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Abstract  23 

Over the last decades, the Amazon rainforest was hit by multiple severe drought events. Here, we assess the severity and spatial 24 

extent of the extreme drought years 2005, 2010, and 2015/2016 in the Amazon region and their impacts on the regional carbon 25 

cycle. As an indicator of drought stress in the Amazon rainforest, we use the widely applied maximum cumulative water deficit 26 

(MCWD). Evaluating nine state-of-the-art precipitation datasets for the Amazon region, we find that the spatial extent of the 27 

drought in 2005 ranges from 2.2 to 3.0 (mean = 2.7) million km² (37 – 51% of the Amazon basin, mean = 45%) where MCWD 28 

indicates at least moderate drought conditions (relative MCWD anomaly < -0.5). In 2010, the affected area was about 16% 29 

larger, ranging from 3.0 up to 4.4 (mean = 3.6) million km² (51 – 74%, mean = 61%). In 2016, the mean area affected by 30 

drought stress was between 2005 and 2010 (mean = 3.2 million km²; 55% of the Amazon basin), but the general disagreement 31 

between datasets was larger, ranging from 2.4 up to 4.1 million km² (40–69%). In addition, we compare differences and 32 

similarities among datasets using the self-calibrating Palmer Drought Severity Index (scPDSI) and a rainfall anomaly index 33 

(RAI). We find that scPDSI shows a stronger, and RAI a much weaker drought impact in terms of extent and severity for the 34 

year 2016 compared to MCWD. We further investigate the impact of varying evapotranspiration on the drought indicators 35 

using two state-of-the-art evapotranspiration datasets. Generally, the variability in drought stress is most dependent on the 36 

drought indicator (60%), followed by the choice of precipitation dataset (20%) and the evapotranspiration dataset (20%). Using 37 

a fixed, constant evapotranspiration rate instead of variable evapotranspiration can lead to an overestimation of drought stress 38 

in the parts of Amazon basins that have a more pronounced dry season (for example in 2010). We highlight that even for well-39 

known drought events the spatial extent and intensity can strongly depend upon the drought indicator and the data sources it 40 

is calculated with. Using only one data source and drought indicator has the potential danger to under or overestimate drought 41 

stress in regions with high measurement uncertainty, such as the Amazon basin.  42 
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1 Introduction 50 

The severe drought events occurring in 2005, 2010, and 2015/16 in the Amazon basin are reasons for concern regarding their 51 

frequency and severity, and their impacts on the Amazon rainforest. Different large-scale atmospheric processes related to 52 

increased sea surface temperature (SST) in the Pacific and the Atlantic Ocean seem to be responsible for such repeated mega-53 

drought events (Coelho et al., 2012): While the drought 2015/16 was driven by a record-level El Niño event enhanced by the 54 

strong underlying global warming trend (Jimenez et al., 2018), the 2010 drought was a combination of a moderate El Niño 55 

event and anomalously warm SSTs in the tropical North Atlantic (Marengo et al., 2011; Marengo & Espinoza, 2016). Similarly, 56 

the 2005 drought was attributed to anomalies of warm SSTs in the North Atlantic (Marengo, Nobre, Tomasella, Oyama, et al., 57 

2008; Zeng et al., 2008). In consequence, such events differ in their strength, their timing, and spatial patterns, and thus, 58 

impacted regions differ. While drought events related to El Niño events show a Southwest to Northeast gradient with dry 59 

conditions over the NE Amazon region (Malhi et al., 2008), drought events caused by anomalously warm North Atlantic SSTs 60 

show a North-South gradient with dry conditions in the southern Amazon region (Lewis et al., 2011; Marengo et al., 2008). 61 

Even in the case of El Niño events, SSTs anomalies over the Eastern Pacific (EP) or the Central Pacific (CP) can lead to 62 

different impacts and spatial patterns of drought (Jimenez et al., 2019). In addition to their influence on temperature, recent El 63 

Niño events also showed amplified atmospheric vapor pressure deficit anomalies (Barkhordarian et al., 2019; Rifai et al., 64 

2019). The impacts of such drought events on humid tropical forests, which are often not adapted to longer-lasting dryness, 65 

are severe. Increased forest mortality connected to drought events was observed in central and southern Amazonia(Feldpausch 66 

et al., 2016; Lewis et al., 2011; Phillips et al., 2009), as well as shifts in tree species composition (Esquivel‐Muelbert et al., 67 

2019). Droughts are assumed to be one of the main drivers for the observed decline in the Amazon carbon sink, indicating that 68 

more carbon is lost to the atmosphere than taken up by the forest (Hubau et al., 2020). Thus, such extreme drought events are 69 

altering the carbon cycle of the Amazon forest (Feldpausch et al., 2016; Gloor et al., 2015; Hubau et al., 2020; Phillips et al., 70 

2009). 71 

Losing tropical forests in the Amazon region through increased mortality under drought also has implications for regional and 72 

continental scale water cycling (Ruiz-Vásquez et al., 2020). The rainforest transpires enormous amounts of water which is 73 

transported by winds to remote regions far beyond the borders of the rainforest (e.g. Dirmeyer et al., 2009; van der Ent et al., 74 

2010; Zemp et al., 2014, 2017). In addition, the ongoing deforestation in the Amazon rainforest further decreases forest cover 75 

and thus, transpiration rates, leading to a rainfall decline and enhanced drought conditions in a positive feedback loop (Miralles 76 

et al., 2019; Zemp et al., 2017). It can be expected that ongoing climate change most likely will cause stronger and more 77 

frequent drought events in the Amazon (Cai et al., 2015; Jiang et al., 2020; Marengo & Espinoza, 2016). 78 

For assessing the severity, the spatial extent, and, in particular, the impacts of such drought events on existing ecosystems, 79 

different gridded precipitation datasets are available which in some cases differ strongly in magnitude and spatio-temporal 80 

distribution of precipitation amounts (Golian et al., 2019). Typical problems of precipitation data for South America encompass 81 

the underestimation of extreme rainfall events in both dry or wet seasons (Blacutt et al., 2015; Giles et al., 2020). Therefore, 82 

while for the Amazon region, the recent drought events have been assessed in terms of severity (Jimenez et al., 2018; Jiménez-83 
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Muñoz et al., 2016) and impacts (Feldpausch et al., 2016; Lewis et al., 2011; Phillips et al., 2009) based on single precipitation 84 

data sets, a systematic analysis of how the most frequent used precipitation datasets differ regarding the spatial extent, location 85 

and severity of recent extreme drought events, is currently missing. 86 

For our study, we selected precipitation from nine different datasets: (1, 2) Data from the Tropical Rainfall Measurement 87 

Mission (TRMM) version 6 and 7 (Huffman et al., 2007) which have been frequently used, e.g. to estimate drought impacts 88 

on the carbon balance (Lewis et al., 2011; Malhi et al., 2009) and are assumed to represent precipitation patterns in the Amazon 89 

region best since they are derived from radar measurements (Huffman et al., 2007). (3) CHIRPS (Climate Hazards group 90 

