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Abstract. A significant proportion of the global carbon emissions to the atmosphere originates from agriculture. Therefore,

continuous long-term monitoring of CO2 fluxes is essential to understand the carbon dynamics and balances of different

agricultural sites. Here we present results from a new eddy covariance flux measurement site located in southern Finland. We

measured CO2 and H2O fluxes at this agricultural grassland site for two years
:
, from May 2018 to May 2020. Especially the

first summer experienced prolonged dry periods, which affected the CO2 fluxes, and substantially larger fluxes were observed5

in the second summer. During the dry summer, leaf area index (LAI) was notably lower than in the second summer. Water use

efficiency increased with LAI in a similar manner in both years, but photosynthetic capacity per leaf area was lower during the

dry summer. The annual carbon balance was calculated based on the CO2 fluxes and management measures, which included

input of carbon as organic fertilisers and output as yield. The carbon balance of the field was –50
:::
–57 ± 68

::
10 g C m−2 yr−1

and –118
:::
–86 ± 24

::
12 g C m−2 yr−1 in the first and second study year, respectively. We estimated that on average the grassland10

exceeded
::::::
reached

:
the global "4 per 1000" goal to increase the soil carbon content.

1 Introduction

Conventional and intensive agricultural practices cause significant carbon emissions while diminishing the soil organic matter

(SOM) content. This leads to a reduction of soil quality and health (e.g. Houghton and Nassikas, 2017; Le Quéré et al., 2009,

2017; Lal, 2016; Paustian et al., 2000; Smith, 2008). Currently, agriculture is responsible for more than 10% of the global15

anthropogenic greenhouse gas (GHG) emissions to the atmosphere (Le Quéré et al., 2017). Soil type and properties, vegetation,

climate and weather conditions as well as management practices all have a considerable effect on the carbon fluxes and balances

of agroecosystems (Bolinder et al., 2010; Gomez-Casanovas et al., 2012; Jensen et al., 2017; Lorenz and Lal, 2018; Singh et al.,

2018). Frequent ploughing, monocropping and intensive use of agrochemicals are the main contributors to the loss of SOM

and the resulting carbon dioxide (CO2) emissions from land use (Ceschia et al., 2010; Reinsch et al., 2018; Yang et al., 2019).20

A change from conventional and intensive agricultural practices to regenerative and holistic farm management provides a

substantial climate change mitigation potential (Lal, 2016). Increasing the amount of SOM in agroecosystems by applying

enhanced management practices, such as lighter tillage, continuous plant cover, rotational grazing, agroforestry, increased
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biodiversity and cover cropping, would not only help to mitigate climate change but also to restore soil quality and fertility.

Especially, managed grasslands as part of agricultural systems have a high potential for substantial soil carbon sequestration25

(Soussana et al., 2010; Gilmanov et al., 2010; Yang et al., 2019). The importance of increasing soil organic carbon (SOC)

content of agricultural soils has recently attained more attention, and the "4 per mille Soils for Food Security and Climate"

initiative was launched at the 21st Conference of the Parties to the United Nations Framework Convention on Climate Change

in Paris in 2015 (Minasny et al., 2017). The aim of this initiative is to increase the soil carbon stock on all land surfaces in the

upper 2 metres by 0.4% annually. This would be enough to sequester carbon from the atmosphere by an amount equivalent to30

the annual anthropogenic GHG emissions. However, the initiative states that the most potential SOC increases can be achieved

on managed agricultural lands. In that case, the "4 per 1000" means increasing of SOC at the top 1-m layer of agricultural soils

by 0.4% annually. That would effectively offset approximately 20–35% of the global GHG emissions.

Agricultural ecosystems are highly prone to impacts of climate change, which induces a risk for food production. One of the

possible impacts of climate change on agricultural ecosystems is associated with the changes in seasonal weather conditions and35

the resulting alteration in the carbon and water balance of these ecosystems (Ciais et al., 2014; Donnelly et al., 2017; Harrison

et al., 2019). Severe drought events and storms causing considerable damage to agriculture have already been observed across

Europe (Ciais et al., 2005; Wolf et al., 2013; Bastos et al., 2020). Moreover, adverse climatic impacts may be amplified by

current and prior land use practices if they have not supported ecosystem resilience (Brunsell et al., 2014). For instance, a

deeper root system is likely to buffer the negative impacts of climate variability. Also, high plant species diversity, compared40

to monocultures, favours the efficiency of plant water consumption and resilience to drought (De Boeck et al., 2006). As gross

primary production (GPP) is closely related to ecosystem evapotranspiration (ET) via stomatal functions (Fricker and Willmer,

2012), changes in terrestrial water balance are potentially reflected in GPP and thus in the carbon balance of agricultural

grasslands. The effect of water stress can be studied, for instance, by analysing ecosystem water use efficiency (WUE), i.e.

the amount of carbon assimilated per unit of water lost by ET (Steduto, 1996). Generally, the productivity of a grassland45

ecosystem correlates with WUE, and thus ecosystems with a high productivity usually also have a high WUE (Hu et al., 2008).

Environmental factors are mainly regulating WUE via the effects on
:::::::
regulate

:::::
WUE

:::
via

::::::
effects

::
on

::::::::
stomatal

::::::::::
conductance

::::
and

GPP, and during prolonged drought periods, for example, temperature-induced downregulation of GPP may reduce WUE of

grasslands
::
in

::::::::
particular (Gharun et al., 2020). Furthermore, the WUE response depends on the intensity of the drought (Xu

et al., 2019). However, the drought effects are also strongly related to season,
:
as Wolf et al. (2013) reported that the WUE of50

Swiss grassland ecosystems did not respond to a spring drought and Bastos et al. (2020) concluded that the spring weather may

either amplify or dampen the carbon and water dynamics during the following summer.

Better understanding of climatic impacts of agriculture and the effects of improved practices from the perspective of soil

health and vitality is needed in order to develop tools for better environmental management of these ecosystems. Continuous

long-term measurements of the atmosphere-ecosystem fluxes are needed to identify the key factors affecting carbon dynamics55

of different ecosystems, to quantify the resulting carbon balance and its components, and to verify soil carbon and ecosystem

models. Moreover, the high-quality GHG flux data is
::
are

:
needed for a reliable, global monitoring and verification system of

agricultural carbon fluxes and soil carbon sequestration and stability (Smith et al., 2020).
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The eddy covariance (EC) method is widely used for measuring CO2 and energy fluxes in different ecosystems and climatic

conditions (Aubinet et al., 2012). The high-frequency measurements provided by EC allow a direct quantification and analysis60

of gas exchange between the ecosystem and atmosphere. The carbon balance calculated from EC data, combined with the addi-

tional carbon fluxes caused by management, serves as an important measure for determining the climatic impact of agricultural

ecosystems (e.g. Baldocchi, 2003; Baldocchi et al., 2018). However, continuous GHG flux measurements on agricultural sites,

especially on mineral soils and grasslands, are still scarce in the Nordic countries (Shurpali et al., 2009; Lind et al., 2020;

Jensen et al., 2017).65

The aim of this study is to determine the magnitude and seasonal dynamics of the carbon balance of
:::::::::
investigate,

:::::
based

:::
on

:::
EC

::::::::::::
measurements,

::::
CO2::::::::

exchange
:::::::
between

:::
the

::::::::::
atmosphere

::::
and a managed forage grassland in southern Finland. In particular,

we had three specific research questions:

1. How does the CO2 exchange and carbon balances vary between the study years
::::
What

::
is

:::
the

:::::::::
magnitude

:::
of

:::
the

::::::
annual

:::::
carbon

:::::::
balance

:::
and

:::
its

::::::::::
components?70

2. Does the grass photosynthesis indicate occasional drought-related responses?

3. How does the possible carbon sink relate to
:::
the carbon sequestration objective of

:::
the “4 per 1000” initiative?

