

- 1 Do marine benthos breathe what they eat?
- 2
- 3 Xiaoguang Ouyang, Cheuk Yan Lee, Shing Yip Lee
- 4 Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of
- 5 Hong Kong, Shatin, Hong Kong SAR, China
- 6

- 8 Xiaoguang Ouyang (email: x.ouyang@cuhk.edu.hk)
- 9 Shing Yip Lee (email: joesylee@cuhk.edu.hk)
- 10
- 11

⁷ Correspondence to:

12 Abstract

13	Intertidal benthos link tertiary predators and primary producers in marine food webs as well as
14	directly contribute to sediment CO ₂ emission. However, current methods for studying food
15	sources of marine benthos are time-consuming and does not allow direct estimates on feeding
16	regime-related CO ₂ production. We examined the foods of mangrove crabs and gastropods as
17	well as their corresponding CO ₂ production by using cavity-ring down spectroscopy to measure
18	the $\delta^{13}C$ of consumer-respired CO ₂ , considering the effects of feeding regime, benthos taxa, and
19	dominant feeding habit. Benthos taxa and feeding habit have significant impact on $\delta^{13}C$ of
20	respired CO ₂ . Particularly, the δ^{13} C of crab (-23.9±0.4‰) respired CO ₂ was significantly lower
21	than that from gastropod (-17.5 \pm 1.3‰) respiration. The δ^{13} C of deposit-feeder respired CO ₂ was
22	significantly higher than that from detritivores. There are significant differences in the amount of
23	CO_2 emitted and $\delta^{13}C$ of crab respired CO_2 under different feeding regimes. The differences
24	reflect diet-switching and fuel-switching in the crabs, i.e. 'you breathe what you eat'. Significant
25	differences in CO ₂ production of crabs also exist between those feeding on microphytobenthos
26	$(0.13\pm0.02 \text{ mmol } g^{-1} \text{ day}^{-1})$ and on field collection $(0.31\pm0.03 \text{ mmol } g^{-1} \text{ day}^{-1})$. CO ₂ production
27	of crabs is strongly related to carapace width and length. The $\delta^{13}C$ of respired CO_2 from
28	mangrove crabs reflects their diet while crab-respired CO ₂ flux is related to crab size. These
29	relationships enable partitioning the feeding habit and food sources of key benthos, and help
30	incorporate their contribution into the overall sediment-atmosphere CO ₂ fluxes in mangroves.
31	

32 1 Introduction

33	Intertidal benthos are well known to play different roles in processing nutrients in the intertidal
34	food webs depending on their taxonomic affiliation and feeding habit. In mangroves, sesarmid
35	crabs are reported to use mangrove leaf litter as the most important carbon source, with diatoms
36	or live/dead animal prey as the dominant nitrogen source, while ocypodid crabs and gastropods
37	are mainly deposit feeders, preferring the microphytobenthos (Kristensen et al., 2017; Lee,
38	2008). The different feeding habits (e.g. detritivorous or deposit-feeding) of the mangrove
39	benthos may result in differences in their metabolic processes. Past mangrove studies revealing
40	the food sources of the mangrove benthos have advanced from earlier gut analysis to stable
41	isotope analyses (Lee et al., 2014). Stable isotope analysis unravels benthic food sources by
42	extracting benthos muscle tissues and analyzing tissue and food stable isotope values of carbon,
43	nitrogen and occasionally sulfur (Bui & Lee, 2014; Chong et al., 2001). However, dietary
44	analysis is a time-consuming process that often requires close monitoring of individual predators
45	or collection and analyses of prey remains in the gut or faeces of the predator (Caro, 1994;
46	Wachter et al., 2012).
47	In contrast to traditional stable isotope analyses of predator tissues, $\delta^{13}C$ of predator-respired
48	CO ₂ have increasingly been applied to study the food sources and feeding habit of predators. The
49	latter approach has advantages over isotope analyses of predator tissues because it can provide
50	information about both the most recently consumed diet and the integrated diet over longer
51	periods (Engel et al., 2009). While some adults of aerial and aquatic migratory species occupy
52	intertidal habitats during specific seasons of the year, others are permanent inhabitants
53	(Vernberg, 1993). The variable feeding habits of marine migratory species make it useful to
54	study both their immediate diet and integrated diets. In contrast, some tissues (e.g. muscles) have

55	slower turnover rates and their isotopes can only reflect the integrated diet over longer periods
56	(Carleton et al., 2004). Further, breath $\delta^{13}C$ can be repeatedly measured non-destructively for the
57	same predator and thus can track the changes in its food sources. Carleton et al. (2004) explored
58	the use of $\delta^{13}C$ of humming birds exhaled CO ₂ to demonstrate their shift from a C3 to C4 diet.
59	Voigt et al. (2008) found free-ranging vampire bats prefer cattle blood by analyzing $\delta^{13}C$ of their
60	respired CO ₂ . Its application was also tested in other animals such as grasshoppers (Engel et al.,
61	2009). δ^{13} C of predator-respired CO ₂ is sufficient for quickly unravelling the prey consumed
62	without the involvement of diet and predator tissue $\delta^{13}C$ values. However, this approach still
63	remains uncommon in marine studies for examining the food of marine benthos.
64	Moreover, the measurement of benthos-respired CO ₂ and their isotope signatures does not
65	only reveals their food sources but also helps assess their contribution to sediment respiration
66	after adjusting for the effects of feeding habit and regime (e.g. active vs. dormant status, and
67	feeding on microphytobenthos vs. yellow leaves). CO2 emission rates from the sediment surface
68	of mangroves are more than doubled if the contribution of marine benthos and their burrows is
69	included (Kristensen et al., 2008; Ouyang et al., 2017; Penha-Lopes et al., 2010). Some crabs
70	may remain dormant most of the time, with a short active period (e.g. 90 days, Katz (1980))
71	during the year. Should the starved condition during dormant periods be unaccounted for, it may
72	lead to erroneous estimations on the animals' contribution to CO ₂ emission from the sediment
73	surface. Further, it is well established that C3 and C4 plants have distinct isotope signatures (Fry,
74	2006), which may result in differences in δ^{13} C of benthos-respired CO ₂ . Nonetheless, few studies
75	explore whether the increase in CO ₂ emission rates due to marine benthos is related to feeding
76	regime or their feeding habit.

