure 4) further demonstrates that the addition of temperature yields a reduction
of GPP mainly for regions outside -35°N and +60°N. The reduction in the zonal mean, however, is smaller than may have
been expected probably due to compensating effects. For the region between +30°N and +60°N, where reductions in bias were
observed on the global map, positive and negative values for the bias appear to compensate yielding no net reduction in the zonal
mean. In the tropical region, the increase in bias for GPPvodtemp compared with GPPvod is again evident. When considering
the latitudinal distribution of annual GPP relative to the latitudinal maximum, however, the distribution for GPPvodtemp is
actually closer to the independent datasets than GPPvod (Figure AS). This suggests that although the bias largely increases
in the tropics, the relative distribution between tropics and temperate to boreal regions is better represented by the setup that
includes temperature.

For a region in Europe (5 to 15°E and 46 to 51°N), where we generally did observe an increase in all three performance
metrics, we find that for GPPvod mainly winter time estimates of GPP are too high compared to GPPfluxcom and GPPmodis

(Figure 5). By adding temperature as input to the model, winter observations are markedly dampened and summer observations
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Figure 3. (a): Pearson correlation between GPPvodtemp and GPPfluxcom. (b): Difference between GPPvodtemp and GPPvod for Pearson
correlation with GPPfluxcom. (c): ubRMSE between GPPvodtemp and GPPfluxcom. (d): Difference between GPPvodtemp and GPPvod for
ubRMSE with GPPfluxcom. (e): Bias between GPPvodtemp and GPPfluxcom. (f): Difference between GPPvodtemp and GPPvod for the
bias with GPPfluxcom. The unit for ubRMSE and bias is g C m?> d'. Areas with none-stgntficant-non-significant correlations in (a) and (b)

are marked in grey. The analysis is computed over the whole study period (2003-2015).

are only slightly increased. Nevertheless, even when including the temperature dependency, winter GPP estimates are still
slightly higher for GPPvodtemp than for GPPfluxcom or GPPmodis.

Pue-In the remaining study, due to the observed bias (both at site-level and global scale), butotherwise tnerease tnecorrelation;
we-are-further-analyzing-GPPvodtemp-but-are-foeusing-on-we are analyzing relative rather than absolute values for comparing
interannual variability and the impact of water availabilityin-theremainingstady. In addition, we are focusing our further
analysis on GPPvodtemp since this setup overall showed higher performance than GPPvod. Results for GPPvod are displayed
in the supplement for comparison with GPPvodtemp.

3.4 Interannual variability and varying conditions of water availability

The latitudinal distribution of annual GPP anomalies reveals a general agreement between the GPP data set (Figure-6-Figures 6
and A6). Although differences exist between all data sets, key features are observed among all data sets, such as the positive
anomalies at -55°N in 2003, at -30°N in 2011 or at +75°N in 2012 and the negative anomalies at +75°N in 2003 and 2015
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Figure 4. Zonal mean of annual GPP for GPPfluxcom, GPPmodis, GPPvodtemp and GPPvod for the study period 2003-2015. To obtain
zonal means, data were averaged over all grid points of the same latitude.
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Figure 5. Time series plot of spatially aggregated GPP estimates for GPPfluxcom, GPPmodis and (a) GPPvod or (b) GPPvodtemp over the
whole study period (2003-2015). Shaded areas indicate the standard deviation over the aggregated grid cells. The region is located in Europe,

5 to 15°E and 46 to 51°N, and was selected as an example where the correlation analysis between GPP residuals and SPEI largely yield no

significant correlations. 8-daily data were smoothed to aid visual comparison.

and at around -40° in 2009 and 2011. Despite the fact that these key features are found in all data sets, we also observe that
the magnitude of the anomalies often differs between the data sets, which thus yields a generally relatively high variability
between all data sets. In terms of the overall latitudinal pattern, it appears that GPPvodtemp is more similar to GPPmodis than

290 to GPPfluxcom.
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Figure 6. Hovmoller diagramm for zonal means of annual GPP anomalies (z-scores) for (a) GPPvodtemp, (b) GPPfluxcom and (¢) GPPmodis
over the study period. Zonal means were calculated by averaging data over all grid points of the same latitude.