For the purposes of this study, we collected field data on the net exchange of CO2 and H2O, soil and vegetation properties

and meteorological variables on an agricultural grassland in southern Finland during two years, from May 2018 to May 2020.

2 Material and methods75

2.1 Site description

The flux measurements were conducted at the Qvidja farm in southern Finland (60.29550◦N, 22.39281◦E; elevation 5 m)

from May 2018 to May 2020 (Fig. 1). The site belongs to the hemiboreal climate zone. From 1981 to 2010, the mean annual

air temperature and precipitation at the Kaarina Yltöinen weather station, located 13 km northeast of Qvidja, were 5.4◦C

and 679 mm, respectively (Pirinen et al., 2012). The experimental field in Qvidja has mineral soil (clay loam) and it covers80

16.25 ha. It was cultivated as forage grassland during the study years. From 2008 to 2016, the field was managed intensively

with conventional practices, and it was in annual crop rotation. In 2017, the field management practices were converted towards

more sustainable and environmentally friendly farming by increasing the use of organic fertilisers and perennials, restricting the

use of pesticides and increasing plant species biodiversity. The current grass
:::
and

::::::
clover

::::::
mixture

:
was sown as an undergrown

species with broad bean in spring 2017. The predominant grass species were timothy (Phleum pratense), meadow fescue85

(Festuca pratensis) and white clover (Trifolium repens).

Grass was harvested for silage for the first time on 12 June 2018. As the grass cover was fairly sparse later in the summer due

to drought, repair seeding was done on 3 September 2018 to restore the drought-induced damage. The seed mixture included

35% of timothy, 30% of rye-grasses (Lolium spp.), 20% of common meadow-grass (Poa pratensis) and 15% of red fescue
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Figure 1. Experimental field with the sectors representing the target area . the area
:::
that covers 3.9 ha. Eddy covariance tower is located in

the centre of the sectors. Wind
::
EC

::::
data

::::
from

::::
wind directions from 30 to 140◦ were filtered out

:::::::
discarded due to another experimental plot

locating in that part of the field. (Orthophoto from National Land Survey of Finland)

(Festuca rubra). Timothy, meadow fescue and clover remained as the predominant species also in 2019 and early 2020. On 2190

August 2018, the grass was cut at approximately 15 cm, but the yield was left in the field. The second harvest of 2018 occurred

on 23 September. In 2019, the grass was harvested on 11 June and 20 August. In June 2018, a conventional cutting height of 6

cm was used, whereas in the other harvests the grass was cut at 15 cm.

In 2018, the field was fertilised twice, on 16 July and 24 August, with 2800 kg ha−1 and 1800 kg ha−1 of NK-molasses,

respectively (Table 1). NK-molasses was a byproduct of the sugar industry. It contained 67% of organic matter (OM) and 4.4%95

of nitrogen and had the C:N ratio of 9. According to the product information, the molasses included 205 g kg−1 of organic

carbon. In addition, it contained potassium and small proportions of sulphur, magnesium, calcium and sodium.

In May 2019, the field was fertilised with a mixture of side products from industries of starch potato processing, biowaste

processing and ethanol production out of sawdust. This fertilisation mixture contained 65% of
::::
70%

:::
(of

:::
dry

:::::::
weight)

::
of

:
OM,

1.3% of nitrogen, 0.2% of phosphorus, 3% of potassium and 0.4% of sulphur, as well as small amounts of calcium, magnesium,100

zinc, copper and manganese. Approximately 4600 kg ha−1 was applied on the field on 8 May (Table 1). On 26 June after the

first harvest, 220 kg ha−1 of mineral fertiliser was applied. This fertiliser contained 23% of nitrogen, 10% of phosphorus and

8% of potassium.
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2.2 Measurement setup

The CO2 and H2O fluxes were measured with the micrometeorological EC method. The flux measurements started on 3 May105

2018, and here we analysed data collected from 4 May 2018 to 3 May 2020. From this point on, the periods of 4 May 2018 –

3 May 2019 and 4 May 2019 – 3 May 2020 are referred to as the first and second EC measurement year, respectively.

The EC instrumentation consisted of an enclosed infrared CO2/H2O gas analyser (LI-7200, LI-COR Biosciences, NE, USA),

which detects the CO2 and H2O mixing ratios, and a three-dimensional sonic anemometer (uSonic-3 Scientific, METEK

GmbH, Elmshorn, Germany) to measure wind speed and air temperature. The data were recorded at 10-Hz frequency. The110

measurement height was 2.3 m. The flow rate was about 12 l min−1, and the length of the 4-mm stainless steel inlet tube

with 2 µm Swagelok sinter was 0.8 m. The gas analyser was calibrated with a zero
:::
The CO2 concentration air as a reference

gas in May 2018 and March 2020.
:::::::::::
measurements

:::::
were

::::::::
regularly

:::::::
checked

::::
with

::::
zero

::::
and

::::
span

::::::
gases,

:::
and

::::
the

:::::::
LI-7200

::::
was

:::::::::
recalibrated

:::::
when

:::::::::
necessary.

:::
The

:::::
H2O

:::::::::::
measurements

:::::
were

::::::::
compared

::::
with

:::
the

::::
data

:::::::
obtained

::::
from

::
a
::::::::
dedicated

::::::::
humidity

::::::
sensor;

::
no

:::::::::::
recalibration

:::
was

:::::::::
necessary.115

The micrometeorological sign convention is used throughout the paper, with a negative value indicating the flux from the

atmosphere to the ecosystem (net uptake) and a positive value indicating the flux from the ecosystem to the atmosphere (net

emission).

Auxiliary meteorological measurements were conducted next to the flux tower. These included soil moisture observations

at the depth of 0.1 m (ML3 ThetaProbe sensor, Delta-T Devices Ltd., Cambridge, UK) and soil temperature profile at the120

depths of 5, 10 and 30 cm (Pt100 IKES sensors, Nokeval Oy, Nokia, Finland). The soil temperature data were collected with

a Vaisala QML201C datalogger (Vaisala Oyj, Vantaa, Finland). Photosynthetically active radiation (PQS PAR sensor, Kipp &

Zonen B.V., Delft, The Netherlands), global and reflected solar radiation (CMP3 radiometer, Kipp & Zonen)
:
, and air temper-

ature
::
and

:::::::
relative

::::::::
humidity (Humicap HMP155, Vaisala Oyj) were measured at the height of 1.8 m. In addition, precipitation

was measured with Pluvio2 (
:
a
::::::::
weighing

::::
rain

:::::
gauge

::::::::
(Pluvio2,

:
OTT HydroMet GmbH, Kempten, Germany). Meteorological125

measurements started on 8 May 2018, and the data were recorded as 30-min averages, excluding the precipitation which was

recorded as 1-min values. Snow cover
::::
depth

:
was recorded at the weather station of Kaarina Yltöinen.

The leaf area index (LAI) data were obtained from the Sentinel-2 satellite as daily values on the clear-sky days. LAI was

calculated from the Sentinel-2 bottom-of-atmosphere products (L2A) using the Google Earth Engine (GEE) and a Python

implementation of the Biophysical Processor toolbox (Weiss and Baret, 2016) available in Sentinel Application Platform130

(SNAP) software. The cloudy, cloud-shadowed and snowy data were filtered out using the scene classification band available

in the L2A products.

2.3 Eddy covariance data processing

The turbulent fluxes were determined as the covariance between the variations of vertical wind component and gas mixing ratio

recorded at 10 Hz. They were calculated as 30-min block averages applying standard procedures, including double coordinate135

rotation and lag determination based on cross-correlation analysis (Rebmann et al., 2012). The systematic flux loss due to
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the incomplete frequency response of the measurement system was corrected according to the empirical method described by

Laurila et al. (2005).