77	Cavity ring-down spectroscopy (CRDS) is one of the most recent advances in measuring the
78	concentration as well as isotopic values of many biogenic gases, including CO ₂ , CH ₄ , and other
79	gases that have unique near-infrared absorption spectra. CRDS works by quantifying the effect
80	of this absorption (Welch Jr et al., 2016). It has been used in marine studies to partition sources
81	of ecosystem and sediment respiration of mangrove seedlings (Ouyang et al., 2018), and the
82	variation of δ^{13} C of greenhouse gases emitted from estuaries and other ecosystems (Jacotot et al.
83	2018; Munksgaard et al., 2014; Rosentreter et al., 2018; Sea et al. 2018; Ouyang et al., 2020).
84	We conducted the first study using CRDS to relate the feeding regimes of different intertidal
85	benthos with $\delta^{13}C$ of their respired CO ₂ . We also measured the different isotope enrichment
86	between marine benthos-respired CO2 and their diets for different benthos taxa and feeding
87	habits. The relationship between benthos size and feeding regime to their CO ₂ production was
88	also assessed. Intertidal benthos are hypothesised to "breathe what they eat" in terms of both
89	breath $\delta^{13}C$ and CO ₂ production. We explored the influence of benthic taxa, feeding regime and
90	feeding habit on the δ^{13} C of benthos-respired CO ₂ and/or benthos CO ₂ production (i.e. CO ₂
91	respired per unit mass per day), and the relationship between benthos CO ₂ production and their
92	body sizes through laboratory experiments. We put forward the novel paradigm 'You Breathe
93	What You Eat', which adds to the well-known paradigm of 'You Are What You Eat' in food
94	web studies. This study will inform future efforts to estimate the contribution of different food
95	sources to the diet of mangrove benthos over both short and long periods.
96	

97 2 Materials and Methods

98 2.1 Sample collection

99	We collected small (2-4 cm carapace width) but numerically dominant brachyuran crabs
100	(including sesarmids, varunids and ocypodids) and gastropods from the mangrove forests in Mai
101	Po Nature Reserve (22°30'N,114°02'E) and Ting Kok (22°28'N,114°13'E), Hong Kong.
102	Senescent leaves of the mangrove Kandelia obovata were hand-picked from the trees. The leaves
103	can be identified by their yellow colour and easily detachable from the branches. Surface
104	sediments (down to 1cm) were collected by a syringe with the needle end removed. The samples
105	were kept on ice before transportation to the laboratory.
106	
107	2.2 Sample pre-treatment and separation
108	Each animal was kept in a small container with seawater covering the bottom to avoid
109	desiccation. The animal food items were treated and/or purified before the consumption
110	experiments. Upon return to the laboratory, the leaves were immersed in seawater for around 24
111	hours to allow leaching of deterrent chemicals such as tannins, which may deter crabs from
112	feeding. Microphytobenthos (MPB), mainly in the form of diatoms, were separated from the
113	surface sediments by the 'sieve and spin' method (Bui & Lee 2014). Specifically, the sediments
114	were suspended in seawater and sieved through a $45\mu m$ mesh. The filtrate was further passed
115	through a 5 μ m filter, and the residue was resuspended in Ludox colloidal silica (Sigma, density
116	1.34 g ml ⁻¹). Then the mixture was vortexed and centrifuged at 4000 rpm for 10 minutes. The
117	microphytobenthos concentrated in a distinct layer at the top of the colloidal silica were then
118	separated via a pipette, before confirming to be predominantly microphytobenthos using a
119	microscope. The MPB was washed in Milli Q water to remove the remnant colloidal silica and
120	washed again when the microphytobenthos had settled down. This process was repeated several

- 121 times until the water was clear. The MPB were then collected on pre-combusted GF/F filters
- 122 (Whatman).
- 123

124 2.3 Experimental design 125 We conducted a series of experiments to examine factors influencing C isotopic signatures 126 and/or CO_2 production of the mangrove benthos: (1) the effect of benthic taxa (i.e. crabs vs. 127 gastropods); (2) the effect of feeding regime (on collection vs. fasted, feeding on yellow 128 mangrove leaves vs. diatoms). Mangrove benthos "on collection" and "fasted" correspond to the 129 active and dormant status of benthos, respectively; (3) the effect of feeding habit (i.e. deposit 130 feeders vs. detritivores); and (4) the relationship between CO₂ production and animal body size. 131 Thirty animals were used each in experiments (1) and (3), while 10 sesarmid crabs were used in 132 experiment (2), and 25 animals (sesarmid crabs and gastropods) in experiment 4. 133 In experiment (1), the animals were put in plastic 0.8 l containers covered by aluminium foil to 134 minimise disturbance. There is a small hole on the lid of each container to keep the pressure 135 balance between the inside and outside of the containers. A soft plastic hose was connected to 136 the lid of each container with the other end closed by a stop-cock. Twenty minutes after closing each container, a syringe was connected to the other outlet of the stop-cock, and 30 ml of gas 137 138 was collected from the container. The needle end of the syringe was also closed by a stop-cock 139 until analysis. Gases were collected over a period of 50 minutes (five times, every 10 minutes). 140 In experiment (2), gas samples were collected similarly collected upon arrival at the laboratory 141 as well as under starving conditions each day for three days to simulate the dormant status.