For the correlation of the residuals between standardized GPP (GPPvodtemp-GPPfluxcom or GPPvodtemp-GPPmodis) with
and SPEI, we find that large areas show no significant correlation with SPEIO3 (Figure 7a,b). For the long-term climatological
water balance, i.e. SPEI12 (Figure 7c,d), these areas with none-signifieantnon-significant correlations further increase. In terms
of model applicability, the nene-significant-non-significant correlations are the desired result. Given that correlations between
GPPyodtemp and GPPfluxcom or GPPmodis are high in these regionsare-high, this demonstrates that GPPvodtemp shows a
similar behavior as GPPfluxcom or GPPmodis in response to variations in dry or wet conditions;-which-furtherindieates-, This

finding thus provides a strong indication that the VOD-GPP-relationship in-general-holds-traegenerally remains similar under

varying conditions of water availability.
Apart from the widespread areas with rene-significantnon-significant correlation, some significant correlations, both positive

and negative, occur at both time scales. Negative correlations indicate that during dry conditions GPPvodtemp is higher relative
to the reference GPP than during wet conditions, while positive correlations mean that during dry conditions GPPvodtemp is
lower relative to the reference GPP than during wet conditions. The spatial distribution of these significant correlations is largely
consistent between GPPfluxcom and GPPmodis. For the short-term response to SPEI (Figure 7a,b), negative correlations are
more frequent than positive correlations, indicating that the response to short-term drought events is often a reduction of
source-driven GPP relative to sink-driven GPP. Negative correlations are mainly observed in the US corn belt, Argentina,
Eastern Europe, Russia and China, with the strongest negative correlations being in the US, Argentina and Russia. Positive
correlations are obtained mainly over South America, Africa and Australia. For the long-term response to SPEI (Figure 7c,d),
the number of positive correlations increase. Similar to the short-term response, positive correlations are mainly found over

South America, Africa and Australia.

The analysis of GPPvod residuals reveals a similar result as for GPPvodtemp (Figure A7). For GPPvod, however, the number
of grid cells with non-significant correlations in the four analyses is lower by about 2 to 4 % than for GPPvodtemp, while the
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lobal average correlation is nearly identical. The higher number of non-significant correlations for GPPvodtemp than for

GPPvod is expected, because the addition of temperature accounts for some variation in the VOD-based GPP estimation.
For specific regions, which are indicated in Figure 7, we analyzed the time series of the standardized GPP (Figure 8) and the

response to SPEI categories (Figure A8) in order to inspect under which situations negative or positive correlations with SPEI
occur.

For the region in the US corn belt (Figure 8a), where we found moderately negative correlations with SPEI, all three GPP
data sets show a reduction in summer GPP in 2006 and 2012. Compared with other years, however, the reduction of GP-
Pvodtemp tends to be less than for GPPfluxcom and GPPmodis. This behavior can be verified by considering the residuals
along the SPEI12 gradient (Figure A8a). During dry conditions, the residuals are higher than during wet conditions. Since
higher residuals indicate that GPPvodtemp is higher relative to the reference data sets, this result confirms the findings for the
time series.

In Argentina (Figure 8b), we observed strongly negative correlations for the analysis with SPEI. For this region, a pronounced
dry condition is observed at the end of 2008 and beginning of 2009. In this period, GPPfluxcom and GPPmodis are reduced
more strongly than GPPvodtemp. In the first following year, the GPPvodtemp peak is slightly lower than for GPPfluxcom
and GPPmodis at the end of 2009. In the second following year, end of 2011, GPPvodtemp is similar as for GPPfluxcom and
GPPmodis again. This result is further supported by the pronounced decrease of the residuals with SPEI12 in Figure 8b. In

addition to the interannual variability, we also find that the spring peak is more pronounced in GPPfluxcom and GPPmodis than
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in GPPvodtemp, which might point towards a surplus of carbohydrates in spring that are incorporated for building up biomass
later in the year or may be related to differences in land cover.

For the example in Africa (Figure 8c), where correlations with SPEI12 were positive, GPPvodtemp generally appears to
be a bit higher relative to GPPfluxcom and GPPmodis at the end of each growing period. In face of dry conditions, however,
GPPvodtemp shows a stronger reduction in GPP than GPPfluxcom and GPPmodis at the end of the growing season, as observed
in 2006 and 2009. Despite some differences in the time series between GPPvodtemp and the reference data sets, the temporal
dynamic is generally similar between the data sets. This indicates that the sink-driven GPP shows a slightly different response
to changes in environmental conditions for this region, which then results in the observed positive correlations with SPEL.
Considering the residuals along the SPEI12 gradient for this region, we find that the residuals increase with SPEI12 for all
categories except for very wet conditions (Figure AS8c).

The time series for Australia (Figure 8d) shows that GPPvodtemp is generally reduced during dry conditions and increases
relative to GPPfluxcom and GPPmodis during wet conditions. The increase in GPPvodtemp relative to the reference data
sets appears to be strongest for the period following one year after long-term dry conditions, i.e. in 2009, 2011 and 2012.