The EC data from 5 January to 28 March 2019 were affected by technical issues with an inlet filter, which resulted in

an erroneous reading of the internal analyser pressure. For this period, the 10-Hz mixing ratios were recalculated from the140

recorded absorptance data using the instrument-specific calibration functions. The mean CO2 mixing ratio was set to 410 ppm

in these calculations.

The following acceptance criteria were applied to screen the 30-min averaged CO2 flux data: number of spikes in the

raw data < 150 of 18,000, relative stationarity of CO2 flux (Foken et al., 2012) < 50%, mean CO2 mixing ratio > 380

ppm, variance of CO2 mixing ratio < 15 ppm2 between April and September and < 5 ppm2 between October and March,145

and wind direction within 0–30◦ or 140–360◦. Furthermore, the data were discarded during the periods of weak turbu-

lence and when the flux footprint was not sufficiently representative of the target grassland, as estimated with the footprint

model of Kormann and Meixner (2001). For these, we applied a friction velocity limit of 0.06 m s−1 and a cumulative foot-

print limit of 0.7. The further screening applied to H2O fluxes included: H2O flux > 0, relative stationarity of H2O flux

< 50% and variance of H2O mixing ratio < 1 (mmol mol−1)2. After applying these filtering criteria, the coverage of CO2150

and H2O flux data accepted for further analysis was 44% and 30% of all the 30-min periods during the two measurement

years, respectively
:::
(for

:::::
CO2,

::::::::
day/night

:::::::::
55%/33%,

:::::::::::::::::::::::::::
April–September/October–March

:::::::::
48%/38%;

:::
for

:::::
H2O,

::::::::
day/night

:::::::::
49%/11%,

:::::::::::::::::::::::::::
April–September/October–March

:::::::::
41%/16%). Most of the accepted CO2 and H2O flux data were collected when the wind

direction was in the south-southwest sector (Fig. 2).

Figure 2. Number of accepted flux measurements within 20◦ sectors around the flux tower during the first and second year. Data from 30◦

to 140◦ were discarded.

2.4 Soil temperature model155
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The soil temperature sensor at the depth of 5 cm malfunctioned during the first measurement year, and these data were

replaced with values derived from air temperature using the model presented by Rankinen et al. (2004). This model also takes

into account the effect of possible snow cover on soil temperature. The following equation was used to obtain 30-min soil

temperatures at 5 cm from 8 May 2018 to 3 May 2019:

T t+1
z = T t

z +

[
∆tKT

CA(2Zs)2
(T t

air −T t
z)

]
e−fsDs160

where Tt+1
z is the soil temperature at the depth of Zs on the following day, Tt

z is the soil temperature of the current day,

∆t is the length of the timestep, KT is soil thermal conductivity, which was set to 1 W m−1 K−1, CA is the apparent heat

capacity which is the sum of specific heat capacity of the soil Cs = 0.5×10−6 J m−3 K−1 and specific heat capacity due to

freezing and thawing Cice = 4×10−6 J m−3 K−1, and Tt
air is the measured air temperature. The impact of snow cover was

taken into account in the last term of the equation where fs is an empirical snow parameter, which was set to 10 m−1, and Ds165

is the measured snow depth. The model predictions were compared to measurements at the experimental field between June

2019 and May 2020. During summertime, the changes in soil temperature were fairly well captured by the model, whereas in

the wintertime, the model tended to create larger changes in temperature than the actual measurements showed (Fig. ??).

Comparison of measured and modelled soil temperature at 5 cm depth from June 2019 to May 2020.

2.4 Flux partitioning and gap-filling170

To calculate CO2 balances and to conduct further seasonal analysis of the flux components the
::::::
analyse

:::
the

::::::::::
components

:::
of

::
the

:::
net

::::::::
exchange

::::::::
between

:::
the

::::
field

:::
and

:::
the

::::::::::
atmosphere,

:::
the

:
measured CO2 flux data (i.e. net ecosystem exchange, NEE) were

partitioned to GPP and total ecosystem respiration (Reco) and gap-filled based on this partitioning:

NEE =GPP +Reco (1)

The gap-filled GPP and Reco were calculated with empirical response functions by first fitting these functions to the flux data.175

Reco was expressed as a function of temperature (Lloyd and Taylor, 1994):

Reco =R0e
E0

(
1
T1

− 1
Ts−T0

)
E0

(
1
T1

− 1
Ta−T0

)
::::::::::::

(2)

where R0 is the respiration rate (mg m−2 s−1) at the reference soil temperature of 283.15 K, T0 = 227.13 K, T1 = 56.02 K,

and E0 = 308 K is the long-term
:
is
:
ecosystem sensitivity coefficient (Lloyd and Taylor, 1994) that describes the temperature

response of soil respiration, and Ts:a
is the soil temperatureat the depth of 5 cm

::
air

::::::::::
temperature.180
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GPP was modelled as a function of photosynthetically active radiation (PAR, µmol m−2 s−1) and daily effective phytomass

index (PI) as:
::
as:

:

GPP = PI×α×PAR×GPmax

α×PAR+GPmax
(3)

where PI is an empirically-determined variable introduced to describe the seasonal changes in the photosynthetically active185

vegetation (Aurela et al., 2001),
:::::
where

:
α is the apparent quantum yield (mg µmol−1), and GPmax denotes the asymptotic

CO2 uptake rate in optimal light conditions (mg m−2 s−1). Further details on the PI determination and gap-filling procedure

are provided in the Appendix ?? and A, respectively
:
is

::::::::
provided

::
in

::::::::
Appendix

::
A. Energy fluxes were gap-filled following the

description in the Appendix B.

To study the differences in photosynthetic capacity of the grass field between the two growing seasons, daily GP1200 values190

were calculated with the estimated α and GPmax values, i.e. GPP was normalised to PAR = 1200 µmol m−2 s−1.

2.5 Carbon
:::
Net

:::::::::
ecosystem

::::::
carbon

:
balance

The
:
In

::::
this

:::::
study,

:::
the

::::::
system

:::::::::
boundaries

::::::
include

:::
the

:::::
main

::::::::::
components

::
of

:::
the carbon balance of the agricultural ecosystem

::::
field

::::::::
ecosystem

:::::::
studied.

::::
The

::::::
carbon

::::::
balance

:
was calculated by adding up the 30-min NEE fluxes, the imported carbon in the form

of organic fertilisers and the removal of carbon
::::::
carbon

:::::::
removed as harvested biomass:195

Cbalance = CH +CF +
∑
i=1

mn
:
NEEi (4)

where CH is the amount of carbon in harvested biomass, CF is the amount of carbon in imported fertilisation and m
:
n is the total

number of timesteps in the period for which the balance was calculated.
:::::
Thus,

:::
the

::::::
carbon

::::::
balance

::::::::
indicates

:::
the

:::
net

:::::::::
ecosystem

:::::
carbon

:::::::
balance

::
as

:::::::
defined

::
by

:::::::::::::::::
Chapin et al. (2006)

::::::
without

:::
the

::::::::::
contribution

:::
of

::::::
carbon

:::::::::
monoxide,

:::::::
methane,

:::::::
volatile

::::::
organic

::::
and

::::::::
particulate

::::::::::
compounds

::
or

::::::::
leaching.

::::
This

:::::::
balance

::
is

:::::::::
commonly

:::::
called

:::
the

:::
net

::::::
biome

:::::::::
production

:::::::::::::::::
(Kutsch et al., 2010).

:
Biomass200

was converted to carbon by multiplying the dry weight by 0.42 (Lohila et al., 2004). The following sign convention was used:

the carbon imported into the ecosystem corresponds to a negative flux and the carbon removed from the system corresponds to

a positive flux.