Infrared Precipitation with Stations, Espinoza et al., 2019), which has been used to study regional hydro-climatic and 91 

environmental changes in the Amazon Basin. These two datasets only provide precipitation and no information about other 92 

climatic variables such as temperature or radiation. In addition, we selected five datasets that are often used as drivers for 93 

ecosystem models (e.g. in Forkel et al., 2019; Yang et al., 2015) and – in contrast to the other datasets – provide information 94 

for more climate variables: Data from the Climate Research Unit (CRU) with a joint project reanalysis (NCEP, National 95 

Centers for Environmental Prediction) applied, (4) the CRUNCEP (version 8, Viovy, 2018), (5) the WATCH-WFDEI  96 

(WATCH: Water and Global Change, Weedon et al., 2011). WFDEI: WATCH Forcing Data methodology applied to ERA-97 

Interim, Weedon et al., 2014) dataset, originally derived from global sub-daily observations merged with integrations from a 98 

general circulation model, (6) the GSWP3 (Global Soil Wetness phase 3, Kim et al. in prep) dataset which is closely related 99 

to WATCH-WFDEI, relying on a similar forcing but with a different bias-correction method applied, (7) the newer GLDAS 100 

(Global Land Data Assimilation System) 2.1. which is derived from various geostationary infrared satellite measurements and 101 

microwave observations (Rodell et al., 2004), (8) the latest ECMWF atmospheric reanalysis dataset, ERA5, which is the 102 

successor of ERA-Interim, providing higher spatial and temporal resolutions and a more recent model and data assimilation 103 

system than the previous ERA-Interim reanalysis (Albergel et al., 2018), and, finally, (9) the GPCC (named after the Global 104 

Precipitation Climatology Centre) dataset (Schneider et al., 2018), which is based on globally available land stations (rain 105 

gauges) combined with an empirical interpolation method (Willmott et al., 1985). The data sets were chosen because they are 106 

often used to force Dynamic Global Vegetation and hydrological simulation models in climate impacts studies. A more detailed 107 

description of the datasets is given in the methods section. 108 

We evaluate the precipitation datasets based on the Maximum Cumulative Water Deficit (MCWD; Aragão et al., 2007), a 109 

well-established drought index that is particularly suitable for estimating drought stress in the Amazon region (e.g. Esquivel‐110 

Muelbert et al., 2019; Lewis et al., 2011; Malhi et al., 2009; Phillips et al., 2009; Zang et al., 2020). In addition, we included 111 

two other measures to complement our analysis: A rainfall anomaly index (RAI), which does account for the mean deviation 112 

(in units of standard deviation) of precipitation during the driest months of the year, and the scPDSI (self-calibrating Palmer 113 

Drought Index, Wells et al., 2004). The scPDSI index has a more complex formulation compared to RAI and MCWD and 114 

takes available soil water content into account. Both RAI and scPDSI have been used in studies describing the recent 115 

Amazonian drought events (e.g. Jiménez-Muñoz et al., 2016; Lewis et al., 2011). Many studies (e.g. Flack-Prain et al., 2019; 116 

Hubau et al., 2020) currently still use a fixed evapotranspiration rate for the calculation of MCWD instead of using 117 
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evapotranspiration datasets as input.  To assess the robustness of a fixed evapotranspiration rate, we include two 118 

evapotranspiration datasets GLEAM (Martens et al., 2017) and DOLCE (Hobeichi et al., 2018) for the calculation of MCWD 119 

and scPDSI. The goals of our study are (1) to analyse and quantify the uncertainty in strength, extent, and location of three 120 

recent Amazon droughts in the years 2005, 2010, and 2015/2016 in precipitation from nine state-of-the-art precipitation or 121 

climate datasets based on MCWD; (2) to examine differences among these drought events by taking two additional drought 122 

indicators RAI and scPDSI and two evapotranspiration datasets into account.   123 
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 124 

2 Methods 125 

2.1 Study area 126 

Our study covers the Amazon river basin as delineated by Döll & Lehner (2002, see black contour in Fig. 1). Using 0.5° spatial 127 

resolution in longitude and latitude results in 1946 grid cells of interest for this study area. Note that differences in the 128 

comparison of our results with Lewis et al., (2011) arise because of differences in the delineation of the Amazon region, i.e. 129 

the area used in our study is 0.6 million km² larger. 130 

2.2 Data sources 131 

In the following, we briefly describe the nine precipitation datasets applied in our study (see also Table 1):  The Tropical 132 

Rainfall Measuring Mission (TRMM v7) product (Huffman et al., 2007) is a precipitation-only dataset based on multiple 133 

microwave-infrared satellite data developed as a joint product between NASA and the Japan Aerospace Exploration Agency 134 

(JAXA). We also included the predecessor v6 for comparison in our study, because it has been frequently and prominently 135 

used to derive drought impacts to the Amazon Basin (e.g. Lewis et al., 2011; Phillips et al., 2009) and shows significantly 136 

lower precipitation throughout the basin compared to v7 (Seto et al., 2011). CHIRPS (Climate Hazards group Infrared 137 

Precipitation with Station) is a novel dataset (Funk et al., 2015) which is a quasi-global (full longitude, but only 50°S – 50°N 138 

latitude extent) precipitation-only merged product, based on multi-satellite estimates (similar to TRMM 6 and TRMM 7) and 139 

approx. 2,000 in-situ observations per month in South America. TRMM 6, TRMM 7 and CHIRPS share the quasi-global 140 

spatial extent, however, in comparison to TRMM 6, TRMM 7 with a resolution of 0.25° x 0.25°, CHIRPS has a much higher 141 

spatial resolution of 0.05° x 0.05°. ERA5 (Muñoz-Sabater et al., 2018) shows improvements in, e.g., land evapotranspiration, 142 

surface soil moisture and turbulent heat fluxes over its predecessor ERA-Interim (Albergel et al., 2018), which we decided not 143 

to include in our study as it showed higher systematic errors over tropical areas (Nogueira, 2020). Similarly, CRUNCEP 144 

(Viovy, 2018) is generated based on a reanalysis from the national centers for environmental prediction (NCEP) and the 145 

National Center for Atmospheric Research (NCAR), corrected with the CRU TS3.2 (Harris et al., 2014) dataset. GPCC is 146 

mainly based on data from rain-gauge land stations. Similar to CRUNCEP, it is also based on the NCEP reanalysis dataset and 147 

has been used in global drought studies (Ziese et al., 2014). Both GPCC and CRUNCEP cover the longest periods of all 148 

selected datasets in this study with time spans from 1891 until 2016 and from 1901 until 2016, respectively.  WATCH-WFDEI 149 

(Weedon et al., 2011; 2014) is based on the reanalysis ERA-Interim corrected with GPCC precipitation. GSWP3 (Kim et al. 150 

in prep;) is based on the atmospheric reanalysis method “20CR” (20th Century Reanalysis version 2, Compo et al., 2013), 151 

which has been dynamically downscaled to 0.5° x 0.5° resolution. Corrections with observational data have not only been 152 

applied to precipitation but also to short/longwave radiation, air temperature and the daily temperature range. Both WATCH-153 

