- Preprint
(11189 KB) - Metadata XML
- Articles & preprints
- Submission
- Policies
- Peer review
- Editorial board
- About
- EGU publications
- Manuscript tracking
30 Nov 2020
30 Nov 2020
Abstract. A significant proportion of the global carbon emissions to the atmosphere originates from agriculture. Therefore, continuous long-term monitoring of CO2 fluxes is essential to understand the carbon dynamics and balances of different agricultural sites. Here we present results from a new eddy covariance flux measurement site located in southern Finland. We measured CO2 and H2O fluxes at this agricultural grassland site for two years from May 2018 to May 2020. Especially the first summer experienced prolonged dry periods, which affected the CO2 fluxes, and substantially larger fluxes were observed in the second summer. During the dry summer, leaf area index (LAI) was notably lower than in the second summer. Water use efficiency increased with LAI in a similar manner in both years, but photosynthetic capacity per leaf area was lower during the dry summer. The annual carbon balance was calculated based on the CO2 fluxes and management measures, which included input of carbon as organic fertilisers and output as yield. The carbon balance of the field was −50 ± 68 g C m−2 yr−1 and −118 ± 24 g C m−2 yr−1 during the first and second study year, respectively. We estimated that on average the grassland exceeded the global 4 per 1000
goal to increase the soil carbon content.
Laura Heimsch et al.
Laura Heimsch et al.
Laura Heimsch et al.
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
230 | 81 | 6 | 317 | 3 | 5 |
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
An interactive open-access journal of the European Geosciences Union