2.6 Uncertainty analysis

The CO2 balance
:::::::
between

:::
the

::::
field

:::
and

:::
the

::::::::::
atmosphere, which is calculated based on the EC measurements, includes multiple205

potential error sources. Uncertainties are associated, for example, with the stochastic nature of turbulence and incomplete sam-

pling of large eddies, the performance of instruments and the flux variation caused by the limited area of the target ecosystem
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(Aubinet et al., 2012). Some of these errors were compensated for in the data processing and screening . Here we included in

the uncertainty estimate the
:::
and

::
the

:
most relevant random error sources, i.e. the statistical measurement error (Emeas) and the

error caused by gap-filling (Egap) Aurela et al. (2002)
::::::::::::::::
(Aurela et al., 2002)

:
,
::::
were

:::::::
included

::
in
:::
the

::::::::::
uncertainty

:::::::
estimate:210

Emeas =

√√√√ n∑
i=1

(NEEmeas,i −NEEmod,i)2 (5)

where NEEmeas is the filtered 30-min flux, NEEmod is the corresponding modelled NEE (Eqs. 1–3), and n is the number of

measured data.

Egap =

√√√√ N∑
i=1

(E2
GPP,i +E2

Reco,i
) (6)

where EGPP and EReco
are the errors of modelled GPP and Reco, respectively. N is the number of gaps in the data.215

The standard error propagation principle was used in estimating the total uncertainty (Etot) of the annual carbon balance:

Etot =
√
E2

meas +E2
gap (7)

2.7 Water use efficiency220

The ecosystem WUE was defined as the ratio of GPP to ET, i.e. H2O flux:

WUE =
GPP

ET
(8)

where daily means of GPP and ET were used. The ET data corresponding to a latent heat flux lower than 30 W m−2 were

discarded (Abraha et al., 2016).
::::::::::
Furthermore,

::::
days

::::
with

:::::::::::
precipitation

::::
were

::::::::::
eliminated.225

2.8 Soil carbon content

Soil carbon content was determined from 1-m-deep core samples taken within the flux source area. The samples were taken
::
in

::::::
October

:::::
2018 using a hydraulic corer installed to a tractorin October 2018. .

:
The diameter of the sample cylinder was 151 mm.
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Subsamples were taken along the 1-m core at 16 points, and soil organic carbon (SOC, kg m−2) content in each subsample

was analysed using a VarioMax CN analyser (Elementar Analysensysteme GmbH, Germany).230

3 Results

3.1 Meteorological conditions

The annual mean air temperature at the study site was 7.6 ◦C and 7.7 ◦C in the first and second measurement year, respectively.

Both years were warm compared to the long-term (1981–2010) average of 5.4 ◦C measured at a nearby weather station (Pirinen

et al., 2012). The annual precipitation sum was lower in the first year (473 mm) and higher in the second year (855 mm) than235

the long-time average (679 mm).

The thermal growing season, defined here as the period when the daily mean temperature exceeded permanently 5 ◦C, started

on 14 April in 2018, i.e. before the EC measurements started. In 2019 and 2020, the thermal growing season began on 16 April

and 18 April, respectively. The thermal growing season ended on 17 November and 26 October in 2018 and 2019, respectively.

Thus, the thermal growing season length was 218 days in 2018 and 194 days in 2019. Meteorological conditions during the240

main growing season between May and September varied substantially between the two years. The mean air temperature

during these months was 16.7 ◦C and 14.5 ◦C in 2018 and 2019, respectively. The mean growing season soil temperatures

were similar to the air temperatures with 16.4 ◦C (modelled) in 2018 and 14.5 ◦C in 2019. During the same period, the mean

daily PAR was about 12% higher in 2018 than in 2019 (460 vs. 410 µmol m−2 s−1), while the precipitation sum was 32%

lower (212 vs. 312 mm).245

During winter 2018–2019, permanent snow cover was recorded from 17 December
::::
2018

:
to 26 March 2019. In the following

winter (2019–2020), there were only two short snow-cover periods: 5–8 February and 30–31 March 2020. The maximum snow

depth in the first winter was 33 cm, whereas in the second winter it was 3 cm. The mean wintertime (November–March) air

temperature was –0.2◦C in 2018–2019 and 2.2 ◦C in 2019–2020. The warmer winter in the second measurement year was also

observed in the mean soil temperature (–0.9 vs. 1.6 ◦C).250

Soil moisture content at the depth of 10 cm varied between 0.16 and 0.55 m3 m−3 during the study period. In several

occasions, the daily mean soil moisture dropped to about 0.2 m3 m−3. During the growing seasons, such low values indicate

substantial drought, while in the winter, rapid data drops were likely related to soil freezing. The average soil moisture during

the growing season in 2019 was higher than in 2018 (0.30 vs. 0.26 m3 m−3). As a result of the higher precipitation in 2019,

soil moisture occasionally increased up to 0.4 m3 m−3, i.e. close to the saturated values observed in winter.255

3.2 Fluxes

At the beginning of the measurements, the net CO2 fluxes were negative (Fig. 3), and the air and soil temperatures were

::::::::::
temperature

:::
was

:
already well above 10◦C (Fig. 4). Net uptake was observed until the first harvest around mid-June 2018.

This harvest and the following management events during the that growing season induced large short-term variations in the
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CO2 fluxes. Similarly, in the second study year, large impacts on CO2 fluxes were observed after the management events.260

During the growing season, the mean NEE was –0.13 and –0.21 mg CO2 m−2 s−1 in 2018 and 2019, respectively. During

the wintertime, no significant CO2 uptake occurred, and the positive fluxes were small compared to the nocturnal fluxes in

summer. The mean measured NEE between December 2018 and February 2019 was 0.03 mg CO2 m−2 s−1, and during the

same period in 2019–2020 it was 0.04 mg CO2 m−2 s−1.

Figure 3. Accepted 30-min a) net ecosystem exchange (NEE) and b) H2O flux measurements from May 2018 to May 2020. Vertical lines
with H and F indicate harvest and fertilisation, respectively.

Seasonal patterns were observed also in the H2O fluxes (Fig. 3). In the spring, the ecosystem ET started to increase reaching265

the highest levels between June and August, after which it gradually decreased to wintertime values, i.e. close to zero. The mean

growing season H2O flux was 34.7 mg H2O m−2 s−1 in 2018 and 35.5 mg H2O m−2 s−1 in 2019. The wintertime (December–

February) mean H2O flux was 3.6 mg H2O m−2 and 3.7 mg H2O m−2 in 2018–2019 and 2019–2020, respectively.

The experimental field was harvested and fertilised twice during each of the studied growing seasons (Table 1). The effect

of management was investigated by comparing the mean fluxes 5
:::
five days before and after the harvest dates (Table A1). The270

harvest in June 2018 changed the mean CO2 flux from a net sink of –0.28 mg CO2 m−2 s−1 to a source of 0.03 mg CO2 m−2

s−1, i.e. increased the net efflux by 0.31 mg CO2 m−2 s−1. The first harvest of 2019 increased NEE by 0.47 mg CO2 m−2

s−1, but as the pre-harvest mean NEE was –0.50 mg CO2 m−2 s−1, the field remained as a net sink. As a result of the second

harvest on 23 September 2018, the mean sink reduced from –0.10 to –0.02 mg CO2 m−2 s−1, while the harvest on 20 August

2019 caused the sink to change from –0.25 to –0.02 mg CO2 m−2 s−1. Thus, after all the harvests with a cutting height of 15275

cm, the mean sink rate was diminished to –0.02 or –0.03 mg CO2 m−2 s−1.
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In the first growing season, the first and second fertilisation events with organic substances increased NEE by 0.27 and 0.08

mg CO2 m−2 s−1, respectively, i.e. diminished the CO2 sink (Fig. 3, Table A1). During the 5
:::
five

:
days after the harvest in May

2019, the field acted as a CO2 source. A similar trend was not observed in June 2019, as mineral fertiliser was used and thus

no organic substances were added to the soil. Each of the fertilisation events were followed by rain within the next 5
:::
five

:
days.280

However, the mean soil moisture remained either
:
at

:::
the

:::::
depth

::
of

:::
10

:::
cm

:::::
either

::::::::
remained

:
the same or decreased slightly (Fig.