WFDEI and GSWP end in the year 2010. The GLDAS 2.1 dataset is built by using the ‘Noah Land surface model’ forced by 154 
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the Goddard Earth Observing System (GEOS) Data Assimilation System with corrected precipitation and radiation(Rodell et 156 

al., 2004; Sheffield et al., 2006). Starting in January 2000 (Version 2.1), it is the dataset with the latest time onset and hence 157 

defines the lower-bound time interval considered in this study. For the 2015/2016 drought event, only seven datasets were 158 

available as three of the datasets (TRMM 6, GSWP3 and WATCH-WFDEI) end before. All datasets were (if not directly 159 

available) aggregated to 0.5° x 0.5° spatial resolution and to monthly time steps. 160 

2.3. Drought indices and evaluation of drought area and extent 161 

2.3.1 Calculation of maximum climatological water deficit (MCWD) 162 

We calculate MCWD based on Aragão et al. (2007) defining water deficit (WD) as follows:  163 

𝑊𝐷(𝑡) = 	 (
𝑃(𝑡) − 𝐸𝑇(𝑡)				𝑖𝑓	𝑃(𝑡) − 𝐸𝑇(𝑡) < 0
0																											𝑒𝑙𝑠𝑒																															

         (1)164 

        165 

where 	𝑊𝐷(𝑡) stands for water deficit, which is calculated for a time step t, in this case monthly, 𝑃(𝑡) for monthly precipitation 166 

and 𝐸𝑇(𝑡) for monthly evapotranspiration. To estimate the impacts of persistent drought events, the cumulative water deficit 167 

(𝐶𝑊𝐷) is defined as the accumulation of water deficit of each month of the hydrological year (see below for details) for which 168 

𝑃(𝑡) is smaller than 𝐸𝑇(𝑡), hence 𝑊𝐷(𝑡)	is negative. MCWD is the most negative value of 𝐶𝑊𝐷(t)	over a specific period. 169 

As proposed by Aragão et al. (2007), we use a fixed value for 𝐸𝑇(𝑡) = 𝐸𝑇!"#$% = 100	mm month-1 derived from ground 170 

measurements of evapotranspiration in different locations and seasons in Amazonia (da Rocha et al., 2004; von Randow et al., 171 

2004). As a result, water deficit builds up whenever monthly rainfall 𝑃(𝑡) falls below 100 mm.  172 

We calculate annual MCWD for the hydrological year from October of the previous year to September of the succeeding year, 173 

e.g. the MCWD for the year 2005 is calculated from October 2004 to September 2005 (similar to Lewis et al., 2011). CWD 174 

and consequently MCWD are reset after each hydrological year.    175 

In contrast to e.g. Lewis et al. 2011, we use the relative MCWD anomaly (from now also denoted as 𝑟MCWD) as our main 176 

drought indicator.  For deriving 𝑟MCWD, we estimate the absolute MCWD anomaly (from now also denoted as	𝑎MCWD)  177 

for 2005 and 2010, respectively, by first calculating the mean MCWD for the “baseline” period from 2000 to 2010 and second 178 

by subtracting the mean MCWD from 2005 and 2010, respectively. The 𝑟MCWD anomaly is then estimated as the normalized 179 

deviation of the 𝑎MCWD anomaly in units of standard deviation. The same procedure was applied for the 𝑟MCWD anomaly 180 

for 2016, extending the baseline period from 2000 to 2016.  181 

We define relative thresholds of 𝑟MCWD anomaly <	−0.5	as moderate,  𝑟MCWD anomaly <	−2.0	as severe, and 182 

𝑟MCWD<	−2.5	 as extreme drought stress. Previously, levels of drought stress were based on 𝑎MCWD anomaly (ofter also 183 

referred to as ∆MCWD, e.g. Lewis et al. 2011) with 𝑎MCWD anomaly <	−25	mm as moderate drought stress because at this 184 

level, tree mortality already significantly increased in inventory plots.  185 
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By comparing empirical cumulative density functions of 𝑎MCWD and 𝑟MCWD anomalies (Fig. S1 and Methods S1) we are 186 

also able to give absolute estimates for our relative thresholds with 𝑎MCWD <	−26	mm, 𝑎MCWD<	−106	mm, and 187 

𝑎MCWD  <	−132	mm reflecting moderate, severe and extreme drought stress, respectively. Choosing relative anomalies 188 

over absolute enables a direct comparison of MCWD to the other drought indices used in this study. We used the 𝑟MCWD 189 

anomaly every analysis conducted in our study. We also estimated seasonal patterns of cumulative water deficit (CWD), by 190 

defining 𝑟CWD similar tor 𝑟MCWD as the relative anomaly of each month’s CWD in units of standard deviation. 191 

 192 

2.3.2. Calculation of rainfall anomaly index (RAI) 193 

For the rainfall anomaly index, dry season rainfall was taken as the mean precipitation from July-September following Lewis 194 

et al. (2011).  Like for the MCWD estimation, we calculated the mean dry season rainfall from a baseline period 2000-2010 195 

to investigate the drought impacts of 2005 and 2010, and for 2016 we selected a baseline period from 2000 to 2016 excluding 196 

2005, 2010, and 2016. The relative rainfall anomaly index (𝑟RAI) was estimated as ‘standardized anomaly’ from the baseline 197 

period similarly to the 𝑟MCWD anomaly calculation. As 𝑟RAI only reflects the precipitation anomaly during July and 198 

September, it can also be described as a dry season anomaly. 199 

 200 

2.3.3. Calculation of the self-calibrating Palmer Drought Severity Index (scPDSI) 201 

The self-calibrating Palmer Drought Severity Index (scPDSI, Wells et al., 2004) has in recent studies been used to assess the 202 

impacts of droughts on the Amazon basin (e.g. Jiménez-Muñoz et al., 2016). It improves the original PDSI by using a self-203 

calibrating procedure based on historical climate data, eliminating the empirically derived climatic characteristics. Next to 204 

precipitation, it also takes monthly evapotranspiration ET into account. In our study, we use ET data generated from DOLCE 205 

and GLEAM (section 2.4). Additionally, the scPDSI takes soil water capacity as input, which we assumed here as a constant 206 

value of 100 mm. scPDSI was estimated using the R package scPDSI (Ruida et al., 2018).  207 

To enable cross-comparison with the 𝑟MCWD and 𝑟RAI anomalies, we selected identical baseline periods from 2000 to 2010 208 

for the 2005 and 2010 events, and from 2000 to 2016 for the 2016 drought event. Again, we used the relative deviation 209 

𝑟scPDSI, defined as ‘standardized anomaly’ from the baseline period of monthly scPDSI values as drought indicator.  210 

2.4. Evapotranspiration datasets 211 

In addition to assuming a constant evapotranspiration 𝐸𝑇(𝑡) = 𝐸𝑇!"#$% = 100	mm for the calculation of MCWD, and for the 212 

calculation of scPDSI we use the two 𝐸𝑇 datasets GLEAM and DOLCE. The Global Land Evaporation Amsterdam Model 213 

(GLEAM) v3a dataset (Martens et al., 2017) is derived from a set of algorithms incorporating satellite-observed soil moisture, 214 

vegetation optical depth, reanalysis air temperature and radiation, and multiple precipitation datasets. The Derived Optimal 215 

Linear Combination Evapotranspiration (DOLCE, Hobeichi et al., 2018) dataset is derived by combining and weighting 216 

multiple other evapotranspiration datasets, also including GLEAM. 217 
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 218 

