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Abstract. 3-hydroxy fatty acids (3-OH FAs) with 10 to 18 C atoms are membrane lipids mainly 31 

produced by Gram-negative bacteria. They have been recently proposed as temperature and pH 32 

proxies in terrestrial settings. Nevertheless, the existing correlations between pH/temperature 33 

and indices derived from 3-OH FA distribution (RIAN, RAN15 and RAN17) are based on a small 34 

soil dataset (ca. 70 samples) and only applicable regionally. The aim of this study was to 35 

investigate the applicability of 3-OH FAs as mean annual air temperature (MAAT) and pH 36 

proxies at the global level. This was achieved using an extended soil dataset of 168 topsoils 37 

distributed worldwide, covering a wide range of temperatures (5°C to 30°C) and pH (3 to 8). 38 

The response of 3-OH FAs to temperature and pH was compared to that of established branched 39 

GDGT-based proxies (MBT’5Me/CBT). Strong linear relationships between 3-OH FA-derived 40 

indices (RAN15, RAN17 and RIAN) and MAAT/pH could only be obtained locally, for some of 41 

the individual transects. This suggests that these indices cannot be used as paleoproxies at the 42 

global scale using simple linear regression models, in contrast with the MBT’5Me and CBT. 43 

However, strong global correlations between 3-OH FA relative abundances and MAAT/pH 44 

were shown by using other algorithms (multiple linear regression, k-NN and random forest 45 

models). The applicability of the three aforementioned models for paleotemperature 46 

reconstruction was tested and compared with the MAAT record from a Chinese speleothem. 47 
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The calibration based on the random forest model appeared to be the most robust. It generally 48 

showed similar trends with previously available records and highlighted known climatic events 49 

poorly visible when using local 3-OH FA calibrations. Altogether, these results demonstrate 50 

the potential of 3-OH FAs as paleoproxies in terrestrial settings. 51 

 52 

 Keywords: 3-hydroxy fatty acids; branched GDGTs; soils; global calibration; temperature and 53 

pH proxy 54 
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1. Introduction 57 

Investigating past climate variations is essential to understand and predict future 58 

environmental changes, especially in the context of global anthropogenic change. Direct 59 

records of environmental parameters are available for the last decades, the so-called 60 

"instrumental" period. Beyond this period, proxies can be used to obtain indirect information 61 

on environmental parameters. A major challenge is to develop reliable proxies which can be 62 

applied to continental environments in addition to marine ones. Indeed, available proxies have 63 

been mainly developed and used in marine settings, as the composition and mechanism of 64 

formation of marine sedimentary cores is less complex than in continental settings, which are 65 

highly heterogeneous. Several environmental proxies based on organic (e.g. the alkenone 66 

unsaturation index (Uk’
37 ; Brassell et al., 1986) and inorganic (Mg/Ca ratio and 18O/16O ratio of 67 

foraminifera; Emiliani, 1955; Erez and Luz, 1983) fossil remains were notably developed for 68 

the reconstruction of sea surface temperatures. 69 

Some of the existing proxies are based on membrane lipids synthesized by certain 70 

microorganisms (Eglinton and Eglinton, 2008; Schouten et al., 2013). These microorganisms 71 

are able to adjust the composition of their membrane lipids in response to the prevailing 72 

environmental conditions in order to maintain an appropriate fluidity and to ensure the optimal 73 

state of the cellular membrane (Singer and Nicolson, 1972; Sinensky, 1974; Hazel and 74 

Williams, 1990; Denich et al., 2003). The structure of glycerol dialkyl glycerol tetraethers 75 

(GDGTs), which are membrane lipids biosynthesized by archaea and some bacteria, is 76 

especially known to be related to environmental conditions. Archaeal GDGTs are constituted 77 

of isoprenoid alkyl chains ether-linked to glycerol, whereas bacterial GDGTs are characterized 78 

by branched alkyl chains instead of isoprenoid ones. The latter compounds are ubiquitous in 79 

terrestrial (Weijers et al., 2007; Peterse et al., 2012; De Jonge et al., 2014; Naafs et al., 2017) 80 

and aquatic environments (Peterse et al., 2009; Tierney and Russell, 2009; Sinninghe Damsté 81 

et al., 2009; Loomis et al., 2012; Peterse et al., 2015; Weber et al., 2015). These branched 82 