Consistently, the residuals show a clear increase along the SPEI12 categories (Figure A8d).

4 Discussion
4.1 Impact of adding temperature as model input

The performance of the VOD-GPP model was shown to improve with the addition of an interaction term between ¥OB-V O D
and temperature mainly in terms of temporal dynamic. Our results showed that the inerease-improvement in temporal dy-
namic was mainly observed for temperate and cold regions. Since the growing season in these regions is largely controlled by
temperature, this indicates that the improvement may largely be a seasonal effect. When analyzing the temperature response
of respiration across biomes, both spatial and temporal differences resulting from thermal acclimation need to be taken into
account [Vanderwel et al., 2015]. On the spatial scale, temperature sensitivity largely varies with mean annual temperature
across biomes [Piao et al., 2010; Vanderwel et al., 2015]. On the temporal scale, temperature-corrected respiration rates, as
observed for stem respiration of deciduous trees or for needle-leave evergreen trees, exhibit a seasonal variation leading to
higher respiration rates during summer than during winter [Maier et al., 1998; Ceschia et al., 2002; Vose and Ryan, 2002; Zha
et al., 2004]. Consistently, we observed a dampening of GPPvodtemp during winter compared to GPPvod. The addition of tem-
perature thus seems to enable the model to reflect differences in basal respiration rates between growing and dormant periods
in these regions. Although the temporal component of thermal acclimation of respiration appears to be the dominant contribu-
tion, the resulting dependency on temperature represents the cumulative effect of spatial and temporal thermal acclimation of
respiration as the relationship for the temperature dependency was estimated from the data without a priori assumptions.

In addition to the temperature dependency, Ra also varies with tissue nitrogen content [Maier et al., 1998; Ceschia et al.,
2002; Vose and Ryan, 2002; Tjoelker et al., 2008], which may thus contribute to uncertainties in the GPP estimation derived
from VOD. Ra is also known to vary between plant tissues [Vose and Ryan, 2002; Gifford, 2003]. The respiration of woody
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tissue is generally lower than for leaves [Vose and Ryan, 2002]. Since VOD generally increases with the fraction of woody
vegetation [Chaparro et al., 2019], using the median of VOD as model input may potentially compensate at least partly for

differences in respiration rates of stems and branches versus leaves within a grid cell.
4.2 Bias between GPP data sets

The addition of temperature dependency revealed contrasting results for the bias. While reductions in bias were observed for
temperate and cold regions, a strong increase in bias was found for the tropics. Since the interaction term between YOD-and

T2Mrepresents-a3Drelationship )V O D and T2 M represents a relationship in the 3-dimensional space, certain combinations of
VODb-andT2M-VOD and T2 intervals in the parameter space may not be well represented by the training data. FLUXNET

stations are not evenly distributed around the globe, as the majority of stations are located in the temperate region. This may

have caused the model to be not well constrained in certain regions, e.g. where temperature and VOD-V QD are very high,

and thus might have contributed to the increase in bias in the tropics. Therefore, additional FLUXNET stations might help

16



375

380

385

390

395

400

to better constrain the VOD-GPP model. Nevertheless, differences between the dataset were already evident at the site-level,
which suggests that the observed difference at global scale may at least partly be caused by differences in the training dataset.
In general, the agreement in annual GPP estimates is lowest in the tropics [Anav et al., 2015]. Estimates for the FLUXCOM
RS setup, which was used in our study, were reported to yield lower global estimates than the FLUXCOM RS+METEO setup
or GPP estimates from vegetation models [Jung et al., 2020]. Similarly, MODIS was found to underestimate GPP in the tropics
[Turner et al., 2006]. The need for better constraints for GPP estimates especially in the tropics is well recognized [MacBean
et al., 2018] and tackled in different studies [e.g., MacBean et al., 2018; Sun et al., 2018; Wu et al., 2020] but is usually

hampered by the availability of in situ estimates.