- 142 Afterwards, they were fed with mangrove leaves and then, after fasting for 3 days, fed with
- 143 MPB. Gas samples were collected separately when the crabs were fed on different foods. In

144	experiment (3), the benthos were fed treated yellow leaves or MPB, depending on their main
145	feeding habits. Deposit feeders, including gastropods (e.g. Terebralia sulcata), ocypodid crabs
146	(e.g. Uca arcuata) and varunid crabs (e.g. Metaplax longipes), were fed MPB. Detritivores,
147	including sesarmid crabs, e.g. Parasesarma bidens and P. pictum, were fed yellow mangrove
148	leaves.
149	
150	2.4 Sample analysis and measurement
151	In experiment (4), the carapace width (CW) and length (CL) of crabs and shell length of
152	gastropods were measure by Vernier callipers. After measuring CO2 production as described
153	above, the crabs were sacrificed and dried at 60°C until constant weight. Subsamples of dried
154	leaf and MPB samples (around 5 mg) were weighed into tin capsules for stable isotope analysis.
155	Another group of crabs were dissected and muscle tissues extracted, dried and prepared in the
156	same way for stable isotope analysis. Their elemental contents (carbon and nitrogen), $\delta^{13}C$ and
157	δ^{15} N values were analysed by a EuroVector Elemental Analyser - Nu Perspective Isotope Ratio
158	Mass Spectrometer (IRMS) at The University Hong Kong, with iACET standards used for
159	quality control check.
160	$\rm CO_2$ and $\rm CH_4$ concentrations and $\delta^{13}\rm C$ values of the gas samples were measured by a Picarro
161	G 2201-i CRDS analyser (Picarro Inc., USA). The syringes were connected to the inlet of CRDS
162	analyser to allow gas to be sucked into the analyser by a vacuum pump. The analyser measured

- 163 $\delta^{13}CO_2$, CO₂ and CH₄ concentrations at an interval of five seconds with guaranteed precision of
- 164 <0.012%, 200ppb + 0.005% and 50ppb + 0.05%, respectively. Standard gases of mixed CO₂
- 165 (1008 ppm) and CH₄ (10.2 ppm) (ARK NIC, West Indices) were used to check the accuracy of
- 166 the analyser.

167	Keeling plots (Keeling, 1961) were used to estimate $\delta^{13}C$ of crab-respired CO ₂ . Keeling plots	
168	assume that $\delta^{13}C$ of CO ₂ within a space reflects the mixture of some amount of CO ₂ contributed	
169	by sources in the system and some background amount of CO ₂ that is already present in the same	
170	space (Dawson et al., 2002). It is described by the isotope mixing model and mass balance model	
171	as below:	
172	$\delta^{13}C_{system}[CO_2]_{system} = \delta^{13}C_{atm}[CO_2]_{sample} + \delta^{13}C_{source} [CO_2]_{source} $ (1)	
173		
174	$[CO_2]_{system} = [CO_2]_{sample} + [CO_2]_{source} $ (2)	
175	where $\delta^{13}C_{system}$, $\delta^{13}C_{source}$, $\delta^{13}C_{atm}$ are the $\delta^{13}C$ values for the system, the source and sample	
176	space, respectively. [CO ₂] _{system} , [CO ₂] _{source} and [CO ₂] _{sample} are the concentrations for the system,	
177	the source and sample space, respectively. The equations (1) and (2) can be combined and	
178	rearranged as below	
179	$\delta^{13}C_{\text{system}} = \delta^{13}C_{\text{source}} + [CO_2]_{\text{sample}} (\delta^{13}C_{\text{sample}} - \delta^{13}C_{\text{source}}) \frac{1}{[CO_2]_{\text{system}}} $ (3)	
180	The same principle can be applied to measure $\delta^{13}C$ of benthos- and other animal-respired CO ₂ ,	
181	as discussed elsewhere (Carleton et al., 2004). As indicated in equation (3), the y-intercept of a	
182	linear regression of $\delta^{13}C_{system}$ against $\frac{1}{[CO_2]_{system}}$ provides an estimate $\delta^{13}C$ of benthos-respired	
183	CO ₂ . [CO ₂] _{source} was estimated as the slope of the regression relationship between [CO ₂] _{system}	
184	(t=0, 10, 20, 30 and 40 minutes) and t. A conceptual model was used to describe the process of	
185	measuring benthos CO ₂ production and δ^{13} C of respired CO ₂ by CRDS (Fig. 1)	
186	The containers used to collect greenhouse gases respired by the animals are similar to a static	
187	chamber, for which the respired greenhouse gas flux (mmol day ⁻¹) was standardized across the	
188	diet treatments and estimated as below	

189
$$\mathbf{F} = V \left(\frac{d[\text{CO2}]\text{source}}{dt}\right) \frac{1}{V_0} \frac{P}{P_0} \frac{T_0}{T}$$
(4)

190 Where V is the chamber volume subtracting the volume of the crab. $\frac{d[CO2]source}{dt}$ is usually taken 191 to be the slope of the linear regression of $[CO_2]_{source}$ on t (Rolston, 1986). Here t is the series of 192 gas collection time from the start to end, i.e. every 10 minutes for five times. V₀ is the gas molar 193 volume under standard conditions. P₀ and T₀ is the standard pressure and temperature. P and T is 194 the pressure and temperature in the container.