GDGTs (brGDGTs) are produced by still unidentified bacteria, although some of them may 83 

belong to the phylum Acidobacteria (Sinninghe Damsté et al., 2011, 2014, 2018). The analysis 84 

of brGDGTs in a large number of soils distributed worldwide showed that the relative 85 

distribution of these compounds is mainly related to mean annual air temperature (MAAT) and 86 

soil pH (Weijers et al., 2007; Peterse et al., 2012; De Jonge et al., 2014). Even though brGDGT 87 

proxies were largely investigated over the last 10 years (De Jonge et al., 2014; Dearing 88 

Crampton-Flood et al., 2020) and were applied to various paleorecords (e.g, Coffinet et al., 89 
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2018; Wang et al., 2020), new molecular proxies, independent of and complementary to 90 

brGDGTs, are needed to improve the reliability of temperature reconstructions in terrestrial 91 

settings.  92 

Recent studies have unveiled the potential of another family of bacterial lipids  ̶  3-93 

hydroxy fatty acids (3-OH FAs)  ̶  for temperature and pH reconstructions in terrestrial (Wang 94 

et al., 2016, 2018; Huguet et al., 2019) and marine (Yang et al., 2020) settings. 3-OH FAs with 95 

10 to 18 carbon atoms are specifically produced by Gram-negative bacteria and are bound to 96 

the lipopolysaccharide (LPS) by ester or amide bonds (Wollenweber et al., 1982; Wollenweber 97 

and Rietschel, 1990). Three types of 3-OH FAs can be distinguished, with either normal chains 98 

or branched chains, iso or anteiso.  99 

The analysis of 3-OH FAs in soils showed that the ratio of C15 or C17 anteiso 3-OH 100 

FA to normal C15 or C17 3-OH FA (RAN15 and RAN17 indices, respectively) were negatively 101 

correlated with MAAT along the three mountains investigated so far: Mts. Shennongjia (China; 102 

Wang et al., 2016), Rungwe and Majella ( Tanzania and Italy, respectively; Huguet et al., 2019). 103 

This suggests that Gram-negative bacteria producing these fatty acids respond to colder 104 

temperatures with an increase in anteiso-C15/C17 vs. n-C15/C17 3-OH FAs, in order to maintain 105 

a proper fluidity and optimal state of the bacterial membrane, the so-called homeoviscous 106 

adaptation mechanism (Sinensky, 1974; Hazel and Eugene Williams, 1990). Nevertheless, the 107 

relationships between RAN15 and MAAT along the three mountain transects showed the same 108 

slopes but different intercepts (Wang et al., 2016; Huguet et al., 2019), suggesting that regional 109 

or local RAN15 relations may be more appropriate to apply for temperature reconstructions in 110 

terrestrial settings. In contrast, a significant calibration between RAN17 and MAAT could be 111 

established using combined data from the three mountain regions (Wang et al., 2016; Huguet 112 

et al., 2019).  113 

Another index, defined as the cologarithm of the sum of anteiso and iso 3-OH FAs 114 

divided by the sum of normal homologues (RIAN index), was shown to be strongly negatively 115 

correlated with soil pH along the three aforementioned mountains (Wang et al., 2016; Huguet 116 

et al., 2020), reflecting a general relative increase in normal homologues compared to branched 117 

(iso and anteiso) ones with increasing pH. This mechanism was suggested to reduce the 118 

permeability and fluidity of the membrane for the cell to cope with lower pH (Russell et al., 119 

1995; Denich et al., 2003; Beales, 2004).  120 

3-OH FA indices were recently applied for the first time to the reconstruction of the 121 

temperature and hydrological changes over the last 10,000 years in a speleothem from China 122 

(Wang et al., 2018), showing the potential of 3-OH FAs as independent tools for environmental 123 
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reconstruction in terrestrial settings. A very recent study based on marine sediments from the 124 

North Pacific Ocean suggested that the distribution of 3-OH FAs could also be used to 125 

reconstruct sea surface temperature (Yang et al., 2020).   126 

Even though these results are promising, the linear regressions between pH/MAAT and 127 

3-OH FA indices in terrestrial environments are still based on a rather small dataset (ca. 70 soil 128 

samples; Wang et al., 2016; Huguet et al., 2019). The aim of this study was to investigate the 129 

applicability of 3-OH FAs as MAAT and pH proxies at the global level using an extended soil 130 

dataset and refined statistical tools. 3-OH FA distribution from 54 soils was determined in four 131 

globally distributed altitudinal transects (Tibet, Italy, Peruvian Andes and Chile) and was 132 

combined with data previously published by Wang et al. (2016; Mt Shennongjia, China), 133 