4, Table A1). Furthermore, the mean air temperature increased after the fertilisations in July 2018 and May 2019, potentially

affecting CO2 fluxes. After the fertilisation events with organic substances in July 2018, August 2018 and May 2019, the mean

PAR was 7%, 29% and 12% lower, respectively, than the 5-day mean before the fertilisation, complicating the interpretation of

fertilisation impacts on the CO2 fluxes. The effect of management on H2O fluxes could not be disentangled from the present285

data (Fig. 3b).

The PI calculated from the flux data was consistent with the seasonal changes in the
:::
The

:
LAI derived from Sentinel-2

images (Fig. 4d)
:::::
varied

::::::
greatly

:::::::
between

:::
the

:::::
years. The higher LAI in 2019 indicated that there was more photosynthesising

green biomass before the first and second harvest compared to 2018. The effect of larger leaf area was also observed in the

differences in the photosynthetic capacity (GP1200) of the grassland between the study years (Fig. 5a). The years differed290

significantly (p < 0.05) in terms of GP1200 at all levels of LAI (>1). Larger LAI values were observed throughout 2019,

indicating that grass was growing better than in 2018. Furthermore, the grassland was photosynthesising more efficiently with

the same leaf area in 2019 than in the previous year (Fig. 5a).

3.3 Water use efficiency

The ecosystem WUE estimate showed different seasonal variation during the studied growing seasons (Fig. 6). Generally,295

WUE was higher in 2019 than in 2018 throughout the growing season. WUE increased before the first harvest around mid-

June in both years, indicating more efficient CO2 uptake in terms of water use than during the spring. The 5-day mean WUE

before the first harvest was 2.6 and 2.9
:::
2.8

:::
and

:::
3.0

:
g CO2 (kg H2O)−1 in 2018 and 2019, respectively. Due to the harvest, it

dropped to 0.8
:::
0.9 g CO2 (kg H2O)−1 in 2018 and to 2.2

:::
2.6 g CO2 (kg H2O)−1 in 2019. During the latter growing season,

WUE increased steadily towards 4 g CO2 (kg H2O)−1 until the second harvest in August, whereas WUE
::
in

::::
2018

::
it remained300

predominantly below 2 g CO2 (kg H2O)−1 during the same periodin 2018. .
:
In the end of August and early September, WUE

was at the same level in both years.

The LAI derived from the Sentinel-2 data was compared to the daily WUE values (Fig. 5b) to further interpret the relation

:::
cast

::::
light

:::
on

:::
the

::::::::::
relationship between vegetation status and ecosystem WUE. While WUE was on average lower in 2018 than

2019, the difference at a given LAI was not significant (p > 0.05). However, in both years the daily WUE increased in a305

similarly linear manner in relation to LAI.

3.4 Carbon balance and soil carbon content

The carbon balance of the studied grass field was –50
:::
–57

:
± 68

::
10

:
g C m−2 yr−1 , i.e. not different from zero, in the first year,

while
:::
and

:
the balance of the second year was negative, –118

:::
–86 ± 24

::
12

:
g C m−2 yr−1, i.e. the field acted as a net carbon
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Figure 4. Daily mean a) air and soil (depth = 0.05 m) temperature, b) photosynthetically active radiation (PAR), c) precipitation and soil
moisture (depth = 0.1 m), d) phytomass (PI) and leaf area indices

::::
index

:
(LAI), and e) daily mean NEE, GPP, Reco and cumulative carbon

flux from May 2018 to May 2020.
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Figure 5. a) Daily photosynthetic capacity (GP1200) and b) water use efficiency (WUE) as a function of leaf area index (LAI) during the two
growing seasons. Grey areas represent the uncertainty estimation

::::
bands.

Figure 6. Daily water use efficiency (WUE) during two growing seasons.

14



Table 1. Different management events and their C inputs (fertilisation) and C outputs (harvest). During the cutting in August 2018, the grass
was not collected and thus did not result to

::
in any C flux allocated to management.

Date Management Output (dry weight kg ha−1) Input (kg ha−1) Carbon (g m−2)

12 Jun 2018 Harvest 1985 83
16 Jul 2018 Fertilisation –2800 –57

21 Aug 2018 Cutting – – –
24 Aug 2018 Fertilisation –1755 –36
23 Sep 2018 Harvest 348 15
8 May 2019 Fertilisation –4606 –93

:::
–43

11 Jun 2019 Harvest 3107 130
20 Jun 2019 Fertilisation (mineral) – – –
20 Aug 2019 Harvest 1029 43

Table 2. Annual
:::
The

:::::
annual

:
carbon balances

::
and

::::
their

:::::::::
components (g C m−2 yr−1) for the two measurement years. Negative values indicate

C input into the ecosystem, whereas positive values indicate C loss. Management (M) is the sum of the C fluxes due to harvest (positive) and
fertilisation (negative) events (Table 1). The values after ± represent the uncertainty in NEE.

NEE GPP Reco M Total balance

First year –55
:::
–62 –1034

:::::
–1121 972

::::
1053

:
5 –50

:::
–57±68

::
10

Second year –198
::::
–216 –1480

:::::
–1583 1291

::::
1362 80

:::
130 –118

:::
–86±24

::
12

:

sink
:
in
::::
both

:::::
years

:
(Table 2). All the

:::
The

:::::::::
magnitude

::
of

:::
all components of the carbon balance were smaller in the first year than310

in the second one, GPP by 30
::
29%, Reco by 25

::
23% and management by 94%.

There was a major difference in the
::::
96%.

:::
The

::::::::::
components

::
in
:::
the

:::::
mean

::::::
annual CO2 balances between the

:::::
fluxes

:::::::
between

:::
the

::::
field

:::
and

:::
the

::::::::::
atmosphere

:::::::
indicated

::::::
major

:::::::::
differences

::::
also

:::::::
between

:::
the growing seasons (Table 3). In 2019, the growing season

net uptake
::::::::
magnitude

::
of

:::
the

:::::::
growing

::::::
season

:::::
NEE was 78%, GPP 49% and Reco 42% higher than in 2018.

The average soil carbon content in the 1-m layer was 16.59 ± 2.25 kg m−2 (average ± standard deviation), with the highest315

SOC found in the top 30-cm layer (Fig. 7). The carbon balance of 2018 was 0.3% of the average SOC, and in 2019 this ratio

was 0.7
:::
0.5%. On average, the annual carbon input to the soil accounted for 0.5

:::
0.4% of the SOC.

Table 3. Growing season (from 4 May to 30 September)
:::
Net

::::::::
ecosystem

:::::::
exchange

::
of CO2 balances (

::::
NEE,

:
g CO2 m−2

:::
m-2),

:::
its

:::::::::
components

::::
gross

::::::
primary

::::::::
production

:::::
(GPP)

:
and total ET

::::::::
ecosystem

::::::::
respiration

:
(
:::::
Reco),

:::
and

::::::::::::::
evapotranspiration

:::
(ET,

:
mm)

::::
during

:::
the

::::::
growing

::::::
season

::
(4

:::
May

::
to

::
30

::::::::::
September). in 2018 and 2019.

