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Abstract. Vegetation optical depth (VOD) from microwave satellite observations has received much attention in global vegeta-

tion studies in recent years due to its relationship to vegetation water content and biomass. We recently have shown that VOD is

related to plant productivity, i.e. gross primary production (GPP). Based on this relationship between VOD and GPP we devel-

oped a theory-based machine learning model to estimate global patterns of GPP from passive microwave VOD retrievals. The

VOD-GPP model generally showed good agreement with site observations and other global data sets in temporal dynamic but5

tended to overestimate annual GPP across all latitudes. We hypothesized that the reason for the overestimation is the missing

effect of temperature on autotrophic respiration in the theory-based machine learning model. Here we aim to further assess and

enhance the robustness of the VOD-GPP model by including the effect of temperature on autotrophic respiration within the

machine learning approach and by assessing the interannual variability of the model results with respect to water availability.

We used X-band VOD from the VOD Climate Archive (VODCA) data set for estimating GPP and used global state-of-the art10

GPP data sets from FLUXCOM and MODIS to assess residuals of the VOD-GPP model with respect to drought conditions as

quantified by the Standardized Precipitation and Evaporation Index (SPEI).

Our results reveal an improvement in model performance for correlation when including the temperature dependency of

autotrophic respiration . This increase
:::::::
(average

:::::::::
correlation

:::::::
increase

::
of

:::::
0.18).

::::
This

:::::::::::
improvement

:
in temporal dynamic is largest

for regions outside
:::::
larger

:::
for

:::::::::
temperate

:::
and

::::
cold

:::::::
regions

::::
than

:::
for

:
the tropics. For error

:::::::
ubRMSE

:
and bias, the results are15

regionally diverse and are compensated in the global average.
::::::::::::
Improvements

:::
are

::::::::
observed

::
in
:::::::::

temperate
::::
and

::::
cold

:::::::
regions

::::
while

:::::::::
decreases

::
in

:::::::::::
performance

:::
are

:::::::
obtained

:::::::
mainly

::
in

:::
the

:::::::
tropics.

:::
The

::::::
overall

::::::::::::
improvement

:::::
when

::::::
adding

::::::::::
temperature

::::
was

:::
less

::::
than

::::::::
expected

::::
and

::::
thus

::::
may

::::
only

:::::
partly

:::::::
explain

:::::::::
previously

::::::::
observed

:::::::::
differences

::::::::
between

:::
the

::::::
global

::::
GPP

::::::::
datasets. On

interannual time scales, estimates of the VOD-GPP model agree well with GPP from FLUXCOM and MODIS. We further find

that the residuals between VOD-based GPP estimates and the other data sets do not significantly correlate with SPEI which20

demonstrates that the VOD-GPP model can capture responses of GPP to water availability even without including additional

information on precipitation, soil moisture or evapotranspiration. However, some regionsreveal significant
:::::::::
Exceptions

:::::
from

:::
this

::::
rule

::::
were

::::::
found

::
in

:::::
some

:::::::
regions:

:::::::::
significant

:::::::
negative

:
correlations between VOD-GPP residuals with SPEI , which

:::
and

::::
SPEI

:::::
were

:::::::
observed

::
in
:::
the

:::
US

:::::
corn

::::
belt,

:::::::::
Argentina,

::::::
Eastern

:::::::
Europe,

::::::
Russia

:::
and

::::::
China,

:::::
while

:::::::::
significant

:::::::
positive

::::::::::
correlations
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::::
were

:::::::
obtained

::
in

:::::
South

::::::::
America,

::::::
Africa

:::
and

::::::::
Australia.

::
In

:::::
these

:::::::
regions,

:::
the

::::::::
significant

::::::::::
correlations

:
may indicate different plant25

strategies for dealing with variations in water availability.

Overall, our findings support the robustness of global microwave-derived estimates of gross primary production for large-

scale studies on climate-vegetation interactions.

Copyright statement. TEXT

1 Introduction30

Vegetation optical depth (VOD) from microwave satellite observations provide
:::::::
provides the opportunity for studying large-

scale vegetation dynamics due to its sensitivity to the vegetation water content and above-ground biomass. Different studies

have employed VOD for deriving various plant properties or vegetation characteristics that can be related to the plant’s water

content, including biomass estimation [Liu et al., 2015;
::::::::::::::::
Brandt et al., 2018;

::::::::::::::::::::::::::::
Rodríguez-Fernández et al., 2018;

::::::::::::::::::
Chaparro et al., 2019;

:::::::::::::
Fan et al., 2019;

::::::::::::::::::
Frappart et al., 2020;

::::::::::::::::::
Wigneron et al., 2020;

:::::::::::
Li et al., 2021], crop yield [Chaparro et al., 2019

:::::::::::::::::
Chaparro et al., 2018],35

tree mortality [Rao et al., 2019; Sapes et al., 2019], analysis of burned area [Forkel et al., 2019]and
:
, ecosystem-scale isohy-

dricity [Konings and Gentine, 2017]
:
,
::::
plant

::::::
water

::::::
uptake

::::::
during

:::
dry

::::::
downs

:
[
::::::::::::::::
Feldman et al., 2018]

:::
and

:::::
plant

:::::
water

:::::::
storage

[
:::::::::::::
Tian et al., 2018]. VOD, or microwave satellite observations in general, are also analyzed for its potential in detecting the

impact of drought [Song et al., 2019; Crocetti et al., 2020]. Despite the sensitivity of VOD to vegetation water content, the

relationship between VOD and GPP has not yet been analyzed with regard to whether it holds true along a gradient
::::
how

:::
the40

:::::::::
relationship

::::::::
responds

::
to

:::::::
varying

:::::::::
conditions of dry- or wetnessconditions.

Recently, we have shown that VOD is related to plant productivity, i.e. gross primary production (GPP) [Teubner et al.,

2018]. Based on these findings, we developed a theory-guided machine learning model to estimate GPP from VOD (VOD-GPP

model) and trained the model using eddy covariance estimates of GPP from the FLUXNET network [Teubner et al., 2019].

The VOD-GPP model relies on estimating carbon sink terms, i.e. net primary production (NPP) and autotrophic respiration45

(Ra), based on VOD as a proxy for aboveground
:::::::::::
above-ground

:
living biomass. The VOD-GPP model thus represents a carbon

sink-driven approach. Due to the utilization of
:::::
Since

:::
the

:::::::::
VOD-GPP

:::::
model

::::
uses biomass as main inputto the VOD-GPP model,

the estimation
:
of

:::::
GPP does not rely on input variables that are commonly used in source-driven approaches, e.g. absorption of

photosynthetically active radiation as primary input term or vapor pressure deficit as controlling factor for stomatal conductance

[Running et al., 2000; Turner et al., 2005; Goodrich et al., 2015; Zhang et al., 2016, 2017]. Although different studies are50

tackling the question of how much information on biomass is actually contained in the VOD signal [Momen et al., 2017;

Vreugdenhil et al., 2018; Zhang et al., 2019], it might be worth noting that the water content can be seen as a necessity for

our model , since
::
an

:::::::::
important

:::::
aspect

::
in

:::
our

::::::
model

::::::::
approach

:::::
since

:
it
:::::::
presents

:::
the

:::::
living

::::
part

::
of

:::
the

:::::::::
vegetation

:::
and

:
only living

cellsthat contain water
:
,
:::::
which

::::::
contain

::::::
water, are able to respire. We have shown that the VOD-GPP model can well represent

temporal dynamics of GPP but that it overestimates GPP especially in temperate and boreal regions [Teubner et al., 2019].55
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We hypothesize that this overestimation may be caused by a missing representation of temperature dependency of autotrophic

respiration in the VOD-GPP model.

Ra is the process through which chemical energy that was stored by building up carbohydrates during photosynthesis is

gained by converting carbohydrates back into carbon dioxide. It is generally known that Ra is a temperature-dependent process

[e.g., Atkin and Tjoelker, 2003]. Modelling the response of Ra to temperature, however, is complex due to the existence of60

thermal acclimation [Atkin and Tjoelker, 2003]. Ra is commonly represented through an exponential function with Q10 as

base which is multiplied with a basal respiration rate [e.g., Smith and Dukes, 2013]. The base value Q10 describes how much

Ra changes when temperature changes by 10°C [e.g., Atkin et al., 2008]. Although global models often use constant values for

either one parameter or both parameters [Gifford, 2003; Smith and Dukes, 2013], studies have shown that both basal respiration

rate and Q10 may vary with temperature [Tjoelker et al., 2001; Wythers et al., 2013]. The implementation of such temperature65

acclimation yields a functional representation that decreases again at higher temperatures and thus takes into account that

respiration may decrease outside an optimum temperature range [Smith and Dukes, 2013].

Here we aim to assess the impact of the temperature dependency of Ra in the VOD-GPP model and if it can improve model

performance. Furthermore, we will test the plausibility of the model by comparing the estimated interannual variability of

GPP with independent state-of-the art global data sets of GPP and by assessing model residuals with respect to variations in70

climatological water availability as represented by the Standardized Precipitation and Evaporation Index (SPEI). Since source-

(GPP) and sink-terms (NPP + Ra) should theoretically be in balance, any differences between the two approaches that are

related to variations in water availability may give insight into different plant strategies for dealing with dry or wet conditions

and thus may be of interest for ecological or plant-physiological studies at large-scale.

2 Data and methods75

We analysed

2.1
:::::

Choice
:::
of

:::::::::
microwave

:::::::::
frequency

:::
The

:::::::::
VOD-GPP

::::::
model

:::::
relies

::
on

::::::::
biomass

::
as

:::::
input.

:::::::::::
Nevertheless,

::::
the

:::::
choice

:::
of

:::::::::
microwave

:::::::::
frequency

::
for

:::::::::
estimating

:::::
GPP

::::
may

::::
look

:::::::::::::
counterintuitive.

::::
On

:::
the

:::
one

:::::
hand,

:::::
VOD

:::::
from

::::
low

:::::::::
microwave

::::::::::
frequencies

::::
like

::::::
L-band

:::::
have

::::
been

::::::::::::
demonstrated

::
to

:::
be

:::::
better

:::::
suited

::
as

:::::
proxy

:::
for

::::::::
mapping

::::
total

:::::::::::
above-ground

::::::::
biomass

::::
than

::::
high

::::::::
frequency

::::::
VOD,

:::
i.e.

::::::
X-band

:::::
VOD,

:::
as

::::::
L-band

:::::
VOD80

:::::::
saturates

:::
less

::
at
::::
high

:::::::
biomass

::::::
values [

::::::::::::::::::
Chaparro et al., 2019;

:::::::::::::::::
Frappart et al., 2020;

::::::::::::
Li et al., 2021].

:::
On

:::
the

:::::
other

::::
hand,

::::::::
previous

:::::::
analyses

:::::::::::
demonstrated

:::
that

:::::::
X-band

:::::
VOD

:::::
shows

:
a
::::::
closer

:::::::::
agreement

::::
with

::::
GPP [

::::::
Teubner

::
et

:::
al.,

:::::
2018,

:::::
2019;

::::::::::::::::
Kumar et al., 2020]

:
.

::
In

::::::
Figure

:::
A1

:::
we

::::::
further

::::::::::
corroborated

::::
this

::::::::::
observation

:::
by

:
a
:::::::::
correlation

:::::::
analysis

::::::::
between

::
in

:::
situ

:::::
GPP

:::
and

:::::
VOD

:::::
from

::
L-

::::
and

::::::
X-band,

:::::::::::
respectively.