4.3 Implications of possible saturation of VOD at high biomass

The choice of microwave frequency for the estimation of GPP may have certain implications. Different studies have demonstrated
that L-band VOD yields more robust estimates of total above-ground biomass than X-band VOD, as low frequency VOD does
not saturate at high biomass values [Chaparro et al., 2019: Frappart et al., 2020; Li et al.. 2021]. Nonetheless, the impact of
such potential saturation with biomass on the estimation of GPP is less trivial, especially with regard to densely vegetated areas
like the tropics. Non-linearity in the conversion between VOD and AGB should ideally be reflected in the partial dependency
plot of GAM. which was also the reason for choosing this type of modelling approach. Scatterplots of the resulting GPPvodtemp
estimates did not show clear signs of saturation at high in situ GPP. The FLUXNET training data set, however, only has few.
stations in the tropics and thus the robustness of the model may be limited by the availability of in situ stations. Apart from
this, the relationship between VOD and GPP has been found to be in closer agreement for X-band VOD than for L-band
(Teubner et al., 2018, 2019; Kumar et al., 2020], which was also observed for the correlation with in situ FLUXNET GPP
(Figure A1). At first glance, this might appear contradictory to the above-mentioned better performance of L-band VOD for
biomass estimation. A comparison of biomass estimates from different plant components with GPP, however, demonstrated that
large structural components, which make up a large fraction of the total biomass, may contribute less to GPP than metabolically.
active plant parts [Litton et al., 2007]. Since high frequency VOD is more sensitive small plant parts like leaves and twigs
[Woodhouse, 2017], this could be an explanation why X-band VOD might be better suited for the estimation of GPP and why
saturation at high total above-ground biomass may be less of an issue here.

4.4 Independence of global GPP data sets

For the comparison with VOD-based GPP estimates, we used independent global data set from FLUXCOM and MODIS. Both
data sets include to some extent information from FLUXNET data. FLUXCOM has been trained against FLUXNET data
[Tramontana et al., 2016; Jung et al., 20201, however, with a larger number of stations than in the freely available Tier 1 data
set that was used for our model. Also. MODIS has been partly calibrated to some FLUXNET stations [Running et al., 1999].
Therefore, the FLUXCOM and MODIS may not be fully independent from our VOD-based GPP estimates. Nevertheless, there
is no alternative to constrain absolute GPP estimates at global scale than by using FLUXNET data.
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4.5 The “zero-GPP problem” and non-structural carbohydrates

For GPPvodtemp, we observed that winter GPP values for an example over Europe were slightly higher compared to GPPflux-
com and GPPmodis. This issue of estimating GPP values close to zero was also observed in the scatter plots between GP-
Pvodtemp and in situ GPPfluxnet. The reason for the overestimation at low GPP may be on the one hand an artefact related
to the rehydration of plant residues after rain events and on the other hand may be explained by the sink-driven nature of our
approach. In the latter case, the non-zero GPPvodtemp values may be caused by perennial vegetation. Both evergreen and de-
ciduous vegetation are respiring throughout the dormant period [Maier et al., 1998; Vose and Ryan, 2002] and concurrently are
containing water. In turn, this presence of vegetation water content is detected through microwave sensors leading to non-zero
GPPvodtemp estimates. It thus may point towards the existence of a storage term. In plants, photosynthetic assimilates can
be stored in the form of non-structural carbohydrates (NSC), which can be converted back to plant usable sugars to support
respiration during the dormant period and growth at the start of the growing season [e.g., Martinez-Vilalta et al., 2016]. For
tropical forest plots, the balancing of plot level measurements of source and sink terms showed a decoupling between the two in
response to drought which the authors attributed to the existence of NSC [Doughty et al., 2015]. Therefore, such a storage term
can thus support a temporary imbalance between sources and sinks of carbon, which may translate into differences between

source- and sink-driven GPP.
4.6 Magnitude of input terms

Based on the partial dependency plots, we found that for the maintenance-related term, i.e. the interaction term between VOB
and-T2MV OD and T2M, the value range is higher than for AYODAV O D. Although our model represents the sum of NPP
and growth Ra and not just growth Ra, the magnitude of the two input terms is consistent with studies that analyzed the
contribution of maintenance and growth to Ra. For whole plants as well as for stem respiration of boreal needle-leave trees,
maintenance respiration was shown to play the dominant role for Ra with a contribution 70% (Chambers et al., 2004) and 80%

(Zha et al., 2004), respectively.
4.7 Response to water availability

The analysis of VOD-GPP residuals with respect to FLUXCOM and MODIS revealed that GPPvodtemp largely showed a
similar behavior as the independent GPP data sets as demonstrated by the widespread none-signtficant-correlations-between
non-significant correlations with SPEI. This result is further supported by the general agreement in interannual variability. In
addition to the possible impact of NSC, occurrences of significant correlations between VOD-GPP residuals and SPEI may
indicate different plant strategies for dealing with changes in dry or wet conditions. For negative correlations, this could be
mainly related to differences in plant hydraulics, while for positive correlations, it might indicate shifts between above- and
belowground carbon allocation.

