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Abstract. Over the last decades, the Amazon rainforest was hit by multiple severe drought events. Here, we assess the severity 65 

and spatial extent of the extreme drought years 2005, 2010, and 2015/2016 in the Amazon region and their impacts on the 

regional carbon cycle. As an indicator of drought stress in the Amazon rainforest, we use the widely applied maximum 

cumulative water deficit (ΔMCWDMCWD). Evaluating an ensemble of tennine state-of-the-art precipitation datasets for the 

Amazon region, we find that the spatial extent of the drought in 2005 ranges from 2.82 to 4.23.0 (mean = 3.2.7) million km² 

(46 – 7137 – 51% of the Amazon basin, mean = 5345%) where ΔMCWDMCWD indicates at least moderate drought conditions 70 

(ΔMCWDrelative MCWD anomaly < 25 mm-0.5). In 2010, the affected area was about 16% larger, ranging from 3.10 up to 

4.64 (mean = 3.76) million km² (52 – 7851 – 74%, mean = 6361%). In 2016, the mean area affected by drought stress was 

similar tobetween 2005 and 2010 (mean = 3.2 million km²; 55% of the Amazon basin), but the general disagreement between 

data setsdatasets was larger, ranging from 2.4 up to 4.1 million km² (40–7069%). In addition, we compare differences and 

similarities among datasets using the self-calibrating Palmer Drought Severity Index (scPDSI) and a rainfall anomaly index 75 

(RAI). We find that scPDSI shows a much stronger, and RAI a much weaker drought impact in terms of extent and severity 

for the year 2016 compared to ΔMCWDMCWD.  Using an empirical ΔMCWDMCWD-mortality relationship, we calculate 

biomass losses offor the three2005 drought eventsevent. We show that eightthe majority of tenthe datasets agree on biomass 

losses of about 1.8 2 Petagram carbon (PgC for the drought years 2005 and 2010, indicating that the more intense drought in 

2005 equals a larger total area of the 2010 drought regarding biomass loss. For), but the 2015/2016 drought event, datasets 80 

show a large variability of biomass loss induced by drought stress ranging from overall range is between 0.7 and 1.3 to 2.76 

PgC with a mean loss of 1.8 PgC.. Disagreement across datasets increased, (1) when comparing the total area of more severe 

and extreme drought signals and (2) when comparing spatial drought location across datasets. Generally, only half of the 

datasets agreed on the location of a drought event. We conclude that for deriving impacts of droughts toon the Amazon Basin 

based on precipitation, an ensemble ofmultiple datasets should be considered. This is especially relevant when assessing the 85 

impact of drought on the Amazon rainforest and its carbon cycle. Furthermore, considering different drought indices can help 

to understand the complex characteristics that drought events in the Amazon have. 
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1 Introduction 

The severe drought events occurring in 2005, 2010 and 2015/16 in the Amazon basin are reasons for concern regarding their 

frequency and severity, and their impacts on the Amazon rainforest. Different large-scale atmospheric processes related to 

increased sea surface temperature (SST) in the Pacific and the Atlantic Ocean seem to be responsible for such repeated mega-125 

drought events (Coelho et al., 2012): While the drought 2015/16 was driven by a record-level El Niño event enhanced by the 

strong underlying global warming trend (Jimenez et al., 2018), the 2010 drought was a combination of a moderate El Niño 

event and anomalously warm SSTs in the tropical North Atlantic (Marengo & Espinoza, 2016; Marengo et al., 2011). Similarly, 

the 2005 drought was attributed to anomalies of warm SSTs in the North Atlantic (Marengo et al., 2008; Zeng et al., 2008). In 

consequence, such events differ in their strength, their timing and spatial patterns, and thus, impacted regions differ. While 130 

drought events related to El Niño events show a Southwest to Northeast gradient with dry conditions over the NE Amazon 

region (Malhi et al., 2008), drought events caused by anomalously warm North Atlantic SSTs show a North-South gradient 

with dry conditions in the southern Amazon region (Lewis et al., 2011; Marengo et al., 2008). Even in the case of El Niño 

events, SSTs anomalies over the Eastern Pacific (EP) or the Central Pacific (CP) can lead to different impacts and spatial 

patterns of drought (Jimenez et al., 2019). In addition to their influence on temperature, recent El Niño events also showed 135 

amplified atmospheric vapor pressure deficit anomalies (Barkhordarian et al., 2019; Rifai et al., 2019). The impacts of such 

drought events on humid tropical forests, which are often not adapted to longer-lasting dryness, are severe. Increased forest 

mortality connected to drought events was observed in central and southern Amazonia (Lewis et al., 2011; Phillips et al., 2009), 

as well as shifts in tree species composition (Esquivel‐Muelbert et al., 2019). Droughts are assumed to be one of the main 

drivers for the observed decline in the Amazon carbon sink, indicating that more carbon is lost to the atmosphere than taken 140 

up by the forest (Hubau et al., 2020). Thus, such extreme drought events are altering the carbon cycle of the Amazon forest 

already today (Gloor et al., 2015; Hubau et al., 2020; Phillips et al., 2009). 

Losing tropical forests in the Amazon region through increased mortality under drought also has implications for regional and 

continental scale water cycling (Ruiz-Vásquez et al., 2020). The rainforest transpires enormous amounts of water which is 

transported by winds to remote regions far beyond the borders of the rainforest (e.g. Dirmeyer et al., 2009; van der Ent et al., 145 

2010; D. C. Zemp et al., 2014; Zemp et al., 2017a). In addition, the ongoing deforestation in the Amazon rainforest further 

decreases forest cover and thus, transpiration rates, leading to a rainfall decline and enhanced drought conditions in a positive 

feedback loop (Miralles et al., 2019; D. C. Zemp et al., 2017a; Zemp et al., 2017b). It can be expected that ongoing climate 

change most likely will cause stronger and more frequent drought events in the Amazon (Cai et al., 2015; Jia et al., 2019; 

Marengo & Espinoza, 2016). 150 

For assessing the severity, the spatial extent and, in particular, the impacts of such drought events on existing ecosystems, 

different gridded precipitation datasets are available which in some cases differ strongly in magnitude and spatio-temporal 

distribution of precipitation amounts (Golian et al., 2019). Typical problems of precipitation data for South America encompass 

the underestimation of extreme rainfall events in both dry or wet seasons (Blacutt et al., 2015; Giles et al., 2020). Therefore, 
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while for the Amazon region, the recent drought events have been assessed in terms of severity (Jiménez-Muñoz et al., 2016; 

Jimenez et al., 2018) and impacts (Phillips et al. 2009, Lewis et al. 2011) based on single precipitation data sets, a systematic 

analysis of how the most frequent used precipitation datasets differ regarding the spatial extent, location and severity of recent 190 

extreme drought events, is currently missing. 

For our study, we selected ten precipitation datasets: (1, 2) Data from the Tropical Rainfall Measurement Mission (TRMM) 

version 6 and 7 (Huffman et al., 2007) which have been frequently used, e.g. to estimate drought impacts on the carbon balance 

(Lewis et al., 2011; Malhi et al., 2009) and are assumed to represent precipitation patterns in the Amazon region best since 

they are derived from radar measurements (Huffman et al., 2007). (3) CHIRPS (Climate Hazards group Infrared Precipitation 195 

with Stations, Espinoza et al., 2019), which has been used to study regional hydro-climatic and environmental changes in the 

Amazon Basin. These two datasets only provide precipitation and no information about other climatic variables such as 

temperature or radiation. In addition, we selected five datasets that are often used as drivers for ecosystem models (e.g. in 

Forkel et al., 2019; Yang et al., 2015) and – in contrast to the other datasets – provide information about other climate variables: 

Data from the Climate Research Unit (CRU) with a joint project reanalysis (NCEP, National Centers for Environmental 200 

Prediction) applied, (4) the CRUNCEP (version 8, Viovy, 2018), (5) the WATCH-WFDEI  (WATCH: Water and Global 

Change, Weedon et al., 2011. WFDEI: WATCH Forcing Data methodology applied to ERA-Interim, Weedon et al., 2014) 

dataset, originally derived from global sub-daily observations merged with integrations from a general circulation model, (6) 

the GSWP3 (Global Soil Wetness phase 3, Kim et al. in prep) dataset which is closely related to WATCH-WFDEI, relying on 

a similar forcing but with a different bias correction applied, (7) the newer GLDAS s(Global Land Data Assimilation System) 205 

2.1. which is derived from various geostationary infrared satellite measurements and microwave observations (Rodell et al., 

2004), (8) the ERA-Interim dataset which is generated using a forecast model driven with different input datasets (Dee et al., 

2011), (9) the latest ECMWF atmospheric reanalysis dataset, ERA5, which is the successor of ERA-Interim, providing higher 

spatial and temporal resolutions and a more recent model and data assimilation system than the previous ERA-Interim 

reanalysis (Albergel et al., 2018), and, finally, (10) the GPCC (named after the Global Precipitation Climatology Centre) 210 

dataset (Schneider et al., 2018), which is based on globally available land stations (rain gauges) combined with an empirical 

interpolation method (Willmott et al., 1985). A more detailed description of the datasets is given in the methods section. 

We evaluate the precipitation datasets based on the Maximum Cumulative Water Deficit (MCWD; Aragão et al., 2007), a 

well-established drought index that is particularly suitable for estimating drought stress in the Amazon region (e.g. Esquivel‐

Muelbert et al., 2019; Lewis et al., 2011; Y. Malhi et al., 2009; Phillips et al., 2009; Zang et al., 2020). In addition, we included 215 

two other measures to complement our analysis: Rainfall anomaly index (RAI), which does account for the mean deviation (in 

units of standard deviation) of precipitation during the driest months of the year and scPDSI (self-calibrating Palmer Drought 

Index, Wells et al., 2004). scPDSI has a more complex formulation compared to RAI and MCWD and takes available soil 

water content into account. Both RAI and scPDSI have been used in studies describing the recent Amazonian drought events 

(e.g. Jiménez-Muñoz et al., 2016; Lewis et al., 2011).  220 
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The goals of our study are (1) to analyze and quantify the uncertainty in drought strength, extent and location of three recent 255 

Amazon droughts in the years 2005, 2010 and 2015/2016 in ten state-of-the-art precipitationThe severe drought events 

occurring in 2005, 2010, and 2015/16 in the Amazon basin are reasons for concern regarding their frequency and severity, and 

their impacts on the Amazon rainforest. Different large-scale atmospheric processes related to increased sea surface 

temperature (SST) in the Pacific and the Atlantic Ocean seem to be responsible for such repeated mega-drought events (Coelho 

et al., 2012): While the drought 2015/16 was driven by a record-level El Niño event enhanced by the strong underlying global 260 

warming trend (Jimenez et al., 2018), the 2010 drought was a combination of a moderate El Niño event and anomalously warm 

SSTs in the tropical North Atlantic (Marengo & Espinoza, 2016; Marengo et al., 2011). Similarly, the 2005 drought was 

attributed to anomalies of warm SSTs in the North Atlantic (Marengo et al., 2008; Zeng et al., 2008). In consequence, such 

events differ in their strength, their timing, and spatial patterns, and thus, impacted regions differ. While drought events related 

to El Niño events show a Southwest to Northeast gradient with dry conditions over the NE Amazon region (Malhi et al., 2008), 265 

drought events caused by anomalously warm North Atlantic SSTs show a North-South gradient with dry conditions in the 

southern Amazon region (Lewis et al., 2011; Marengo et al., 2008). Even in the case of El Niño events, SSTs anomalies over 

the Eastern Pacific (EP) or the Central Pacific (CP) can lead to different impacts and spatial patterns of drought (Jimenez et 

al., 2019). In addition to their influence on temperature, recent El Niño events also showed amplified atmospheric vapor 

pressure deficit anomalies (Barkhordarian et al., 2019; Rifai et al., 2019). The impacts of such drought events on humid tropical 270 

forests, which are often not adapted to longer-lasting dryness, are severe. Increased forest mortality connected to drought 

events was observed in central and southern Amazonia (Feldpausch et al., 2016; Lewis et al., 2011; Phillips et al., 2009), as 

well as shifts in tree species composition (Esquivel‐Muelbert et al., 2019). Droughts are assumed to be one of the main drivers 

for the observed decline in the Amazon carbon sink, indicating that more carbon is lost to the atmosphere than taken up by the 

forest (Hubau et al., 2020). Thus, such extreme drought events are altering the carbon cycle of the Amazon forest (Feldpausch 275 

et al., 2016; Gloor et al., 2015; Hubau et al., 2020; Phillips et al., 2009). 