:::::::
Despite

:::
the

:::::
high

:::::::
fraction

:::::
(38%)

:::
of

:::::
forest

::::::
pixels

::::
used

:::
for

::::
this

:::::::::::
computation,

::::::
higher

::::::::::
correlations

:::::
were

:::::::
obtained

:::
for

:::::::
X-band

::::
than

:::
for

:::::::
L-band.

:::
An

::::::::::
explanation

::::::
could

::
be

::::
that

::::::
whole

:::::
plant

:::::::
biomass

::::
was

:::::
found

:::
to

::
be

::::
less

::::::
suited

:::
for85

::::::::
estimating

::::
GPP

:::
as

:::::::
opposed

::
to

:::::::
biomass

::
of

:::::::::::
metabolically

::::::
active

::::
plant

:::::
parts

:::
like

:::::
leaves

::::
and

:::
fine

:::::
roots [

::::::::::::::
Litton et al., 2007].

::::::
Based
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::
on

:::::
these

:::::::
findings,

:::
we

:::::::::
concluded

::::
that

:::::
higher

:::::::::
frequency

:::::
VOD

::::::
appears

::
to
:::

be
:::::
better

:::::
suited

:::
for

:::::::::
estimating

:::::
GPP

:::
and

::::::::
therefore

:::
we

::::
used

::::::
X-band

:::::
VOD

::
in

:::
our

::::::::
analysis.

2.2
::::

Data
:::
sets

:::
We

:::::::
analyzed

:
different GPP data sets derived from microwave and optical sensors as well as SPEI. As input to the VOD-GPP90

model
:
,
:
we used X-band VOD data from the VOD Climate Archive (VODCA). Since global coverage for VODCA

::::::
X-band data

starts in 2003 [Moesinger et al., 2020] and SPEI data are available through 2015, we used the common period from 2003 to

2015 for our analysis. Temporal median maps for the global GPP data sets are displayed in the supplement (Figure A2).

2.2.1 VODCA

VOD from microwave satellite observations often spans only a few years, which thus prevents
:::::::
retrievals

:::::
from

:::::
single

:::::::
sensors95

::::
often

::::
span

::::
only

::
a

::::::
certain

:::::
period

::
in

:::::
time,

:::::
which

::::
may

::::::
hamper

:
the analysis of longer periods. To overcome this problem, we used

a merged single frequency VOD from the VOD Climate Archive [VODCA; Moesinger et al., 2020] as input to our model.

Since previous analysis revealed that X-band VOD shows the closest agreement with GPP, both for the direct comparison

between VOD and GPP [Teubner et al., 2018, 2019as well as for the assimilation in land surface models Kumar et al., 2020,

we used VODCA X-band VOD to estimate GPP. VODCA [Moesinger et al., 2020] X-band (VODCAX) contains passive VOD100

derived from TMI (10.7 GHz), AMSR-E (10.7 GHz), WindSat (10.7 GHz) and AMSR2 (10.7 GHz). The VOD input data are

obtained from the Land Parameter Retrieval Model [LPRM; van der Schalie et al., 2017]. VODCAX is derived from nighttime

observations from TMI (variable overpass time), AMSR-E (descending 1:30 am), WindSat (descending 6:00 am) and AMSR2

(descending 1:30 am). The use of nighttime observations on the one hand meets the LPRM assumption of homogeneous

temperature conditions [
:::::::::::::
Owe et al., 2001] and on the other hand is better suited as proxy for plant water status than daytime105

observations. Due to diurnal differences in plant water status and the refilling during the night [El Hajj et al., 2019; Konings

and Gentine, 2017], nighttime observations are closer to the predawn water potential which is commonly used as estimator

for the daily vegetation water status [Konings and Gentine, 2017; Konings et al., 2019]. During data processing , data were

::
the

::::::::::
processing

::
of

::::::::::
VODCAX,

::::
data

:::
are masked for radio frequency interference (RFI) [

::::::::::::::::::
Moesinger et al., 2020] since RFI can

introduce spurious retrievals [Li et al., 2004; Njoku et al., 2005]. Data are available at daily resolution and 0.25° grid spacing.110

2.2.2 Independent global GPP data sets

The MOD17A2H v006 product provides global estimates of GPP which are derived from surface reflectances [Running et al.,

2004, 2015]. The algorithm is based on the light-use efficiency concept by Monteith [1972] and uses the fraction of Photosyn-

thetically Absorbed Radiation for deriving plant productivity [Running et al., 1999, 2000]. Data are produced as 8-daily GPP

estimates at 500 m resolution.115

FLUXCOM presents an upscaling of GPP from eddy covariance measurements using an ensemble of machine learning

approaches [Jung et al., 2020]. The data set is available at 8-daily resolution and 10 km grid spacing. FLUXCOM estimates
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are produced in two setups: the FLUXCOM RS is based on remote sensing data as input to the machine learning models and

the FLUXCOM RS+METEO uses meteorological data and only the mean seasonal cycle of remote sensing data [Jung et al.,

2020]. Since our approach is mainly based on remote sensing data,
::
i.e.

:::::
VOD

:::::::::::
observations,

:
we used FLUXCOM RS in our120

analysis. The FLUXCOM algorithm uses the following MODIS variables as input: Enhanced Vegetation Index, Leaf Area

Index, MODIS band 7 - Middle Infrared Reflectance, Normalized Difference Vegetation Index and Normalized Difference

Water Index.

2.2.3 In situ GPP estimation from FLUXNET

The Fluxnet2015 data set [Gilberto et al., 2020] provides daily in situ estimates of carbon, water and heat fluxes, which are125

determined using the eddy covariance technique. GPP estimates are available for two flux partitioning methods, i.e. daytime

and nighttime partitioning method. We used the mean of both partitioning methods, as suggested in [Gilberto et al., 2020],

with variable friction velocity threshold (GPP_DT_VUT_REF, GPP_NT_VUT_REF) from the freely available station data set

(Tier1 v1). Since data are available until 2014, we used data for the period from 2003 to 2014 as training data for estimating

GPP based on VOD. An overview of the FLUXNET sites is given in Figure A3 and Table A1.130

2.2.4 SPEI

For analyzing the impact of variations in water availability, we used SPEI from the SPEIbase [Beguería et al., 2017; Vicente-

Serrano et al., 2010]. The climatological water balance is calculated on different time scales ranging from 1 up to 48 months.

Since drought can act on different time scales, we used SPEI at two different aggregations, 3- and 12-month, for investigating

the response to dry and wet conditions. The 3-month SPEI (SPEI03) represents short-term effects, while the 12-month SPEI135

(SPEI12) relates to dry or wet conditions at annual time scale. Although SPEI cannot be used to express actual water shortage

for plants, it allows to indicate relative deviations from mean conditions. Because of the use of both precipitation and tempera-

ture, SPEI further enables the comparison between different biomes [Vicente-Serrano et al., 2010]. The SPEI data has monthly

resolution and a grid spacing of 0.5°.

2.2.5 ERA5-Land140

ERA5-Land produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) [C3S, 2019; Muñoz-Sabater,

2019] provides a reanalysis data set of meteorological parameters. ERA5 uses a 4D variational data assimilation scheme and

a Simplified Extended Kalman Filter [Hersbach et al., 2020]. We used skin temperature and snow data for masking VOD.

In the VOD-GPP model, we incorporated 2m air temperature (T2M
::::
T2M ) for representing the temperature dependency of

autotrophic respiration. T2M
:::::
T2M was used in our analysis, since this parameter is most common for describing the tem-145

perature dependency of autotrophic respiration for aboveground vegetation
:::::::::::
above-ground

:::::::::
vegetation

:
[
:::
e.g.,

:::::::::::::::
Ryan et al., 1997;

:::::::::::::::::
Running et al., 2000;

:::::::::::::::::
Ceschia et al., 2002;

::::::::::::::
Drake et al., 2016]. The data has hourly resolution and 9 km spatial sampling.
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2.3 Data processing

VODCAX data were masked for low temperature (skin temperature < 0°C) and snow cover (snow depth > 0cm) and
:::
then

:
aggre-

gated to 8-daily estimates by computing the mean over 8 days
::
to

:::::
match

:::
the

::::::::
temporal

::::::::
resolution

::
of

:::::::::
GPPmodis

::::
and

::::::::::
GPPfluxcom.150

These 8-daily values were then used as input to the VOD-GPP model
:::
and

:::
for

::::::
further

:::::::
analysis

:::::::::
throughout

:::
the

:::::
study. GPPflux-

com and GPPmodis were aggregated to 0.25° to match the spatial sampling of VODCAX. For the comparison with SPEI,

::::::
8-daily GPP estimates were further resampled to monthly resolution while SPEI was spatially resampled to 0.25° using the

nearest neighbour method.

2.4 GPP estimation based on VOD155

The approach of estimating GPP based on microwave radiation is
:::
and

:::
the

:::::::::::::
corresponding

::::::::
equations

:::
are

:
described in de-

tail in Teubner et al. [2019]. In short, the VOD-GPP model uses VOD as a proxy for aboveground living biomass and
::
of

:::::::::::
above-ground

:::::
living

:::::::
biomass

:::::::::
(Equation

::
1).

::
It
:
determines GPP by estimating sinks for carbohydrates, i.e. the sum of NPP and

Ra, which are represented through different VOD variables: VOD time series,
:::::::::::
VOD-derived

:::::::::
variables:

::
1)

::::
time

:::::
series

:::
of

:::
the

::::
bulk

::::
VOD

::::::
signal

::::::
(V OD;

::::::
8-daily

::::::::::
aggregated

:::::
native

:::::
VOD

::::
time

::::::
series),

::
2)
:::::

time
:::::
series

::
of

:::
the temporal change in VOD (∆VOD160

:::::::
∆V OD;

::::::::::::::::::::::::::
∆V ODt = V ODt −V ODt−1::::::::

computed
:::::

from
:::
the

::::::::
smoothed

:::::::
8-daily

:::::::::
aggregated

:::::
VOD

::::
time

::::::
series)

::::
and

:
3) and the

grid cell median of VOD (mdnVOD;
::::::::::
mdnV OD;

::::::::
calculated

::::
over

:::
the

::::::
entire

::::
VOD

::::
time

::::::
series

::
of

:::
the

::::
grid

::::
cell;

::::
used as a proxy

for vegetation cover). While NPP is related to ∆VOD
::::::
∆V OD, Ra is related to both VOD and ∆VOD

:::::
V OD

:::
and

::::::::
∆V OD

using the concept
::::::::
proposed by Ryan et al. [1997] of dividing Ra into maintenance and growth respiration . This previous

modelformulation
::::::::
(Equation

:::
2).

:::
By

::::::::
assuming

::::
that

:::::::::::
belowground

:::::::
biomass

:::::
terms

:::
are

::::::::::
proportional

::
to

::::::::::::
above-ground

:::::::
biomass

::::
(i.e.165

:::::::
biomass

::
B

:::
can

::
be

:::::::::
expressed

::::::
through

::::::
above

::::::
ground

:::::::
biomass

::::::
AGB)

:::
and

:::
by

::::::
adding

:
a
:::::
static

::::
term

:
c
::::::::::
supporting

::
the

::::::::::
conversion

::
in

:::::::
Equation

::
2,

::::
GPP

::::
can

::
be

::::::::::
represented

::::::
through

::
a
:::::::::
differential

::::::::
equation

::::
with

::::
VOD

:::
as

::::
input

:::::::::
(Equation

::
3).