195

196 **2.5 Statistical analysis**

197 We conducted a two-way analysis of variance (ANOVA) to examine the impact of benthos

198 taxa and feeding habit on δ^{13} C of benthos-respired CO₂. When significant treatment effects were

199 found, Tukey's HSD test was used to detect difference among groups. We also conducted a one-

200 way ANOVA to examine the impact of feeding regime on δ^{13} C of benthos-respired CO₂ and

201 benthic CO₂ production. Before ANOVA, the assumptions of normality and homoscedasticity

202 were tested (α =0.05). Normality was tested using the Shapiro-Wilk normality test.

203 Homoscedasticity was tested using the Levene test. Linear regression was used to examine the

204 relationships between crab CO₂ production and carapace width/length/ weight, as well as

205 between gastropod CO₂ production and shell length/weight. The assumption of normality was

206 tested as described above. Given only significant relationships were found for sesarmid crabs,

207 student's t test was performed to test the difference in the ratios of carapace length and width

- 208 between ocypodid crabs and sesarmid crabs, to show if the relationship between CO₂ production
- 209 of sesarmid crabs and crab size applies to ocypodid crabs. Student's t test was also used to
- 210 compare (1) the difference in C/N ratios; (2) δ^{13} C and δ^{15} N values between mangrove yellow
- 211 leaves and the microphytobenthos; and (3) δ^{13} C of CO₂ respired by crabs on collection and that

- 212 of muscle tissues. Data are presented as mean±standard error (SE). All the data analyses were
- 213 conducted using R programming language (R Core Team, 2014). The R package 'car' was used
- to conduct ANOVA (Fox & Weisberg, 2011).
- 215
- 216 3 Results

217 **3.1** The sources of variations of δ^{13} C of intertidal benthos respired CO₂

- 218 Our results show that δ^{13} C of intertidal benthos respired CO₂ varied significantly with benthos
- 219 taxa, dominant feeding habit and/or feeding regime. Benthos taxa (1) and dominant feeding habit
- (2) had a significant influence on δ^{13} C of benthos-respired CO₂ (ANOVA, F₁=48.4, P<<0.001;
- 221 F₂=12.9, P<<0.001). Further post-hoc analyses showed that the δ^{13} C of crab (-23.9±0.4‰)
- respired CO₂ was significantly lower than that of gastropod (-17.5±1.3‰) respired CO₂ (Tukey's
- HSD test, P<<0.001, Fig. 2a). The δ^{13} C of deposit-feeders (e.g. *Terebralia sulcata* and *Uca*
- 224 *arcuata*) respired CO_2 (-19.8±0.8‰) was significantly higher than those of detritivores (e.g.
- 225 Parasesarma bidens) respired CO₂ (-24.7±0.3‰, Tukey's HSD test, P=0.004, Fig. 2b).
- 226 There were also significant differences in δ^{13} C of crab-respired CO₂ among different feeding
- regimes (ANOVA, F=5.4, P<0.001, Fig. 3). In particular, δ^{13} C of crab-respired CO₂ was
- significantly lower when crabs were fed on leaves (-26.6±0.3‰) than on MPB (-23.8±0.4‰,
- 229 P<0.001), and on collection (-24.8±0.6‰, P<0.05). This is consistent with the diet δ^{13} C values.
- 230 δ^{13} C values of mangrove yellow leaves were significantly lower (-27.8±0.2‰) than those of the
- 231 MPB (-27.1 \pm 0.05‰) (t = -3.8, p<0.01, Fig. 2c). In contrast, the ratio of C/N for mangrove
- yellow leaves (95 ± 1.8) was significantly higher than that for the MPB (16.3 ± 0.3) (t = 44.307,
- 233 p<<0.001, Fig. 2d). δ^{13} C of benthos-respired CO₂ was also significantly higher when crabs fed

234	on MPB than when they were fasted for 2 days (-25.7 \pm 0.4‰, P<0.05) and 3 days (-25.8 \pm 0.4‰,
235	P<0.05). Further, δ^{13} C of CO ₂ respired by detritivorous crabs on collection (-24.0±0.6‰) was
236	not significantly different from that of crab muscles (-22.6±0.6‰, P>0.05). Also no significant
237	differences were found between other comparisons.
238	
239	3.2 Variation of CO ₂ production with benthos size and/or feeding regimes
240	CO ₂ production was related to consumer size and/or feeding regimes. There was a significant
241	difference in CO ₂ production of crabs among different feeding regimes (ANOVA, F=2.9,
242	P<0.05, Fig. 4). In particular, CO ₂ production of crabs was significantly lower when they fed on
243	MPB ($0.13\pm0.02 \text{ mmol g}^{-1} \text{ day}^{-1}$) than on collection ($0.31\pm0.03 \text{ mmol g}^{-1} \text{ day}^{-1}$, P<0.05) or fasted
244	for one day (0.3 ± 0.05 mmol g ⁻¹ day ⁻¹ , P<0.05). No significant differences were found for other
245	comparisons. There were significant relationships between CO ₂ production of crabs and carapace
246	width (R ² =0.73, P<0.001, Fig. 5a), and between CO ₂ production of crabs and carapace length
247	(R ² =0.61, P<0.01, Fig. 5b). Significant differences were found in the ratios of carapace length
248	and width between ocypodid crabs (0.59 ± 0.002) and sesarmid crabs (0.79 ± 0.025) (t test, t=-7.9,
249	P<0.01), which application of the above relationships for intraspecific comparison may depend
250	on the size measurement used. The CO ₂ production of the crabs was 0.45 ± 0.05 mmol g ⁻¹ day ⁻¹ at
251	the average dry weight of 0.95g (0.12 \pm 0.01 mmol g wet wt ⁻¹ day ⁻¹). Similarly, there was a
252	significant relationship between CO ₂ production of gastropods and shell length (R^2 =0.58,
253	P<0.05, Fig. 5c). The CO ₂ production of the gastropods was 0.014 ± 0.003 mmol g ⁻¹ day ⁻¹ at the
254	average dry weight of 2.09g (0.045g without shell). No significant relationships were found
255	between CO ₂ production and crab or gastropod weight (P>0.05).
256	