::::
Year NEE GPP Reco ET

2018 –650
::::
–601 –3190

:::::
–3330 2510

::::
2715 297

2019 –1160
:::::
–1176 –4740

:::::
–4955 3560

::::
3771 283
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Figure 7. a) Soil organic carbon (SOC) content at different depths in the 1-m deep soil samples, and b) the total SOC in the samples. Numbers
from 1 to 5 indicate sample numbers.

4 Discussion

4.1 Fluxes and carbon balance

:::::
There

::
is

::
an

::::::
urgent

::::
need

:::
to

:::
find

:::::::::::::
evidence-based

::::::::::::::
climate-friendly

::::::::
practices

::
in

:::::::::
agriculture

::::
also

::
in

:::
the

::::::
boreal

::::::
region,

::::::
where

:::
the320

:::::::
growing

:::::
season

::
is
:::::
short

:::
and

:::::::
varieties

:::::
differ

::::
from

:::::
those

::::::::
cultivated

::
in

:::
the

::::::::
temperate

::::::
region.

:
The carbon fluxes on an

:::
we

::::::::
measured

::
on

:::
the

:
agricultural grassland at

:::
the Qvidja farm in southern Finland were clearly different between the two study years

::::::
clearly

:::::::
indicated

::::
that

:::
this

::::
site

:::
was

::
a
::::
sink

::
of

::::::::::
atmospheric

::::::
carbon. The annual NEE was –55

:::
–62 g C m−2 yr−1 in the first study year

(4 May 2018 – 3 May 2019) and –198
::::
–216

:
g C m−2 yr−1 in the second year (4 May 2019 – 3 May 2020). The GPP showed

notable variation between the study years as the annual GPP was –1034 and –1480
:::::
–1121

:::
and

::::::
–1583

:
g C m−2 yr−1 in the325

first and second year, respectively. Gilmanov et al. (2010) have reported the GPP of European managed grasslands to be in

the
:::::::
reported

:
a
:
range of –2107 to –1410 g C m−2 yr−1

::
for

:::
the

::::
GPP

:::
of

::::::::
European

::::::::
managed

::::::::
grasslands. Our results fall in to the

lower range or below these GPP values
:::::
below

::
or

::
in

:::
the

:::::
lower

:::
end

::
of

::::
this

::::
range. The annual Reco in Qvidja was also varying

:::
also

:::::
varied between the study years (972 and 1291

::::
1053

:::
and

:::::
1362 g C m−2 yr−1). Globally, the annual Reco of managed grasslands

is reported to vary within a wide range from 31 to 2150 g C m−2 yr−1. The average Reco was 1445 and 647 g C m−2 yr−1 on330

the intensively and extensively managed grasslands, respectively (Gilmanov et al., 2010), and the
:::
The

:
annual Reco in Qvidja

falls between these values in both study years. Regarding only the European grasslands , the annual Reco is reported to vary

between 494 and 1623 g C m−2 yr−1 (Gilmanov et al., 2007). Our observations are thus also within this range.

The carbon balance of the grass field ecosystem in Qvidja was close to neutral (–50
::
To

::::::
answer

::::
our

:::
first

:::::::
research

::::::::
question,

:::
we

::::::::
concluded

::::
that

:::
the

::::::
carbon

::::::
balance

::::
was

:::::::
negative

::
in

::::
both

:::::
study

::::
years

::::
(–57

:
± 68

::
10

:
g C m−2 yr−1 ) in the first study year (4 May335

2018 – 3 May 2019), and in the second year (4 May 2019 – 3 May 2020) the field was a moderate carbon sink (–118
:::
and

::::
–86

± 24
::
12 g C m−2 yr−1).

:
,
:::
and

::::
thus

:::
the

::::
field

:::::
acted

::
as

:
a
:::
net

::::::
carbon

::::
sink

::::::
during

::
the

:::::
study

::::::
period.

:
Carbon balances, including the
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carbon equivalent of N2O, CH4 and management-related carbon fluxes, have been widely studied in other
::::
were

::::::
studied

::
in

::::
nine

European agricultural grassland sites between 2002–2004 (Soussana et al., 2007). These nine grassland
::::::::::::::::::
(Soussana et al., 2007)

:
.
::
All

:
sites acted mainly as net carbon sinks

:
in
::::::::::
2002–2004, the annual net carbon balance ranging from –446 to 251 g CO2–C eq.340

m−2 yr−1, where 13 of the 17 measured annual balances were negative. Our study site
:::::
carbon

:::::::
balance,

::::::
which

:::::::
excludes

:::::
N2O

:::
and

::::
CH4::::::

fluxes,
:
falls into this range. In comparison, the Finnish agricultural sites

::::
fields

:
measured so far are

::::
were generally

carbon sources
::::
when

:::::::::::::::::::
ecosystem-atmosphere

::::
CO2::::::

fluxes,
::::::::

harvests
:::
and

:::
the

::::::
carbon

::::::::
supplied

::
to

:::
the

:::::::
system

::
as

::::::::
fertilisers

:::::
were

:::::::::
considered (Heikkinen et al., 2013; Shurpali et al., 2009; Lind et al., 2016; Lohila et al., 2004). Lind et al. (2016) reported

slightly higher annual net uptake of atmospheric CO2 :
a

::::::
slightly

:::::
more

:::::::
negative

::::::
annual

::::
NEE

:
(two-year average NEE –259 g C345

m−2 yr−1) for a grassland site on mineral soil than we observed in Qvidja. However, by considering the total carbon balance

of the system by taking into account the carbon fluxes caused by management
::::::
related

::
to

:::::::
biomass

:::::::
removal

::
as

:::::
grass

::::
yield, it was

concluded that their site acted as a net carbon source. Mineral fertilisers were used during their study, and thereby no carbon

was imported to the field to compensate for the biomass removal from the system as harvests. Similar
:::::::::::::::::
management-related

carbon flux patterns related to management were reported by Eichelmann et al. (2016). The annual NEE of the agricultural350

grassland in their study in Canada was more negative (average NEE
::::
were

:::::::
observed

:::
by

::::::::::::::::::::
Eichelmann et al. (2016)

:
,
::::
who

:::::::
reported

:
a
::::
more

::::::::
negative

::::
NEE

:::::::
(average

:
–405 g C m−2 yr−1)

::
for

::
an

::::::::::
agricultural

::::::::
grassland

::
in

:::::::
Canada than the NEE in Qvidja. However

:
;

:::::::
however, the two-year mean annual carbon balance of the Canadian field was positive when biomass removal was taken into

account, i.e. the
::::::::
Canadian field was a net source of carbon. It is noteworthy that the yield in Qvidja was substantially smaller

than at the other two study sites (Lind et al., 2016; Eichelmann et al., 2016), at which the total balance became positive when355

the management
:
,
:::
i.e.

:::::::
harvests

:::
and

:::::::::::
fertilisation, was taken into account. However, as the harvested grass was used as feed for

farm animals, there was no need for a higher yield at Qvidja in either of the study years
:::
The

:::::
total

::::::
carbon

::::::
balance

:::
of

:::
the

::::
field

:::::::
depends

::::::
greatly

::::
both

::
on

:::
the

:::::::
amount

::
of

::::::
organic

::::::
matter

:::::::
imported

::
to
:::
the

::::::
system

:::
as

::::::::
fertilisers

:::
and

::
on

:::
the

:::::::
harvest

:::::
yields,

::::::
which

:::
are

:::::::
affected,

:::
for

:::::::
instance,

:::
by

:::
the

::::::
applied

::::::
cutting

::::::
height.