:

AGB = f(V OD) = Ṽ OD
:::::::::::::::::::::

(1)

GPP = NPP + Ra =

(
dB
dt

+ loss terms
)

+

(
a0

dB
dt

+ b0 B
)
≈ a

dB
dt

+ b B
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(2)

GPP = a
dṼ OD

dt
+ b Ṽ OD + c

:::::::::::::::::::::::::

(3)170

:::
The

::::::::::
formulation

::
in

:::::
GAM

:::
for

:::
this

::::::::
previous

:::::
model, which uses only VOD variables as input (GPPvod; Equation 4), thus

::::
then

reads:

GPPvod = s(VODV OD
::::

) + s(∆VODV OD
::::

) + s(mdnVODmdnV OD
::::::::

) (4)

6



where s denotes spline terms for representing the 2-dimensional functions between each input variable and the response

variable GPP
::
in

:::
the

::::::::::::
2-dimensional

::::
space.175

For adding the temperature dependency of Ra, we are considering the two terms of Ra, i.e. maintenance and growth respi-

ration. Since the temperature sensitivity mainly applies to the maintenance term [Ryan et al., 1997], we are only incorporating

an interaction term with temperature for the maintenance part of the model formulation. Although all terms potentially may be

dependent on temperature due to the general temperature dependency of enzymatic activity, the temperature dependency for

modelling growth related sink terms (growth respiration and net primary production) may be of less importance. For the current180

model formulation (GPPvodtemp; Equation 5), we now introduced an interaction term between VOD
:::::
V OD

:
and temperature:

GPPvodtemp = te(VODV OD
::::

,T2MT2M
::::

) + s(∆VODV OD
::::

) + s(mdnVODmdnV OD
::::::::

) (5)

where te stands for a tensor term, which represents the interaction between VOD
:::::
V OD

:
and temperature and spans a

3-dimensional surface
::::::
surface

::
in

:::
the

::::::::::::
3-dimensional

:::::
space.

Consistent with our previous model, we used GAM as regression method for deriving GPP. pyGAM [Servén and Brummitt,185

2018] version 0.8.0 provides the possibility of adding an interaction term. An advantage of GAM is that the relationships

between input variables and response variable are not required to be known beforehand, but instead can be estimated from

the data itself [Hastie and Tibshirani, 1987]. Since the relationship between VOD and GPP as well as its relationship with

temperature is difficult to determine a priori, this method is well suited for our approach.

The model was fitted using
:
In

::::::
GAM,

::
a

::::::
number

:::
of

::::
basis

:::::
spline

:::::::::
functions

:::
are

::::
fitted

::
to
:::

the
::::

data
::::

and
:::
the

::::::::
resulting

:::::::
function

::
is190

:::::
further

:::::::::
smoothed

::
to

:::::
obtain

:::
the

::::
final

:::::::
response

::::::::
function [

::::::::::::::::::::::
Servén and Brummitt, 2018]

:
.
:::
The

::::::
degree

::
of

:::::::::
smoothing

::
is

:::::::::
determined

:::
by

::
the

:::::::::
smoothing

::::::
factor,

:::::
which

::::::
yields

:::::
strong

:::::::::
smoothing

:::
for

::::
high

:::::
values

::::
and

:::
low

:::::::::
smoothing

:::
for

:::
low

::::::
values.

:::
For

:::
the

::::::
current

:::::::
models

::
we

:::::
used a smoothing factor of 2, which is lower than for the previous model

:::::
model

::
in
::::::::::::::::::

Teubner et al. [2019]. This was done

since the response function for the tensor term was too smooth using the default number of 10 splines for tensor terms and

resulted in unrealistically high GPP values at high VOD
:::::
V OD. For ∆VOD, the default number of 20 splines for spline terms195

were used, while for mdnVOD
:::::::::
mdnV OD

:
we reduced the number of splines to 5 in order to obtain a smooth relationship.

2.5 Statistical analysis

For model comparison, we computed Pearson correlation, unbiased Root Mean Square Error (ubRMSE) and bias. For studying

the error characteristics, ubRMSE was used instead of RMSE to exclude the impact of bias, which was observed during our

analysis.
:
In

::::::::
addition,

:::::
cross

::::::::
validation

::::
was

::::::::
computed

:::
for

:::
the

::::::
above

::::::
metrics

:::::
using

:::
the

:::::::::::
leave-site-out

::::::::
method,

:::::
where

:::
the

::::::
model200

::::::::::
performance

::
is

::::::::
evaluated

::
at

::::
each

::::
site

::
by

::::::::
omitting

:::
the

::::::::
respective

:::
site

::::
data

:::::
from

:::::
model

:::::::
training

::::
and

::::
then

::::
using

:::
the

:::::::
left-out

::::
data

::
for

:::::::::
computing

:::
the

::::::::
statistics.

::::
The

:::::::
analysis

:::
was

::::::
carried

:::
out

:::
for

:::
the

::::
full

:::::
signal

:::
and

:::
the

:::::::::
anomalies

::::
from

:::
the

:::::
mean

:::::::
seasonal

:::::
cycle.

:

In case of analyzing annual GPP anomalies as a measure for interannual variability and residuals of the VOD-GPP model,

we based our analysis on standardized annual or 8-daily time series data (z-scores). This was done in order to analyze GPP
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data in the absence of systematic differences between the data sets. The standardization for the 8-daily or the annual data was205

applied to each grid cell time series by subtracting the mean and dividing by the standard deviation.

For aid
:::::::::
generating

::
the

:::::::::
smoothed

::::
time

:::::
series

::
in

:::
the

:::::::::
calculation

::
of

:::::::
∆V OD

:::
and

:::
for

::::::
aiding visual comparison in the time series

plots, we applied a savitzky-golay
::::::::::::
Savitzky-Golay

:
filter with window size of 11 data points.

3 Results

3.1 Model representation of temperature dependency210

We find that the sensitivity of VOD
:::::
V OD

:
to GPP increases with temperature as shown by the partial dependency plots

(Figure 1). For low temperatures, the sensitivity of the VOD-GPP-relationship is relatively low (Figure 1a). As temperature

increases, the sensitivity also increases and further exhibits an optimum behavior. At high temperatures, however, the maxima

of the curves are lower than for moderate temperatures. The partial dependency for T2M
:::::
T2M (Figure 1d) shows an optimum

behavior with a peak around 20°C, which slightly differs between the VOD
:::::
V OD

:
values. The partial dependencies for ∆VOD215

and mdnVOD
::::::
∆V OD

::::
and

:::::::::
mdnV OD

:
(Figure 1b,c) are consistent

::::
with the previous model and yield a positive

::
an

:::::::::
increasing

relationship with GPP for ∆VOD
::::::
∆V OD

:
in the middle part of the value range and a general decreasing relationship for

mdnVOD
:::::::::
mdnV OD.

In addition to identifying the underlying relationships, we can further assess the magnitude of the contribution to GPP for the

input variables based on the data range in the partial dependency plots. The main contribution to GPP in the model comes from220

the interaction term between VOD and T2M
:::::
V OD

::::
and

:::::
T2M with a range of about 12 gC m-2 d-1, which is followed by ∆VOD

:::::::
∆V OD with a range of about 6 gC m-2 d-1 and mdnVOD

:::::::::
mdnV OD with a range of about 4 gC m-2 d-1. The contribution of

the maintenance part, as represented through the interaction term, thus, is higher than for ∆VOD
:::::::
∆V OD which represents the

sum of NPP and the growth term in Ra.

3.2 Evaluation at site-level225

At FLUXNET in situ stations, GPPvodtemp, GPPfluxcom and GPPmodis
:::::
global

::::
GPP

::::::
datasets

:
overall show similar results (Fig-

ure 2). Despite the overall agreement
:::::::
GPPvod

:::::::
exhibits

:
a
:::::
slight

:::::::::::
accumulation

::
of
:::::

GPP
:::::
values

::
at

::::::
around

::
4
:
g
::
C
::::
m-2

:::
d-1,

:::::
while

:::
the

::::::
density

:::
for

:::::::::::
GPPvodtemp

::
is

:::::::
relatively

:::::::
smooth

:::
and

::::::::::
comparable

::
to

:::::::::::
GPPfluxcom

:::
and

::::::::::
GPPmodis.

::::
Both

:::::::
GPPvod

::::
and

:::::::::::
GPPvodtemp

::::
show

::
a

::::::::
relatively

::::
high

:::::::
number

::
of

::::::::
non-zero

::::
GPP

::
at

::::::
around

::::
zero

::::::::::
GPPfluxnet,

::::::
which

::
is

:::
less

:::::::::::
pronounced

::
for

::::::::::::
GPPvodtemp

::::
than

::
for

::::::::
GPPvod.

:::::
Cross

::::::::
validation

::::::
results

::
in

:::::
Table

:::
A2

::::::
further

:::::::
confirm

:
a
::::::
higher

::::::::::
performance

:::
of

:::::::::::
GPPvodtemp

::::::::
compared

::
to

::::::::
GPPvod.230

:::
For

:::
the

:::
full

::::::
signal

::
as

::::
well

:::
as

:::
for

:::
the

:::::::::
anomalies

::::
from

:::
the

:::::
mean

::::::
cycle,

::::::::::
correlation,

::::::::
ubRMSE

:::
and

::::
bias

::::::::
generally

:::::
yield

::::::
higher

::::::::::
performance

:::
for

::::::::::::
GPPvodtemp.

::::
The

:::::::
increase

::
in

:::::::::::
performance

::
is

:::::
more

::::::::::
pronounced

:::
for

:::
the

::::
full

:::::
signal

::::
than

:::
for

:::
the

::::::::::
anomalies.

::::::
Despite

:::
an

::::::
overall

:::::::::
agreement

::
of

::::::::::::
GPPvodtemp,

:::::::::::
GPPfluxcom

::::
and

:::::::::
GPPmodis

:
with in situ GPP, all three data sets exhibit an

underestimation of GPP at high values of GPP compared with in situ GPPfluxnet. At annual time scale, the difference with

GPPfluxnet at high GPP becomes much lower for GPPvodtemp compared to GPPfluxcom and GPPmodis (Figure A4), which235
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Figure 1. Partial dependency plot for GPPvodtemp
::
for

::::
each

::::
input

:::::::
variable:

::
(a)

:::::
V OD,

:::
(b)

:::::::
∆V OD,

::
(c)

:::::::::
mdnV OD

:::
and

::
(d)

:::::
T2M . The

:::::
model

:::
was

:::::
trained

::::
with

::::
data

::::
from

::
the

:::::
period

:::::::::
2003-2014.

::::::
Dashed

::::
lines

::
in

::
(b)

::::
and

::
(c)

:::::
denote

:::
the

::::
95%

::::::::
confidence

:::::::
interval.