Losing tropical forests in the Amazon region through increased mortality under drought also has implications for regional and 

continental scale water cycling (Ruiz-Vásquez et al., 2020). The rainforest transpires enormous amounts of water which is 

transported by winds to remote regions far beyond the borders of the rainforest (e.g. Dirmeyer et al., 2009; van der Ent et al., 

2010; Zemp et al., 2014; Zemp et al., 2017). In addition, the ongoing deforestation in the Amazon rainforest further decreases 280 

forest cover and thus, transpiration rates, leading to a rainfall decline and enhanced drought conditions in a positive feedback 

loop (Miralles et al., 2019; Zemp et al., 2017). It can be expected that ongoing climate change most likely will cause stronger 

and more frequent drought events in the Amazon (Cai et al., 2015; Jia et al., 2019; Marengo & Espinoza, 2016). 

For assessing the severity, the spatial extent, and, in particular, the impacts of such drought events on existing ecosystems, 

different gridded precipitation datasets are available which in some cases differ strongly in magnitude and spatio-temporal 285 

distribution of precipitation amounts (Golian et al., 2019). Typical problems of precipitation data for South America encompass 

the underestimation of extreme rainfall events in both dry or wet seasons (Blacutt et al., 2015; Giles et al., 2020). Therefore, 

while for the Amazon region, the recent drought events have been assessed in terms of severity (Jiménez-Muñoz et al., 2016; 
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Jimenez et al., 2018) and impacts (Phillips et al. 2009, Lewis et al. 2011, Feldpausch et al. 2016) based on single precipitation 

data sets, a systematic analysis of how the most frequent used precipitation datasets differ regarding the spatial extent, location 

and severity of recent extreme drought events, is currently missing. 

For our study, we selected precipitation from nine different datasets: (1, 2) Data from the Tropical Rainfall Measurement 325 

Mission (TRMM) version 6 and 7 (Huffman et al., 2007) which have been frequently used, e.g. to estimate drought impacts 

on the carbon balance (Lewis et al., 2011; Y. Malhi et al., 2009) and are assumed to represent precipitation patterns in the 

Amazon region best since they are derived from radar measurements (Huffman et al., 2007). (3) CHIRPS (Climate Hazards 

group Infrared Precipitation with Stations, Espinoza et al., 2019), which has been used to study regional hydro-climatic and 

environmental changes in the Amazon Basin. These two datasets only provide precipitation and no information about other 330 

climatic variables such as temperature or radiation. In addition, we selected five datasets that are often used as drivers for 

ecosystem models (e.g. in Forkel et al., 2019; Yang et al., 2015) and – in contrast to the other datasets – provide information 

for more climate variables: Data from the Climate Research Unit (CRU) with a joint project reanalysis (NCEP, National 

Centers for Environmental Prediction) applied, (4) the CRUNCEP (version 8, Viovy, 2018), (5) the WATCH-WFDEI  

(WATCH: Water and Global Change, Weedon et al., 2011. WFDEI: WATCH Forcing Data methodology applied to ERA-335 

Interim, Weedon et al., 2014) dataset, originally derived from global sub-daily observations merged with integrations from a 

general circulation model, (6) the GSWP3 (Global Soil Wetness phase 3, Kim et al. in prep) dataset which is closely related 

to WATCH-WFDEI, relying on a similar forcing but with a different bias-correction method applied, (7) the newer GLDAS 

(Global Land Data Assimilation System) 2.1. which is derived from various geostationary infrared satellite measurements and 

microwave observations (Rodell et al., 2004), (8) the latest ECMWF atmospheric reanalysis dataset, ERA5, which is the 340 

successor of ERA-Interim, providing higher spatial and temporal resolutions and a more recent model and data assimilation 

system than the previous ERA-Interim reanalysis (Albergel et al., 2018), and, finally, (9) the GPCC (named after the Global 

Precipitation Climatology Centre) dataset (Schneider et al., 2018), which is based on globally available land stations (rain 

gauges) combined with an empirical interpolation method (Willmott et al., 1985). The data sets were chosen because they are 

often used to force Dynamic Global Vegetation and hydrological simulation models in climate impacts studies. A more detailed 345 

description of the datasets is given in the methods section. 

We evaluate the precipitation datasets based on the Maximum Cumulative Water Deficit (MCWD; Aragão et al., 2007), a 

well-established drought index that is particularly suitable for estimating drought stress in the Amazon region (e.g. Esquivel‐

Muelbert et al., 2019; Lewis et al., 2011; Malhi et al., 2009; Phillips et al., 2009; Zang et al., 2020). In addition, we included 

two other measures to complement our analysis: A rainfall anomaly index (RAI), which does account for the mean deviation 350 

(in units of standard deviation) of precipitation during the driest months of the year, and the scPDSI (self-calibrating Palmer 

Drought Index, Wells et al., 2004). The scPDSI index has a more complex formulation compared to RAI and MCWD and 

takes available soil water content into account. Both RAI and scPDSI have been used in studies describing the recent 

Amazonian drought events (e.g. Jiménez-Muñoz et al., 2016; Lewis et al., 2011).  
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The goals of our study are (1) to analyze and quantify the uncertainty in strength, extent, and location of three recent Amazon 

droughts in the years 2005, 2010, and 2015/2016 in precipitation from nine state-of-the-art precipitation or climate datasets 

based on MCWD; (2) to examine differences among these drought events by taking two additional drought indicators RAI and 

scPDSI into account; and (3) to give an estimate of the impacts of the three2005 drought events on the carbon cycle by 

estimating potential biomass losses.  365 

  Formatiert: Schriftart: Nicht Fett, Schriftfarbe: Automatisch



 

4 

8 

 

Formatiert: Schriftfarbe: Schwarz

Formatiert: Standard, Rahmen: Oben: (Kein Rahmen),
Unten: (Kein Rahmen), Links: (Kein Rahmen), Rechts: (Kein
Rahmen), Zwischen : (Kein Rahmen), Tabstopps:  7.96 cm,
Zentriert +  15.92 cm, Rechtsbündig

2 Methods 

2.1 Study area 400 

Our study covers the Amazon river basin as delineated by Döll & LehnerDöll & Lehner (2002, see black contour in Fig. 1). 

Using 0.5° spatial resolution in longitude and latitude results in 1946 grid cells of interest for this study area. To compare 

spatial differences of drought extent in more detail, we subdivided the Amazon Basin into 13 regions based on countries and 

Brazilian states intersecting with the area (SI Fig. 1). Note that differences in the comparison of our results with Lewis et al. 

(2011) arise because of differences in the delineation of the Amazon region, i.e. the area used in our study is 0.6 Miomillion 405 

km² larger. 

2.2 Data sources 

In the following, we briefly describe the ten precipitation datasets applied in our study (see also Table 1):  The Tropical Rainfall 

Measuring Mission (TRMM v7) product (Huffman et al., 2007) is a precipitation-only dataset based on multiple microwave-

infrared satellite data developed as a joint product between NASA and the Japan Aerospace Exploration Agency (JAXA). We 410 

also included the predecessor v6 for comparison in our study, because it has been frequently and prominently used to derive 

drought impacts to the Amazon Basin (e.g. Lewis et al., 2011; Phillips et al., 2009) and shows significantly lower precipitation 

throughout the basin compared to v7 (Seto et al., 2011). Both TRMM datasets are from now on denoted as TR6 and TR7. 

CHIRPS (Climate Hazards group Infrared Precipitation with Station) is a novel dataset (Funk et al., 2015 from now on denoted 

CHR) which is a quasi-global (full longitude, but only 50°S – 50°N latitude extent) precipitation-only merged product, based 415 

on multi-satellite estimates (similar to TR6 and TR7) and approx. 2,000 in-situ observations per month in South America. 

TR6, TR7 and CHR share the quasi-global spatial extent, however, in comparison to TR6 and TR7 with a resolution of 0.25° 

x 0.25°, CHR has a much higher spatial resolution of 0.05° x 0.05°. ERA-Interim (from now on denoted as ERI) is an 

atmospheric model that assimilates observation-based estimates from the GPCP-dataset (Adler et al., 2003) of the atmosphere 

during runtime (Dee et al., 2011). Although ERI might show some anomalies in tropical biomes (Di Giuseppe et al., 2013), it 420 

has been used for drought evaluation of the Amazon rainforest (Jiménez-Muñoz et al., 2016) and also as a forcing dataset for 

dynamic vegetation models (DVMs; e.g. Maignan et al., 2011; Poulter et al., 2011).  ERA5 (Muñoz-Sabater et al., 2018), from 

now on denoted as ER5, shows improvements in, e.g., land evapotranspiration, surface soil moisture and turbulent heat fluxes 

over its predecessor ERI (Albergel et al., 2018). Similarly, CRUNCEP (Viovy, 2018 from now on denoted as CRU) is 

generated based on a reanalysis from the national centers for environmental prediction (NCEP) and the National Center for 425 

Atmospheric Research (NCAR), corrected with the CRU TS3.2 (Harris et al., 2014) dataset. GPCC (from now on denoted as 

GPC) is mainly based on data from rain gauge land stations. Similar to CRU, it is also based on a reanalysis and has been used 

in global drought studies (Ziese et al., 2014). Both GPC and CRU cover the longest periods of all selected datasets in this study 

with timespans from 1891 until 2016 and from 1901 until 2016, respectively.  WATCH-WFDEI (denoted as WAT from now 

on; Weedon et al., 2011; 2014) is based on the reanalysis ERI corrected with GPC precipitation. GSWP3 (Kim et al. in prep; 430 
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from now on denoted as GSW) is based on the atmospheric reanalysis method “20CR” (20th Century Reanalysis version 2, 

Compo et al., 2013), which has been dynamically downscaled to 0.5° x 0.5° resolution. Corrections with observational data 

have not only been applied to precipitation but also to short/longwave radiation, air temperature and the daily temperature 465 

range. Both WAT and GSW end in the year 2010. The GLDAS 2.1 (from now on denoted as GLD) dataset is built by using 

the ‘Noah Land surface model’ forced by the Goddard Earth Observing System (GEOS) Data Assimilation System with 

corrected precipitation and radiation (Rodell et al., 2004; Sheffield et al., 2006). Starting in January 2000 (Version 2.1), it is 

the dataset with the latest time onset and hence defines the lower-bound time interval considered in this study. For the 

2015/2016 drought event, only seven datasets were available as three of the datasets (TR6, GSW and WAT) end before. All 470 

datasets were (if not directly available) converted to 0.5° x 0.5° spatial resolution and to monthly time steps. 