 219 

 2.5. Calculation of drought area and extent 220 

Each grid cell’s area was approximated as a trapezoid to its boundary coordinates (in 0.5° x 0.5° resolution), resulting in an 221 

area between 2900 and 3090 km² per grid cell. Accumulating the associated areas over all grid cells resulted in a total area of  222 

5.94	million km² representing the Amazon Basin. Note that for comparison of our results with Lewis et al. (2011) differences 223 

in absolute areas arise because of differences in study area size (5.94 vs. 5.3 million km², respectively). For the calculation of 224 

the drought-affected area, we summed up the area of grid cells that matched the respective drought classification (e.g. 𝑟MCWD 225 

anomaly <	−2.5	for extreme drought stress). The spatial agreement of drought location among datasets was estimated by 226 

selecting the grid cells matching the drought classification per dataset and subsequently counting the number of datasets per 227 

grid cells showing the respective drought classification.  228 

 229 

 230 

  231 
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3. Results 232 

All areas in the following section are expressed as percentage with respect to the entire Amazon basin according to our 233 

delineation (5.94	million km²). For an overview of the areas affected in million km², see Tab. S1 and S2.  234 

3.1 Comparison of total drought area based on relative MCWD anomaly 235 

We first evaluate differences in 𝑟MCWD for 2016 across the datasets (Fig. 1). Here, we find that the spatial patterns of the 236 

𝑟MCWD anomaly generally match across the available datasets, showing severe and extreme drought stress mainly in the 237 

northern Amazon basin. Only GLDAS diverges, showing extreme drought stress in the Central and Western part of Amazonia 238 

(Fig. 1d) where none of the other datasets shows any drought stress during the same year. The other datasets mostly differ 239 

regarding the intensity of the drought stress. While ERA5 and TRMM7 show values 𝑟MCWD < -2.5 in the Columbian part of 240 

the basin, CRUNCEP and GPCC do show such a strong drought impact only in Northern Brazil. The absolute areas of drought 241 

stress across different severity levels are similar across most datasets with only GLDAS showing a significantly larger area 242 

affected by extreme drought stress of 𝑟MCWD < -2.5. 243 

 244 

Across all precipitation datasets, in 2005, an area ranging from 37 to 51% (mean 45%) of the whole Amazon basin, was 245 

moderately affected (Table S1, Fig. 2a). ERA5 displayed the smallest area affected by moderate drought (2.2 million km², 246 

Tab. 1, Fig. 2), while CHIRPS and CRUNCEP showed a vast affected area (3.0 million km²), an area about 36% larger than 247 

displayed by ERA5.  For severe and extreme drought conditions, ERA5 shows the smallest affected area with 3% and 1% of 248 

the basin affected. For severe drought conditions, CRUNCEP suggests that an area approximately 3 times larger was affected 249 

compared to ERA5 (0.2 million km² vs. 0.6 million km²). CRUNCEP and GLDAS also encompass the largest area of extreme 250 

drought stress (0.2 million km²; 3% of the basin less than 𝑟MCWD < −2.5,	Fig. 2a).  251 

During the 2010 drought, a larger area ranging between a minimum of 52% (GPCC) and a maximum of 74% (TRMM 6) was 252 

affected by moderate drought stress, which is about 36% larger than during the 2005 drought (3.6 million km² vs. 2.7 million 253 

km², Table S1, Fig. 2). In addition, the area under severe drought stress was on average 25% larger compared to 2005 and the 254 

area affected by extreme drought was double the size of the 2005 drought event. Particularly, GLDAS and TRMM 6 showed 255 

the largest area affected throughout the three drought classifications (Fig. 2b). 256 

 257 

For 2016, two datasets (CHIRPS and CRUNCEP) showed with 38% a considerably smaller area that was moderately affected 258 

by drought stress compared to GLDAS with 63% of the area affected, respectively (datasets ranging between 2.2 and 3.7 259 

million km²). Generally, in 2016, the size of the area affected by moderate drought was in between the size of the area affected 260 

in 2005 and 2010, but the extent of severely and extremely drought-affected areas was larger. Here, particularly GLDAS 261 

followed by GPCC showed the largest affected area, with 21% severely affected and 6% extremely affected (Tab. S2).  262 
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3.2 Spatial agreement of rainfall datasets using the 𝑟MCDW anomaly 263 

While the agreement of the total area affected by drought is relatively high (see 3.1) the data sets only partly agree on the 264 

spatial extent and location of extreme drought conditions, particularly during the 2010 and 2016 events (Fig. 3). For 2005, all 265 

datasets agree on the drought epicentre being in Central Amazonia.  Datasets agree that an area of about 15 % of the Amazon 266 

Basin was at least moderately affected (Fig. 3a). Only a small overlap was found for the area affected by severe and extreme 267 

drought stress (Fig. 3b, c). Here, only half of the datasets agreed on 4% of central Amazonia being severely and 1.5% extremely 268 

affected. 269 

For 2010, all datasets agreed on an affected area of 21% in the Amazon basin, and half of the datasets agreed on an area of 270 

60% of the Amazon Basin being moderately affected by drought stress (Fig. 3d). The 2010 drought displayed no central 271 

hotspot, but three most affected areas in the Eastern, Southern and central parts of Amazonia on which most of the datasets 272 

agreed (Fig. 3d). Severe drought stress in 2010 was in the southern part of Amazonia, where four datasets agreed (Fig. 3e), 273 

while for extreme drought stress almost no overlap between datasets was found (Fig. 3f).  274 

For 2016, all datasets agreed on an area of about 7% of moderate drought stress and half of the datasets agreed on 51% of the 275 

basin being affected (Fig. 3g). Agreement for severe and extreme drought stress was lower compared to the other drought 276 

years (Fig. 3h, i). Most of the datasets located the epicentre of the drought in the north-western Amazon basin. Some datasets 277 

also showed the South-Central part of the basin being severely affected (Fig. 3i). 278 

We could not find any pronounced biases between the precipitation datasets (Fig. S3 - S5), but a generally higher correlation 279 

of the rMCWD anomalies for 2005 compared to 2010 and 2016. Only ERA5 and GLDAS showed some spikes in the rMCWD 280 

anomalies that are located within the high latitude regions of the Andes.  281 

3.3 Constant versus varying evapotranspiration rates: Effects on drought severity and extent estimates 282 

We find that assuming a constant ET rate of 100 mm month-1 is only realistic in the Northern part of the Amazon basin and 283 

only when comparing to the DOLCE dataset (Fig. 4a, b), which shows ET rates of about 100mm month-1 during both the 284 

wettest (as averaged between June to August) and the driest months (as averaged between January and March). Using GLEAM, 285 

average ET rates are between 30 and 50% higher than 100mm month-1 during the wettest months (Fig. 4c) and remain higher 286 

than 100mm month-1 also in the Northern part during the dry season (Fig. 4f). Evapotranspiration rates can be as low as 50mm 287 

month-1 on average throughout the driest months for both ET datasets in the South of the basin (Fig. 4b. and 4f). 288 