:::
The

:
interaction between

VOD
:::::
V OD and T2M

::::
T2M

::
(a,

::
d), which represents a 3D surface

::
in

::
the

:::::::::::
3-dimensional

:::::
space, is displayed as projection on the 2D plane for

each of the two input variables. For this, the parameter space was divided into 10 equally spaced bins between minimum and maximum of

the respective variable.
:::
The

:::
bin

::::
edges

:::
are

:::::::
displayed

::
as

::::::
colored

::::
lines

::
as

:::::::
indicated

::
in

::
the

::::::
legend.
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Figure 2. Scatter plots of 8-daily in situ GPPfluxnet versus global GPP data sets
::
(a)

:
GPPvodtemp,

::
(b)

:::::::
GPPvod,

:::
(c)

:
GPPfluxcom and

::
(d)

GPPmodis
::
for

:::
the

:::::
period

::::::::
2003-2014.

indicates on the one hand that GPPvodtemp is able to match the in situ training data and on the other hand suggests that

differences in GPP already exist between the training data set used in our study and the independent global GPP data sets,

which may contribute to differences at global scale. At
:::
The

::::::::
observed

:::::::::::::
overestimation

::
of

::::
GPP

:::
for

:::::::::::
GPPvodtemp

::
at
:

low in situ

GPP , we observe that GPPvodtemp tends to overestimate GPP compared to the other data sets, which can also be observed

at annual time scale. This overestimation at low GPP may be an explanation for the general tendency for overestimation of240

microwave-derived GPP estimates and appears to not be
::
not

::
to

:::
be

::::::
entirely

:
related to the temperature sensitivity of Ra,

:::::
since

::
it

:
is
::::
still

::::::
present

:::
for

:::::::::::
GPPvodtemp.
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3.3 Impact of adding temperature dependency at the global scale

Performance metrics for GPPvod and GPPvodtemp were assessed with respect to both GPPfluxcom and GPPmodis. Since the

results for GPPfluxcom and GPPmodis are similar, we are only showing results for GPPfluxcom.245

Correlations with GPPfluxcom (Figure 3a) reveal widespread strongly positive values with a global mean of 0.63. Some areas

in the tropics and in the Australian desert exhibit an inverse temporal dynamic with GPPfluxcom. Compared with GPPvod,

correlations increase in large parts of the world (Figure 3b) with a global average difference of 0.18. Regions that benefit most

from adding temperature as input are temperate and cold regions, which could be expected since these regions per definition are

strongly controlled by temperature. Tropics and subtropics, however, mainly show only minor changes in correlation coefficient250

with a few exceptions of decreasing correlations. Since the annual temperature amplitude in these regions is low, the model’s

sensitivity to temperature is also low, which makes the interaction term mainly controlled by VOD.

The global average for ubRMSE between GPPvodtemp and GPPfluxcom (Figure 3c) yields a value of 1.20. Consistent with

the increase in performance for the correlation, areas in the temperate and cold region show an improvement in error, i.e. a

decrease of ubRMSE compared to GPPvod (Figure 3d). Other regions, however, exhibit an increase in ubRMSE. The global255

average of the difference between results for GPPvodtemp and GPPvod is -0.05. Therefore, gains and losses in error are largely

compensated at the global scale.

The bias between GPPvodtemp and GPPfluxcom (Figure 3c) is generally positive everywhere with a global average of

1.64. This finding is also evident from the higher range in the median maps for GPPvodtemp compared with GPPfluxcom and

GPPmodis (Figure A2). Comparing the results for GPPvod and GPPvodtemp, the addition of temperature shows an increase in260

bias mainly in the tropics (Figure 3d)
:
,
:::::
which

::
is

::::
also

::::::
evident

:::
for

:::
the

:::::::::
difference

::
of

:::
the

::::::
median

:::::
maps

:::::::
(Figure

::::
A2e). Despite this

increase in the tropics, also regions with a reduction in bias exist, which are mainly found in temperate and cold regions. On

the global scale, decreases and increases in bias compensate and yield an average difference of -0.05.

The latitudinal distribution of annual GPP (Figure 4) further demonstrates that the addition of temperature yields a reduction

of GPP mainly for regions outside -35°N and +60°N. The reduction in the zonal mean, however, is smaller than may have265

been expected probably due to compensating effects. For the region between +30°N and +60°N, where reductions in bias were

observed on the global map, positive and negative values for the bias appear to compensate yielding no net reduction in the zonal

mean. In the tropical region, the increase in bias for GPPvodtemp compared with GPPvod is again evident. When considering

the latitudinal distribution of annual GPP relative to the latitudinal maximum, however, the distribution for GPPvodtemp is

actually closer to the independent datasets than GPPvod (Figure A5). This suggests that although the bias largely increases270

in the tropics, the relative distribution between tropics and temperate to boreal regions is better represented by the setup that

includes temperature.

For a region in Europe
::
(5

::
to

:::::
15°E

:::
and

:::
46

::
to

::::::
51°N), where we generally did observe an increase

::
in all three performance

metrics, we find that for GPPvod mainly winter time estimates of GPP are too high compared to GPPfluxcom and GPPmodis

(Figure 5). By adding temperature as input to the model, winter observations are markedly dampened and summer observations275
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Figure 3. (a): Pearson correlation between GPPvodtemp and GPPfluxcom. (b): Difference between GPPvodtemp and GPPvod for Pearson

correlation with GPPfluxcom. (c): ubRMSE between GPPvodtemp and GPPfluxcom. (d): Difference between GPPvodtemp and GPPvod for

ubRMSE with GPPfluxcom. (e): Bias between GPPvodtemp and GPPfluxcom. (f): Difference between GPPvodtemp and GPPvod for the

bias with GPPfluxcom. The unit for ubRMSE and bias is g C m-2 d-1. Areas with none significant
:::::::::::
non-significant correlations in (a) and (b)

are marked in grey.
:::
The

::::::
analysis

::
is

::::::::
computed

:::
over

:::
the

:::::
whole

::::
study

:::::
period

::::::::::
(2003-2015).

are only slightly increased. Nevertheless, even when including the temperature dependency, winter GPP estimates are still

slightly higher for GPPvodtemp than for GPPfluxcom or GPPmodis.

Due
:
In

:::
the

:::::::::
remaining

:::::
study,

:::
due to the observed bias (both at site-level and global scale), but otherwise increase in correlation,

we are further analyzing GPPvodtemp but are focusing on
::
we

:::
are

:::::::::
analyzing relative rather than absolute values for comparing

interannual variability and the impact of water availabilityin the remaining study.
:::
In

:::::::
addition,

:::
we

::::
are

:::::::
focusing

::::
our

::::::
further280

::::::
analysis

:::
on

:::::::::::
GPPvodtemp

:::::
since

:::
this

:::::
setup

::::::
overall

::::::
showed

::::::
higher

:::::::::::
performance

::::
than

:::::::
GPPvod.

:::::::
Results

::
for

::::::::
GPPvod

:::
are

::::::::
displayed

::
in

:::
the

::::::::::
supplement

:::
for

::::::::::
comparison

::::
with

:::::::::::
GPPvodtemp.

3.4 Interannual variability and varying conditions of water availability

The latitudinal distribution of annual GPP anomalies reveals a general agreement between the GPP data set (Figure 6
::::::
Figures

::
6

:::
and

:::
A6). Although differences exist between all data sets, key features

::
are

::::::::
observed

::::::
among

::
all

::::
data

::::
sets,

:
such as the positive285

anomalies at -55°N in 2003, at -30°N in 2011 or at +75°N in 2012 and the negative anomalies at +75°N in 2003 and 2015
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Figure 4. Zonal mean of annual GPP for GPPfluxcom, GPPmodis, GPPvodtemp and GPPvod
::
for

:::
the

::::
study

:::::
period

:::::::::
2003-2015.

::
To

:::::
obtain

::::
zonal

:::::
means,

::::
data

::::
were

:::::::
averaged

:::
over

:::
all

:::
grid

:::::
points

::
of

::
the

::::
same

:::::::
latitude.
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Figure 5. Time series plot of spatially aggregated GPP estimates for GPPfluxcom, GPPmodis and
:
(a) GPPvod or

:
(b) GPPvodtemp

:::
over

:::
the

::::
whole

:::::
study

:::::
period

:::::::::
(2003-2015). Shaded areas indicate the standard deviation over the aggregated grid cells. The region is located in Europe,

5 to 15°E and 46 to 51°N
:
,
:::
and

:::
was

:::::::
selected

::
as

::
an

::::::
example

:::::
where

:::
the

::::::::
correlation

::::::
analysis

:::::::
between

::::
GPP

:::::::
residuals

:::
and

::::
SPEI

:::::
largely

::::
yield

:::
no

::::::::
significant

::::::::
correlations. 8-daily data were smoothed to aid visual comparison.

and at around -40° in 2009 and 2011. Despite the fact that these key features are found in all data sets, we also observe that

the magnitude of the anomalies often differs between the data sets, which thus yields a generally relatively high variability

between all data sets. In terms of the overall latitudinal pattern, it appears that GPPvodtemp is more similar to GPPmodis than

to GPPfluxcom.290
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Figure 6. Hovmöller diagramm for zonal means of annual GPP anomalies (z-scores) for
::
(a) GPPvodtemp,

::
(b) GPPfluxcom and

::
(c) GPPmodis

:::
over

:::
the

::::
study

:::::
period.

::::
Zonal

:::::
means

::::
were

::::::::
calculated

::
by

::::::::
averaging

:::
data

::::
over

::
all

:::
grid

:::::
points

::
of

:::
the

::::
same

::::::
latitude.

:

For the correlation of the residuals between standardized GPP (GPPvodtemp-GPPfluxcom or GPPvodtemp-GPPmodis) with

:::
and SPEI, we find that large areas show no significant correlation with SPEI03 (Figure 7a,b). For the long-term climatological

water balance, i.e. SPEI12 (Figure 7c,d), these areas with none significant
::::::::::::
non-significant correlations further increase. In terms

of model applicability, the none significant
::::::::::::
non-significant correlations are the desired result. Given that correlations

:::::::
between

:::::::::::
GPPvodtemp

:::
and

:::::::::::
GPPfluxcom

::
or

:::::::::
GPPmodis

:::
are

:::::
high in these regionsare high, this demonstrates that GPPvodtemp shows a295

similar behavior as GPPfluxcom or GPPmodis in response to variations in dry or wet conditions, which further indicates
:
.
::::
This

::::::
finding

::::
thus

:::::::
provides

:
a
::::::
strong

::::::::
indication

:
that the VOD-GPP-relationship in general holds true

::::::::
generally

:::::::
remains

::::::
similar

:::::
under

::::::
varying

:::::::::
conditions

::
of

:::::
water

:::::::::
availability.

Apart from the widespread areas with none significant
::::::::::::
non-significant correlation, some significant correlations, both positive

and negative, occur at both time scales. Negative correlations indicate that during dry conditions GPPvodtemp is higher relative300

to the reference GPP than during wet conditions, while positive correlations mean that during dry conditions GPPvodtemp is

lower relative to the reference GPP than during wet conditions. The spatial distribution of these significant correlations is largely

consistent between GPPfluxcom and GPPmodis. For the short-term response to SPEI (Figure 7a,b), negative correlations are

more frequent than positive correlations, indicating that the response to short-term drought events is often a reduction of

source-driven GPP relative to sink-driven GPP. Negative correlations are mainly observed in the US corn belt, Argentina,305

Eastern Europe, Russia and China, with the strongest negative correlations being in the US, Argentina and Russia. Positive

correlations are obtained mainly over South America, Africa and Australia. For the long-term response to SPEI (Figure 7c,d),

the number of positive correlations increase. Similar to the short-term response, positive correlations are mainly found over

South America, Africa and Australia.

:::
The

:::::::
analysis

::
of

:::::::
GPPvod

::::::::
residuals

::::::
reveals

:
a
::::::
similar

:::::
result

::
as

:::
for

:::::::::::
GPPvodtemp

::::::
(Figure

::::
A7).