257 4 Discussion

258	4.1 Differences in δ ¹³ C of intertidal be	enthos due to different food categories
-----	---	---

259	Our data suggest that $\delta^{13}C$ of benthos-respired CO ₂ can be used to infer the categories of benthos
260	foods being used. The $\delta^{13}C$ of benthos-respired CO_2 in the gastropod group was higher than that
261	of the crab group, and that of the deposit-feeding group was higher than the detritivorous group.
262	These different patterns may reflect different food categories of the mangrove benthos. In our
263	laboratory experiment, the gastropods investigated mainly forage on the MPB, while the crabs
264	may use both the MPB and mangrove leaf litter depending on their feeding habit. Yellow leaves
265	of mangrove species in Ting Kok (where leaves and sediments were collected) have $\delta^{13}C$ at -
266	27.8 \pm 0.16‰ and C/N at 95 \pm 1.8, while the corresponding values for MPB were -27.1 \pm 0.05‰ and
267	16.3 \pm 0.3. A C/N ratio of < 20 is generally required for sustainable animal nutrition (Russell-
268	Hunter, 1970). Thus, crabs may need to use the MPB or other N-rich sources to meet their
269	nutritional requirement to supplement the low-N leaf diets. The isotopic fractionation (Δ^{13} C) is
270	3.2‰ and 3.9‰ between $\delta^{13}C$ of crab (-23.9±0.4‰) respired CO ₂ and $\delta^{13}C$ of MPB and
271	mangrove yellow leaves respectively, while it is 9.6‰ between δ^{13} C of gastropod (-17.5±1.3‰)
272	respired CO ₂ and δ^{13} C of the MPB (Table 1). Similarly, Δ^{13} C is 7.3% between δ^{13} C of deposit-
273	feeder (including ocypodid and varunid crabs and gastropods) respired CO ₂ (-19.8 \pm 0.8‰) and
274	$\delta^{13}C$ of the MPB and 3.1‰ between $\delta^{13}C$ of detritivore (including sesarmid crabs) respired CO_2
275	(-24.7±0.3‰) and $\delta^{13}C$ of yellow mangrove leaves. The lack of significant difference between
276	$\delta^{13}C$ of CO_2 respired by detritivorous crabs on collection and that of crab muscles is consistent
277	with findings on terrestrial herbivores (Engel et al. 2009).
278	

279 **4.2** Differences in δ^{13} C of intertidal benthos due to the feeding regime

280	The significant differences in $\delta^{13}C$ of crab-respired CO ₂ among different feeding regimes may be
281	attributed to fuel-switching and also to food categories consumed. Proteins, lipids and
282	carbohydrates are the three major classes of metabolic fuels (McCue & Welch, 2016). The long-
283	standing paradigm lies in that fasting animals pass through three sequential physiological phases
284	whereby they predominantly oxidize endogenous fuels in the sequence of carbohydrates,
285	followed by lipids, and then proteins (Caloin, 2004; Castellini & Rea, 1992). δ^{13} C of crab-
286	respired CO ₂ was not significantly different among the MPB diet, on collection or starved for
287	one day, but was significantly higher compared to that of crabs starved for two or three days. In
288	our experiment, crabs may metabolise carbohydrates and/or mixed with lipids when they were
289	just collected or fasted for one day, similar to the small animals in another study (Carleton et al.,
290	2004). After fasting for two or three days, crabs started to consume lipids, which have $\delta^{13}C$
291	values 0.5-8‰ lower than those of carbohydrates (DeNiro & Epstein, 1977; McCue & Welch,
292	2016; Stott et al., 1997). This can explain the decline (but non-significant) in δ^{13} C of crab-
293	respired CO ₂ during the fasting periods. After fasted for three days, $\delta^{13}C$ of crab-respired CO ₂ (-
294	26.6 \pm 0.3‰) was about 1.2‰ higher than when they fed on yellow <i>Kandelia obovata</i> leaves.
295	Similarly, $\delta^{13}C$ of crab-respired CO ₂ (-23.8±0.4‰) was about 3.3‰ higher than the diet when
296	they fed on MPB after starvation. These results are supported by the higher $\delta^{13}C_{\text{breath}}$ values than
297	$\delta^{13}C_{diet}$ (0.8-3.1‰) for different animals including steers, pigs and rabbit (Passey et al., 2005).
298	
299	4.3 Differences in benthos CO ₂ production due to body size and feeding regime
300	The significant relationships between benthos CO ₂ production and body size suggest that animal
301	size distribution should be considered when estimating the contribution of the benthos to CO ₂

302 emission rates from the sediment surface. Crab CO_2 production (0.12 mmol g⁻¹ wet wt day⁻¹) for