This spatial heterogeneity in evapotranspiration rates has implications for the extent and severity of drought stress expressed 289 

as rMCWD anomaly when compared to using constant evapotranspiration. Using the two evapotranspiration datasets we find 290 

lower drought impacts across most parts of the Amazon basin for the two years 2005 and 2010 (Fig. 4c, d, g, h). In 2005 the 291 

mean area of moderate drought stress is lower when using variable ET: 44% of the basin for GLEAM and 39% for DOLCE, 292 
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compared 46% for a constant ET. Interestingly, these differences were not particularly located in the epicentre of drought 293 

during that year (see Fig. 3a, b, c), but rather in the South and the high latitude regions toward the Andes (Fig. 4c, g). The total 294 

area of severe drought stress did only slightly decrease from 9% (constant ET) to 8% (GLEAM) and 7% (DOLCE).  In 2010, 295 

we find stronger differences between variable and constant ET. The area of moderate drought stress is 52% for GLEAM and 296 

49% for DOLCE which is significantly lower than the 60% when using constant evapotranspiration. For this year the areas of 297 

these differences (Fig. 4d, h) strongly overlap with the epicentres of the drought (see Fig. 3d, e, f). Consequently, also the areas 298 

of severe drought stress are lower (7% for GLEAM, 8% for DOLCE) compared to using constant evapotranspiration (12%). 299 

We find similar patterns for 2016 (not shown) where the mean area of severe drought stress is approximately 11% for both 300 

GLEAM and DOLCE, which is lower compared to using constant ET (15%).  301 

3.4 Comparison of drought indices: 𝑟MCDW, 𝑟scPDSI and 𝑟RAI anomalies 302 

Similar to 𝑟MCWD, there is variable agreement among datasets when evaluating the other two drought metrics, 𝑟RAI and 303 

𝑟scPDSI (Fig. 5). The largest dry season anomaly (𝑟RAI) in 2005 was displayed by GPCC with 6.5% (0.4 million km², Table 304 

2), followed by TRMM 7 with 5.7% of the Amazon basin being severely affected. ERA 5 showed with 3% the smallest area 305 

affected. In 2005, spatial patterns of 𝑟RAI matched with 𝑟MCWD anomalies despite	𝑟MCWD anomalies showing a larger 306 

area affected by severe drought stress (Fig. 5a, d).  𝑟scPDSI displayed the smallest area affected by drought stress in 2005 with 307 

also only GPCC and TRMM 7 showing with 5.5% and 3.1% the largest severely affected area, respectively. All other datasets 308 

showed less than 1% of severe drought-affected areas in 2005. The small spatial area of 𝑟scPDSI differed compared to the 309 

other two drought indicators (Fig 5a, d, g): Some areas showed a strong disagreement between drought indices, e.g. Central 310 

Amazonia was hit by severe drought stress according to 𝑟MCWD and 𝑟RAI (with 3-4 climate datasets in agreement) while, 311 

in contrast, 𝑟scPDSI did not indicate abnormally dry conditions there.  312 

In 2010, the differences of drought-affected areas were even more pronounced between the three indices (Fig. 5b, e, h). Here, 313 

ERA5 and TRMM7 showed the largest areas affected by severe drought stress based on the dry season 𝑟RAI anomaly with 314 

7% and 5%, respectively.  Using 𝑟scPDSI all datasets showed an area between 1% and 2.5% severely affected. Interestingly, 315 

the area affected based on 𝑟MCWD roughly encompasses the area affected by 𝑟RAI, but additionally shows a large area in the 316 

South-Eastern part of the basin being affected by severe drought stress (Fig. 5b, e).    317 

In 2016, 𝑟scPDSI shows the largest area affected by drought stress with GLDAS showing 39% (followed by TRMM7, 16%) 318 

of the basin being severely affected. Four datasets agreed on the affected area in the northeastern part of the basin (Fig. 5i). 319 

Only one dataset (GLDAS) showed severe drought stress in 2016 when calculating dry season rainfall anomalies (𝑟RAI , Fig 320 
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5c), indicating no pronounced anomalies in dry season rainfall according to all other datasets. 𝑟MCWD and 𝑟scPDSI roughly 321 

agreed on the northern part of the basin being severely affected (Fig. 5f, i).  322 

Average seasonal patterns are quite consistent across datasets but differ depending on the choice of drought index and drought 323 

event (Fig. 6). The strongest (most negative) rainfall anomaly was visible from May to July during the 2005 drought event 324 

(Fig. 6a). Accumulating such low rainfall estimates resulted in very low values of 𝑟CWD during that period (Fig. 6d) in 2005. 325 

𝑟scPDSI values were also low, but more constant throughout the year (Fig. 6g).  326 

The 2010 drought followed similar patterns regarding 𝑟RAI with a lower absolute impact during May to July compared to 327 

2005 (Fig 6b). Interestingly, the wet season months March to May showed a strong anomaly during 2010 compared to the 328 

2005 event. Subsequently, 𝑟CWD was also already lower during the wet season in 2010 compared to 2005 (Fig. 6e). 𝑟scPDSI 329 

anomalies values were similar for 2010 compared to 2005 with a slightly downward trend towards the end of the year (Fig. 330 

6g, h).  331 

To investigate the seasonal patterns of 2016 we also considered the drought indices of 2015 since both years were El Niño 332 

years. We found a strong rainfall anomaly already starting during September 2015 continuing until April 2016 (Fig. 6c). 333 

Consequently, also 𝑟CWD values were very low during that period (Fig. 6f). While 𝑟MCWD was applied as the maximum 334 

value from October to September, drought stress before October of the previous year cannot be accounted for when using 335 

𝑟MCWD. The two-year drought impact was also visible using scPDSI (Fig. 6i) showing a steady decline from 2015 to 2016.   336 

3.5 Overall variability: precipitation datasets vs. drought indices vs. evapotranspiration datasets 337 

When assessing the variability of drought severity and extent across the nine different precipitation datasets,  the two drought 338 

indices (rMCWD and rscPDSI) and the two evapotranspiration datasets (DOLCE and GLEAM), we find that across all drought 339 

events the choice of drought index accounts for roughly 60% of the variability while both the precipitation dataset and the 340 

evapotranspiration dataset account for 20%, each (Tab. 2).  341 

  342 
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4. Discussion 343 

We assessed the severity and spatial extent of the extreme drought years 2005, 2010, and 2015/2016 in the Amazon region by 344 

computing different drought indices using a range of precipitation datasets. When analyzing how drought conditions are 345 

captured in nine different precipitation datasets for the Amazon basin, we find that while the datasets mostly agree on the 346 

extent of the drought area, they differ in their location of drought.  347 

 348 

Critical aspects regarding the detection of drought events in the Amazon basin 349 

Drought indices 350 

The idea of defining water deficit based on evapotranspiration rates goes back to Stephenson (1998) and the MCWD is now 351 

one of the most widely used indicators to assess drought stress in tropical forests (e.g. Lewis et al., 2011, Phillips et al., 2009, 352 

Esquivel‐Muelbert et al., 2019). In its simplest form the calculation of MCWD only requires precipitation data and assumes a 353 

constant evapotranspiration (ET) rate of 100 mm month-1 (Aragão et al., 2007). Although the simplicity of 𝑟MCWD and 354 