:::
For

::::::::
GPPvod,

:::::::
however,

:::
the

:::::::
number310

::
of

:::
grid

:::::
cells

::::
with

::::::::::::
non-significant

::::::::::
correlations

::
in

:::
the

::::
four

:::::::
analyses

::
is
:::::
lower

:::
by

:::::
about

:
2
:::
to

:
4
::
%

::::
than

:::
for

::::::::::::
GPPvodtemp,

:::::
while

:::
the
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Figure 7. Correlation between residuals of standardized GPP (GPPvodtemp-GPPfluxcom and GPPvodtemp-GPPmodis) and SPEI. None

significant
:::::::::::
Non-significant correlations are indicated in grey. (a,c): GPPvodtemp-GPPfluxcom, (b,d): GPPvodtemp-GPPmodis, (a,b): SPEI03

(short-term response), (c,d): SPEI12 (long-term response). Regions A-D: US cornbelt (A), Argentina (B), Eastern Africa (C) and Eastern

Australia (D).
:::
The

::::::
analysis

::
is
:::::
based

::
on

:::
the

::::
whole

:::::
study

:::::
period

::::::::::
(2003-2015).

:::::
global

:::::::
average

:::::::::
correlation

::
is
::::::

nearly
::::::::
identical.

::::
The

::::::
higher

:::::::
number

::
of

:::::::::::::
non-significant

::::::::::
correlations

:::
for

:::::::::::
GPPvodtemp

:::::
than

:::
for

:::::::
GPPvod

:
is
:::::::::
expected,

::::::
because

:::
the

:::::::
addition

:::
of

::::::::::
temperature

:::::::
accounts

:::
for

:::::
some

:::::::
variation

::
in

:::
the

::::::::::
VOD-based

::::
GPP

::::::::::
estimation.

For specific regions, which are indicated in Figure 7, we analyzed the time series of the standardized GPP (Figure 8) and the

response to SPEI categories (Figure A8) in order to inspect under which situations negative or positive correlations with SPEI315

occur.

For the region in the US corn belt (Figure 8a), where we found moderately negative correlations with SPEI, all three GPP

data sets show a reduction in summer GPP in 2006 and 2012. Compared with other years, however, the reduction of GP-

Pvodtemp tends to be less than for GPPfluxcom and GPPmodis. This behavior can be verified by considering the residuals

along the SPEI12 gradient (Figure A8a). During dry conditions, the residuals are higher than during wet conditions. Since320

higher residuals indicate that GPPvodtemp is higher relative to the reference data sets, this result confirms the findings for the

time series.

In Argentina (Figure 8b), we observed strongly negative correlations for the analysis with SPEI. For this region, a pronounced

dry condition is observed at the end of 2008 and beginning of 2009. In this period, GPPfluxcom and GPPmodis are reduced

more strongly than GPPvodtemp. In the first following year, the GPPvodtemp peak is slightly lower than for GPPfluxcom325

and GPPmodis at the end of 2009. In the second following year, end of 2011, GPPvodtemp is similar as for GPPfluxcom and

GPPmodis again. This result is further supported by the pronounced decrease of the residuals with SPEI12 in Figure 8b. In

addition to the interannual variability, we also find that the spring peak is more pronounced in GPPfluxcom and GPPmodis than
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in GPPvodtemp, which might point towards a surplus of carbohydrates in spring that are incorporated for building up biomass

later in the year or may be related to differences in land cover.330

For the example in Africa (Figure 8c), where correlations with SPEI12 were positive, GPPvodtemp generally appears to

be a bit higher relative to GPPfluxcom and GPPmodis at the end of each growing period. In face of dry conditions, however,

GPPvodtemp shows a stronger reduction in GPP than GPPfluxcom and GPPmodis at the end of the growing season, as observed

in 2006 and 2009. Despite some differences in the time series between GPPvodtemp and the reference data sets, the temporal

dynamic is generally similar between the data sets. This indicates that the sink-driven GPP shows a slightly different response335

to changes in environmental conditions for this region, which then results in the observed positive correlations with SPEI.

Considering the residuals along the SPEI12 gradient for this region, we find that the residuals increase with SPEI12 for all

categories except for very wet conditions (Figure A8c).

The time series for Australia (Figure 8d) shows that GPPvodtemp is generally reduced during dry conditions and increases

relative to GPPfluxcom and GPPmodis during wet conditions. The increase in GPPvodtemp relative to the reference data340

sets appears to be strongest for the period following one year after long-term dry conditions, i.e. in 2009, 2011 and 2012.

Consistently, the residuals show a clear increase along the SPEI12 categories (Figure A8d).

4 Discussion

4.1 Impact of adding temperature as model input

The performance of the VOD-GPP model was shown to improve with the addition of an interaction term between VOD
:::::
V OD345

and temperature mainly in terms of temporal dynamic. Our results showed that the increase
::::::::::
improvement

:
in temporal dy-

namic was mainly observed for temperate and cold regions. Since the growing season in these regions is largely controlled by

temperature, this indicates that the improvement may largely be a seasonal effect. When analyzing the temperature response

of respiration across biomes, both spatial and temporal differences resulting from thermal acclimation need to be taken into

account [Vanderwel et al., 2015]. On the spatial scale, temperature sensitivity largely varies with mean annual temperature350

across biomes [Piao et al., 2010; Vanderwel et al., 2015]. On the temporal scale, temperature-corrected respiration rates, as

observed for stem respiration of deciduous trees or for needle-leave evergreen trees, exhibit a seasonal variation leading to

higher respiration rates during summer than during winter [Maier et al., 1998; Ceschia et al., 2002; Vose and Ryan, 2002; Zha

et al., 2004]. Consistently, we observed a dampening of GPPvodtemp during winter compared to GPPvod. The addition of tem-

perature thus seems to enable the model to reflect differences in basal respiration rates between growing and dormant periods355

in these regions. Although the temporal component of thermal acclimation of respiration appears to be the dominant contribu-

tion, the resulting dependency on temperature represents the cumulative effect of spatial and temporal thermal acclimation of

respiration as the relationship for the temperature dependency was estimated from the data without a priori assumptions.

In addition to the temperature dependency, Ra also varies with tissue nitrogen content [Maier et al., 1998; Ceschia et al.,

2002; Vose and Ryan, 2002; Tjoelker et al., 2008], which may thus contribute to uncertainties in the GPP estimation derived360

from VOD. Ra is also known to vary between plant tissues [Vose and Ryan, 2002; Gifford, 2003]. The respiration of woody
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Figure 8. Regional mean of standardized GPP values for regions as indicated in Figure 7
::::
over

::
the

:::::
study

:::::
period. Shaded areas denote the

standard deviation for the regional aggregated time series. Vertical grey areas indicate periods with different levels of dryness conditions for

regional aggregated SPEI12: SPEI12<-1 (dark grey), -1<=SPEI12<0 (light grey) and SPEI12>=0 (white areas). Data were smoothed to aid

visual comparison.

tissue is generally lower than for leaves [Vose and Ryan, 2002]. Since VOD generally increases with the fraction of woody

vegetation [Chaparro et al., 2019], using the median of VOD as model input may potentially compensate at least partly for

differences in respiration rates of stems and branches versus leaves within a grid cell.

4.2 Bias between GPP data sets365

The addition of temperature dependency revealed contrasting results for the bias. While reductions in bias were observed for

temperate and cold regions, a strong increase in bias was found for the tropics. Since the interaction term between VOD and

T2M represents a 3D relationship
:::::
V OD

:::
and

:::::
T2M

:::::::::
represents

:
a
::::::::::
relationship

::
in

::
the

::::::::::::
3-dimensional

:::::
space, certain combinations of

VOD and T2M
:::::
V OD

:::
and

:::::
T2M intervals in the parameter space may not be well represented by the training data.

:::::::::
FLUXNET

::::::
stations

:::
are

:::
not

::::::
evenly

:::::::::
distributed

::::::
around

:::
the

::::::
globe,

::
as

:::
the

:::::::
majority

:::
of

::::::
stations

:::
are

:::::::
located

::
in

:::
the

::::::::
temperate

:::::::
region. This may370

have caused the model to be not well constrained in certain regions, e.g. where temperature and VOD
:::::
V OD are very high,

and thus might have contributed to the increase in bias in the tropics. Therefore, additional FLUXNET stations might help
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to better constrain the VOD-GPP model. Nevertheless, differences between the dataset were already evident at the site-level,

which suggests that the observed difference at global scale may at least partly be caused by differences in the training dataset.

In general, the agreement in annual GPP estimates is lowest in the tropics [Anav et al., 2015]. Estimates for the FLUXCOM375

RS setup, which was used in our study, were reported to yield lower global estimates than the FLUXCOM RS+METEO setup

or GPP estimates from vegetation models [Jung et al., 2020]. Similarly, MODIS was found to underestimate GPP in the tropics

[Turner et al., 2006]. The need for better constraints for GPP estimates especially in the tropics is well recognized [MacBean

et al., 2018] and tackled in different studies [e.g., MacBean et al., 2018; Sun et al., 2018; Wu et al., 2020] but is usually

hampered by the availability of in situ estimates.380

4.3
::::::::::

Implications
::
of

::::::::
possible

:::::::::
saturation

::
of

:::::
VOD

::
at

::::
high

::::::::
biomass

:::
The

::::::
choice

::
of

:::::::::
microwave

::::::::
frequency

:::
for

:::
the

::::::::
estimation

:::
of

::::
GPP

:::
may

::::
have

::::::
certain

:::::::::::
implications.

::::::::
Different

::::::
studies

::::
have

:::::::::::
demonstrated

:::
that

::::::
L-band

:::::
VOD

:::::
yields

:::::
more

:::::
robust

::::::::
estimates

::
of

::::
total

::::::::::::
above-ground

:::::::
biomass

::::
than

:::::::
X-band

:::::
VOD,

::
as

:::
low

:::::::::
frequency

:::::
VOD

::::
does

:::
not

::::::
saturate

:::
at

::::
high

:::::::
biomass

::::::
values [

::::::::::::::::::
Chaparro et al., 2019;

:::::::::::::::::
Frappart et al., 2020;

::::::::::::
Li et al., 2021].

:::::::::::
Nonetheless,

:::
the

::::::
impact

:::
of

::::
such

:::::::
potential

::::::::
saturation

::::
with

:::::::
biomass

:::
on

:::
the

:::::::::
estimation

::
of

::::
GPP

::
is

:::
less

::::::
trivial,

::::::::
especially

::::
with

::::::
regard

::
to

::::::
densely

::::::::
vegetated

:::::
areas385

:::
like

:::
the

::::::
tropics.

::::::::::::
Non-linearity

::
in

:::
the

:::::::::
conversion

:::::::
between

:::::
VOD

::::
and

::::
AGB

::::::
should

::::::
ideally

::
be

::::::::
reflected

::
in

:::
the

::::::
partial

::::::::::
dependency

:::
plot

::
of

::::::
GAM,

:::::
which

:::
was

::::
also

:::
the

:::::
reason

:::
for

::::::::
choosing

:::
this

::::
type

::
of

::::::::
modelling

:::::::::
approach.

:::::::::
Scatterplots

:::
of

::
the

::::::::
resulting

:::::::::::
GPPvodtemp

:::::::
estimates

::::
did

:::
not

::::
show

:::::
clear

:::::
signs

::
of

::::::::
saturation

::
at
:::::
high

::
in

:::
situ

:::::
GPP.