Different plant strategies with regard to hydraulics can be expressed with the concept of isohydricity, which describes the

regulation of stomatal control [Konings and Gentine, 2017; Giardina et al., 2018; Martinez-Vilalta and Garcia-Forner, 2017].
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At ecosystem level, this parameter can be obtained using the difference in twice daily overpasses of microwave observations
[Konings and Gentine, 2017]. Although Martinez-Vilalta and Garcia-Forner [2017] argue that the regulation of water potential
may not necessarily be strongly coupled with the assimilation during drought, the degree of isohydricity may still be an
explanation for the observed variation in GPPvodtemp relative to GPPfluxcom and GPPmodis. Pronounced negative correlation
for the analysis of GPP residuals were found in Argentina and the US corn belt, which are regions where Konings and Gentine
[2017] observed high values of isohydricity. Corn, which exhibits isohydric behavior [Lambers and Oliveira, 2019; Martinez-
Vilalta and Garcia-Forner, 2017], i.e. is maintaining water potential through strong regulation of stomata, additionally has the
ability, like other grasses, to roll up leaves in response to drought for reducing the loss of water from the plant’s cuticular [e.g.,
Ribaut et al., 2009]. In conjunction with the isohydric behavior, this might be an explanation for the strong signal reduction of
GPPfluxcom and GPPmodis relative to GPPvodtemp observed over Argentina. Although our analysis is based on 8-daily time
steps, characteristics of plant hydraulics which are retrieved from sub-daily data show similar features as for our analysis of
residuals between source- and sink-driven GPP in response to changes in water availability.

In contrast to the isohydric behavior, anisohydric behavior should not lead to pronounced differences between GPPvodtemp
and GPPfluxcom or GPPmodis as stomatal conductance and leaf water potential are both reduced in response to dry conditions
[Lambers and Oliveira, 2019]. The anisohydric behavior thus potentially relates to the nore-signtficant-non-significant correla-
tions. Nevertheless, the degree of isohydricity may also vary between wet and dry season [Konings and Gentine, 2017], which
also needs to be taken into account for the interpretation of the residuals.

The observed positive correlations, i.e. reductions of GPPvodtemp relative to GPPfluxcom or GPPmodis, could be associated
with a stronger shift of assimilates to belowground plant organs. Different studies have shown that root growth may increase
in face of drought to maintain water access [Sanaullah et al., 2012; Burri et al., 2014] and consequently also nutrient supply
[Lambers and Oliveira, 2019]. Since VOD observations only detect abeveground-above-ground living vegetation, a shift to-
wards belowground plant organs may lead to apparently lower GPPvodtemp. Nevertheless, also the inverse, i.e. an increase of
allocation to shoots, was observed in the presence of legume species during drought [Sanaullah et al., 2012] and for tropical
forest plots after drought [Doughty et al., 2015].

Comparisons of GPPvodtemp with in situ observations of vegetation properties during such extreme events like drought,
however, may be needed to improve the understanding of the plant’s response to changes in environmental conditions at the

ecosystem to global scale.

5 Conclusions

The VOD-GPP model was analyzed with regard to the impact of adding temperature as model input in order to account for
the temperature dependency of autotrophic respiration. The resulting GPP estimates, GPPvodtemp, showed a high consistency
with GPPfluxcom and GPPmodis for the temporal dynamic both at intra- and interannual time scale. For bias and error, the
addition of temperature resulted in a regionally diverse response with a general improvement for temperate and cold regions

and a decrease in performance mainly in the tropics. The improvement upon adding temperature, however, was less than might
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470 have been expected, which indicates that the previous lack of temperature dependency in the model formulation can only
partly account for the observed differences between the global GPP datasets. Nevertheless, this result demonstrates that an
improvement by adding temperature is possible but might require further model constraints for a more robust estimation of
GPP.

The analysis of the VOD-GPP residuals revealed that GPPvodtemp largely yields a similar behavior as GPPfluxcom and

475 GPPmodis with respect to SPEIL This highlights that the relationship between VOD and GPP fargely-holds-true-generally may
be valid even under varying conditions of water availability. For some regions, where significant correlations were observed, the
observed differences between GPPvodtemp and GPPfluxcom or GPPmodis may indicate different plant strategies for dealing
with drought conditions.

Overall, our results showed that GPPvodtemp potentially contains information on plant characteristics that may be relevant

480 for large-scale ecological studies that are addressing the response to varying environmental conditions.