2.3. Drought indices and evaluation of drought area and extent 

2.3.1 Calculation of maximum climatological water deficit (MCWD) 

In the following, we briefly describe the nine precipitation datasets applied in our study (see also Table 1):  The Tropical 

Rainfall Measuring Mission (TRMM v7) product (Huffman et al., 2007) is a precipitation-only dataset based on multiple 475 

microwave-infrared satellite data developed as a joint product between NASA and the Japan Aerospace Exploration Agency 

(JAXA). We also included the predecessor v6 for comparison in our study, because it has been frequently and prominently 

used to derive drought impacts to the Amazon Basin (e.g. Lewis et al., 2011; Phillips et al., 2009) and shows significantly 

lower precipitation throughout the basin compared to v7 (Seto et al., 2011). CHIRPS (Climate Hazards group Infrared 

Precipitation with Station) is a novel dataset (Funk et al., 2015) which is a quasi-global (full longitude, but only 50°S – 50°N 480 

latitude extent) precipitation-only merged product, based on multi-satellite estimates (similar to TRMM 6 and TRMM 7) and 

approx. 2,000 in-situ observations per month in South America. TRMM 6, TRMM 7 and CHIRPS share the quasi-global 

spatial extent, however, in comparison to TRMM 6, TRMM 7 with a resolution of 0.25° x 0.25°, CHIRPS has a much higher 

spatial resolution of 0.05° x 0.05°. ERA5 (Muñoz-Sabater et al., 2018) shows improvements in, e.g., land evapotranspiration, 

surface soil moisture and turbulent heat fluxes over its predecessor ERA-Interim (Albergel et al., 2018), which we decided not 485 

to include in our study as it showed higher systematic errors over tropical areas (Nogueira, 2020). Similarly, CRUNCEP 

(Viovy, 2018) is generated based on a reanalysis from the national centers for environmental prediction (NCEP) and the 

National Center for Atmospheric Research (NCAR), corrected with the CRU TS3.2 (Harris et al., 2014) dataset. GPCC is 

mainly based on data from rain-gauge land stations. Similar to CRUNCEP, it is also based on the NCEP reanalysis dataset and 

has been used in global drought studies (Ziese et al., 2014). Both GPCC and CRUNCEP cover the longest periods of all 490 

selected datasets in this study with time spans from 1891 until 2016 and from 1901 until 2016, respectively.  WATCH-WFDEI 

(Weedon et al., 2011; 2014) is based on the reanalysis ERA-Interim corrected with GPCC precipitation. GSWP3 (Kim et al. 

in prep;) is based on the atmospheric reanalysis method “20CR” (20th Century Reanalysis version 2, Compo et al., 2013), 

which has been dynamically downscaled to 0.5° x 0.5° resolution. Corrections with observational data have not only been 



 

4 

10 

 

Formatiert: Schriftfarbe: Schwarz

Formatiert: Standard, Rahmen: Oben: (Kein Rahmen),
Unten: (Kein Rahmen), Links: (Kein Rahmen), Rechts: (Kein
Rahmen), Zwischen : (Kein Rahmen), Tabstopps:  7.96 cm,
Zentriert +  15.92 cm, Rechtsbündig

applied to precipitation but also to short/longwave radiation, air temperature and the daily temperature range. Both WATCH-

WFDEI and GSWP end in the year 2010. The GLDAS 2.1 dataset is built by using the ‘Noah Land surface model’ forced by 

the Goddard Earth Observing System (GEOS) Data Assimilation System with corrected precipitation and radiation (Rodell et 

al., 2004; Sheffield et al., 2006). Starting in January 2000 (Version 2.1), it is the dataset with the latest time onset and hence 530 

defines the lower-bound time interval considered in this study. For the 2015/2016 drought event, only seven datasets were 

available as three of the datasets (TRMM 6, GSWP3 and WATCH-WFDEI) end before. All datasets were (if not directly 

available) aggregated to 0.5° x 0.5° spatial resolution and to monthly time steps. 

2.3. Drought indices and evaluation of drought area and extent 

2.3.1 Calculation of maximum climatological water deficit (MCWD) 535 

We calculate MCWD based on Aragão et al. (2007)Aragão et al. (2007) defining water deficit (WD) as follows: 

𝑊𝐷(𝑡) = 𝑃(𝑡) − 𝐸𝑇(𝑡),             (1) 

where  𝑊𝐷(𝑡) stands for water deficit, which is calculated for a time step t, in this case for a monthly time step, 𝑃(𝑡) for 

monthly precipitation and 𝐸𝑇(𝑡) for monthly evapotranspiration. To estimate the impacts of persistent drought events, the 

cumulative water deficit (𝐶𝑊𝐷) is defined as the accumulation of water deficit of each month of the hydrological year (see 540 

below for details) for which 𝑃(𝑡) is smaller than 𝐸𝑇(𝑡),  hence 𝑊𝐷(𝑡) is negative.  MCWD is the most negative value of 

𝐶𝑊𝐷(t) over a specific period. For a complete mathematical definition, see Supporting Information Methods S1. As proposed 

by Aragão et al. (2007), we use a fixed value for 𝐸𝑇(𝑡) = 𝐸𝑇𝑓𝑖𝑥𝑒𝑑 = 100 mm month-1 derived from ground measurements of 

evapotranspiration in different locations and seasons in Amazonia (von Randow et al., 2004; da Rocha et al., 2004). As a result, 

water deficit builds up whenever the hence 𝑊𝐷(𝑡) is negative. MCWD is the most negative value of 𝐶𝑊𝐷(t) over a specific 545 

period. As proposed by Aragão et al. (2007), we use a fixed value for 𝐸𝑇(𝑡) = 𝐸𝑇𝑓𝑖𝑥𝑒𝑑 = 100 mm month-1 derived from 

ground measurements of evapotranspiration in different locations and seasons in Amazonia (da Rocha et al., 2004; von Randow 

et al., 2004). As a result, water deficit builds up whenever monthly rainfall 𝑃(𝑡) falls below 100 mm.  

We calculate annual MCWD for the hydrological year from October of the previous year to September of the succeeding year, 

e.g. the MCWD for the year 20002005 is calculated from October 19992004 to September 20002005 (similar to Lewis et al., 550 

2011). Similarly, for deriving 

In contrast to e.g. Lewis et al. 2011, we use the drought severity, we calculated therelative MCWD anomaly (ΔMCWD)from 

now also denoted as 𝑟MCWD) as our main drought indicator.  For deriving 𝑟MCWD, we estimate the absolute MCWD 

anomaly (from now also denoted as 𝑎MCWD)  for 2005 and 2010, respectively, by first calculating the mean MCWD for the 

“baseline” period from 2000 to 2010, thereby excluding the years and second by subtracting the mean MCWD from 2005 and 555 

2010. To derive ΔMCWD, the baseline period is subtracted from the mean value of 2005 and 2010, respectively., respectively. 

The 𝑟MCWD anomaly is then estimated as the normalized deviation of the 𝑎MCWD anomaly in units of standard deviation. 

The same procedure was applied for calculating ΔMCWDthe 𝑟MCWD anomaly for 2016, extending the baseline period to 
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from 2000 to 2016 and additionally excluding the year 2016. We excluded the drought years from the baseline period as the 

high proportion of drought years would bias the mean water stress (Lewis et al., 2011). We investigated also the effect of 

including drought years in the baseline calculation and the role of a longer baseline period (Fig. S1). Similar to Lewis et al. 

2011, we defined ΔMCWDfrom 2000 to 2016.  595 

We define relative thresholds of 𝑟MCWD anomaly <  −0.5 as moderate,  𝑟MCWD anomaly <  −2.0 as severe, and 

𝑟MCWD<  −2.5  as extreme drought stress. Previously, levels of drought stress were based on 𝑎MCWD anomaly (often also 

referred to as ∆MCWD, e.g. Lewis et al. 2011) with 𝑎MCWD anomaly <  −25 mm as moderate drought stress because at this 

level, tree mortality already significantly increased in their inventory plots. We further defined ΔMCWD <  −100 

By comparing empirical cumulative density functions of 𝑎MCWD and 𝑟MCWD anomalies (Fig. S1 and Methods S1) we are 600 

also able to give absolute estimates for our relative thresholds with 𝑎MCWD <  −26 mm as severe and ΔMCWD <  −150, 

𝑎MCWD<  −106 mm as extreme drought stress, and 𝑎MCWD  <  −132 mm reflecting moderate, severe and extreme 

drought stress, respectively. Choosing relative anomalies over absolute enables a direct comparison of MCWD to the other 

drought indices used in this study. We used the 𝑟MCWD anomaly for the majority of the analysis conducted in our study 

except for the impact of drought on aboveground biomass (section 2.4 and Fig. 4), where we use the 𝑎MCWD anomaly. We 605 

also estimated seasonal patterns of cumulative water deficit (CWD), by defining 𝑟CWD similar tor 𝑟MCWD as the relative 

anomaly of each month’s CWD in units of standard deviation. 

 

2.3.2. Calculation of rainfall anomaly index (RAI) 

For the rainfall anomaly index, dry season rainfall was taken as the mean precipitation from July-September following Lewis 610 

et al. (2011).  For each year, the ‘standardized anomaly’ was calculated as the anomaly of rainfall expressed as the difference 

in units of standard deviation from the Like for the MCWD estimation, we calculated the mean dry season rainfall over all 

years. Like for to the MCWD calculation, we excluded the drought years 2005 and 2010 from the mean dry season precipitation 

calculation from a baseline period 2000-2010 to investigate the drought impacts of 2005 and 2010, and for 2016 we selected 

a baseline period from 2000 to 2016 excluding 2005, 2010, and 2016. We defined 𝑅𝐴𝐼 <  −1 to represent moderate, 𝑅𝐴𝐼 <615 

 −2 to represent severe, and 𝑅𝐴𝐼 <  −3 to represent extreme drought stress. The relative rainfall anomaly index (𝑟RAI) was 

estimated as ‘standardized anomaly’ from the baseline period similarly to the 𝑟MCWD anomaly calculation. As 𝑟RAI only 

reflects the precipitation anomaly during July and September, it can also be described as a dry season anomaly. 

 

2.3.3. Calculation of the self-calibrating Palmer Drought Severity Index (scPDSI) 620 

The self-calibrating Palmer Drought Severity Index (scPDSI, Wells et al., 2004) has in recent studies been used to assess the 

impacts of droughts on the Amazon basin (e.g. Jiménez-Muñoz et al., 2016). It improves the original PDSI by using a self-

calibrating procedure based on historical climate data, eliminating the empirically derived climatic characteristics. Next to 

precipitation, it also takes monthly potential evapotranspiration ET into account. In our study, we use ET data generated by 
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the ER5 reanalysis. Additionally, the scPDSI takes soil water capacity as input, which we assumed here as a constant value of 

100 mm. scPDSI was estimated using the R package scPDSI (Ruida et al., 2018).  

To enable comparison with the MCWD and RAI, we selected identical baseline periods from 2000 to 2010 for the 2005 and 

2010 events and from 2000 to 2016 for the 2016 drought event.  We also adopted the categorization from Jiménez-Muñoz et 

al. (2016) and Wells et al. (2004) with 𝑠𝑐𝑃𝐷𝑆𝐼 <  −2 representing moderate, 𝑠𝑐𝑃𝐷𝑆𝐼 <  −3 severe and 𝑠𝑐𝑃𝐷𝑆𝐼 <  −4 660 

extreme drought stress. 

The self-calibrating Palmer Drought Severity Index (scPDSI, Wells et al., 2004) has in recent studies been used to assess the 

impacts of droughts on the Amazon basin (e.g. Jiménez-Muñoz et al., 2016). It improves the original PDSI by using a self-

calibrating procedure based on historical climate data, eliminating the empirically derived climatic characteristics. Next to 

precipitation, it also takes monthly potential evapotranspiration ET into account. In our study, we use ET data generated by 665 

the ERA5 reanalysis. Additionally, the scPDSI takes soil water capacity as input, which we assumed here as a constant value 

of 100 mm. scPDSI was estimated using the R package scPDSI (Ruida et al., 2018).  

To enable cross-comparison with the 𝑟MCWD and 𝑟RAI anomalies, we selected identical baseline periods from 2000 to 2010 

for the 2005 and 2010 events, and from 2000 to 2016 for the 2016 drought event. Again, we used the relative deviation 

𝑟scPDSI, defined as ‘standardized anomaly’ from the baseline period of monthly scPDSI values as drought indicator.  670 

2.3. Calculation of drought area and extent 

Each grid cell’s area was approximated as a trapezoid to its boundary coordinates (in 0.5° x 0.5° resolution), resulting in an 

area between 2900 and 3090 km² per grid cell. Accumulating the associated areas over all grid cells resulted in a total area of  

5.94 million km² representing the Amazon Basin. Note that for comparison of our results with Lewis et al. (2011) differences 

in absolute areas arise because of differences in study area size (5.94 vs. 5.3 million km², respectively). For the calculation of 675 

the drought-affected area, we summed up the area of grid cells that matched the respective drought classification (e.g. ΔMCWD 

<  −150 mm 𝑟MCWD anomaly <  −2.5 for extreme drought stress). The spatial agreement of drought location among 

datasets was estimated by selecting the grid cells matching the drought classification per dataset and subsequently counting 

the number of datasets per grid cells showing the respective drought classification.  

 680 

 

2.4. Estimating carbon losses during drought events 

To estimate carbon loss during drought events, we used a simple linear relation between MCWD and𝑎MCWD anomaly and 

𝑎AGB, the change in aboveground biomass, i.e. biomass carbon losses in the Amazon basin derived from plot measurements 

(Lewis et al., 2011): 685 
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ΔAGB 𝑎AGB= 0.3778 - 0.052 * ΔMCWD𝑎MCWD         

  (2) 

 700 

Here, ΔAGB denotes the change in aboveground biomass, i.e. biomass carbon losses. The equation was derived from Amazon 

plot inventory data measured across the RAINFOR network to estimate the impact of the 2005 drought event (Lewis et al. 