:::
The

::::::::::
FLUXNET

:::::::
training

::::
data

:::
set,

::::::::
however,

::::
only

:::
has

::::
few

::::::
stations

::
in

:::
the

::::::
tropics

::::
and

::::
thus

:::
the

:::::::::
robustness

::
of

:::
the

::::::
model

::::
may

::
be

:::::::
limited

::
by

:::
the

::::::::::
availability

::
of

::
in

::::
situ

:::::::
stations.

:::::
Apart

:::::
from

:::
this,

::::
the

::::::::::
relationship

:::::::
between

:::::
VOD

::::
and

::::
GPP

::::
has

::::
been

:::::
found

:::
to

::
be

:::
in

:::::
closer

:::::::::
agreement

:::
for

:::::::
X-band

:::::
VOD

::::
than

:::
for

:::::::
L-band390

[
::::::
Teubner

::
et
:::
al.

:
,
:::::
2018,

:::::
2019;

::::::::::::::::
Kumar et al., 2020]

:
,
:::::
which

::::
was

::::
also

::::::::
observed

:::
for

:::
the

:::::::::
correlation

:::::
with

::
in

::::
situ

:::::::::
FLUXNET

:::::
GPP

::::::
(Figure

::::
A1).

:::
At

:::
first

:::::::
glance,

:::
this

::::::
might

:::::
appear

::::::::::::
contradictory

::
to

:::
the

::::::::::::::
above-mentioned

::::::
better

::::::::::
performance

:::
of

::::::
L-band

:::::
VOD

:::
for

:::::::
biomass

:::::::::
estimation.

::
A

:::::::::
comparison

::
of

:::::::
biomass

::::::::
estimates

:::::
from

:::::::
different

::::
plant

::::::::::
components

::::
with

:::::
GPP,

:::::::
however,

:::::::::::
demonstrated

::::
that

::::
large

::::::::
structural

:::::::::::
components,

:::::
which

:::::
make

::
up

:
a
:::::
large

::::::
fraction

::
of

:::
the

::::
total

::::::::
biomass,

::::
may

::::::::
contribute

:::
less

::
to
:::::
GPP

:::
than

::::::::::::
metabolically

:::::
active

::::
plant

:::::
parts

:
[
:::::::::::::::
Litton et al., 2007]

:
.
:::::
Since

::::
high

:::::::::
frequency

:::::
VOD

::
is

:::::
more

:::::::
sensitive

:::::
small

:::::
plant

:::::
parts

:::
like

::::::
leaves

::::
and

:::::
twigs395

[
::::::::::::::
Woodhouse, 2017]

:
,
:::
this

:::::
could

:::
be

::
an

::::::::::
explanation

::::
why

:::::::
X-band

::::
VOD

:::::
might

:::
be

:::::
better

:::::
suited

:::
for

:::
the

:::::::::
estimation

::
of

::::
GPP

::::
and

::::
why

::::::::
saturation

::
at

::::
high

::::
total

:::::::::::
above-ground

::::::::
biomass

:::
may

:::
be

:::
less

:::
of

::
an

::::
issue

:::::
here.

4.4
:::::::::::
Independence

:::
of

:::::
global

:::::
GPP

::::
data

::::
sets

:::
For

:::
the

:::::::::
comparison

::::
with

::::::::::
VOD-based

:::::
GPP

::::::::
estimates,

:::
we

::::
used

::::::::::
independent

::::::
global

:::
data

:::
set

::::
from

:::::::::::
FLUXCOM

:::
and

:::::::
MODIS.

:::::
Both

:::
data

::::
sets

:::::::
include

::
to

:::::
some

::::::
extent

::::::::::
information

::::
from

::::::::::
FLUXNET

:::::
data.

::::::::::
FLUXCOM

::::
has

::::
been

::::::
trained

:::::::
against

::::::::::
FLUXNET

::::
data400

[
:::::::::::::::::::
Tramontana et al., 2016;

::::::::::::::
Jung et al., 2020],

::::::::
however,

::::
with

::
a

:::::
larger

::::::
number

:::
of

::::::
stations

::::
than

:::
in

:::
the

:::::
freely

:::::::
available

::::
Tier

::
1
::::
data

::
set

::::
that

:::
was

:::::
used

:::
for

:::
our

::::::
model.

:::::
Also,

:::::::
MODIS

:::
has

::::
been

:::::
partly

:::::::::
calibrated

::
to

:::::
some

:::::::::
FLUXNET

:::::::
stations

:
[
:::::::::::::::::
Running et al., 1999]

:
.

::::::::
Therefore,

:::
the

::::::::::
FLUXCOM

::::
and

:::::::
MODIS

::::
may

:::
not

::
be

::::
fully

::::::::::
independent

:::::
from

:::
our

::::::::::
VOD-based

::::
GPP

::::::::
estimates.

:::::::::::
Nevertheless,

:::::
there

:
is
:::
no

:::::::::
alternative

::
to

::::::::
constrain

:::::::
absolute

::::
GPP

::::::::
estimates

::
at

:::::
global

:::::
scale

::::
than

::
by

:::::
using

::::::::::
FLUXNET

::::
data.

:
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4.5 The “zero-GPP problem” and non-structural carbohydrates405

For GPPvodtemp, we observed that winter GPP values for an example over Europe were slightly higher compared to GPPflux-

com and GPPmodis. This issue of estimating GPP values close to zero was also observed in the scatter plots between GP-

Pvodtemp and in situ GPPfluxnet. The reason for the overestimation at low GPP may be on the one hand an artefact related

to the rehydration of plant residues after rain events and on the other hand may be explained by the sink-driven nature of our

approach. In the latter case, the non-zero GPPvodtemp values may be caused by perennial vegetation. Both evergreen and de-410

ciduous vegetation are respiring throughout the dormant period [Maier et al., 1998; Vose and Ryan, 2002] and concurrently are

containing water. In turn, this presence of vegetation water content is detected through microwave sensors leading to non-zero

GPPvodtemp estimates. It thus may point towards the existence of a storage term. In plants, photosynthetic assimilates can

be stored in the form of non-structural carbohydrates (NSC), which can be converted back to plant usable sugars to support

respiration during the dormant period and growth at the start of the growing season [e.g., Martínez-Vilalta et al., 2016]. For415

tropical forest plots, the balancing of plot level measurements of source and sink terms showed a decoupling between the two in

response to drought which the authors attributed to the existence of NSC [Doughty et al., 2015]. Therefore, such a storage term

can thus support a temporary imbalance between sources and sinks of carbon, which may translate into differences between

source- and sink-driven GPP.

4.6 Magnitude of input terms420

Based on the partial dependency plots, we found that for the maintenance-related term, i.e. the interaction term between VOD

and T2M
:::::
V OD

::::
and

:::::
T2M , the value range is higher than for ∆VOD

:::::::
∆V OD. Although our model represents the sum of NPP

and growth Ra and not just growth Ra, the magnitude of the two input terms is consistent with studies that analyzed the

contribution of maintenance and growth to Ra. For whole plants as well as for stem respiration of boreal needle-leave trees,

maintenance respiration was shown to play the dominant role for Ra with a contribution 70% (Chambers et al., 2004) and 80%425

(Zha et al., 2004), respectively.

4.7 Response to water availability

The analysis of VOD-GPP residuals with respect to FLUXCOM and MODIS revealed that GPPvodtemp largely showed a

similar behavior as the independent GPP data sets as demonstrated by the widespread none significant correlations between

::::::::::::
non-significant

::::::::::
correlations

:
with SPEI. This result is further supported by the general agreement in interannual variability. In430

addition to the possible impact of NSC, occurrences of significant correlations between VOD-GPP residuals and SPEI may

indicate different plant strategies for dealing with changes in dry or wet conditions. For negative correlations, this could be

mainly related to differences in plant hydraulics, while for positive correlations, it might indicate shifts between above- and

belowground carbon allocation.

Different plant strategies with regard to hydraulics can be expressed with the concept of isohydricity, which describes the435

regulation of stomatal control [Konings and Gentine, 2017; Giardina et al., 2018; Martínez-Vilalta and Garcia-Forner, 2017].
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At ecosystem level, this parameter can be obtained using the difference in twice daily overpasses of microwave observations

[Konings and Gentine, 2017]. Although Martínez-Vilalta and Garcia-Forner [2017] argue that the regulation of water potential

may not necessarily be strongly coupled with the assimilation during drought, the degree of isohydricity may still be an

explanation for the observed variation in GPPvodtemp relative to GPPfluxcom and GPPmodis. Pronounced negative correlation440

for the analysis of GPP residuals were found in Argentina and the US corn belt, which are regions where Konings and Gentine

[2017] observed high values of isohydricity. Corn, which exhibits isohydric behavior [Lambers and Oliveira, 2019; Martínez-

Vilalta and Garcia-Forner, 2017], i.e. is maintaining water potential through strong regulation of stomata, additionally has the

ability, like other grasses, to roll up leaves in response to drought for reducing the loss of water from the plant’s cuticular [e.g.,

Ribaut et al., 2009]. In conjunction with the isohydric behavior, this might be an explanation for the strong signal reduction of445

GPPfluxcom and GPPmodis relative to GPPvodtemp observed over Argentina. Although our analysis is based on 8-daily time

steps, characteristics of plant hydraulics which are retrieved from sub-daily data show similar features as for our analysis of

residuals between source- and sink-driven GPP in response to changes in water availability.

In contrast to the isohydric behavior, anisohydric behavior should not lead to pronounced differences between GPPvodtemp

and GPPfluxcom or GPPmodis as stomatal conductance and leaf water potential are both reduced in response to dry conditions450

[Lambers and Oliveira, 2019]. The anisohydric behavior thus potentially relates to the none significant
::::::::::::
non-significant

:
correla-

tions. Nevertheless, the degree of isohydricity may also vary between wet and dry season [Konings and Gentine, 2017], which

also needs to be taken into account for the interpretation of the residuals.

The observed positive correlations, i.e. reductions of GPPvodtemp relative to GPPfluxcom or GPPmodis, could be associated

with a stronger shift of assimilates to belowground plant organs. Different studies have shown that root growth may increase455

in face of drought to maintain water access [Sanaullah et al., 2012; Burri et al., 2014] and consequently also nutrient supply

[Lambers and Oliveira, 2019]. Since VOD observations only detect aboveground
:::::::::::
above-ground living vegetation, a shift to-

wards belowground plant organs may lead to apparently lower GPPvodtemp. Nevertheless, also the inverse, i.e. an increase of

allocation to shoots, was observed in the presence of legume species during drought [Sanaullah et al., 2012] and for tropical

forest plots after drought [Doughty et al., 2015].460

Comparisons of GPPvodtemp with in situ observations of vegetation properties during such extreme events like drought,

however, may be needed to improve the understanding of the plant’s response to changes in environmental conditions at the

ecosystem to global scale.

5 Conclusions

The VOD-GPP model was analyzed with regard to the impact of adding temperature as model input in order to account for465

the temperature dependency of autotrophic respiration. The resulting GPP estimates, GPPvodtemp, showed a high consistency

with GPPfluxcom and GPPmodis for the temporal dynamic both at intra- and interannual time scale. For bias and error, the

addition of temperature resulted in a regionally diverse response with a general improvement for temperate and cold regions

and a decrease in performance mainly in the tropics. The improvement upon adding temperature, however, was less than might
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have been expected, which indicates that the previous lack of temperature dependency in the model formulation can only470

partly account for the observed differences between the global GPP datasets. Nevertheless, this result demonstrates that an

improvement by adding temperature is possible but might require further model constraints for a more robust estimation of

GPP.