Data availability. VODCA products are available at https://doi.org/10.5281/zenodo.2575599. FLUXCOM products are available from http:
/Iwww.fluxcom.org or on request to Martin Jung (mjung @bgc-jena.mpg.de). MODIS GPP estimates can be accessed at https://lpdaac.usgs.
gov/products/mod17a2hv006/. Data form the FLUXNET network is available at https://fluxnet.org/data/fluxnet2015-dataset/.
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Figure A1. Pre-analysis of correlation between in situ FLUXNET GPP and single sensor VOD from L- and X-band. (a): Pearson correlation
between FLUXNET GPP (mean of GPP_DT _VUT_REF and GPP_NT_VUT_REF) and L-band VOD (SMOS VOD-L, 7/2010-12/2014
and X-band VOD (AMSR-E VOD-X, 1/2007-9/2011). Data were resampled to 8-daily or monthly values. The analysis was conducted onl

for stations where both of the VOD data set are available (47 stations). For details about the VOD datasets and their data processin

see Teubner et al. [2018]. (b): Composition of IGBP land cover classes for the stations used in this pre-analysis. Abbreviations: GRA
Grasslands), CRO (Croplands), ENF (Evergreen Needleleaf Forests), DBF (Deciduous Broadleaf Forests), EBF (Evergreen Broadleaf

Forests), SAV (Savannas), MF (Mixed Forests), WET (Permanent Wetlands), WSA (Woody Savannas) and OSH (Open Shrublands).
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Figure A2. Temporal median maps for (a) GPPvodtemp, (b) GPPfluxcom, (c) GPPvod, (d) GPPmodis and (e) difference between the median
maps of GPPvodtemp and GPPvod. For GPPvodtemp and GPPvod, areas where both GPPfluxcom and GPPmodis are missing were masked,

since these data were not used during the analysis. Data were computed over the whole study period (2003-2015).
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Figure A3. Location of FLUXNET Tierl v1 stations within the period 2003 to 2014. The size of the circles represents the number of available
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maximm-Annual values were calculated from 8-daily GPP for each data set and cover the FLUXNET period 2003-2014.

—— GPPfluxcom GPPvod
—— GPPmodis —— GPPvodtemp
1.0
0.8
i
o 06'
i)
o
8 0.41
(7]

o
(V)

g
o

40 -20 O 20 40 60 80
Latitude [°N]

Figure AS. Scaled latitudinal distribution of annual GPP for GPPvodtemp, GPPvod, GPPfluxcom and GPPmodis for the study period

2003-2015. Data are scaled by dividing the latitudinal distribution by the maximum of the latitudinal distribution for each data set.
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485 Table Al. Overview of FLUXNET Tierl vl stations within the period 2003 to 2014. Land cover from IGBP (International

Geosphere—Biosphere Programme) is obtained from the FLUXNET station metadata. Land cover abbreviations and number of stations
er land cover class sorted by station number: ENF (Evergreen Needleleaf Forests; 23), GRA (Grasslands; 22), DBF (Deciduous Broadleaf

Forests; 14), CRO (Croplands; 11), EBF (Evergreen Broadleaf Forests; 9), WET (Permanent Wetlands; 9), OSH (Open Shrublands; 7), MF

Mixed Forests; 6), SAV (Savannas; 6), WSA (Woody Savannas; 4) and CSH (Closed Shrublands; 1).

FLUXNET-ID Name Lon [° E] Lat [° N] Years used Land cover
AR-SLu San Luis -66.46 -33.46 2009-2011 MF
AR-Vir Virasoro -56.19 -28.24 2010-2012 ENF
AT-Neu Neustift 11.32 47.12 2003-2012 GRA
AU-ASM Alice Springs 133.25 -22.28 2010-2013 ENF
AU-Ade Adelaide River 131.12 -13.08 2007-2009 WSA
AU-Cpr Calperum 140.59 -34.00 2010-2013 SAV
AU-Cum Cumberland Plains 150.72 -33.61 2012-2013 EBF
AU-DaP Daly River Savanna 131.32 -14.06 2008-2013 GRA
AU-DaS Daly River Cleared 131.39 -14.16 2008-2013 SAV
AU-Dry Dry River 132.37 -15.26 2008-2013 SAV
AU-Emr Emerald, Queensland, Australia 148.47 -23.86 2011-2013 GRA
AU-Fog Fogg Dam 131.31 -12.55 2006-2008 WET
AU-GWW Great Western Woodlands, Western Australia, Australia 120.65 -30.19 2013-2014 SAV
490 AU-RDF Red Dirt Melon Farm, Northern Territory 132.48 -14.56 2011-2013 WSA
AU-Rig Riggs Creek 145.58 -36.65 2011-2013 GRA
AU-Rob Robson Creek, Queensland, Australia 145.63 -17.12 2014-2014 EBF
AU-Tum Tumbarumba 148.15 -35.66 2003-2013 EBF
AU-Whr Whroo 145.03 -36.67 2011-2013 EBF
BE-Bra Brasschaat 4.52 51.31 2004-2013 MF
BE-Lon Lonzee 4.75 50.55 2004-2014 CRO
BE-Vie Vielsalm 6.00 50.31 2003-2014 MF
BR-Sa3 Santarem-Km83-Logged Forest -54.97 -3.02 2003-2004 EBF
CA-NS1 UCI-1850 burn site -98.48 55.88 2003-2005 ENF
CA-NS3 UCI-1964 burn site -98.38 5591 2003-2005 ENF
CA-NS4 UCI-1964 burn site wet -98.38 5591 2003-2005 ENF
CA-NS5 UCI-1981 burn site -98.49 55.86 2003-2005 ENF
CA-NS6 UCI-1989 burn site -98.96 5592 2003-2005 OSH
CA-NS7 UCI-1998 burn site -99.95 56.64 2003-2005 OSH