303	the sesarmid crabs in our study falls within the reported range of $0.05-0.15 \text{ mmol g}^{-1}$ wet wt day-
304	¹ for ocypodid crabs (Kristensen et al., 2008; Penha-Lopes et al., 2010). Average gastropod CO ₂
305	production in Penha-Lopes et al. (2010) (0.011 mmol g ⁻¹ day ⁻¹) was similar to that in our study
306	$(0.014 \text{ mmol g}^{-1} \text{ day}^{-1}).$
307	We established the relationships between benthos CO ₂ production and body size (carapace
308	width or length). They can be used for different purposes. Particularly, when estimating crab
309	CO ₂ production related to crab burrow size (i.e. the diameter of burrow openings) (e.g. Cameron
310	et al. (2019)), the relationship between CO ₂ production and carapace length rather than carapace
311	width should be used as crabs walk side-ways. However, carapace length is not as good a
312	measurement of animal body size as carapace width when different crab families are involved.
313	For example, our data suggest that ocypodid crabs had significantly smaller carapace
314	length/width ratios (0.59 ± 0.002) than those of sesarmid crabs (0.79 ± 0.025).
315	The significant impact of feeding regimes on CO ₂ production of sesarmid crabs may be a
316	result of the differences in carbon content of the diet and endogenic fuel. CO ₂ is a waste product
317	of oxidising reduced carbon compounds during crab metabolism. When sesarmid crabs were just
318	collected from the field, their main carbon source is mangrove leaves, which were found to have
319	a higher carbon content than the MPB (45.6% vs. 30.6%) (Bui & Lee, 2014). This could account
320	for the significant differences in CO ₂ production of crabs on collection and while feeding on the
321	MPB. As small animals, when fasted for one day, our collected crabs may consume a mixture of
322	recent diet (mangrove leaves) and stored carbohydrates, which are easier to decompose than the
323	structural carbon-rich mangrove leaves and other organic compounds, e.g. lipids and proteins.
324	However, when they were fasted for two or three days, their energy source may shift to lipids
325	and proteins, which are more difficult to be metabolised to CO2 than carbohydrates. This could

326	account for the significantly higher CO ₂ production of crabs when they were fasted for one day
327	but not more days than they fed on MPB. CO2 production of Carollia perspicilata was also
328	reported to generally decline over time after feeding (Welch Jr et al., 2016), corroborating with
329	our findings.
330	
331	5 Conclusions and Implications
332	Our study tested the hypothesis that intertidal benthos breathe what they eat. This hypothesis is
333	supported by the significantly higher $\delta^{13}C$ of deposit feeders-respired CO ₂ than that of
334	detritovore-respired CO ₂ , and the significant difference in CO ₂ production under different
335	feeding regimes due to different carbon content in diet or decomposability of carbon compounds
336	in fuel.
337	Our study supports the notion that $\delta^{13}C$ of benthos-respired CO ₂ can be used to differentiate
338	food categories of the benthos, as has been demonstrated in mammals and other animals. It may
339	be further applied to reveal the contribution of different food sources to their diet over short and
340	long periods when combined with (compound-specific) stable isotope analyses of animal tissues
341	and diets. For partitioning the food sources of intertidal animals, past studies combining stable
342	isotope analyses of animal tissues and their diet have obvious limitations because they can only
343	figure out their integrated food over long periods. However, intertidal benthos (e.g. crabs) may
344	consume endogenous fuels such as lipids which are lower in ¹³ C (Stott et al., 1997) when they
345	are inactive without feeding. There are also differences among endogenous fuels. For example,
346	the difference in δ^{13} C of synthesised lipids and carbohydrates are assumed to be -3‰ (Carleton
347	et al., 2004). Nevertheless, few studies can exclude the influence of endogenous fuels on the
348	apparent food sources of intertidal benthos when using stable isotope analyses of animal tissues.

349	Our study also reiterates the necessity of integrating the influence of benthos feeding regime
350	and size into estimating the contribution of intertidal benthos to CO ₂ emission rates from the
351	sediment surface. To date, a few studies have established benthos CO2 production related to crab
352	mass but are limited to a few families, e.g. ocypodid crabs (Penha-Lopes et al., 2010) and
353	sesarmid crabs in this study. The former study established a significant polynomial relationship
354	between crab CO ₂ production and body mass for ocypodid crabs, while we found a significant
355	linear relationship between crab CO2 production and size (i.e. crab carapace width/length and
356	gastropod shell length) for sesarmid crabs. It highlights that the relationships between benthos
357	CO ₂ production and size indicators (i.e. weight or size) may be different depending on the
358	benthos taxa or families. Therefore, caution should be exercised in estimating benthos CO2
359	production from size indicators based on relationships developed for other benthos taxa.
360	Moreover, our study demonstrates the importance of considering the activity status of the
361	animals when estimating benthos CO ₂ production; in particular, a significant consideration for
362	up-scaling estimates on the contribution of benthos CO ₂ production to system sediment CO ₂
363	emission rates. The same benthic animals may forage alternatively on MPB and mangrove
364	litter/detritus, as well as switch between active-feeding and fasting over long periods.
365	
366	Code availability
367	Computer codes are available upon request sent to Xiaoguang Ouyang.

368

369 Authors' contributions

- 370 XO and SYL designed the study. XO conducted field survey, laboratory experiment and data
- analysis, and wrote the manuscript revised by SYL. CYL contributed to data acquisition and
- analysis.
- 373

374 Competing interests

- The authors declare that they have no conflict of interest.
- 376

377 Acknowledgements

- 378 We thank Yan Ping Loo and Fen Guo for their assistance in collecting the crabs. Ms Kit Sum
- 379 Leung (The University of Hong Kong) is thanked for conducting the stable isotope analysis.
- 380 Professor Brian Fry (Griffith University, Australia) is acknowledged for his constructive advice
- 381 on the initial manuscript drafts. Xiaoguang Ouyang was supported by a Postdoctoral Fellowship
- at The Chinese University of Hong Kong.