2011). To calculate ΔAGBthe 𝑎AGB anomaly in Eq. 2, we usedcalculated the ΔMCWD𝑎MCWD anomaly of each gridcell 

for each drought year calculated in 2005 for each of the precipitation datasets in our study. The total biomass carbon loss (in 

Pg CPgC) across the Amazon basin is then calculated by summing up ΔAGB𝑎AGB anomaly for all gridcells weighted by 705 

each gridcell’s size. 
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3. Results 

All areas in the following section are expressed as percentage with respect toof the entire Amazon basin according to our 

delineation (5.94 million km²). For an overview of the areas affected in million km², see Table 2S2 and 3S3.  

3.1 Comparison of total drought area based on ΔMCDWrelative MCWD anomaly 

We first evaluate differences in the two TRMM products, TR6 and TR7. For 2005 and 2010, we find similar spatial patterns 745 

𝑟MCWD for TR7, as in Lewis et al. 2011 for TR62016 across the datasets (Fig. 1a, b). Regarding drought intensities, TR7 

agrees with its predecessor TR6 for 2005, showing a slightly smaller area (4% less), but an 11% smaller area for 2010. 

ΔMCWD calculated from TR7 indicates 1). Here, we find that the North-Western region spatial patterns of the 𝑟MCWD 

anomaly generally match acrossAmazon Basin (particularly the Roraima region) was hit extremely byavailable datasets, 

showing severe and extreme drought stress mainly in 2016 with 7% of the area having ΔMCWD < −150mm (Fig. 1c). 750 

Furthermore, in 2016 about 15% of the northern Amazon basin was severely affected by. Only GLDAS diverges, showing 

extreme drought stress located atin the Central and Western part and scattered in South-Eastern of Amazonia. Moderate (Fig. 

1d) where none of the other datasets show any drought stress was found throughout 54%during the same year. The other 

datasets mostly differ regarding the intensity of the drought stress. While ERA5 and TRMM7 show values 𝑟MCWD < -2.5 in 

the Columbian part of the basin also affecting central, CRUNCEP and western Amazonia (Fig 1c).GPCC do show such a 755 

strong drought impact only in Northern Brazil. The absolute areas of drought stress across different severity levels are similar 

across most datasets with only GLDAS showing a significantly larger area affected by extreme drought stress of 𝑟MCWD < -

2.5. 

 

Across all precipitation datasets, in 2005, an area ranging from 4637 to 7151% (mean 5345%) of the whole Amazon basin, 760 

was moderately affected (Table 2S2, Fig. 2a). GSW and GLDERA5 displayed the smallest area affected by moderate drought 

(2.62 million km², Tab. 1, Fig. 2), while ER5CHIRPS and CRUNCEP showed a vast affected area (4.23.0 million km²), an 

area about 1236% larger than displayed by ERIERA5.  For severe and extreme drought conditions, CHRERA5 shows the 

smallest affected area with 63% and 1% of the basin and no affected area, respectively.. For severe drought conditions, 

CRUCRUNCEP suggests that an area approximately 16% more of the basin area 3 times larger was affected in 765 

comparisoncompared to CHR (1ERA5 (0.2 million km² vs. 0.6 million km² vs. 0.4 million km²). CRUCRUNCEP and GLDAS 

also encompassesencompass the largest area of extreme drought stress (0.72 million km²; 123% of the basin less than ΔMCWD 

< −150mm).𝑟MCWD < −2.5, Fig. 2a).  

During the 2010 drought, a larger area was affected by moderate drought ranging between a minimum of 52% (GPCGPCC) 

and a maximum of 76% (TR6),74% (TRMM 6) was affected by moderate drought stress, which is about 1036% larger than 770 

during the 2005 drought (3.16 million km² vs. 4.62.7 million km², Tab. 2Table S2, Fig. 2). In addition, the area withunder 

severe drought extentstress was on average 325% larger compared to 2005. The and the area affected by extreme drought was 
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smaller than duringdouble the size of the 2005 drought event. Particularly, ER5GLDAS and TR6TRMM 6 showed the largest 

area affected throughout the three drought classifications (Fig. 2b). 

 805 

For 2016, two datasets (CHRCHIRPS and CRUCRUNCEP) showed with 4038% a considerably smaller area that was 

moderately affected by drought stress compared to ER5 and ERIGLDAS with 69% and 63% of the area affected, respectively 

(datasets ranging between 2.42 and 4.13.7 million km²). Generally, in 2016, the size of the area affected by moderate drought 

was in between the size of the area affected in 2005 and 2010, but the extent of severely and extremely drought-affected areas 

was larger. Here, particularly ERI (closelyGLDAS followed by ER5)GPCC showed the largest affected area, with 3021% 810 

severely affected and 186% extremely affected. (Table S3).  

3.2 Spatial agreement of rainfall datasets using ΔMCDWthe 𝑟MCDW anomaly 

While the agreement of the total area affected by drought is relatively high (see 3.1),) the data sets are only partly in agreement 

regardingagree on the spatial patternsextent and locationslocation of the 2005, extreme drought conditions, particularly during 

the 2010 and 2016 droughtsevents (Fig. 3). For 2005, all datasets are in agreement regardingagree on the drought epicenter 815 

being located in Central Amazonia mainly affecting the Brazilian states Amazonas and Acre (Fig. S4 b, d).  All ten datasets 

also.  Datasets agree that an area of about 15 % of the Amazon Basin was at least moderately affected (Fig. 3a). Only a small 

overlap was found for the area affected by severe and extreme drought stress (Fig. 3b, c). Here, only half of the datasets agreed 

on 114% of central Amazonia being severely and 41.5% extremely affected. 

For 2010, all datasets agreed on an affected area of 1121% in the Amazon basin, and half of the datasets agreed on an area of 820 

7260% of the Amazon Basin being moderately affected by drought stress (Fig. 3d). The 2010 drought displayed no central 

hotspot, but three most affected areas in the Eastern, Southern and central partparts of Amazonia on which most of the datasets 

agreed (Fig. 3d). Severe drought stress in 2010 was located in the southern part of Amazonia, where four datasets agreed (Fig. 

3e), while for extreme drought stress almost no overlap between datasets was found (Fig. 3f).  

For 2016, all datasets agreed on an area of about 8% for7% of moderate drought stress and half of the datasets agreed on 825 

5451% of the basin being affected (Fig. 3g). Agreement for severe and extreme drought stress was higherlower compared to 

the other drought years (Fig. 3h, i). Most of the data setsdatasets located the epicenter of the drought in the North-Western part 

of Amazonianorth-western Amazon basin. Some datasets also showed the South-Central part of the basin being severely 

affected (Fig 3i). 

3.3 Estimating the variation of carbon losses during drought events 830 

For the different precipitation datasets and based on the linear relation between ΔMCWD𝑎MCWD and ΔAGB𝑎AGB anomaly, 

we derive carbon losses for 2005 to be in the range of 0.7-1.3-1.9 Pg C6 PgC with CHRERA5 showing the smallest and 
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CRUCRUNCEP the strongest impact regarding carbon losses (Fig. 4). The mean biomass loss over alloverall datasets was 1.6 865 

Pg C2 PgC with sixfive of the ten estimates from the different datasets nine estimated carbon losses being close to that mean 

(difference of ΔAGB𝑎AGB anomaly less than 0.151 PgC to the mean value). For 2010, carbon losses range from 1.5 to 2.3 

Pg C with WAT showing the smallest and TR6 strongest response. Next TR6 also ER5 shows a very strong drought impact 

with 2.3 PgC. All other datasets show much smaller impacts Because no relationship between 1.6 and 1.8 Pg C comparable to 

the 2005 drought impact. The 2016 drought event shows the widest rangethe anomalies of biomass loss across datasets ranging 870 

from 1.3 PgC to 2.5 PgC. The disagreement between datasets is also larger 𝑎MCWD and 𝑎AGB could be verified for 2016 

compared to 2005 and 2010: Both, CRU and CHR show a low impact of 1.3 Pg C, TR7 and GPC show 1.7 Pg C biomass loss 

comparable to the averages of 2005 and 2010.  GLD, ER5, and ERI show very strong impacts of 2.1, 2.3 and 2.6 Pg C, 

respectively. 2010 (Feldpausch et al., 2016) we did not estimate the impacts on AGB for the other drought years 2010 and 

2016.  875 

3.4 Comparison of drought indices: ΔMCDW, scPDSI𝑟MCDW, 𝑟scPDSI and RAI𝑟RAI anomalies 

Similar to ΔMCWD𝑟MCWD, there is variable agreement among datasets when evaluating the other two drought metrics, 

RAI𝑟RAI and 𝑟scPDSI (Fig. 5). scPDSI showed the lowest agreement across datasets, with mainly two datasets in agreement 

on areas affected by drought for 2005. Regarding the total area affected in 2005, TR7 showed the 5). The largest area (48% of 

the Amazon basin, 2.8 million km²) and GLD (32%, 1.9 million km², Table 2) the smallest area affected by drought stress. 880 

Severe drought-stressed areas ranged between 16% (GLD) and 26% (CRU) and extreme drought stress between 1% (GLD) 

and 5% (CRU) of the basin affected. The largest rainfall anomaly (RAI) for moderate drought stressdry season anomaly (𝑟RAI) 

in 2005 was displayed by CHRGPCC with 52% (3.16.5% (0.4 million km², Table 2S2), followed by ER5TRMM 7 with 495.7% 

of the areaAmazon basin being severely affected. CRUERA 5 showed with 293% the smallest area affected by drought stress. 

The area of . In 2005, spatial patterns of 𝑟RAI matched with 𝑟MCWD anomalies despite 𝑟MCWD anomalies showing a larger 885 

area affected by severe drought stress was smaller using RAI compared to (Fig. 5a, d).  𝑟scPDSI, ranging from 9 to 20%. In 

general, the datasets  displayed a more spatially connectedthe smallest area affected by drought stress in the center of the 

Amazon basin when using RAI compared to scPDSI. RAI2005 with also only GPCC and MCWD agreed on the spatial location 

of the drought, while scPDSI TRMM 7 showing with 5.5% and 3.1% the largest severely affected area, respectively. All other 

datasets showed less than 1% of severe drought stress-affected areas in a different region2005. The small spatial area of 890 

𝑟scPDSI differed compared to the other two drought indicators (Fig 5a, d, g): Some areas showed a strong disagreement 

between drought indices, e.g. a small area in Western Brazil and PeruCentral Amazonia was hit by severe drought stress 

according to ΔMCWD𝑟MCWD and RAI𝑟RAI (with all3-4 climate datasets in agreement). In) while, in contrast, 

scPDSI𝑟scPDSI did not indicate abnormally dry conditions there.  

In 2010, the total droughted area was similar for scPDSI and smaller for RAI compared to MCWD regarding severe drought 895 

stress (Fig. 5b, e, h): For scPDSI, in particular, GLD showed a large area of 50% of the basin severely affected (2.9 million 
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km², Table 2), followed by CRU showing 33% affected using scPDSI. The agreement between datasets was lower compared 

to the 2005 drought for both RAI and scPDSI. ΔMCWD and scPDSI showed similar areas in the southern Amazon Basin 925 

severely affected by drought. According to RAI, datasets agreed on the severely affected area in the North-Western part of 

Amazonia, diverting from the other indices (Fig 5h). 

ForIn 2010, the differences of drought-affected areas were even more pronounced between the three indices (Fig. 5b, e, h). 

Here, ERA5 and TRMM7 showed the largest areas affected by severe drought stress based on the dry season 𝑟RAI anomaly 

with 7% and 5%, respectively.  Using 𝑟scPDSI all datasets showed an area between 1% and 2.5% severely affected. 930 

Interestingly, the area affected based on 𝑟MCWD roughly encompasses the area affected by 𝑟RAI, but additionally shows a 

large area in the South-Eastern part of the basin being affected by severe drought stress (Fig. 5b, e).    