Huguet et al. (2019; Mt. Rungwe, Tanzania and Mt. Majella, Italy) and Véquaud et al. (2021; 134 

Mts. Lautaret-Bauges, France), leading to a total of 168 samples. In addition to linear 135 

regressions, non-parametric, machine learning models were used to improve the global 136 

relationships between 3-OH FA distribution and MAAT/pH. These models present the 137 

advantage of taking into account non-linear environmental influences, in line with the intrinsic 138 

complexity of the environmental settings. Finally, these new models were tested and compared 139 

by applying them to a speleothem archive (Wang et al., 2018) representing to date the only 140 

available MAAT record derived from 3-OH FA proxies in continental setting. As brGDGTs are 141 

the only microbial organic proxies which can be used for temperature and pH reconstructions 142 

in terrestrial settings so far, they can serve as a reference proxy to understand the temperature 143 

and pH dependency of 3-OH FAs analyzed in the same dataset. 3-OH FAs and brGDGTs have 144 

thus been concomitantly analyzed to assess their reliability and complementarity as independent 145 

temperature and pH proxies. 146 

 147 

 148 

2. Material and methods 149 

2.1. Soil dataset 150 

2.1.1. Study sites 151 

The dataset of the present study is comprised of the globally distributed surface soils 152 

previously analyzed for brGDGTs and 3-OH FAs and collected along 4 altitudinal transects: 153 

Mts. Shennongjia (China; Yang et al., 2015; Wang et al., 2016), Rungwe (Tanzania ; Coffinet 154 

et al., 2017; Huguet et al., 2019), Majella (Italy; Huguet et al., 2019) and Lautaret-Bauges 155 
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(France; Véquaud et al., 2021). This set was extended with surficial soils (0-10 cm) from 4 156 

additional altitudinal transects described below, located in Italy, Tibet, Peru and Chile (Table 157 

1). 158 

Soil samples were collected from 13 sites along Mount Pollino in the Calabria region 159 

(Italy) between 0 and 2,200 m above sea level (a.s.l.) (Table 1). Mt. Pollino is located in the 160 

calcareous Apennine range and is 2,248 m a.s.l. It is framed to the northwest by the Sierra de 161 

Prete (2,181 m high) and to the south by the Pollino Abyss. The alpine to subalpine area (above 162 

2,100 m a.s.l.) is characterized by the presence of Mediterranean grasslands (Festuca bosniaca, 163 

Carex kitaibeliana) and the presence of sinkholes (Todaro et al., 2007; Scalercio et al., 2014). 164 

The mountainous vegetation (over 1,200 m a.s.l.) is dominated by Fagus sylvatica forests and, 165 

at the treeline, by scattered Pinus leucodermis (Bonanomi et al., 2020). The soil is poorly 166 

developed and dominated by calcareous soils. Between 0 to 1,200 m a.s.l (Scalercio et al., 2014 167 

and reference therein), Mt. Pollino is characterized by the presence of Q. ilex forests or shrubs. 168 

Climate along this mountain is humid Mediterranean, with high summer temperatures and an 169 

irregular distribution of rainfall throughout the year with pronounced summer drought (39.5% 170 

in winter, 23.7% in spring, 29.2% in autumn, 7.6% in summer; average annual precipitation: 171 

1,570 mm; see Todaro et al., 2007). MAAT is comprised between 7 °C (2,200 m a.s.l) and 18 172 

°C (0 m a.s.l; Scalercio et al., 2014). MAAT along Mt. Pollino was estimated using a linear 173 

regression between two MAAT (16°C at 400 m a.s.l and 10°C at 1,600 m a.s.l.)  from the 174 

meteorological data (Castrovillari station) recorded by Scalercio et al. (2014). The pH of the 175 

soils analyzed in the present study ranges between 4.5 and 6.8 (Table 1). 176 

Soil samples were collected from 17 sites along along Mount Shegyla between 3,106 177 

and 4,474 m a.s.l. (southeastern Tibet, China), as previously described by Wang et al. (2015). 178 

Different climatic zonations are observed along this high-altitude site (2,700 to 4,500 m a.s.l): 179 