Analysis of the weather variables in Qvidja indicated that temperature and moisture conditions were associated with the360

differences in fluxes
::::
CO2 :::

flux
:::::::::

dynamics and carbon balance between the study years. The growing season was warmer and

drier in 2018 than 2019, with 13% lower mean soil moisture, 32% lower precipitation, 2.2 ◦C higher mean air temperature and

12% higher
::::
mean

:
radiation during the growing season, and substantially smaller fluxes were observed in the first year. This is

in accordance with Shurpali et al. (2009) who observed a positive correlation between the uptake of
::::::::::
atmospheric CO2 :::::

(GPP)

and both soil moisture and air temperature on another Finnish agricultural grassland. According to their conclusions, moderate365

temperature with high soil moisture favoured
:::::::
enhanced

:
CO2 uptake. Furthermore, Flanagan et al. (2002) and Kurc and Small

(2007) concluded that photosynthesis of grassland favours rather wet summer conditions .
:::::::
favoured

::::::::::::
photosynthetic

:::::::
activity

::
in

:::::::::
grasslands. These findings would support the conclusion that low soil moisture and high temperatures were the main factors

limiting CO2 uptake at our study site in the summer 2018.

To answer our first research question, we conclude that there were notable year-to-year differences in the carbon balances,370

but the reason behind this variation
::::::::
However,

:::
this

::::::::
question remains partly open, as weather

::::::::
conditions, grass age and grass leaf

area all showed different dynamics between the study years. In Finland, it is typical to grow grasslands for 3–4 years before the
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grass renewal. In Qvidja, the grass was not renewed between the study years, which may have led to the larger fluxes observed

in the second year when the grass root system, for instance, was possibly more developedenhancing carbon uptake
:::::
likely

::
to

::
be

:::::
more

:::::::::
developed,

:::::::::
enhancing

:::::
water

:::
and

:::::::
nutrient

:::::::::
availability

::::
and

::::
thus

:::::::
reducing

:::
the

:::::
effect

::
of

:::::::
drought

:::::
stress. Furthermore, the375

leaf area was larger, and other capabilities, such as microbial symbioses (e.g. de Vries et al., 2020; Harman and Uphoff, 2019;

Moreau et al., 2019), of the more developed grass may have increased carbon uptake. The lower leaf area during the first

year was most probably also connected
::
due

:
to the dry summer, as shortage of water is a growth-limiting factor. Besides the

leaf area, the photosynthetic potential per leaf area was lower in the first year, indicating either drought stress or shortage of

nutrients, as temperature, a widely limiting factor in northern latitudes, was high enough during both summers not to restrict380

photosynthesis. In any case, a more specific analysis of the driving and inhibiting environmental factors will require a longer

measurement period.

Our second research question concerned the drought-related restrictions of photosynthesis. It has been widely recognised that

in dry conditions plants are able to reduce transpiration by stomatal regulation (Pirasteh-Anosheh et al., 2016)
:::::::::::::::::::::::
(Willmer and Fricker, 1996)

. However, grasses seem to limit stomatal functions only in severe, prolonged drought conditions (Wolf et al., 2013; Xu et al.,385

2019), and thus occasional or seasonal drought events may not be observed in the ecosystem WUE of grasslands. In our study,

WUE values were predominantly lower in 2018 than in 2019. This was most probably explained by the differences in LAI
:
, as

the relationship between WUE and LAI was similar in
:::::
during

:
both growing seasons (Fig. 5b). Furthermore, the drier condi-

tions with high temperatures in the summer 2018 may have resulted in a decoupling of assimilation and transpiration and in

temperature-induced downregulation of GPP (Gharun et al., 2020), as ET was similar in both years (Table 3). Therefore, the390

clearly lower leaf-area-based photosynthetic capacity (GP1200) in 2018 compared to 2019 probably indicates drought related

stress in
::::::::::::
drought-related

:::::
stress

:::
on photosynthetic processes despite the similar leaf-area-based WUE (Fig. 5). It is noteworthy

that the WUE analysis was performed by means of the total ecosystem ET rather than plant transpiration, which would have

enabled a more direct determination of the actual plant WUE and thus a simpler interpretation of plant processes and their

relation to LAI.
::::::::::
Nevertheless,

:::::
days

::::
with

::::
even

::::::
slight

::::::::::
precipitation

:::::
were

:::::::::
eliminated

:::::
from

:::
the

::::::::
analysis,

:::
and

::::::::
therefore

:::
we

::::
can395

::::::
assume

::::
that

:::::
during

::::
the

:::::::
growing

::::::
season

:::::
most

::
of

:::
the

:::::
water

::::
flux

:::::
arises

:::::
from

:::::::::::
transpiration.

:
In general, WUE at our study site

varied
::::::
mainly

:
between 0 and 5

:
4
:
g C (kg H2O)−1. This is consistent with the WUEs observed for

::
on

:
northern grasslands (0–7

g C (kg H2O)−1) (Tang et al., 2014).

The different management practices, such as fertilisation and the choice of grass cutting height, were slightly different in

the first and second year, which probably had an impact on the carbon balances. In June 2018, a conventional cutting height400

of 6 cm was used, whereas in the other harvests the grass was cut at 15 cm. The higher cutting height may have enhanced the

regrowth of the grasses
::::
grass, especially in the more favourable weather conditions in 2019, and with a larger leaf area higher

CO2 uptake was observed right after the harvest. Only after the 6-cm harvest, the field turned to a net source of CO2. With

a low cutting height, it was more likely that the grass was cut below the growing point, particularly in dry conditions, which

affects the stand longevity and stress tolerance (Jones and Tracy, 2018). As the weather was warm and dry during the harvest405

events in June in both years, a higher cutting height may have served as a vital management improvement.
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The field was mainly fertilised with organic substances, and thus carbon was imported to the system, affecting the net carbon

balance. After each of the fertilisation events with organic material, the respiration of the field seemed to increase
:::::::
increased,

whereas mineral fertilisation was not observed to have an immediate effect on CO2 fluxes. Increased respiration was likely to

occur due to microbial activity of the organic fertilisers. Gilmanov et al. (2007) observed on a Danish agricultural grassland410

that, although the application of manure increased respiration, also the plant uptake of CO2 was notably higher than at the

other sites studied. Fornara et al. (2016) also concluded, based on their 43-yr study, that manure fertilisation substantially

increased soil carbon sequestration of a grassland ecosystem in Northern Ireland. Although the type of the organic fertiliser

possibly plays a crucial role, the application of carbon to the system has a direct effect on the carbon balance, but there is also

an indirect effect on its components Reco and GPP via soil and plant functions.415

Concerning our final research question on the relation of possible carbon sink to the international “4 per 1000” carbon

sequestration initiative (Minasny et al., 2017), our results show that , on average, the
:::
the

::::::
Qvidja field acted as a net annual

carbon sink by increasing the soil carbon content by 0.5
::
0.4% annually over the studied period. Thus the site fulfilled the goal

of the “4 per 1000” initiative and contributed to the short-term climate change mitigation. Furthermore, the annual carbon

balance of our second study year (–118
:::
–86

:
g C m−2 yr−1) is

::::
with

::::::::
improved

:::::::::::
management

:::::::
practices

:::
fits

:
in the upper range of420

annual carbon sequestration potential (80–120 g C m−2 yr−1) that is evaluated to be attainable with improved management

practices (Lal, 2016). Thus, this study demonstrates the potential for a positive impact of northern agricultural grasslands in

terms of climate change mitigation.