The analysis of the VOD-GPP residuals revealed that GPPvodtemp largely yields a similar behavior as GPPfluxcom and

GPPmodis with respect to SPEI. This highlights that the relationship between VOD and GPP largely holds true
::::::::
generally

::::
may475

::
be

::::
valid

:
even under varying conditions of water availability. For some regions, where significant correlations were observed, the

observed differences between GPPvodtemp and GPPfluxcom or GPPmodis may indicate different plant strategies for dealing

with drought conditions.

Overall, our results showed that GPPvodtemp potentially contains information on plant characteristics that may be relevant

for large-scale ecological studies that are addressing the response to varying environmental conditions.480

Data availability. VODCA products are available at https://doi.org/10.5281/zenodo.2575599. FLUXCOM products are available from http:

//www.fluxcom.org or on request to Martin Jung (mjung@bgc-jena.mpg.de). MODIS GPP estimates can be accessed at https://lpdaac.usgs.

gov/products/mod17a2hv006/. Data form the FLUXNET network is available at https://fluxnet.org/data/fluxnet2015-dataset/.
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Figure A1.
::::::::
Pre-analysis

::
of

:::::::::
correlation

::::::
between

::
in

:::
situ

::::::::
FLUXNET

::::
GPP

:::
and

:::::
single

:::::
sensor

::::
VOD

::::
from

::
L-

:::
and

::::::
X-band.

:::
(a):

:::::::
Pearson

::::::::
correlation

::::::
between

:::::::::
FLUXNET

::::
GPP

:::::
(mean

::
of

::::::::::::::::
GPP_DT_VUT_REF

:::
and

:::::::::::::::::
GPP_NT_VUT_REF)

:::
and

::::::
L-band

::::
VOD

::::::
(SMOS

:::::::
VOD-L,

:::::::::::::
7/2010–12/2014)

:::
and

:::::
X-band

:::::
VOD

::::::::
(AMSR-E

::::::
VOD-X,

:::::::::::::
1/2007–9/2011).

:::
Data

::::
were

::::::::
resampled

::
to

::::::
8-daily

::
or

::::::
monthly

:::::
values.

::::
The

::::::
analysis

:::
was

::::::::
conducted

::::
only

::
for

::::::
stations

:::::
where

::::
both

:::
of

::
the

:::::
VOD

::::
data

::
set

:::
are

:::::::
available

:::
(47

::::::::
stations).

:::
For

:::::
details

:::::
about

:::
the

::::
VOD

:::::::
datasets

:::
and

::::
their

::::
data

:::::::::
processing,

::
see

:::::::::::::::::
Teubner et al. [2018].

:::
(b):

::::::::::
Composition

::
of

:::::
IGBP

::::
land

:::::
cover

:::::
classes

:::
for

:::
the

::::::
stations

::::
used

:::
in

:::
this

::::::::::
pre-analysis.

:::::::::::
Abbreviations:

:::::
GRA

::::::::::
(Grasslands),

::::
CRO

::::::::::
(Croplands),

::::
ENF

:::::::::
(Evergreen

::::::::
Needleleaf

:::::::
Forests),

::::
DBF

:::::::::
(Deciduous

::::::::
Broadleaf

:::::::
Forests),

::::
EBF

:::::::::
(Evergreen

::::::::
Broadleaf

::::::
Forests),

::::
SAV

:::::::::
(Savannas),

:::
MF

::::::
(Mixed

::::::
Forests),

:::::
WET

::::::::
(Permanent

:::::::::
Wetlands),

::::
WSA

::::::
(Woody

::::::::
Savannas)

:::
and

::::
OSH

:::::
(Open

::::::::::
Shrublands).
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Figure A2. Temporal median maps for
::
(a)

:
GPPvodtemp,

::
(b)

:
GPPfluxcom,

:::
(c)

::::::
GPPvod,

:::
(d)

::::::::
GPPmodis and

::
(e)

::::::::
difference

::::::
between

:::
the

::::::
median

::::
maps

::
of

::::::::::
GPPvodtemp

:::
and

:::::::
GPPvod.

:::
For

::::::::::
GPPvodtemp

:::
and

::::::
GPPvod,

:::::
areas

::::
where

::::
both

::::::::::
GPPfluxcom

:::
and GPPmodis

::
are

::::::
missing

::::
were

:::::::
masked,

::::
since

::::
these

:::
data

::::
were

:::
not

::::
used

:::::
during

:::
the

::::::
analysis.

:::
Data

::::
were

::::::::
computed

:::
over

:::
the

:::::
whole

::::
study

:::::
period

::::::::::
(2003-2015).
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Figure A3. Location of FLUXNET Tier1 v1 stations within the period 2003 to 2014. The size of the circles represents the number of available

station years
:::
for

:::
each

::::::
station.

:::
The

::::
blue

:::::::
rectangle

::::::
denotes

::
the

:::::::
location

::
of

::
the

:::::
region

::
in
::::::
Europe

::::
used

:::::
Figure

::
5.
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Figure A4. Scatterplot of annual GPP for GPPvodtemp, GPPfluxcom and GPPmodis versus GPPfluxnet . Scaled latitudinal distribution

of annual GPP for
::::
versus

:::
(a)

:
GPPvodtemp,

::
(b)

:
GPPvod,

::
(c) GPPfluxcom and

::
(d)

:
GPPmodis. Data are computed relative to the latitudinal

maximum
:::::
Annual

:::::
values

::::
were

::::::::
calculated

::::
from

:::::
8-daily

::::
GPP for each data set

::
and

:::::
cover

::
the

:::::::::
FLUXNET

:::::
period

::::::::
2003-2014.
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Figure A5.
:::::
Scaled

::::::::
latitudinal

:::::::::
distribution

::
of

::::::
annual

::::
GPP

:::
for

::::::::::
GPPvodtemp,

:::::::
GPPvod,

::::::::::
GPPfluxcom

::::
and

::::::::
GPPmodis

:::
for

:::
the

::::
study

::::::
period

::::::::
2003-2015.

::::
Data

:::
are

:::::
scaled

::
by

::::::
dividing

:::
the

::::::::
latitudinal

::::::::
distribution

:::
by

::
the

::::::::
maximum

::
of

:::
the

:::::::
latitudinal

:::::::::
distribution

:::
for

:::
each

::::
data

:::
set.
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Figure A6. Boxplot
:::::::
Hovmöller

::::::::
diagramm

:::
for

:::::
zonal

:::::
means

:
of residuals between standardized

:::::
annual GPP values of GPPvodtemp and

GPPfluxcom or GPPmodis along SPEI12 categories
:::::::
anomalies

::::::::
(z-scores) for

::::::
GPPvod

:::
over

:
the data in Figure 8

::::
study

:::::
period

::::::::
2003-2015. The

intervals for the different SPEI12 categories are given in the legend. Box whiskers indicate 1.5 of the interquartile range.

Figure A7.
::::::::
Correlation

::::::
between

:::::::
residuals

::
of
::::::::::

standardized
::::
GPP

:::::::::::::::::
(GPPvod-GPPfluxcom

:::
and

:::::::::::::::
GPPvod-GPPmodis)

:::
and

:::::
SPEI.

::::::::::::
Non-significant

::::::::
correlations

:::
are

:::::::
indicated

::
in

::::
grey.

::::
(a,c):

:::::::::::::::::
GPPvod-GPPfluxcom,

::::
(b,d):

:::::::::::::::
GPPvod-GPPmodis,

::::
(a,b):

::::::
SPEI03

:::::::::
(short-term

::::::::
response),

::::
(c,d):

::::::
SPEI12

::::::::
(long-term

::::::::
response).

::::::
Regions

::::
A-D:

:::
US

:::::::
cornbelt

:::
(A),

::::::::
Argentina

:::
(B),

::::::
Eastern

::::::
Africa

:::
(C)

:::
and

::::::
Eastern

:::::::
Australia

:::
(D).

::::::
Results

:::
are

::::::::
computed

::::
based

::
on

:::
the

::::
study

:::::
period

:::::::::
2003-2015.

:
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Figure A8.
:::::
Boxplot

::
of
:::::::
residuals

:::::::
between

:::::::::
standardized

::::
GPP

:::::
values

::
of

::::::::::
GPPvodtemp

:::
and

::::::::::
GPPfluxcom

:
or
:::::::::

GPPmodis
::::
along

::::::
SPEI12

::::::::
categories

::
for

:::
the

:::
data

::
in

:::::
Figure

::
8.

:::
The

::::::
intervals

:::
for

::
the

:::::::
different

::::::
SPEI12

:::::::
categories

:::
are

::::
given

::
in

:::
the

:::::
legend.

::::
Box

::::::
whiskers

::::::
indicate

:::
1.5

::
of

:::
the

:::::::::
interquartile

::::
range.

::::
The

::::::
analysis

::
is

::::
based

::
on

:::
the

:::::
whole

::::
study

:::::
period

::::::::::
(2003-2015).

:
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Table A1. Overview of FLUXNET Tier1 v1 stations within the period 2003 to 2014.
::::
Land

:::::
cover

:::::
from

:::::
IGBP

:::::::::::
(International485

::::::::::::::::
Geosphere–Biosphere

::::::::::
Programme)

:
is
:::::::

obtained
:::::

from
::
the

:::::::::
FLUXNET

::::::
station

:::::::
metadata.

:::::
Land

:::::
cover

::::::::::
abbreviations

:::
and

::::::
number

:::
of

::::::
stations

::
per

::::
land

::::
cover

::::
class

:::::
sorted

::
by

::::::
station

::::::
number:

::::
ENF

:::::::::
(Evergreen

::::::::
Needleleaf

::::::
Forests;

:::
23),

:::::
GRA

:::::::::
(Grasslands;

:::
22),

::::
DBF

:::::::::
(Deciduous

::::::::
Broadleaf

::::::
Forests;

:::
14),

::::
CRO

:::::::::
(Croplands;

:::
11),

::::
EBF

:::::::::
(Evergreen

:::::::
Broadleaf

::::::
Forests;

:::
9),

::::
WET

:::::::::
(Permanent

::::::::
Wetlands;

::
9),

::::
OSH

:::::
(Open

:::::::::
Shrublands;

:::
7),

:::
MF

:::::
(Mixed

::::::
Forests;

:::
6),

::::
SAV

::::::::
(Savannas;

::
6),

:::::
WSA

::::::
(Woody

::::::::
Savannas;

::
4)

:::
and

::::
CSH

::::::
(Closed

:::::::::
Shrublands;

::
1).