𝑎MCWD is a main advantage, a fixed ET (which we also used in our study) is inappropriate for regions other than the lowland 355 

tropics, where the lower supply of energy may result in lower ET values. Most importantly, an approximated ET does not 356 

account for either seasonal variation (driven mainly by radiation, temperature, and phenology) or spatial variation in ET related 357 

to soil and root properties (Malhi et al., 2009). Hence, changes in 𝑟MCWD are purely accounting for changes in rainfall 358 

(Phillips et al., 2009). In contrast, scPDSI is driven with spatially and temporally resolved evapotranspiration data. However, 359 

currently available evapotranspiration products for the Amazon rainforest show significant differences in areas and extent of 360 

evapotranspiration (Sörensson & Ruscica, 2018), hence introducing another source of uncertainty when using them for the 361 

calculation of drought indices. In the last decade, better products of spatially and temporally resolved evapotranspiration data 362 

(e.g. ERA5) have been developed and an increasing number of studies are now estimating MCWD based on such data (e.g. 363 

Staal et al., 2020). However, using a constant evapotranspiration (ET) rate of 100 mm month-1 across the Amazon rainforest 364 

is still very common (e.g. Flack-Prain et al., 2019; Koch et al., 2021). 365 

Using variable evapotranspiration consistently reduced the moderate drought-affected area by 5-10% per drought event (Fig. 366 

4). Extending the baseline period of the MCWD calculation to include also years before 2001 leads to overall lower MCWD 367 

values and, hence, an increased intensity of the three drought events. This finding highlights the drought anomaly that the 368 

recent decade from 2001 to 2016 has compared to the years before that period. 369 

 370 

The key difference between the three drought indices applied in our study is the temporal resolution: RAI is only calculated 371 

for the three driest months (July-September) and thus, for example, a rainy season with deficient rainfall is not captured. 372 

MCWD, in contrast, accumulates over 12 months and is reset to zero at the end of the hydrological year. In this way, drought 373 

events caused by low precipitation in both dry- and rainy seasons are captured, however, drought events lasting for more than 374 

a year are not detected. scPDSI captures multi-year drought events and is not reset to zero at the end of the hydrological year.  375 
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These differences between the drought indicators can be seen for the three drought events analysed in this study. In 2005, 376 

𝑟RAI and 𝑟MCWD values roughly match in location of the epicenter indicating a particularly strong anomaly during the dry 377 

season (Fig. 5a, d). This does not apply to the 2010 drought event, where despite some dry season anomaly an even stronger 378 

anomaly during the wet season is visible (Fig. 6b, e). The 2015/2016 drought event is classified as a severe multi-year drought 379 

according to Yang et al. (2018), which is also displayed in our analysis when using 𝑟scPDSI, (Fig 6i). 𝑟MCWD and 𝑟RAI, 380 

however, do not agree on a spatially and temporally extensive drought event in 2016 (Fig. 5c, f, i), but instead display distinct 381 

regions of severe drought stress. Seasonal patterns of the three drought indices support this assumption (Fig. 6): Resetting 382 

𝑟MCWD once per year neglects any influences of drought events of the preceding year (Fig. 6c). While the drought indices 383 

used in this study showed pronounced differences in spatial and temporal dynamics, including all of them can help better 384 

understanding the different characteristics that drought events can have in the Amazon basin. 385 

A common drawback of all drought metrics used in our study is their incapability to explicitly represent the effect of increasing 386 

atmospheric vapor pressure deficit (VPD) on plant water stress. A steady amplification of atmospheric vapor pressure deficit 387 

(VPD) has been detected over the Amazon basin (Barkhordarian et al., 2019; Rifai et al., 2019). Such stronger atmospheric 388 

water demand leads to additional water loss of plants during drought, subsequently increasing the severity of droughts. Hence, 389 

the role of VPD during a drought and as a driver for plant stress should not be underestimated (Grossiord et al., 2020). With 390 

increasing data availability and better estimates of VPD across the Amazon region, it should be included in future drought 391 

assessments (e.g. Castro et al., 2020). One possibility to account for the influences of VPD is choosing temporal and spatially 392 

resolved evapotranspiration instead of constant evapotranspiration in the calculation of MCWD. Future studies could further 393 

investigate the relationships between MCWD, ET, and VPD and the impacts on biomass. 394 

Furthermore, in the last decade, new methods have been developed that assess impacts of drought on ecosystems, e.g. analyses 395 

based on solar-induced fluorescence (SIF) data show that tall forests are less sensitive to rainfall compared to short forests 396 

(Giardina et al., 2018). Also, vegetation optical depth (VOD) used as a proxy for water content in forests is a promising 397 

satellite-derived indicator for mortality and impacts of droughts on forests (Rao et al., 2019). However, conducting analyses 398 

over the Amazon rainforest based on VOD is difficult, because of the limited penetration depth of microwaves in dense tropical 399 

forests (Chaparro et al., 2019), and the influences of vegetation water status (Xu et al., 2021). So far, VOD data could only be 400 

applied with limited success across tropical rainforests (Konings & Gentine, 2017). Future studies should estimate the impacts 401 

of droughts based on multiple drought characteristics. For example, Toomey et al. (2011) show that considering both, heat 402 

stress and soil moisture stress greatly improves the explanatory power of drought impacts in the Amazon basin. 403 

 404 

Precipitation datasets 405 

For the three drought events in 2005, 2010 and 2016, CHIRPS, GLDAS and ERA5 diverted the most from the other datasets 406 

regarding the spatial drought extent. ERA5 shows the smallest area of moderate drought stress during 2005 but one of the 407 

largest areas in 2010 (Fig. 2). We found no obvious bias between the precipitation datasets regarding distribution and frequency 408 

of monthly rainfall (SI Fig. 2) with only ERA5 showing higher rainfall more frequently. Although TRMM7 and CHIRPS are 409 
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based on the same satellite data as their input, they differ regarding the size of the drought area, especially during 2016 (Fig. 410 

2). Lewis et al. (2011) estimated an area of 47% (2.5 million km²) of the Amazon basin moderately affected in 2005 using the 411 

TRMM6 dataset, which compares well with the size of the affected area for the majority of datasets analyzed in our study 412 

(considering our 0.6 million km² larger study area; see Methods). For 2010, Lewis et al. (2011) reported an area of 3.2 million 413 

km² being affected in comparison to 4.5 million km² in our analysis using TRMM6 with very similar spatial patterns. The 414 

newer product, TRMM7, however, shows less frequent rainfall but heavier rainfall than CHIRPS maintaining a similar total 415 

amount of precipitation (Giles et al., 2020). Also, both versions (TRMM6 and TRMM7) differ regarding the total area affected 416 

by drought stress in 2005 and in particular in 2010, where TRMM6 showed a 10% larger area of the Amazon basin affected. 417 

This can be explained by the generally higher precipitation rates detected in the TRMM7 dataset in comparison to TRMM6 418 

(Seto et al., 2011) leading to lower absolute values of 𝑟MCWD. Spatially, this difference was most pronounced in the western 419 

and northern parts of Amazonia, in the Acre and Roraima states, and in Peru.  Because of such higher precipitation rates in 420 