continued on next page
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FLUXNET-ID Name Lon [° E] Lat [° N] Years used Land cover
CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce -74.34 49.69 2003-2010 ENF
CA-SF1 Saskatchewan - Western Boreal, forest burned in 1977 -105.82 54.49 2003-2006 ENF
CA-SF2 Saskatchewan - Western Boreal, forest burned in 1989 -105.88 54.25 2003-2005 ENF
CA-SF3 Saskatchewan - Western Boreal, forest burned in 1998 -106.01 54.09 2003-2006 OSH
CH-Cha Chamau 8.41 47.21 2006-2012 GRA
CH-Fru Friiebiiel 8.54 47.12 2006-2012 GRA
CH-Oel Oensingen grassland 7.73 47.29 2003-2008 GRA
CN-Cha Changbaishan 128.10 42.40 2003-2005 MF
CN-Cng Changling 123.51 44.59 2007-2010 GRA
CN-Dan Dangxiong 91.07 30.50 2004-2005 GRA
CN-Din Dinghushan 112.54 23.17 2003-2005 EBF
CN-Du2 Duolun_grassland (D01) 116.28 42.05 2006-2008 GRA
CN-Ha2 Haibei Shrubland 101.33 37.61 2003-2005 WET
CN-HaM Haibei Alpine Tibet site 101.18 37.37 2003-2004 GRA
CN-Qia Qianyanzhou 115.06 26.74 2003-2005 ENF
CN-Sw2 Siziwang Grazed (SZWG) 111.90 41.79 2010-2012 GRA
CZ-BK1 Bily Kriz forest 18.54 49.50 2003-2008 ENF
CZ-BK2 Bily Kriz grassland 18.54 49.49 2004-2006 GRA
DE-Akm Anklam 13.68 53.87 2009-2014 WET
DE-Gri Grillenburg 13.51 50.95 2004-2014 GRA
DE-Hai Hainich 10.45 51.08 2003-2012 _DBF
DE-Kli Klingenberg 13.52 50.89 2004-2014 CRO
DE-Lkb Lackenberg 13.30 49.10 2009-2013 ENF
DE-Obe Oberbirenburg 13.72 50.78 2008-2014 ENF
DE-RuS Selhausen Juelich 6.45 50.87 2011-2014 CRO
DE-Spw Spreewald 14.03 51.89 2010-2014 WET
DE-Tha Tharandt 13.57 50.96 2003-2014 ENF
DK-NuF Nuuk Fen -51.39 64.13 2008-2014 WET
DK-Sor Soroe 11.64 55.49 2003-2012 DBF
DK-ZaH Zackenberg Heath -20.55 74.47 2003-2008 GRA
ES-LgS Laguna Seca -2.97 37.10 2007-2009 OSH
ES-Ln2 Lanjaron-Salvage logging -3.48 36.97 2009-2009 OSH
FI-Hyy Hyytiala 24.30 61.85 2003-2014 ENF
FI-Jok Jokioinen 23.51 60.90 2003-2003 CRO