4.2 Errors and uncertainties

Uncertainties with the data
::
in

:::
the

:::::
results

:
are mainly related to the gaps in the measurement data, which required gap-filling of425

those periods
::::::
missing

::::::::::::
measurements

:
with modelled data. The length of a gap increases the related uncertainty, but in our data

there were only three longer gaps (4, 8 and 9 days), which all occurred during the first winter, when temperatures were low and

only minor fluxes could have been observed. All the other gaps were shorter than 3 days. However, each gap contributed to the

uncertainty and were included in the carbon balance calculations. Further uncertainties, which were not included in the error

estimates, were caused by the the soil temperature modelling for the first study year and the management flux estimates.430

:::::::
involved

::
in

:::
the

::::
yield

::::::::::::
measurements

::::
and

:::::::::
fertilisation

:::::
input

::::::::
estimates.

:

Carbon balance was calculated based on the ecosystem-atmosphere CO2 fluxes and the inputs and outputs of harvest and

fertilisation. Thus, no other gaseous carbon compounds, such as methane, were considered. Regina et al. (2007) reported that

the annual methane exchange
:::::::
balances

:
of a Finnish clay soil varied between

:::::
during

::::
two

:::::
years

::::
were

:
–0.009 and 0.034 g CH4

m−2 yr−1during two years in 2000–2002. Thus, based .
::::::
Based on this estimate, the possible carbon emission from

:
as

:
methane435

accounts for less than 1% of our annual carbon balance.

Leaching of dissolved carbon and emissions of volatile organic compounds may have had an effect on the annual carbon

balance. Leaching of carbon from the agricultural soils is mainly driven by the meteorological and hydrological conditions

(Manninen et al., 2018), but it is also affected by soil properties (Don and Schulze, 2008). Large variations in soil moisture

and temperature and precipitation may increase the solubility of SOM. Generally, however, clay soils retain carbon better than440
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other soil types. Furthermore, ploughing increases leaching as mineralisation of SOM is enhanced. Depending on precipitation

and hydrological and chemical properties of the soil, carbon leaching on grasslands may equal approximately to 25% of the

annual carbon balance calculated based on NEE, harvest and fertilisation (Kindler et al., 2011). At our study site, the effect of

leaching on
::
the

::::::
annual

:
carbon balance could be assumed to be fairly small in both summers due to low soil moisture and low

precipitation. On the other hand, during wet periods, the leaching may have had a small effect on carbon balance,
:::::
even

::::::
though445

::::
there

::::
may

::::
have

:::::
been

:
a
:::::::::
temporary

::::::::::
contribution

::::::
during

:::
wet

:::::::
periods. However, a more precise

:::::::
accurate carbon balance estimate

would require further measurements , including leaching and other carbon-containing gases.

5 Conclusions

The agricultural grassland site located at Qvidja in southern Finland acted as a net carbon sink during the two years studied.

The carbon balance of the first study year was –50
:::
–57 ± 68

::
10 g C m−2 yr−1 and in the second year it was –118

:::
–86 ± 24

::
12450

g C m−2 yr−1. We estimated that on average the grassland exceeded
::::::
reached

:
the goal of the "4 per 1000" initiative intending

to increase soil carbon content. The data
:::
and

::::::
results

:
presented here act as a basis for the future studies at this site that focus

on the conversion
:
of
::::

this
::::
farm

:
from intensive agricultural practices towards more sustainable agricultural managementand its

impacts ,
:::::::::
especially

::
on

:::
the

:::::::
impacts

::
of

::::
such

::
a
:::::::::
conversion on the GHG fluxes

::::::::
occurring on mineral soils in northern conditions.

Further
:::::
Even

::::::
though

:::
we

:::::
could

:::::::
quantify

:::
the

::::
sink

:::::::
capacity

::
of

:::
the

:::::
field,

::::::
further research with longer-term measurements would455

be
::
is needed to evaluate the persistence of carbon sequestration and storage. Longer time series would be

::
are

:
also essential to

study more closely the causes of the interannual variation of GHG fluxes and carbon and water balances at this site,
:::
for

::::::
which

::
the

:::::::
present

:::::
study

:::::::
provides

:
a
:::::::
baseline.

Data availability. The flux and meteorological data as well as the SOC measurements and LAI data are available at Zenodo

(https://doi.org/10.5281/zenodo.4647078, Heimsch et al. 2020).460

Appendix A: Effective phytomass index

The PI was used to refine the gap-filling of GPP, especially in the case of long gaps in the nighttime data, based on which

GPP was parameterised. PI reflects the development of LAI but, being derived from the daytime NEE measurements, is more

dynamic than LAI and thus describes more precisely the course of the photosynthetic activity of plants (Aurela et al., 2001).

PI was derived from the net ecosystem CO2 exchange data by selecting fluxes at high PAR levels. The PAR limit was set to465

700 µmol m−2 s−1 from March to September and 200 µmol m−2 s−1 from October to February. The assumed respiration,

i.e. fluxes when PAR < 20 µmol m−2 s−1, was subtracted from from the NEE data. This was followed by averaging NEE and

Reco within a moving window, which was set to 3 days and increased to 5 or 7 days if necessary. Averaging was limited to the

harvest dates by decreasing the window size step-by-step to 1.5 days, and similarly increasing it after the harvest. An average

GPP was then calculated by subtracting Reco from NEE and normalising to unity to obtain PI. Daily PI values were used for470
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calculating the GPP fluxes. Due to the scarcity of respiration data in July in both years and of the daytime data in winter, linear

interpolation was applied to cover the missing daily PI values.

Appendix A: Gap-filling of CO2 fluxes

The flux data set was separated into sections at the harvest dates, and gap-filling was done separately for these sections by

first
::::::::::::
parameterising

:::
and

:
calculating Reco and then GPP. The parameter R0 was determined for each day from the nighttime475

data (PAR < 20 µmol m−2 s−1) with a 7-day moving window.
::
E0::::

was
::::::::::
determined

:::::
within

:::
the

:::::
same

:::::::
moving

:::::::
window

::
as

::::
R0.

If there were less than 24 measurements within the time window, its length was increased by 1 day both in
:
at

:
the beginning

and at the end until enough data were obtained. R0 was allowed to vary between 0.001 and 1 mg m−2 s−1. Similarly, the
:::
The

same minimum number of observations and
:::::
within a 3-day moving window was used for determining α and GPmax from the

observed NEE from which the estimated Reco had been subtracted. α and GPmax were allowed to vary between –0.1 and 0
::
.5480

:::
and

::::::::
–0.00001 mg µmol−1, and –5.0 and 0

::::::::
–0.00001 mg m−2 s−1, respectively. From 5 December 2018 to 26 March 2019 and

from 26 November 2019 to 15 March 2020, with no significant CO2 uptake, a 5-day moving average was used to fill the gaps

in NEE.

Appendix B: Gap-filling of energy fluxes

The gaps in the net radiation (Rn) time series were filled with the monthly mean diurnal cycles. Soil heat flux (G) was not485

measured at our site, so it was estimated from the energy balance closure during the periods when the other energy fluxes

were known. Gap-filling of G was done by assuming a constant ratio between G and Rn (Liebethal and Foken, 2007). The

ratio of 0.24 was calculated with linear regression from the daytime data (between 10:00–15:00). The sensible and latent heat

fluxes (QH and QE , respectively) were gap-filled based on the procedure described by Kowalski et al. (2003). The gaps in the

daytime QH (Rn>0) were filled with monthly linear regression with Rn. The nighttime gaps in QH (Rn<0) were filled with the490

corresponding Rn values. The gaps in the daytime QE were filled in such a way that the monthly mean energy balance closure

was achieved. The nighttime gaps in QE were set to 0.

Appendix C: Management effect on fluxes

The immediate effect of management on the measured NEE and WUE were
:::
was

:
investigated by comparing the mean values

of five days before and after the management day (Table A1).495

Author contributions. JL and TL planned the flux measurements and TL was responsible for the setup. JPT made the post-processing data

corrections and calculated the flux footprint. HV and MK developed the gap-filling code. LH filtered the data and carried out the data analysis.
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