FLUXNET-ID Name Lon [° E] Lat [° N] Years used Land cover

AR-SLu San Luis -66.46 -33.46 2009-2011
:::
MF

AR-Vir Virasoro -56.19 -28.24 2010-2012
:::

ENF

AT-Neu Neustift 11.32 47.12 2003-2012
::::
GRA

AU-ASM Alice Springs 133.25 -22.28 2010-2013
:::

ENF

AU-Ade Adelaide River 131.12 -13.08 2007-2009
::::
WSA

AU-Cpr Calperum 140.59 -34.00 2010-2013
:::
SAV

AU-Cum Cumberland Plains 150.72 -33.61 2012-2013
:::
EBF

AU-DaP Daly River Savanna 131.32 -14.06 2008-2013
::::
GRA

AU-DaS Daly River Cleared 131.39 -14.16 2008-2013
:::
SAV

AU-Dry Dry River 132.37 -15.26 2008-2013
:::
SAV

AU-Emr Emerald, Queensland, Australia 148.47 -23.86 2011-2013
::::
GRA

AU-Fog Fogg Dam 131.31 -12.55 2006-2008
::::
WET

AU-GWW Great Western Woodlands, Western Australia, Australia 120.65 -30.19 2013-2014
:::
SAV

AU-RDF Red Dirt Melon Farm, Northern Territory 132.48 -14.56 2011-2013
::::
WSA

AU-Rig Riggs Creek 145.58 -36.65 2011-2013
::::
GRA

AU-Rob Robson Creek, Queensland, Australia 145.63 -17.12 2014-2014
:::
EBF

AU-Tum Tumbarumba 148.15 -35.66 2003-2013
:::
EBF

AU-Whr Whroo 145.03 -36.67 2011-2013
:::
EBF

BE-Bra Brasschaat 4.52 51.31 2004-2013
:::
MF

BE-Lon Lonzee 4.75 50.55 2004-2014
::::
CRO

BE-Vie Vielsalm 6.00 50.31 2003-2014
:::
MF

BR-Sa3 Santarem-Km83-Logged Forest -54.97 -3.02 2003-2004
:::
EBF

CA-NS1 UCI-1850 burn site -98.48 55.88 2003-2005
:::

ENF

CA-NS3 UCI-1964 burn site -98.38 55.91 2003-2005
:::

ENF

CA-NS4 UCI-1964 burn site wet -98.38 55.91 2003-2005
:::

ENF

CA-NS5 UCI-1981 burn site -98.49 55.86 2003-2005
:::

ENF

CA-NS6 UCI-1989 burn site -98.96 55.92 2003-2005
::::
OSH

CA-NS7 UCI-1998 burn site -99.95 56.64 2003-2005
::::
OSH

continued on next page
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continued from previous page

FLUXNET-ID Name Lon [° E] Lat [° N] Years used Land cover

CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce -74.34 49.69 2003-2010
:::

ENF

CA-SF1 Saskatchewan - Western Boreal, forest burned in 1977 -105.82 54.49 2003-2006
:::

ENF

CA-SF2 Saskatchewan - Western Boreal, forest burned in 1989 -105.88 54.25 2003-2005
:::

ENF

CA-SF3 Saskatchewan - Western Boreal, forest burned in 1998 -106.01 54.09 2003-2006
::::
OSH

CH-Cha Chamau 8.41 47.21 2006-2012
::::
GRA

CH-Fru Früebüel 8.54 47.12 2006-2012
::::
GRA

CH-Oe1 Oensingen grassland 7.73 47.29 2003-2008
::::
GRA

CN-Cha Changbaishan 128.10 42.40 2003-2005
:::
MF

CN-Cng Changling 123.51 44.59 2007-2010
::::
GRA

CN-Dan Dangxiong 91.07 30.50 2004-2005
::::
GRA

CN-Din Dinghushan 112.54 23.17 2003-2005
:::
EBF

CN-Du2 Duolun_grassland (D01) 116.28 42.05 2006-2008
::::
GRA

CN-Ha2 Haibei Shrubland 101.33 37.61 2003-2005
::::
WET

CN-HaM Haibei Alpine Tibet site 101.18 37.37 2003-2004
::::
GRA

CN-Qia Qianyanzhou 115.06 26.74 2003-2005
:::

ENF

CN-Sw2 Siziwang Grazed (SZWG) 111.90 41.79 2010-2012
::::
GRA

CZ-BK1 Bily Kriz forest 18.54 49.50 2003-2008
:::

ENF

CZ-BK2 Bily Kriz grassland 18.54 49.49 2004-2006
::::
GRA

DE-Akm Anklam 13.68 53.87 2009-2014
::::
WET

DE-Gri Grillenburg 13.51 50.95 2004-2014
::::
GRA

DE-Hai Hainich 10.45 51.08 2003-2012
::::
DBF

DE-Kli Klingenberg 13.52 50.89 2004-2014
::::
CRO

DE-Lkb Lackenberg 13.30 49.10 2009-2013
:::

ENF

DE-Obe Oberbärenburg 13.72 50.78 2008-2014
:::

ENF

DE-RuS Selhausen Juelich 6.45 50.87 2011-2014
::::
CRO

DE-Spw Spreewald 14.03 51.89 2010-2014
::::
WET

DE-Tha Tharandt 13.57 50.96 2003-2014
:::

ENF

DK-NuF Nuuk Fen -51.39 64.13 2008-2014
::::
WET

DK-Sor Soroe 11.64 55.49 2003-2012
::::
DBF

DK-ZaH Zackenberg Heath -20.55 74.47 2003-2008
::::
GRA

ES-LgS Laguna Seca -2.97 37.10 2007-2009
::::
OSH

ES-Ln2 Lanjaron-Salvage logging -3.48 36.97 2009-2009
::::
OSH

FI-Hyy Hyytiala 24.30 61.85 2003-2014
:::

ENF

FI-Jok Jokioinen 23.51 60.90 2003-2003
::::
CRO

continued on next page
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FLUXNET-ID Name Lon [° E] Lat [° N] Years used Land cover

FR-Gri Grignon 1.95 48.84 2004-2013
::::
CRO

FR-Pue Puechabon 3.60 43.74 2003-2013
:::
EBF

GF-Guy Guyaflux (French Guiana) -52.92 5.28 2004-2012
:::
EBF

IT-CA1 Castel d’Asso 1 12.03 42.38 2011-2013
::::
DBF

IT-CA2 Castel d’Asso 2 12.03 42.38 2011-2013
::::
CRO

IT-CA3 Castel d’Asso 3 12.02 42.38 2011-2013
::::
DBF

IT-Cp2 Castelporziano 2 12.36 41.70 2012-2013
:::
EBF

IT-Isp Ispra ABC-IS 8.63 45.81 2013-2014
::::
DBF

IT-Lav Lavarone 11.28 45.96 2003-2012
:::

ENF

IT-Noe Arca di Noé - Le Prigionette 8.15 40.61 2004-2012
::::
CSH

IT-PT1 Parco Ticino forest 9.06 45.20 2003-2004
::::
DBF

IT-Ren Renon 11.43 46.59 2003-2013
:::

ENF

IT-Ro1 Roccarespampani 1 11.93 42.41 2003-2008
::::
DBF

IT-Ro2 Roccarespampani 2 11.92 42.39 2003-2012
::::
DBF

IT-SR2 San Rossore 2 10.29 43.73 2013-2014
:::

ENF

IT-SRo San Rossore 10.28 43.73 2003-2012
:::

ENF

IT-Tor Torgnon 7.58 45.84 2008-2013
::::
GRA

JP-MBF Moshiri Birch Forest Site 142.32 44.39 2003-2005
::::
DBF

JP-SMF Seto Mixed Forest Site 137.08 35.26 2003-2006
:::
MF

NL-Hor Horstermeer 5.07 52.24 2004-2011
::::
GRA

NL-Loo Loobos 5.74 52.17 2003-2013
:::

ENF

NO-Adv Adventdalen 15.92 78.19 2012-2014
::::
WET

RU-Che Cherski 161.34 68.61 2003-2005
::::
WET

RU-Cok Chokurdakh 147.49 70.83 2003-2013
::::
OSH

RU-Fyo Fyodorovskoye 32.92 56.46 2003-2013
:::

ENF

RU-Ha1 Hakasia steppe 90.00 54.73 2003-2004
::::
GRA

SD-Dem Demokeya 30.48 13.28 2005-2009
:::
SAV

US-AR1 ARM USDA UNL OSU Woodward Switchgrass 1 -99.42 36.43 2009-2012
::::
GRA

US-AR2 ARM USDA UNL OSU Woodward Switchgrass 2 -99.60 36.64 2009-2012
::::
GRA

US-ARM ARM Southern Great Plains site- Lamont -97.49 36.61 2003-2012
::::
CRO

US-Blo Blodgett Forest -120.63 38.90 2003-2007
:::

ENF

US-Ha1 Harvard Forest EMS Tower (HFR1) -72.17 42.54 2003-2012
::::
DBF

US-Los Lost Creek -89.98 46.08 2003-2014
::::
WET

US-MMS Morgan Monroe State Forest -86.41 39.32 2003-2014
::::
DBF

continued on next page
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FLUXNET-ID Name Lon [° E] Lat [° N] Years used Land cover

US-Me6 Metolius Young Pine Burn -121.61 44.32 2010-2012
:::

ENF

US-Myb Mayberry Wetland -121.77 38.05 2011-2014
::::
WET

US-Ne1 Mead - irrigated continuous maize site -96.48 41.17 2003-2013
::::
CRO

US-Ne2 Mead - irrigated maize-soybean rotation site -96.47 41.16 2003-2013
::::
CRO

US-Ne3 Mead - rainfed maize-soybean rotation site -96.44 41.18 2003-2013
::::
CRO

US-SRM Santa Rita Mesquite -110.87 31.82 2004-2014
::::
WSA

US-Syv Sylvania Wilderness Area -89.35 46.24 2003-2014
:::
MF

US-Ton Tonzi Ranch -120.97 38.43 2003-2014
::::
WSA

US-Tw3 Twitchell Alfalfa -121.65 38.12 2013-2014
::::
CRO

US-UMd UMBS Disturbance -84.70 45.56 2007-2014
::::
DBF

US-Var Vaira Ranch- Ione -120.95 38.41 2003-2014
::::
GRA

US-WCr Willow Creek -90.08 45.81 2003-2014
::::
DBF

US-Whs Walnut Gulch Lucky Hills Shrub -110.05 31.74 2007-2014
::::
OSH

US-Wkg Walnut Gulch Kendall Grasslands -109.94 31.74 2004-2014
::::
GRA

ZA-Kru Skukuza 31.50 -25.02 2003-2010
:::
SAV

ZM-Mon Mongu 23.25 -15.44 2007-2009
::::
DBF
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Table A2.
::::::::::
Leave-site-out

:::::
cross

:::::::
validation

:::
for

::::::::::
GPPvodtemp

:::
and

:::::::
GPPvod.

::::
The

::::::
analysis

:::
was

::::::::
conducted

:::
for

:::
the

:::
full

:::::
signal

::
as

:::
well

::
as
:::
for

:::
the495

:::::::
anomalies

::::
from

:::
the

::::
mean

:::::::
seasonal

:::::
cycle.

::::::::
Anomalies

::::
were

::::::::
calculated

:::
after

:::::
model

:::::::::
application.

::::::
Values

:::::::
represent

::::
mean

:::
and

:::::::
standard

:::::::
deviation

:
of
:::

the
::::::
metrics

:::
over

:::
the

::::
cross

::::::::
validation

:::::
results

:::
for

:::
each

::::
site.

Pearson r [-] UbRMSE [gC m-2 d-1] Bias [gC m-2 d-1]

::::::
GPPvod

::::
0.40

:
±
::::
0.32

:::
2.57

::
±

::::
1.14

::::
-0.04

:
±
::::
2.01

::::::::::
GPPvodtemp

::::
0.54

:
±
::::
0.31

:::
2.30

::
±

::::
1.01

::::
-0.08

:
±
::::
2.01

::::::
GPPvod

::::::::
anomalies

::::
0.18

:
±
::::
0.22

:::
1.57

::
±

::::
0.78

::::
-0.00

:
±
::::
0.00

::::::::::
GPPvodtemp

:::::::
anomalies

::::
0.22

:
±
::::
0.19

:::
1.53

::
±

::::
0.76

:::
0.00

::
±

::::
0.00
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