continued on next page
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FLUXNET-ID Name Lon [° E] Lat [° N] Years used Land cover
FR-Gri Grignon 1.95 48.84 2004-2013 CRO
FR-Pue Puechabon 3.60 43.74 2003-2013 EBF
GF-Guy Guyaflux (French Guiana) -52.92 5.28 2004-2012 EBF
IT-CA1 Castel d’Asso 1 12.03 42.38 2011-2013 DBF
IT-CA2 Castel d’Asso 2 12.03 42.38 2011-2013 CRO
IT-CA3 Castel d’Asso 3 12.02 42.38 2011-2013 DBF
IT-Cp2 Castelporziano 2 12.36 41.70 2012-2013 EBF
IT-Isp Ispra ABC-IS 8.63 45.81 2013-2014 _DBF
IT-Lav Lavarone 11.28 45.96 2003-2012 ENF
IT-Noe Arca di Noé - Le Prigionette 8.15 40.61 2004-2012 CSH
IT-PT1 Parco Ticino forest 9.06 45.20 2003-2004 DBF
IT-Ren Renon 11.43 46.59 2003-2013 ENF
IT-Rol Roccarespampani 1 11.93 42.41 2003-2008 DBF
IT-Ro2 Roccarespampani 2 11.92 42.39 2003-2012 DBF
IT-SR2 San Rossore 2 10.29 43.73 2013-2014 ENF
IT-SRo San Rossore 10.28 43.73 2003-2012 ENF
IT-Tor Torgnon 7.58 45.84 2008-2013 GRA
JP-MBF Moshiri Birch Forest Site 142.32 44.39 2003-2005 DBF
JP-SMF Seto Mixed Forest Site 137.08 35.26 2003-2006 MEF
NL-Hor Horstermeer 5.07 52.24 2004-2011 GRA
NL-Loo Loobos 5.74 52.17 2003-2013 ENF
NO-Adv Adventdalen 15.92 78.19 2012-2014 WET
RU-Che Cherski 161.34 68.61 2003-2005 WET
RU-Cok Chokurdakh 147.49 70.83 2003-2013 _OSH
RU-Fyo Fyodorovskoye 32.92 56.46 2003-2013 ENF
RU-Hal Hakasia steppe 90.00 54.73 2003-2004 GRA
SD-Dem Demokeya 30.48 13.28 2005-2009 SAV
US-AR1 ARM USDA UNL OSU Woodward Switchgrass 1 -99.42 36.43 2009-2012 GRA
US-AR2 ARM USDA UNL OSU Woodward Switchgrass 2 -99.60 36.64 2009-2012 GRA
US-ARM ARM Southern Great Plains site- Lamont -97.49 36.61 2003-2012 CRO
US-Blo Blodgett Forest -120.63 38.90 2003-2007 ENF
US-Hal Harvard Forest EMS Tower (HFR1) -72.17 42.54 2003-2012 DBF
US-Los Lost Creek -89.98 46.08 2003-2014 WET
US-MMS Morgan Monroe State Forest -86.41 39.32 2003-2014 DBF

continued on next page
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FLUXNET-ID Name Lon [° E] Lat [° N] Years used Land cover
US-Meb6 Metolius Young Pine Burn -121.61 44.32 2010-2012 ENF
US-Myb Mayberry Wetland -121.77 38.05 2011-2014 WET
US-Nel Mead - irrigated continuous maize site -96.48 41.17 2003-2013 CRO
US-Ne2 Mead - irrigated maize-soybean rotation site -96.47 41.16 2003-2013 CRO
US-Ne3 Mead - rainfed maize-soybean rotation site -96.44 41.18 2003-2013 CRO
US-SRM Santa Rita Mesquite -110.87 31.82 2004-2014 WSA
US-Syv Sylvania Wilderness Area -89.35 46.24 2003-2014 MEF
US-Ton Tonzi Ranch -120.97 38.43 2003-2014 WSA
US-Tw3 Twitchell Alfalfa -121.65 38.12 2013-2014 CRO
US-UMd UMBS Disturbance -84.70 45.56 2007-2014 _DBF
US-Var Vaira Ranch- Ione -120.95 38.41 2003-2014 GRA
US-WCr Willow Creek -90.08 45.81 2003-2014 _DBF
US-Whs Walnut Gulch Lucky Hills Shrub -110.05 31.74 2007-2014 _OSH
US-Wkg Walnut Gulch Kendall Grasslands -109.94 31.74 2004-2014 GRA
ZA-Kru Skukuza 31.50 -25.02 2003-2010 SAV
ZM-Mon Mongu 23.25 -15.44 2007-2009 DBF
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Table A2. Leave-site-out cross validation for GPPvodtemp and GPPvod. The analysis was conducted for the full signal as well as for the

anomalies from the mean seasonal cycle. Anomalies were calculated after model application. Values represent mean and standard deviation

Pearson r [-] UbRMSE [gC m™ d'] Bias [gC m™ d]
GPPvod 040£0.32 257 £1.14 -0.04 £ 2.01
GPPvodtem 034£031 230 £ 1.01 -0.08 £ 2.01
GPPvod anomalies 018 £0.22 157 £0.78 -0.00 £ 0.00
GPPyodtemp anomalies 022 £0.19 133 £0.76. 0.00 £ 0.00
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