In 2016, 𝑟scPDSI showedshows the largest area affected by drought stress with GLDGLDAS showing 6239% (followed by 

TR7, 52TRMM7, 16%) of the basin being severely affected. Four datasets agreed on the affected area in the northeastern part 

of the basin (Fig. 5f). Hardly any5i). Only one dataset (GLDAS) showed severe drought stress was visible in 2016 when 935 

calculating dry season rainfall anomalies (RAI𝑟RAI , Fig 5i5c), indicating no pronounced anomalies in dry season rainfall. 

Only GLD diverted from the other datasets showing 30% of the area under severe drought stress, while  according to all other 

datasets found between 0-1% of the area to be affected (Table 3). ΔMCWD. 𝑟MCWD and scPDSI again𝑟scPDSI roughly 

agreed on the spatial extent of the droughted area (Fig. 5c, f). Generally, scPDSI showed a much larger areanorthern part of 

the basin being severely affected by drought stress over ΔMCWD and RAI.(Fig. 5f, i).  940 

SeasonalAverage seasonal patterns of median ΔMCWD across the Amazon basin wereare quite consistent for 2005, where all 

across datasets showed a sudden but differ depending on the choice of drought impact (decline in ΔMCWD) from July onwards. 

Only ERIindex and ER5 displayed a small decline already in the months before July. drought event (Fig. 6). The strongest 

(most negative) rainfall anomaly was visible from May to July during the 2005 drought event (Fig. 6a). Accumulating such 

low rainfall estimates resulted in very low values of 𝑟CWD during that period (Fig. 6d) in 2005. 𝑟scPDSI values were also 945 

low, but more constant throughout the year (Fig. 6g).  

The 2010 drought followed similar patterns regarding ΔMCWD,𝑟RAI with a lower absolute impact during May to July 

compared to 2005 (Fig 6b). For 2015, datasets agreed on a small decline in ΔMCWD followed by a more substantial impact 

in 2016 with fewer datasets in agreement (Fig Interestingly, the wet season months March to May showed a strong anomaly 

during 2010 compared to the 2005 event. Subsequently, 𝑟CWD was also already lower during the wet season in 2010 compared 950 
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to 2005 (Fig. 6e). 𝑟scPDSI anomalies values were similar for 2010 compared to 2005 with a slightly downward trend towards 965 

the end of the year (Fig. 6g, h).  

To investigate 6c). Datasets agreed well according to the seasonal patterns of scPDSI for 2005 and 2010 (Fig 6d, e). This 

agreement was lower for the year 2016, in which CRU, GLD and TR7 indicate drought stress already starting in January, and 

ERI and ER5 only starting in September (Fig. 2016 we also considered6f). All datasets showed a period of drought stress for 

longer than 12 months. Datasets generally agreed on rainfall anomaly (RAI) patterns for all of the drought indices of 2015 970 

since both years were El Niño years. We found a strong rainfall anomaly already starting during September 2005, 2010, and 

2016 (Fig. 6g, h, i). For 2005 the difference in rainfall was highest in June-July and for 2010 in March, August and September. 

The 2015 continuing until April 2016 (Fig. 6c). /2016 drought event showed a longConsequently, also 𝑟CWD values were 

very low during that period (Fig. 6f). of strong (negative) rainfall anomaly While 𝑟MCWD was applied as the maximum value 

from AugustOctober to September, drought stress before October of the previous year cannot be accounted for when using 975 

𝑟MCWD. The two-year drought impact was also visible using scPDSI (Fig. 6i) showing a steady decline from 2015 to July 

2016 (Fig. 6i).  
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4. Discussion 

We assessed the severity and spatial extent of the extreme drought years 2005, 2010, and 2015/2016 in the Amazon region 

and their impacts on the carbon cycle.by computing different drought indices using a range of precipitation datasets. When 

analyzing how drought representationconditions are captured in tennine different precipitation datasets for the Amazon basin, 1015 

we find that while the datasets mostly agree on the extent of the drought area, they differ in their location of drought. We show 

thatWe found a wide range between 0.7 and 1.7 PgC of potential biomass losses during 2005 and 2010 werewith most datasets 

showing an impact of about 1.8 PgC, indicating that the more intense drought in 2005 equals a larger total area of the 2010 

drought regarding biomass loss. In 2015/2016, we find a large variability of biomass losses depending on the precipitation 

dataset used, ranging from 1.3 to 2.7 PgC. 1020 

 

Critical aspects regarding the detection of drought events in the Amazon basin 

Drought indices 

The idea of defining water deficit based on evapotranspiration rates goes back to Stephenson (1998) and the MCWD is now 

one of the most widely used measuresindicators to assess drought stress in tropical forests (e.g. Lewis et al., 2011, Phillips et 1025 

al., 2009, Esquivel‐Muelbert et al., 2019). TheIn its simplest form, the calculation of MCWD only requires precipitation data 

and assumes a constant evapotranspiration (ET) rate of 100 mm month-1 (Aragão et al., 2007). Although the simplicity of 

ΔMCWD(Aragão et al., 2007). Although the simplicity of 𝑟MCWD and 𝑎MCWD is a main advantage, a fixed ET (which we 

also used in our study) is inappropriate for regions other than the lowland tropics, where the lower supply of energy may result 

in lower ET values. Most importantly, an approximated ET does not account for either seasonal variation (driven mainly by 1030 

radiation, temperature, and phenology) or spatial variation in ET related to soil and root properties (Malhi et al., 2009). Hence, 

changes in ΔMCWD𝑟MCWD are purely accounting for changes in rainfall (Phillips et al., 2009). In contrast, scPDSI is driven 

with spatially and temporally resolved evapotranspiration data (here: ER5ERA5). However, currently available 

evapotranspiration products for the Amazon rainforest show significant differences in areas and extent of evapotranspiration 

(Sörensson and Ruscica, 2018), hence introducing another source of uncertainty when using it for the calculation of drought 1035 

indices. (Sörensson & Ruscica, 2018), hence introducing another source of uncertainty when using them for the calculation of 

drought indices. In the last decade, better products of spatially and temporally resolved evapotranspiration data (e.g. ERA5) 

have been developed and an increasing number of studies are now estimating MCWD based on such data (e.g. Staal et al., 

2020). However, using a constant evapotranspiration (ET) rate of 100 mm month-1 across the Amazon rainforest is still very 

common (e.g. Flack-Prain et al., 2019; Koch et al., 2021).  1040 

We investigated the effect of choosing variable evapotranspiration and a longer baseline in our MCWD calculation (Fig. S3). 

Using variable evapotranspiration consistently reduced the moderate drought-affected area by 10-20% per drought event (Fig. 

S3a, b, c). It also affected the intensity of the drought stress, e.g. areas previously classified as extreme drought stress were 

now classified as areas under severe drought stress. This reduction is expected as ERA5 takes the above-mentioned lower ET 
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values in the highland tropics into account which overall leads to higher MCWD values in this region. Because of the strength 

and consistency of this effect we recommend testing the MCWD calculation regarding its sensitivity to variable ET in the 

tropical rainforest in future studies. In contrast, extending the baseline period of the MCWD calculation to include also years 1080 

before 2001 leads to overall lower MCWD values and, hence, an increased intensity of the three drought events (Fig. S3d, e, 

f). This finding highlights the drought anomaly that the recent decade from 2001 to 2016 has compared to the years before that 

period.  

 

The key difference between the three drought indices applied in our study is the temporal resolution: RAI is only calculated 1085 

for the three driest months (July-September) and thus, for example, a rainy season with deficient rainfall is not captured. 

ΔMCWD, in contrast, accumulates over 12 months and is reset to zero at the end of the hydrological year. In this way, drought 

events caused by low precipitation in both dry- and rainy season are captured, however, drought events lasting for longer than 

a year are not detected. scPDSI is not reset to zero at the end of the hydrological year and is thus captures also multi-year 

drought events. As an example, the 2015/2016 drought event is classified as a severe multi-year drought according to Yang et 1090 

al. (2018), which is also displayed in our analysis when using scPDSI (all datasets in agreement that more than 30% of the 

area were affected, Tab. 3). ΔMCWD and RAI, however, do not agree on a spatially and temporally extensive drought event 

(Fig. 5c, f, g, Tab. 3), but instead display distinct regions of severe drought stress. Thus, this drought event seemed not to be 

characterized by particularly low dry-season precipitation, but by low precipitation accumulated over a longer time period. 

scPDSI and ΔMCWD roughly agreed on spatial extent but scPDSI showed a more substantial drought impact indicating that 1095 

precipitation levels might have been already lower than usual during the years before the 2016 drought event happened, 

indicating a multi-year drought event (Yang et al., 2018). MCWD, in contrast, accumulates over 12 months and is reset to zero 

at the end of the hydrological year. In this way, drought events caused by low precipitation in both dry- and rainy seasons are 

captured, however, drought events lasting for more than a year are not detected. scPDSI captures multi-year drought events 

and is not reset to zero at the end of the hydrological year. Seasonal patterns of the three drought indices support this assumption 1100 

(Fig. 6): Resetting MCWD once per year neglects any influences of drought events of the preceding year (Fig. 6c). 

These differences between the drought indicators can be seen for the three drought events analysed in this study. In 2005, 

𝑟RAI and 𝑟MCWD values roughly match in location of the epicenter indicating a particularly strong anomaly during the dry 

season (Fig. 5a, d). This does not apply to the 2010 drought event, where despite some dry season anomaly an even stronger 

anomaly during the wet season is visible (Fig. 6b, e). The 2015/2016 drought event is classified as a severe multi-year drought 1105 

according to Yang et al. (2018), which is also displayed in our analysis when using 𝑟scPDSI, (Fig 6i). 𝑟MCWD and 𝑟RAI, 

however, do not agree on a spatially and temporally extensive drought event in 2016 (Fig. 5c, f, i), but instead display distinct 

regions of severe drought stress. Seasonal patterns of the three drought indices support this assumption (Fig. A common 

drawback of all drought metrics used in our study is their incapability to explicitly represent the effect of increasing 

atmospheric vapor pressure deficit (VPD) on plant water stress. A steady amplification of atmospheric vapor pressure deficit 1110 
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(VPD) has been detected over the Amazon basin (Barkhordarian et al., 2019; Rifai et al., 2019). Such stronger atmospheric 

water demand leads to additional water loss of plants during drought, subsequently increasing the severity of droughts. Hence, 1145 

the role of VPD during drought and as a driver for plant stress should not be underestimated (Grossiord et al., 2020). With 

increasing data availability and better estimates of VPD across the Amazon region, it should be included in future drought 

assessments (e.g. Castro et al., 2020). Furthermore, in the last decade, new methods have been developed that assess impacts 

of drought on ecosystems, e.g. analyses based on solar-induced fluorescence (SIF) data show that tall forests are less sensitive 

to rainfall compared to short forests (Giardina et al., 2018). Also, vegetation optical depth (VOD) used as a proxy for water 1150 

content in forests is a promising satellite-derived indicator for mortality and impacts of droughts to forests (Rao et al., 2019). 

However, conducting analyses over the Amazon rainforest based on VOD is difficult, because VOD data across tropical 

regions is often noisy as the high cloud cover over the rainforests generates erroneous signals (Konings and Gentine, 2017). 

Future studies should estimate the impacts of droughts based on multiple drought characteristics, e.g. Toomey et al. (2011) 

show that considering both, heat stress and soil moisture stress greatly improves the explanatory power of drought impacts in 1155 

the Amazon basin. 

 

Precipitation datasets 

6): Resetting 𝑟MCWD once per year neglects any influences of drought events of the preceding year (Fig. 6c). While the 

drought indices used in this study showed pronounced differences in spatial and temporal dynamics, including all of them can 1160 

help better understanding the different characteristics that drought events can have in the Amazon basin. 