TRMM7 as compared to TRMM6, and subsequently the much stronger drought response according to our analysis, studies 421 

based on TRMM6 only might overstate the actual drought conditions and should be revisited. Precipitation datasets usually 422 

show remarkable differences in the representation of occurrence, frequency, intensity and location of events, mainly due to 423 

their nature of high spatial and temporal variability (Covey et al., 2016; Dirmeyer et al., 2012). Generally, the sparse network 424 

of observations in the Amazon rainforest may explain the differences across precipitation datasets and drought indices for 425 

datasets that rely on station data. Within the last decade, the number of observations increased, due to a new denser network 426 

of stations. This may improve the reanalysis models that are used for several precipitation datasets applied here, however, it 427 

does not improve datasets that only rely on gauge observations. Bias-correction is also applied different across precipitation 428 

datasets. So do CRUNCEP and WATCH_WFDEI use two different gridded bias corrections inputs, while the simulated 429 

precipitation fields of  ERA5 are not using any bias corrections. Different datasets that are used for bias corrections can give 430 

very different results on regional scales (Doblas-Reyes et al., 2021) 431 

Jiménez-Muñoz et al. (2016) quantified drought extend using the scPDSI and found that 40%, 25% and 10% of the Amazon 432 

basin were affected by moderate, severe, and extreme drought stress, respectively, in March 2016. While we did not evaluate 433 

scPDSI directly but focused on 𝑟scPDSI to allow for a better cross-comparison to the other drought indicators, we found 434 

similar patterns for moderate drought stress (47% of the basin affected), but different patterns under severe (11%) and extreme 435 

(1%) drought stress when evaluating 𝑟scPDSI using the ERA5 dataset. Our estimation diverted from the results of Jiménez-436 

Muñoz et al. (2016) mainly because of our different drought classification, but also due to a different reference area (see 437 

Methods).  438 

In addition, Jiménez-Muñoz et al. (2016) used spatially resolved information on soil water capacity when calculating scPDSI 439 

and a longer baseline period (year onset is 1979 in their study vs. 2000 in our study). Furthermore, the choice of the 440 

precipitation dataset plays an important role. Compared to the datasets considered in our study, ERA 5 showed the weakest 441 

drought impact during the 2016 drought event. GLDAS and TRMM7 showed a much stronger drought impact with over 70% 442 

of the area moderately and between 15% and 39% severely affected (Tab. S2). This is particularly interesting because recent 443 
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studies identify TRMM7, CHIRPS and ERA5 as the best precipitation datasets when comparing to gauge observations in South 445 

America (Albergel et al., 2018; Burton et al., 2018; Rifai et al., 2019). The higher scPDSI variability across the precipitation 446 

datasets can be explained with the more complex algorithm (including the self-calibrating mechanism) the index has compared 447 

to MCWD and RAI. 448 

 449 

Evapotranspiration datasets 450 

Using a variable ET dataset over constant ET of 100mm month-1 leads to smaller areas affected by drought stress depending 451 

on the year and drought location (Fig. 4). According to our findings using a constant ET of 100mm month-1 introduces not 452 

only a change in drought-affected areas, but rather a bias, as drought intensity and spatial extent are consistently higher for all 453 

drought years. The reason for this bias lies within the calculation of MCWD which computes stronger deficits for higher values 454 

of ET (e.g. 100 mm month-1) than for lower values (e.g. 50 mm month-1) during months with low precipitation. This bias can 455 

be rather small during drought events that are located in the northern, wetter parts of the basin (as in 2005), but it can also be 456 

quite strong for droughts that are located in the southern parts which have a more pronounced dry season (as in 2010).  457 

 458 

Implications for drought impact analyses in the Amazon rainforest 459 

Drought leads to increased tree mortality and carbon losses in tropical forests (Hubau et al., 2020; Lewis et al., 2011; Phillips 460 

et al., 2009). With the prospect of more severe and frequent droughts in a future climate, more precise estimates of how much 461 

carbon is lost from reductions in growth and drought-induced mortality are necessary. Currently, the Amazon rainforest is 462 

acting as a carbon sink, thereby removing CO2 from the atmosphere, but with more frequent and severe drought events, this 463 

sink is already declining (Hubau et al. 2020). Lewis et al. (2011) estimated a total loss of biomass for the Amazon basin in 464 

2005 of 1.6 Pg C and a 38% more severe impact of 2.2 PgC for 2010 based on TRMM6. Using TRMM7 instead of TRMM6 465 

and using variable ET would likely decrease the impact of the 2010 drought on vegetation carbon as calculated in Lewis et al. 466 

2011. 467 

 468 

The affected areas (Fig. 2) for the drought events might be underestimated as (1) the total duration of the 2016 drought was 469 

longer than 12 months (see above paragraph and Fig. 6) and can hence not be fully captured by the standard 12-month period 470 

of the 𝑎MCWD and 𝑟MCWD calculation used in this study. (2) Potential lag effects due to delayed plant mortality within the 471 

subsequent years are not considered so far. We would recommend for future studies to investigate the relationship of biomass 472 

losses with other drought indices (such as scPDSI) in a similar manner as done in Lewis et al. (2011). As the biomass of the 473 

Amazon rainforest is heterogeneously distributed (e.g. Saatchi et al., 2011), large-scale drought-induced biomass losses which 474 

result from a severe 𝑎MCWD anomaly should be interpreted carefully. Differences in the amount of biomass in different forest 475 

types, species composition, and critical hydraulic processes should be considered when estimating potential biomass losses 476 

under drought stress (Feldpausch et al., 2016). A step forward would be to use, for example, remotely sensed biomass maps to 477 

account for regional biomass distributions (e.g. Avitabile et al., 2016) or to simulate drought impacts with dynamic global 478 
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vegetation models (DGVMs). DGVMs simulate the carbon- and water cycle of the biosphere in a process-based way, 479 

accounting for the interplay of carbon uptake and water loss through stomatal opening, evapotranspiration (ET), carbon 480 

assimilation via photosynthesis, and carbon allocation to different plant compartments such as leaves, wood, and roots (e.g. 481 

Schaphoff et al., 2018; Smith et al., 2014). The simulated response of tropical forests in DGVMs is particularly sensitive to 482 

precipitation input under present and future climate change scenarios (e.g. Seiler et al., 2015). Therefore, we recommend using 483 

multiple climate forcing datasets to test for climate data uncertainty also under present climate conditions. Particularly, studies 484 

based on TRMM6 should possibly be revisited and complemented with more forcing datasets for their analysis. 485 

 486 

6. Conclusions 487 

We find substantial variation in the spatial extent, location, and timing of the extreme drought events in the years 2005, 2010 488 

and 2016 in the Amazon basin. Depending on the precipitation dataset and drought index used, the area affected by severe 489 

(extreme) drought varied between 0% and 39% (0% and 13.7%) for the 2016 event. Especially the area under severe drought 490 

conditions changed from almost no severe drought stress (5 out of 6 datasets) when using 𝑟RAI to greater than 10% when 491 

using 𝑟MCWD and 𝑟scPDS instead. The variation partly results from the application of different drought metrics (𝑟MCWD, 492 