383

384 **References**

- Bui, T. H. H., & Lee, S. Y. (2014). Does 'You Are What You Eat' Apply to Mangrove Grapsid
 Crabs? *PLoS One*, 9(2), e89074. doi:10.1371/journal.pone.0089074
- Caloin, M. (2004). Modeling of lipid and protein depletion during total starvation. *American Journal of Physiology Endocrinology Metabolism*, 287(4), E790-E798.
- 389 Cameron, C., Hutley, L. B., Friess, D. A., & Munksgaard, N. C. (2019). Hydroperiod, soil
- 390 moisture and bioturbation are critical drivers of greenhouse gas fluxes and vary as a
- 391 function of landuse change in mangroves of Sulawesi, Indonesia. *Science of the Total*
- 392 *Environment*, 654, 365-377. doi:doi.org/10.1016/j.scitotenv.2018.11.092

- 393 Carleton, S. A., Wolf, B. O., & Del Rio, C. M. (2004). Keeling plots for hummingbirds: a
- 394 method to estimate carbon isotope ratios of respired CO₂ in small vertebrates. *Oecologia*,
- *141*(1), 1-6.
- 396 Caro, T. (1994). Cheetahs of the Serengeti Plains: group living in an asocial species. USA:
- 397 University of Chicago Press.
- 398 Castellini, M. A., & Rea, L. D. (1992). The biochemistry of natural fasting at its limits.
- 399 *Experientia*, 48(6), 575-582. doi:10.1007/bf01920242
- 400 Chong, V., Low, C., & Ichikawa, T. (2001). Contribution of mangrove detritus to juvenile prawn
- 401 nutrition: a dual stable isotope study in a Malaysian mangrove forest. *Marine Biology*,
 402 *138*(1), 77-86.
- 403 Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., & Tu, K. P. (2002). Stable
- 404 isotopes in plant ecology. Annual review of ecology systematics, 33(1), 507-559.
- 405 DeNiro, M. J., & Epstein, S. (1977). Mechanism of carbon isotope fractionation associated with
 406 lipid synthesis. *Science*, *197*(4300), 261-263.
- 407 Engel, S., Lease, H. M., McDowell, N. G., Corbett, A. H., & Wolf, B. O. (2009). The use of
- 408 tunable diode laser absorption spectroscopy for rapid measurements of the δ^{13} C of animal
- 409 breath for physiological and ecological studies. *Rapid Communications in Mass*
- 410 Spectrometry, 23(9), 1281-1286. doi:10.1002/rcm.4004
- 411 Fox, J., & Weisberg, S. (2011). An {R} Companion to Applied Regression, Second Edition.
- 412 Thousand Oaks CA: Sage.
- 413 Fry, B. (2006). Stable Isotope Ecology. New York, USA: Springer.

414	Jacotot, A., Marchand, C., & Allenbach, M. (2018). Tidal variability of CO ₂ and CH ₄ emissions
415	from the water column within a Rhizophora mangrove forest (New Caledonia). Science
416	of the Total Environment, 631, 334.
417	Katz, L. C. (1980). Effects of burrowing by the fiddler crab, Uca pugnax (Smith). Estuarine and
418	Coastal Marine Science, 11(2), 233-237.
419	Keeling, C. D. (1961). A mechanism for cyclic enrichment of carbon-12 by terrestrial plants.
420	Geochimica et Cosmochimica Acta, 24(3-4), 299-313.
421	Kristensen, E., Flindt, M. R., Ulomi, S., Borges, A. V., Abril, G., & Bouillon, S. (2008).
422	Emission of CO ₂ and CH ₄ to the atmosphere by sediments and open waters in two
423	Tanzanian mangrove forests. Marine Ecology Progress Series, 370, 53-67.
424	doi:10.3354/meps07642
425	Kristensen, E., Lee, S. Y., Mangion, P., Quintana, C. O., & Valdemarsen, T. (2017). Trophic
426	discrimination of stable isotopes and potential food source partitioning by leaf-eating
427	crabs in mangrove environments. Limnology and Oceanography, 62(5), 2097-2112.
428	Lee, S. Y. (2008). Mangrove macrobenthos: assemblages, services, and linkages. Journal of Sea
429	Research, 59(1-2), 16-29. doi:10.1016/j.seares.2007.05.002
430	Lee, S. Y., Primavera, J. H., Dahdouh-Guebas, F., McKee, K., Bosire, J. O., Cannicci, S., Diele,
431	K., Fromard, F., Koedam, N., Marchand, C., Mendelssohn, I., Mukherjee, N., & Record,
432	S. (2014). Ecological role and services of tropical mangrove ecosystems: a reassessment.
433	Global Ecology and Biogeography, 23, 726-743. doi:10.1111/geb.12155
434	McCue, M. D., & Welch, K. C. (2016). 13 C-Breath testing in animals: theory, applications, and
435	future directions. Journal of Comparative Physiology B, 186(3), 265-285.

436	Munksgaard, N. C., Cheesman, A. W., Wurster, C. M., Cernusak, L. A., & Bird, M. I. (2014).
437	Microwave extraction-isotope ratio infrared spectroscopy (ME-IRIS): a novel technique
438	for rapid extraction and in-line analysis of $\delta^{18}O$ and $\delta^{2}H$ values of water in plants, soils
439	and insects. Rapid Communications in Mass Spectrometry, 28(20), 2151-2161.
440	Ouyang, X., Lee, S. Y., & Connolly, R. M. (2017). Structural equation modelling reveals factors
441	regulating surface sediment organic carbon content and CO ₂ efflux in a subtropical
442	mangrove. Sci. Total. Environ., 578, 513-522. doi:10.1016/j.scitotenv.2016.10.218
443	Ouyang, X., Lee, S. Y., & Connolly, R. M. (2018). Using isotope labeling to partition sources of
444	CO ₂ efflux in newly established mangrove seedlings. Limnology and Oceanography, 63,
445	731-740. doi:10.1002/lno.10663
446	Ouyang, X., Guo, F., & Lee, S. Y. (2020). The impact of super-typhoon Mangkhut on sediment
447	nutrient density and fluxes in a mangrove forest in Hong Kong. Science of the Total
448	Environment, doi:10.1016/j.scitotenv.2020.142637
449	Passey, B. H., Robinson, T. F., Ayliffe, L. K., Cerling, T. E., Sponheimer, M., Dearing, M. D.,
450	Roeder, B. L., & Ehleringer, J. R. (2005). Carbon isotope fractionation between diet,
451	breath CO2, and bioapatite in different mammals. Journal of Archaeological Science,
452	<i>32</i> (10), 1459-1470.
453	Penha-Lopes, G., Kristensen, E., Flindt, M., Mangion, P., Bouillon, S., & Paula, J. (2010). The
454	role of biogenic structures on the biogeochemical functioning of mangrove constructed
455	wetlands sediments-a mesocosm approach. Marine Pollution Bulletin, 60(4), 560-572.
456	R Core Team. (2014). A Language and Environment for Statistical Computing, R Foundation for
457	Statistical Computing, Vienna, Austria.