A common drawback of all drought metrics used in our study is their incapability to explicitly represent the effect of increasing 

atmospheric vapor pressure deficit (VPD) on plant water stress. A steady amplification of atmospheric vapor pressure deficit 

(VPD) has been detected over the Amazon basin (Barkhordarian et al., 2019; Rifai et al., 2019). Such stronger atmospheric 

water demand leads to additional water loss of plants during drought, subsequently increasing the severity of droughts. Hence, 1165 

the role of VPD during a drought and as a driver for plant stress should not be underestimated (Grossiord et al., 2020). With 

increasing data availability and better estimates of VPD across the Amazon region, it should be included in future drought 

assessments (e.g. Castro et al., 2020). One possibility to account for the influences of VPD is choosing temporal and spatially 

resolved evapotranspiration instead of constant evapotranspiration in the calculation of MCWD. Future studies could further 

investigate the relationships between MCWD, ET, and VPD and the impacts on biomass. 1170 

Furthermore, in the last decade, new methods have been developed that assess impacts of drought on ecosystems, e.g. analyses 

based on solar-induced fluorescence (SIF) data show that tall forests are less sensitive to rainfall compared to short forests 

(Giardina et al., 2018). Also, vegetation optical depth (VOD) used as a proxy for water content in forests is a promising 

satellite-derived indicator for mortality and impacts of droughts on forests (Rao et al., 2019). However, conducting analyses 

over the Amazon rainforest based on VOD is difficult, because of the limited penetration depth of microwaves in dense tropical 1175 

forests (Chaparro et al. 2019), and the influences of vegetation water status (Xu et al. 2021). So far, VOD data could only be 
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applied with limited success across tropical rainforests (Konings & Gentine, 2017). Future studies should estimate the impacts 1210 

of droughts based on multiple drought characteristics. For example, Toomey et al. (2011) show that considering both, heat 

stress and soil moisture stress greatly improves the explanatory power of drought impacts in the Amazon basin. 

 

Precipitation datasets 

For the three drought events in 2005, 2010 and 2016, ERICHIRPS, GLDAS and ER5ERA5 diverted the most from the other 1215 

datasets regarding the size of the area affected by drought. Especially ER5 showsspatial drought extent. ERA5 shows the 

smallest area of moderate drought stress during 2005 but one of the largest area of moderate drought stress during all three 

drought events (Fig. 2). Although TR7 and CHRareas in 2010 (Fig. 2). We found no obvious bias between the precipitation 

datasets regarding distribution and frequency of monthly rainfall (Fig. S2) with only ERA5 showing higher rainfall more 

frequently. Although TRMM7 and CHIRPS are based on the same satellite data as thetheir input, they differ regarding the size 1220 

of the drought area, especially during 2016 (Fig. 2). Lewis et al. (2011) estimated an area of 47% (2.5 million km²) of the 

Amazon basin moderately affected in 2005 using the TR6TRMM6 dataset, which compares well with the size of the affected 

area infor the GLD, GPC, and GSWmajority of datasets analysedanalyzed in our study (considering our 0.6 million km² larger 

study area; see Methods). For 2010, Lewis et al. (2011) reported an area of 3.2 million km² being affected in comparison to 

4.5 million km² in our analysis using TR6TRMM6 with very similar spatial patterns. The newer TRMM product, TR7TRMM7, 1225 

however, shows less frequent rainfall but heavier rainfall than CHRCHIRPS maintaining a similar total amount (Giles et al., 

2020).of precipitation (Giles et al., 2020). Also, both TRMM versions (TR6TRMM6 and TR7TRMM7) differ regarding the 

total area affected by drought stress in 2005 and in particular in 2010 with TR6 showing, where TRMM6 showed a 1410% 

larger area of the Amazon basin affected in our analysis.. This can be explained by the generally higher precipitation rates 

detected in the TR7TRMM7 dataset in comparison to TR6 (Seto et al., 2011)TRMM6 (Seto et al., 2011) leading to lower 1230 

absolute values of ΔMCWD𝑟MCWD. Spatially, this difference was most pronounced in the western and northern parts of 

Amazonia, in the Acre and Roraima states, and in Peru.  Because of such higher precipitation rates in TR7TRMM7 as compared 

to TR6TRMM6, and subsequently the much stronger drought response according to our analysis, studies only based on 

TR6TRMM6 only might overstate the actual drought conditions and should be revisited. Precipitation datasets usually show 

remarkable differences in the representation of occurrence, frequency, intensity and location of events, mainly due to their 1235 

nature of high spatial and temporal variability (Covey et al., 2016; Dirmeyer et al., 2012).(Covey et al., 2016; Dirmeyer et al., 

2012). Generally, the sparse network of observations in the Amazon rainforest may explain the differences across precipitation 

datasets and drought indices for datasets that rely on station data. Within the last decade, the number of observations increased, 

due to a new denser network of stations. This may improve the reanalysis models that are used for several precipitation datasets 

applied here, however, it does not improve datasets that only rely on gauge observations. 1240 

According to Jiménez-Muñoz et al. (2016), 40%, 25% and 10% of the Amazon basin were affected by moderate, severe and 

extreme drought stress in March 2016 when using scPDSI, respectively. This is similar to our estimate (46%, 34% and 9%, 
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moderately, severely and extremely affected in Sep 2016) based on the same precipitation dataset (ERI). Our estimate slightly 

diverted from the results of Jiménez-Muñoz et al. (2016), again at least partly due to a different reference area (see Methods). 

In addition, they used spatially resolved information on soil water capacity when calculating scPDSI and a longer baseline 

period (start year is 1979 in their study vs. 2000 in our study). scPDSI generally seems to be more sensitive to baseline changes 

(Fig S2e). In addition, also the choice of the precipitation dataset plays an important role. In regions, in which ER5 showed an 1280 

extremely affected area of only 5%, other datasets such as GLD and TR7 showed a much stronger drought impact with over 

70% of the area moderately and between 50% and 60% severely affected. This is particularly interesting because recent studies 

identify TR7, CHR and ER5 as best precipitation datasets when comparing to gauge observations in South America (Albergel 

et al., 2018; Burton et al., 2018; Rifai et al., 2019). The higher variability that scPDSI showed across datasets can be explained 

with the more complex algorithm (including the self-calibrating mechanism) compared to MCWD and RAI. 1285 

Jiménez-Muñoz et al. (2016) quantified drought extend using the scPDSI and found that 40%, 25% and 10% of the Amazon 

basin were affected by moderate, severe, and extreme drought stress, respectively, in March 2016. While we did not evaluate 

scPDSI directly but focused on 𝑟scPDSI to allow for a better cross-comparison to the other drought indicators, we found 

similar patterns for moderate drought stress (47% of the basin affected), but different patterns under severe (11%) and extreme 

(1%) drought stress when evaluating 𝑟scPDSI using the ERA5 dataset. Our estimation diverted from the results of Jiménez-1290 

Muñoz et al. (2016) mainly because of our different drought classification, but also due to a different reference area (see 

Methods).  

In addition, Jiménez-Muñoz et al. (2016) used spatially resolved information on soil water capacity when calculating scPDSI 

and a longer baseline period (year onset is 1979 in their study vs. 2000 in our study). Furthermore, the choice of the 

precipitation dataset plays an important role. Compared to the datasets considered in our study, ERA 5 showed the weakest 1295 

drought impact during the 2016 drought event. GLDAS and TRMM7 showed a much stronger drought impact with over 70% 

of the area moderately and between 15% and 39% severely affected (Table S3). This is particularly interesting because recent 

studies identify TRMM7, CHIRPS and ERA5 as the best precipitation datasets when comparing to gauge observations in South 

America (Albergel et al., 2018; Burton et al., 2018; Rifai et al., 2019). The higher scPDSI variability across the precipitation 

datasets can be explained with the more complex algorithm (including the self-calibrating mechanism) the index has compared 1300 

to MCWD and RAI. 

 

Implications for estimating drought impacts on the carbon cycle of the Amazon rainforest 

Drought leads to increased tree mortality and carbon losses in tropical forests (Hubau et al., 2020; Lewis et al., 2011; Phillips 

et al., 2009). With the prospect of more severe and frequent droughts in a future climate, more precise estimates of how much 1305 

carbon is lost from reductions in growth and drought-induced mortality are necessary. Currently, the Amazon rainforest is 

acting as a carbon sink, thereby removing CO2 from the atmosphere, but with more frequent and severe drought events, this 

sink is already declining (Hubau et al. 2020). Lewis et al. (2011) estimated a total loss of biomass for the Amazon basin in 
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2005 of 1.6 Pg C and a 38% more severe impact of 2.2 Pg C for 2010 based on TR6. When applied to the ΔMCWD derived 

from the precipitation datasets in our study, we calculate the loss of biomass of the 2005 drought event to be in the range of 

1.3-1.8 Pg C, 1.5-2.3 Pg C in 2010 and 1.3-2.5 Pg C in 2016 (Fig. 4). This corresponds to approximately the average annual 1345 

carbon uptake (1-2 PgC) per year, thus, turning the carbon sink into a carbon source. We acknowledge that our estimates are 

based on a relatively simple, empirically derived relation that does not take the biomass variability across the whole Amazon 

basin and individual forest/tree responses to drought into account. It however gives a rough estimate of potential carbon losses 

during drought and an idea of how much it varies depending on the precipitation datasets applied in a study. In addition, we 

would like to note that the empirical biomass-MCWD relation from Lewis et al. (2011) has been estimated with constant 1350 

ET=100 mm. When using evapotranspiration data (from ER5) for the calculation of MCWD, we find higher biomass losses 

(Fig. S2), and thus, the use of MCWD should be carefully viewed via its sensitivity to ET. In our analysis, MCWD appears to 

be robust against changes to some parameters, such as baseline period and inclusion/exclusion of drought years, but to be more 

sensitive to the evapotranspiration input. 

 1355 

Furthermore, our estimated carbon losses for the drought events might be underestimated as (1) the total duration of the drought 

was longer than 12 months (see above paragraph and Fig. 6) and can hence not be fully captured by the standard 12-month 

period of the MCWD calculation used in this study, and (2) potential lag effects through delayed plant mortality within the 

subsequent years are not considered so far. We would recommend for future studies to investigate the relationship of biomass 

losses with other drought indices (such as scPDSI) in a similar manner as done in Lewis et al. (2011). As the biomass of the 1360 

Amazon rainforest is heterogeneously distributed (e.g. Saatchi et al., 2011), large-scale biomass-loss induced by drought (i.e. 

severe ΔMCWD) should be interpreted carefully. Differences in the amount of biomass in different forest types, species 

composition and critical hydraulic processes should be considered when estimating potential biomass losses under drought 

stress. A step forward would be to use for example remotely sensed biomass maps to account for regional biomass distributions 

(e.g. Avitabile et al., 2016) or to simulate drought impacts with dynamic global vegetation models (DGVMs). DGVMs simulate 1365 

the carbon- and water cycle of the biosphere in a process-based way, accounting for the interplay of carbon uptake and water 

loss through stomatal opening, evapotranspiration (ET), carbon assimilation via photosynthesis, and carbon allocation to 

different plant compartments such as leaves, wood, and roots (e.g. Schaphoff et al., 2018; Smith et al., 2014). The simulated 

response of tropical forests in DGVMs is particularly sensitive to precipitation input under present and future climate change 

scenarios (e.g. Seiler et al., 2015) and thus, it might be relevant to use multiple climate forcing datasets to test for climate data 1370 

uncertainty. Particularly, studies based on ERI and TR6 should possibly be revisited and include another forcing dataset for 

their analysis. 

Drought leads to increased tree mortality and carbon losses in tropical forests (Hubau et al., 2020; Lewis et al., 2011; Phillips 

et al., 2009). With the prospect of more severe and frequent droughts in a future climate, more precise estimates of how much 

carbon is lost from reductions in growth and drought-induced mortality are necessary. Currently, the Amazon rainforest is 1375 

acting as a carbon sink, thereby removing CO2 from the atmosphere, but with more frequent and severe drought events, this 
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sink is already declining (Hubau et al. 2020). Lewis et al. (2011) estimated a total loss of biomass for the Amazon basin in 1410 

2005 of 1.6 Pg C and a 38% more severe impact of 2.2 PgC for 2010 based on TRMM6.  Later studies however found that the 

relationship between 𝑎MCWD and 𝑎AGB does not hold for the 2010 drought event (Feldpausch et al., 2016). When applied 

to the 𝑎MCWD derived from the precipitation datasets in our study, we still can calculate the loss of biomass of the 2005 

drought event to be in the range of 0.7-1.7 PgC (Fig. 4). This is in the range of the regional average annual carbon uptake (1-

2 PgC) per year, and thus, has the potential to turn the carbon sink into a carbon source. We acknowledge that our estimates 1415 

are based on a relatively simple, empirically derived relation that does not take the biomass variability across the whole 

Amazon basin and individual forest/tree responses to drought into account. It however gives a rough estimation of potential 

carbon losses during drought and an idea of how much it varies depending on the precipitation datasets applied in a study. In 

addition, we would like to note that the empirical biomass 𝑎MCWD relation from Lewis et al. (2011) has been estimated with 

constant ET=100 mm. When using evapotranspiration data (from ERA5) for the calculation of 𝑎MCWD, we find generally 1420 

lower biomass losses (between 10-20% lower, Fig. S3), and thus, the use of MCWD should be carefully viewed via its 

sensitivity to ET. While previous studies found that the MCWD calculation can be quite robust, in our analysis, MCWD is 

sensitive to the evapotranspiration input and baseline period (Fig. S3). 