𝑟RAI, 𝑟scPDSI) and from differences in the underlying precipitation datasets. Such differences also propagate when 493 

quantifying the impacts of droughts on the carbon cycle of the Amazon rainforest and result in a large variability in biomass 494 

carbon losses for a particular drought year. The estimated intensity of droughts depends predominantly on the selected drought 495 

indicator and to a lesser extent on the choices of precipitation and evapotranspiration dataset. 496 

We, therefore, recommend applying several drought metrics, climate (precipitation) datasets and, if available, 497 

evapotranspiration datasets to account for model uncertainty when assessing the spatial extent, duration, and location of 498 

droughts. We regard it as an important step when assessing drought impacts on tropical rainforests also under current climate 499 

conditions. Communicating the uncertainty in the estimation of drought events and their impacts on the Amazon rainforest is 500 

highly relevant and thus, multiple datasets should be applied by any large-scale study on drought impacts on vegetation. 501 

 502 
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Precipitation 

dataset 

Abbreviation  Details Resolutions Derived from References 

Climate Hazards 

group Infrared 

Precipitation with 

Stations 

CHIRPS quasi-global (50°S-

50°N) 

 

high resolution 

(0.05°), daily, 

pentadal, and 

monthly  

Remote 

sensing, in-

situ 

observations  

Funk et al., 

2015 

Tropical Rainfall 

Measurement 

Misson 

TRMM v6 

3b43 

quasi-global (50°S-

50°N) 

Quarter degree 

resolution (0.25°) 

daily, pentadal, 

and monthly 

Remote 

sensing  

Huffman et al.,  

2007 

Tropical Rainfall 

Measurement 

Misson 

TRMM v7 

3B43 

quasi-global (50°S-

50°N) 

Quarter degree 

resolution (0.25°), 

daily, pentadal, 

and monthly 

Remote 

sensing  

Huffman et al.,  

2007 

 CRU_NCEP  

V8 

global Half degree 

resolution (0.5°), 

daily, pentadal and 

monthly 

Reanalysis 

corrected by 

CRU gridded 

observational 

datset 

Viovy et al.,  

2017 

ERA5  global Quarter degree 

resolution (0.25º), 

sub-daily, daily, 

monthly 

Reanalysis Albergel et al., 

2018 

Global Land Data 

Assimilation 

System 

GLDAS 2.1 

 

global Quarter degree 

resolution (0.25°), 

daily, pentadal, 

and monthly 

Geostationary 

satellite 

infrared cloud-

top 

temperature 

Rodell et al., 

2004 
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measurements 

and 

microwave 

observation 

techniques. 

Global 

Precipitation 

Climatology 

Centre at 

Deutscher 

Wetterdienst 

GPCC2018 global Quarter degree 

resolution (0.25°), 

monthly 

Gridded in-

situ 

observations 

Schneider et 

al., 2018 

Global Soil 

Wetness Project 

Phase 3 

GSWP3 global Half degree 

resolution (0.5°), 

daily, monthly 

Reanalysis 

(20CR) 

corrected with 

gridded 

observation 

(GPCC) 

H. Kim et al. 

n.d.;  

WATCH Forcing 

Data (WFD) + 

WATCH Forcing 

Data 

methodology 

applied to ERA‐

Interim data 

(WFDEI) 

WATCH_W

FDEI 

global Half degree 

resolution (0.5°), 

daily, monthly 

Hydrological 

model applied 

to 

ERA_Interim 

data 

Weedon et al., 

2011, 2014 

Table 1: Overview of the 10 precipitation datasets used in our study. Columns show the name of the dataset, the official 743 

abbreviation, the short abbreviation used in here, the spatial and temporal resolution and the references. 744 
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 Fraction of overall variability in rMCWD anomaly based on 
Drought event precipitation datasets drought indicators evapotranspiration datasets 
2005 0.21 0.6 0.19 
2010 0.21 0.58 0.21 
2016 0.22 0.59 0.19 

Table 2: Fraction of overall variability in rMCWD anomaly based on precipitation datasets, drought indicators, and 748 

evapotranspiration datasets. 749 
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Figures 751 

 752 
Figure 1: Relative MCWD anomalies (from October to September) as an indicator for drought stress in the Amazon 753 

basin during the record-breaking drought event in 2016. Displayed are only the datasets that include the year 2016 in 754 

their temporal range. The baseline period of the MCWD calculation is 2001 to 2016. 755 

 756 
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 758 
 759 

 760 
 761 

Figure 2: Total area of the Amazon basin affected by drought stress (%) according to relative MCWD anomaly for 762 

each of the precipitation datasets. Displayed are the three drought events (a) 2005,  (b) 2010 and (c) 2016. The total 763 

area representing the Amazon basin in our study is 5.94 million km². For absolute area affected, see Tab. S2 and S3.  764 
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 765 

 766 

 767 
Figure 3: Agreement of precipitation datasets on drought area as identified by relative MCWD anomalies. In columns, 768 

different levels of drought severity are displayed and rows show the different drought years 2005 (a-c), 2010 (d-f) and 769 
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2016 (g-i). The colors indicate the number of datasets that agree on a specific drought level in a given pixel. Drought 770 

severity levels are defined as moderate (rMCWD < -0.5),  severe (rMCWD < -2.0) and extreme (rMCWD < -2.5). Orange 771 

pixels indicate areas where only one dataset shows the respective drought stress (No agreement = “None”). White pixels 772 

represent areas where no dataset shows any drought signal. Note that in a-f, TRMM 6 and GSWP3 were excluded, as 773 

they were either very similar to its successor (TRMM 7) or due to a similar reanalysis procedure (WATCH_WFDEI). 774 

In g-i, only six datasets were included, which cover the full time period until 2016. 775 
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 777 

 778 
Figure 4: Spatial pattern of ET for the dry and wet season for the DOLCE and GLEAM datasets (a, b, e, f) and the 779 

differences between using the two ET datasets to calculate the rMCWD anomaly and the rMCWD based on the constant 780 

ET=100mm per month assumption for 2005 (c, g) and 2010 (d, h). Wet and dry season ET is calculated as mean from 781 

June to August and January and March, respectively.  Negative (positive) differences of the rMCWD anomalies indicate 782 

an overestimation (underestimation) of drought stress when using ET=100mm per month compared to the respective 783 

evapotranspiration dataset.  784 
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 790 
Figure 5: Agreement of precipitation datasets on drought area as identified by different drought metrics. Comparison 791 

of the Amazon drought events in 2005, 2010 and 2016 (columns) vs three different drought indexes (rows): 𝑟MCWD 792 

(a-c), 𝑟scPDSI (d-f) and 𝑟RAI (g-i). Only the area affected by severe drought stress is displayed, which is defined equally 793 

for each of the drought indices. Orange pixels indicate areas where only one dataset shows the respective drought stress 794 

(“None”). White pixels represent areas where no dataset shows any drought signal.  795 
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 796 

 797 
Figure 6: Monthly development of the Amazon drought events in 2005, 2010 and 2016 (columns) as described by the 798 

three different drought indices (rows): 𝑟MCWD (a-c), 𝑟scPDSI (d-f) and relative rainfall anomaly (𝑟RAI, g-i). Colored 799 

lines indicate the indices of the 10% quantile of all gridcells of each of the different precipitation datasets. The indices 800 

are estimated as relative deviation from a 2001 to 2016 baseline period for each month.  801 
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