458	Rolston, D. (1986). Gas flux. In A. Klute (Ed.), Methods of Soil Analysis: Part 1-Physical			
459	Mineralogical Methods (pp. 1103-1119). Madison, USA: American Society of			
460	Agronomy-Soil Science Society of America.			
461	Rosentreter, J. A., Maher, D., Erler, D., Murray, R., & Eyre, B. (2018). Seasonal and temporal			
462	CO ₂ dynamics in three tropical mangrove creeks-A revision of global mangrove CO2			
463	emissions. Geochimica et Cosmochimica Acta, 222, 729-745.			
464	Russell-Hunter, W. D. (1970). Aquatic productivity: Introduction to some basic aspects of			
465	biological oceanography and limnology: Collier-Macmillan, London, UK.			
466	Sea, M. A., Garcias-Bonet, N., Saderne, V., & Duarte, C. M. (2018). Carbon dioxide and			
467	methane fluxes at the air-sea interface of Red Sea mangroves. Biogeosciences, 15, 5365-			
468	5375. doi:10.5194/bg-2018-37.			
469	Stott, A. W., Davies, E., Evershed, R. P., & Tuross, N. (1997). Monitoring the routing of dietary			
470	and biosynthesised lipids through compound–specific stable isotope (δ^{13} C) measurements			
471	at natural abundance. Naturwissenschaften, 84(2), 82-86.			
472	Vernberg, F. J. (1993). Salt-marsh processes: a review. Environmental Toxicology and			
473	Chemistry, 12(12), 2167-2195.			
474	Voigt, C. C., Grasse, P., Rex, K., Hetz, S. K., & Speakman, J. R. (2008). Bat breath reveals			
475	metabolic substrate use in free-ranging vampires. Journal of Comparative Physiology B,			
476	178(1), 9-16.			
477	Wachter, B., Blanc, AS., Melzheimer, J., Höner, O. P., Jago, M., & Hofer, H. (2012). An			
478	advanced method to assess the diet of free-ranging large carnivores based on scats. PLoS			
479	<i>One</i> , 7(6), e38066.			

- 480 Welch Jr, K. C., Péronnet, F., Hatch, K. A., Voigt, C. C., & McCue, M. D. (2016). Carbon
- 481 stable-isotope tracking in breath for comparative studies of fuel use. Ann. N. Y. Acad. Sci,
- 482 *1365*, 15-32.

484	Figure legends
485	Fig.1 A conceptual model showing the process of measuring CO ₂ production and $\delta^{13}C$ of
486	respired CO ₂ by CRDS: the closed container, a sesarmid crab, the syringe used to collect gas
487	from the container, a stop-cock, and CRDS. CRDS denotes cavity ring-down spectroscopy.
488	
489	Fig. 2 The variation of δ^{13} C of benthos-respired CO ₂ with different benthos taxa (a), dominant
490	feeding habits (b) and diets (c), as well as C/N of diets (d). Bars with different letters have
491	significantly different values.
492	
493	Fig. 3 The variation of δ^{13} C of crab-respired CO ₂ with different feeding regimes. Bars with
494	different letters are significantly different.
495	
496	Fig. 4 The variation of the rate of crab CO ₂ production with different feeding regimes. MPB
497	denotes microphytobenthos. Bars with different letters have significantly different CO ₂
498	production.
499	

- 500 Fig. 5 The relationships between crab CO₂ production and carapace width (a), and carapace
- 501 length (b), as well as between gastropod CO₂ production and shell length (c).

502 Fig. 1

- 568 Table 1 Isotopic fractionation between mangrove animal respired CO₂ and their diets. MPB
- 569 denotes microphytobenthos.

570

Benthos taxa		Diet		Isotopic fractionation	
δ^{13} C of crab	δ^{13} C of	δ^{13} C of	δ^{13} C of	$\Delta^{13}C_{benthos-MPB}$	Δ^{13} Cbenthos-leaves
respired CO ₂	gastropod	MPB	yellow		
-	respired CO ₂		leaves		
-23.9±0.4‰	-17.5±1.3‰	-27.1±0.05‰	-27.8±0.2‰	3.2‰ª,	3.9‰ ^a
				9.6‰ ^b	
Feeding habit		Diet		Isotopic fractionation	
$\delta^{13}C$ of	$\delta^{13}C$ of	$\delta^{13}C$ of	$\delta^{13}C$ of	$\Delta^{13}C_{deposit}$	$\Delta^{13}C_{detritivore}$
deposit-feeder	detritivore	MPB	yellow	feeder-MPB	leaves
respired CO ₂	respired CO ₂		leaves		
-19.8±0.8‰	-24.7±0.3‰	-27.1±0.05‰	-27.8±0.2‰	7.3‰	3.1‰

571 ^a crab, ^b gastropod