 

Furthermore, our totally affected areas (Fig. 2) for the drought events might be underestimated as (1) the total duration of the 1425 

2016 drought was longer than 12 months (see above paragraph and Fig. 6) and can hence not be fully captured by the standard 

12-month period of the 𝑎MCWD and 𝑟MCWD calculation used in this study. (2) Potential lag effects due to delayed plant 

mortality within the subsequent years are not considered so far. We would recommend for future studies to investigate the 

relationship of biomass losses with other drought indices (such as scPDSI) in a similar manner as done in Lewis et al. (2011). 

As the biomass of the Amazon rainforest is heterogeneously distributed (e.g. Saatchi et al., 2011), large-scale drought-induced 1430 

biomass losses which result from a severe 𝑎MCWD anomaly should be interpreted carefully. Differences in the amount of 

biomass in different forest types, species composition, and critical hydraulic processes should be considered when estimating 

potential biomass losses under drought stress (Feldpausch et al., 2016). A step forward would be to use, for example, remotely 

sensed biomass maps to account for regional biomass distributions (e.g. Avitabile et al., 2016) or to simulate drought impacts 

with dynamic global vegetation models (DGVMs). DGVMs simulate the carbon- and water cycle of the biosphere in a process-1435 

based way, accounting for the interplay of carbon uptake and water loss through stomatal opening, evapotranspiration (ET), 

carbon assimilation via photosynthesis, and carbon allocation to different plant compartments such as leaves, wood, and roots 

(e.g. Schaphoff et al., 2018; Smith et al., 2014). The simulated response of tropical forests in DGVMs is particularly sensitive 

to precipitation input under present and future climate change scenarios (e.g. Seiler et al., 2015). Therefore, we recommend 

using multiple climate forcing datasets to test for climate data uncertainty also under present climate conditions. Particularly, 1440 

studies based on TRMM6 should possibly be revisited and complemented with more forcing datasets for their analysis. 

 



 

4 

26 

 

Formatiert: Schriftfarbe: Schwarz

Formatiert: Standard, Rahmen: Oben: (Kein Rahmen),
Unten: (Kein Rahmen), Links: (Kein Rahmen), Rechts: (Kein
Rahmen), Zwischen : (Kein Rahmen), Tabstopps:  7.96 cm,
Zentriert +  15.92 cm, Rechtsbündig

6. Conclusions 

We find substantial variation in the spatial extent, location, and timing of the extreme drought events in the years 2005, 2010 

and 2016 in the Amazon basin. Depending on the precipitation dataset and drought index used the area affected by severe 1475 

(extreme) drought varied between 0% and 39% (0% and 13.7%) for the 2016 event. Especially the area under severe drought 

conditions changed from almost no severe drought stress (5 out of 6 datasets) when using 𝑟RAI to greater than 10% when 

using 𝑟MCWD and 𝑟scPDS instead. The variation partly results from the application of different drought metrics (MCWD, 

RAI, scPDSI𝑟MCWD, 𝑟RAI, 𝑟scPDSI) and from differences in the underlying precipitation datasets. Such differences also 

propagate when quantifying the impacts of droughtdroughts on the carbon cycle of the Amazon rainforest and result in a large 1480 

variability in biomass carbon losses, as we show in our analyses. This calls for the application of an ensemble of climate ( for 

a particular drought year. We found the biomass loss to vary between 0.7 and 1.6 PgC during the 2005 drought depending on 

the precipitation forcing.  

We therefore recommend applying several climate (precipitation) datasets andas well as drought metrics to account for model 

uncertainty when assessing the spatial extent, duration, and location of droughts. We regard it as an important step when 1485 

assessing the impacts of drought impacts on tropical rainforests also under current climate conditions. Communicating the 

uncertainty in the estimation of drought events and their impacts on the Amazon rainforest is highly relevant and thus, multiple 

datasets should be applied by any large-scale study on drought impacts on vegetation. 
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Tables 1940 

Precipitation 

dataset 

Abbreviation  Details Resolutions Derived from References 

Climate Hazards 

group Infrared 

Precipitation with 

Stations 

CHIRPS quasi-global (50°S-

50°N) 

 

high resolution 

(0.05°), daily, 

pentadal, and 

monthly  

Remote 

sensing, in-situ 

observations  

Funk et al., 

2015 

Tropical Rainfall 

Measurement 

Misson 

TRMM v6 

3b43 

quasi-global (50°S-

50°N) 

Quarter degree 

resolution (0.25°) 

daily, pentadal, 

and monthly 

Remote 

sensing  

Huffman et al.,  

2007 

Tropical Rainfall 

Measurement 

Misson 

TRMM v7 

3B43 

quasi-global (50°S-

50°N) 

Quarter degree 

resolution (0.25°), 

daily, pentadal, 

and monthly 

Remote 

sensing  

Huffman et al.,  

2007 

 CRU_NCEP  

V8 

global Half degree 

resolution (0.5°), 

daily, pentadal and 

monthly 

Mainly in-situ 

observations 

Viovy et al.,  

2017 

ERA5  global Quarter degree 

resolution (0.25º), 

sub-daily, daily, 

monthly 

Land surface 

models, 

remote 

sensing, in-situ 

observations 

Albergel et al., 

2018 

Global Land Data 

Assimilation 

System 

GLDAS 2.1 

 

global Quarter degree 

resolution (0.25°), 

daily, pentadal, 

and monthly 

Land surface 

models 

Rodell et al., 

2004 
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Global 

Precipitation 

Climatology 

Centre at 

Deutscher 

Wetterdienst 

GPCC2018 global Quarter degree 

resolution (0.25°), 

monthly 

in-situ 

observations 

Schneider et 

al., 2018 

Global Soil 

Wetness Project 

Phase 3 

GSWP3 global Half degree 

resolution (0.5°), 

daily, monthly 

Land surface 

models, 

remote 

sensing,  in-

situ 

observations 

H. Kim et al. 

n.d.; 

http://hydro.iis

.u-

tokyo.ac.jp/GS

WP3/index.ht

ml 

WATCH Forcing 

Data (WFD) + 

WATCH Forcing 

Data 

methodology 

applied to ERA‐

Interim data 

(WFDEI) 

WATCH_W

FDEI 

global Half degree 

resolution (0.5°), 

daily, monthly 

Land surface 

models, 

remote 

sensing,  in-

situ 

observations 

Weedon et al., 

2011, 2014 
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http://hydro.iis.u-tokyo.ac.jp/GSWP3/index.html
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Columns show the name of the dataset, the official abbreviation, the spatial and temporal resolution, the inputs the 

precipitation datasets are derived from,  and the references. 2415 
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 2430 

Figure 1: (a-c) Anomalies of ΔMCWDRelative MCWD anomalies (from October to September) as an indicator for 

drought stress in the Amazon Basinbasin during the record-breaking drought events in 2005, 2010 and 2015/16 based 

on the TR7 datasetevent in 2016. Displayed are only the datasets that include the year 2016 in their temporal range. The 

baseline period of the MCWD calculation is 2001 to 2016. 
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 2450 

 

 

Figure 2: Total area of the Amazon basin affected by drought stress (%) according to ΔMCWDrelative MCWD anomaly 

for each of the precipitation datasets (for abbreviations see Tab. 1).. Displayed are the three drought events (a) 2005,  (b) 

2010 and (c) 2016. The total area representing the Amazon basin in our study is 5.94 million km². For absolute area 2455 

affected, see Tab. 2S2 and 3S3.  

Formatiert: Schriftart: Fett

Formatiert: Schriftart: Fett

Formatiert: Schriftart: Fett

Formatiert: Schriftart: Fett

Formatiert: Schriftart: Fett

Formatiert: Schriftart: Fett



 

4 

49 

 

Formatiert: Schriftfarbe: Schwarz

Formatiert: Standard, Rahmen: Oben: (Kein Rahmen),
Unten: (Kein Rahmen), Links: (Kein Rahmen), Rechts: (Kein
Rahmen), Zwischen : (Kein Rahmen), Tabstopps:  7.96 cm,
Zentriert +  15.92 cm, Rechtsbündig

 

 

 



 

4 

50 

 

Formatiert: Schriftfarbe: Schwarz

Formatiert: Standard, Rahmen: Oben: (Kein Rahmen),
Unten: (Kein Rahmen), Links: (Kein Rahmen), Rechts: (Kein
Rahmen), Zwischen : (Kein Rahmen), Tabstopps:  7.96 cm,
Zentriert +  15.92 cm, Rechtsbündig

 

 2470 

Figure 3: Agreement of precipitation datasets on drought area as identified by ΔMCWDrelative MCWD anomalies. In 

columns, different levels of drought severity are displayed and rows show the different drought years 2005 (a-c), 2010 
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(d-f) and 2016 (g-i). The colors indicate the number of datasets that agree on a specific drought level in a given pixel. 

Drought severity levels are defined as moderate (ΔMCWD < -25mm),rMCWD < -0.5),  severe (ΔMCWD < -

100mmrMCWD < -2.0) and extreme (ΔMCWD < -150mmrMCWD < -2.5). Orange pixels indicate areas where only one 

dataset shows the respective drought stress (No agreement = “None”). White pixels represent areas where no dataset 2485 

shows any drought signal. Note that in a-f, TR6TRMM 6 and GSWGSWP3 were excluded, as they were either very 

similar to its successor (TR7) andTRMM 7) or due to a similar reanalysis procedure (WATWATCH_WFDEI). In g-i, 

only sevensix datasets were included, which cover the full time period until 2016. 
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Figure 4  

Figure 4: Impact of the 2005 drought event on aboveground carbon biomass (aAGB anomaly in PgC). Biomass loss 

was calculated for each of the precipitation datasets (colored dots) based on a linear relation between biomass loss and 2505 

aMCWD as proposed by Lewis et al. (2011). The dashed lines indicate the range of estimated carbon losses from Lewis 

et al. (2011). 
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 2520 

Figure 5: Agreement of precipitation datasets on drought area as identified by different drought metrics. Comparison 

of the Amazon drought events in 2005, 2010 and 2016 (columns) vs three different drought indexes (rows): 

ΔMCWD𝑟MCWD (a-c), scPDSI𝑟scPDSI (d-f) and rainfall anomaly𝑟RAI (g-i). Only the area affected by severe drought 

stress is displayed, severe droughtwhich is defined differentlyequally for each of the drought indices: ΔMCWD less than 

-100mm, scPDSI less than -3 and RA less than -2. Orange pixels indicate areas where only one dataset shows the respective 2525 

drought stress (“None”). White pixels represent areas where no dataset shows any drought signal.  
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Figure 56: Monthly development of the Amazon drought events in 2005, 2010 and 2016 (columns) as described by the 

three different drought indices (rows): ΔMCWD𝑟MCWD (a-c), scPDSI𝑟scPDSI (d-f) and relative rainfall anomaly 2540 

(RA𝑟RAI, g-i). Colored lines indicate the indices of the 10% quantile of all gridcells of each of the different precipitation 

datasets (for abbreviations see Tab. 1). RA is. The indices are estimated as relative deviation from a 2001 to 2016 baseline 

period for each month.  
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 2555 

 

Figure 6: Impact of the 2005, 2010 and 2016 drought event on aboveground carbon biomass (AGB in Pg C). Biomass loss 

was calculated for each of the precipitation datasets (colored dots, for abbreviations see Tab. 1) based on a linear relation 

between biomass loss and ΔMCWD as proposed by Lewis 
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Tables 

Table 1: Overview of the 10 precipitation datasets used in our study. Columns show the name of the dataset, the official 2565 

abbreviation, the short abbreviation used in here, the spatial and temporal resolution and the references. 

Precipitation 

dataset 

Abbreviation  Abbreviation 

(short) 

Details Resolutions References 

Climate Hazards 

group Infrared 

Precipitation with 

Stations 

CHIRPS CHR quasi-global (50°S-

50°N) 

precipitation-only 

merged product, 

based on global 

climatology, 

satellite estimates 

and in situ 

observations. 

high resolution 

(0.05°), daily, 

pentadal, and 

monthly  

Funk et al., 

2015 

Tropical Rainfall 

Measurement 

Misson 

TRMM v6 

3b43 

TR6 quasi-global (50°S-

50°N) 

Quarter degree 

resolution (0.25°) 

daily, pentadal, 

and monthly 

Huffman et al.,  

2007 

Tropical Rainfall 

Measurement 

Misson 

TRMM v7 

3B43 

TR7 quasi-global (50°S-

50°N) 

Quarter degree 

resolution (0.25°), 

daily, pentadal, 

and monthly 

Huffman et al.,  

2007 

 CRU_NCEP  

V8 

CNP global Half degree 

resolution (0.5°), 

daily, pentadal and 

monthly 

Viovy et al.,  

2017 

ERA_Interim ERA_Interim 

SFC12_03_T

P_228 

ERI global 0.75° daily, 

pentadal, and 

monthly 

Dee et al., 

2011 
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Table 2: Total area affected 

by drought stress in million 

km² (and %) by drought 

index (MCWD, scPDSI and 2585 

RAI) and intensity 

(moderate, severe and 

extreme) across the 10 

datasets evaluated in our 

study (rows) for the years 2590 

2005 and 2010. 

 

  Year 

ERA5  ER5 global Quarter degree 

resolution (0.25º), 

sub-daily, daily, 

monthly 

Albergel et al., 

2018 

Global Land Data 

Assimilation 

System 

GLDAS 2.1 

 

GLD global Quarter degree 

resolution (0.25°), 

daily, pentadal, 

and monthly 

Rodell et al., 

2004 

Global 

Precipitation 

Climatology 

Centre at 

Deutscher 

Wetterdienst 

GPCC2018 GPC global Quarter degree 

resolution (0.25°), 

monthly 

Schneider et 

al., 2018 

Global Soil 

Wetness Project 

Phase 3 

GSWP3 GSW global Half degree 

resolution (0.5°), 

daily, monthly 

H. Kim et al. 

n.d.; 

http://hydro.iis

.u-

tokyo.ac.jp/GS

WP3/index.ht

ml 

WATCH Forcing 

Data (WFD) + 

WATCH Forcing 

Data 

methodology 

applied to ERA‐

Interim data 

(WFDEI) 

WATCH_W

FDEI 

WAT global Half degree 

resolution (0.5°), 

daily, monthly 

Weedon et al., 

2011, 2014 
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  2005 2005 2005 2010 2010 2010 

Metric Dataset 𝛥𝑀𝐶𝑊𝐷 <

 −150𝑚𝑚  

(extreme) 

𝛥𝑀𝐶𝑊𝐷 <

 −100𝑚𝑚  

(severe) 

𝛥𝑀𝐶𝑊𝐷 <

 −25𝑚𝑚  

(moderate) 

𝛥𝑀𝐶𝑊𝐷 <

 −150𝑚𝑚  

(extreme) 

𝛥𝑀𝐶𝑊𝐷 <

 −100𝑚𝑚  

(severe) 

𝛥𝑀𝐶𝑊𝐷 <

 −25𝑚𝑚  

(moderate) 

ΔMCWD CHR 0.0 (0%) 0.4 (6%) 3.1 (52%) 0.2 (3%) 0.9 (14%) 3.8 (63%) 

ΔMCWD CRU 0.7 (12%) 1.3 (22%) 3.1 (53%) 0.2 (3%) 0.7 (12%) 3.6 (61%) 

ΔMCWD ER5 0.1 (2%) 0.7 (13%) 4.2 (71%) 0.3 (5%) 1.3 (23%) 4.6 (78%) 

ΔMCWD ERI 0.3 (4%) 1. (17%) 3.5 (59%) 0.3 (5%) 1. (17%) 3.2 (54%) 

ΔMCWD GLD 0.3 (5%) 0.9 (14%) 2.8 (46%) 0.1 (2%) 1.1 (18%) 3.9 (65%) 

ΔMCWD GPC 0.4 (7%) 1. (17%) 2.8 (47%) 0.3 (5%) 1.0 (16%) 3.1 (52%) 

ΔMCWD TR6 0.2 (4%) 0.9 (15%) 3.2 (55%) 0.4 (6%) 1.7 (28%) 4.5 (76%) 

ΔMCWD TR7 0.3 (4%) 0.7 (12%) 3. (51%) 0.2 (3%) 1.1 (18%) 3.9 (65%) 

        

ΔMCWD GSW 0.5 (8%) 1.0 (17%) 2.9 (48%) 0.3 (5%) 1.1 (18%) 3.5 (58%) 

ΔMCWD WAT 0.5 (8%) 1.1 (18%) 2.9 (49%) 0.2 (4%) 0.9 (15%) 3.3 (55%) 

  𝑠𝑐𝑃𝐷𝑆𝐼 <

 −4  

(extreme)  

𝑠𝑐𝑃𝐷𝑆𝐼 <

 −3  

(severe)  

𝑠𝑐𝑃𝐷𝑆𝐼 <

 −2  

(moderate)  

𝑠𝑐𝑃𝐷𝑆𝐼 <

 −4  

(extreme)  

𝑠𝑐𝑃𝐷𝑆𝐼 <

 −3  

(severe)  

𝑠𝑐𝑃𝐷𝑆𝐼 <

 −2  

(moderate)  

scPDSI CHR 0.2 (3%) 1.2 (20%) 2.5 (42%) 0.2 (3%) 2. (34%) 3.2 (55%) 

scPDSI CRU 0.3 (4%) 1.5 (26%) 2.3 (38%) 0.1 (2%) 2. (33%) 3.1 (52%) 

scPDSI ER5 0.1 (1%) 1.1 (18%) 2.8 (46%) 0.1 (1%) 1.6 (27%) 3.1 (52%) 

scPDSI ERI 0.0 (1%) 0.8 (13%) 1.7 (29%) 0. 0(1%) 1.2 (20%) 2.1 (35%) 

scPDSI GLD 0.2 (3%) 1.0 (16%) 1.9 (32%) 0.2 (3%) 2.9 (50%) 4.2 (71%) 

scPDSI GPC 0.1 (2%) 1.5 (25%) 2.6 (43%) 0.1 (3%) 1.9 (32%) 3. (51%) 

scPDSI TR6 0.3 (5%) 1.5 (25%) 2.8 (48%) 0.2 (3%) 1.9 (32%) 3.2 (54%) 

scPDSI TR7 0.3 (5%) 1.5 (25%) 2.8 (48%) 0.2 (3%) 1.9 (32%) 3.2 (54%) 

scPDSI GSW 0.2 (3%) 1.6 (26%) 2.6 (44%) 0.2 (3%) 1.8 (31%) 3.1 (52%) 

scPDSI WAT 0.2 (3%) 1.5 (26%) 2.6 (44%) 0.2 (3%) 1.8 (30%) 3. (51%) 

  𝑅𝐴 <  −3  

(extreme) 

𝑅𝐴 <  −2  

(severe) 

𝑅𝐴 <  −1  

(moderate) 

𝑅𝐴 <  −3  

(extreme) 

𝑅𝐴 <  −2  

(severe) 

𝑅𝐴 <  −1  

(moderate) 

RA CHR 0.3 (6%) 1.2 (20%) 3.1 (52%) 0.2 (3%) 1. (17%) 3.6 (60%) 

RA CRU 0.1 (2%) 0.6 (9%) 1.8 (29%) 0.1 (1%) 1. (17%) 3. (50%) 



 

4 

61 

 

Formatiert: Schriftfarbe: Schwarz

Formatiert: Standard, Rahmen: Oben: (Kein Rahmen),
Unten: (Kein Rahmen), Links: (Kein Rahmen), Rechts: (Kein
Rahmen), Zwischen : (Kein Rahmen), Tabstopps:  7.96 cm,
Zentriert +  15.92 cm, Rechtsbündig

RA ER5 0.3 (4%) 1.1 (18%) 2.9 (49%) 0.4 (6%) 1.7 (28%) 4.2 (71%) 

RA ERI 0.6 (10%) 1.1 (18%) 2.5 (42%) 0.2 (3%) 1.0 (16%) 2.7 (45%) 

RA GLD 0.2 (4%) 0.7 (12%) 1.7 (29%) 0.6 (9%) 1.2 (21%) 3.4 (57%) 

RA GPC 0.2 (4%) 0.7 (11%) 2.2 (36%) 0.1 (2%) 0.7 (12%) 2.7 (46%) 

RA TR6 0.1 (2%) 0.6 (11%) 2.4 (41%) 0.1 (2%) 1.3 (22%) 3.7 (63%) 

RA TR7 0.2 (3%) 0.9 (15%) 2.8 (47%) 0.2 (4%) 1.2 (20%) 3.3 (56%) 

RA GSW 0.2 (4%) 0.7 (11%) 2.1 (36%) 0.2 (3%) 0.9 (16%) 3.1 (52%) 

RA WAT 0.3 (4%) 0.7 (12%) 2.2 (37%) 0.1 (2%) 0.8 (13%) 2.8 (47%) 

 

 2600 

Table 3: Total area affected by drought in million km² (and %) by drought index (MCWD, scPDSI and RAI) and 

intensity (moderate, severe and extreme) across the 10 datasets evaluated in this study (rows) for the year 2016. TR6, 

GSW and WAT are missing from this calculation as their timespan ends before 2016. 

 

  2016 2016 2016 

Metric Dataset 𝛥𝑀𝐶𝑊𝐷 

<  −150𝑚𝑚 

(extreme) 

𝛥𝑀𝐶𝑊𝐷 

<  −100𝑚𝑚 

(severe) 

𝛥𝑀𝐶𝑊𝐷 

<  −25𝑚𝑚 

(moderate) 

ΔMCWD CHR 0.4 (6%) 0.8 (13%) 2.4 (40%) 

ΔMCWD CRU 0.3 (5%) 0.7 (11%) 2.4 (41%) 

ΔMCWD ER5 0.7 (12%) 1.7 (28%) 4.1 (69%) 

ΔMCWD ERI 1.1 (18%) 1.8 (30%) 3.8 (63%) 

ΔMCWD GLD 0.5 (8%) 1.6 (27%) 3.6 (61%) 

ΔMCWD GPC 0.3 (6%) 0.9 (15%) 3.2 (54%) 

ΔMCWD TR7 0.4 (7%) 0.9 (15%) 3.2 (54%) 

  𝑠𝑐𝑃𝐷𝑆𝐼 <  −4  

(extreme)  

𝑠𝑐𝑃𝐷𝑆𝐼 <  −3  

(severe)  

𝑠𝑐𝑃𝐷𝑆𝐼 <  −2  

(moderate)  

scPDSI CHR 0.3 (4%) 2.3 (38%) 3.3 (56%) 

scPDSI CRU 0.3 (5%) 2.6 (45%) 3.7 (62%) 

scPDSI ER5 0.3 (5%) 2.1 (35%) 2.9 (48%) 

scPDSI ERI 0.5 (9%) 2. (34%) 2.7 (46%) 

scPDSI GLD 0.9 (15%) 3.7 (62%) 4.2 (70%) 
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scPDSI GPC 0.4 (7%) 2.3 (39%) 3.2 (55%) 

scPDSI TR7 0.6 (11%) 3.1 (52%) 4.2 (71%) 

  𝑅𝐴 <  −3  

(extreme) 

𝑅𝐴 <  −2  

(severe) 

𝑅𝐴 <  −1  

(moderate) 

RA CHR 0.0 (0%) 0.1 (2%) 0.5 (8%) 

RA CRU 0.0 (0%) 0.0 (0%) 0.3 (5%) 

RA ER5 0.0 (0%) 0.0 (0%) 0.5 (9%) 

RA ERI 0.0 (0%) 0.0 (1%) 0.9 (15%) 

RA GLD 0.6 (10%) 1.8 (30%) 3.2 (54%) 

RA GPC 0.0 (0%) 0.0 (0%) 0.7 (12%) 

RA TR7 0.0 (0%) 0.1 (1%) 0.9 (14%) 
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