(i) a mountainous temperate zone between 2,700 and 3,400 m, (ii) a subalpine cold temperate 180 

zone between 3,400 and 4,300 m and (iii) a cold alpine zone above 4,300 m. Plant species, such 181 

as brown oak (Q. semecarpifolia) or common fir (Abies alba) are abundant within the 182 

mountainous and subalpine levels. In the cold subalpine zone, the Forrest’s fir (Abies georgei 183 

var. smithii) is endemic to western China. In the cold alpine zone, coniferous species (Sabina 184 

saltuaria) as well as species typical of mountainous regions such as Rhododendron are 185 

observed. MAAT was estimated using a linear regression between 7 measured MAAT from the 186 

data recorded by Wang et al. (2015). The average MAAT along the transect is 4.6°C, with a 187 

minimum of 1.1 °C at ca. 4,500 m a.s.l. and a maximum of 8.9 °C at ca. 3,100 m a.s.l. (Table 188 

1). Soil pH ranges between 4.6 and 6.4 (Table 1). 189 
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Soils were sampled from 14 sites in the Peruvian Andes along the Kosñipata transect, 190 

located in south-eastern Peru, in the upper part of the Madre de Dios/Madeira watershed, east 191 

of the Andes Cordillera (Nottingham et al., 2015). This transect (190 m to 3,700 m a.s.l) is well-192 

documented and is the object of numerous ecological studies (Malhi et al., 2010; Nottingham 193 

et al., 2015). There is a shift in vegetation zonation with increasing elevation, from tropical 194 

lowland forest to montane cloud forest and high-elevation ‘Puna’ grassland. The tree line lies 195 

between 3,200 and 3,600 m a.s.l. For the 14 sites sampled in this study, the lower 13 sites are 196 

forest and the highest site is grassland. The 14 sites are part of a network of 1 ha forest plots 197 

(Nottingham et al., 2015); for each 1 ha plot, 0-10 cm surface soil was sampled from 5 198 

systematically distributed locations within each 1 ha plot. Mean annual precipitation does not 199 

vary significantly with altitude (mean =2448 mm.y-1, SD = 503 mm.y-1; Rapp and Silman, 2012; 200 

Nottingham et al., 2015). MAAT is comprised between 26.4 °C at 194 m altitude and 6.5°C at 201 

3644 m altitude (Table 1). The pH is characteristic of acidic soils (3.4 - 4.7; Table 1). Further 202 

information on these sites and soils is available in Nottingham et al. (2015). 203 

Soil samples were collected from 10 sites between 690 m and 1,385 m a.s.l.  from the 204 

lake shore (20 to 50 m offshore) of 10 Andean lakes located in Chile (38–39°S) within the 205 

temperate forest (Table 1). High-frequency measurements of MAAT over a period of one year 206 

are available for the different sampling sites. MAAT is comprised between 5.75°C and 9.2°C. 207 

Soil pH ranges between 4.4 and 6.8 (Table 1). 208 

 209 

2.1.2. pH measurement 210 

Following sampling, soils were immediately transported to the laboratory and stored at 211 

-20 °C. Soil samples from the Peruvian Andes, Mt. Pollino and Mt. Shegyla were then freeze-212 

dried, ground and sieved at 2 mm. The pH of the freeze-dried samples was measured in 213 

ultrapure water with a 1:2.5 soil water ratio. Typically, 10 ml of ultrapure water were added to 214 

4 g of dry soil. The soil solution was stirred for 30 min, before decantation for 1 hand pH 215 

measurement (Carter et al., 2007). 216 

 217 

2.2. Lipid analyses 218 

BrGDGTs and 3-OH FAs were analyzed in all samples from the Peruvian Andes, 219 

Chilean Andes, Mt. Pollino and Mt. Shegyla.  220 

 221 

 222 
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2.2.1. 3-OH FA analysis 223 

Sample preparation for 3-OH FA analysis was identical to that reported by Huguet et 224 

al. (2019) and Véquaud et al. (2021). Soil samples were subjected to acid hydrolysis (3 M HCl) 225 

and extracted with organic solvents. This organic fraction was then rotary-evaporated, 226 

methylated in a 1M HCl-MeOH solution at 80 °C for 1 h and separated into three fractions over 227 

an activated silica column: (i) 30 ml of heptane/EtOAc (98: 2), (ii) 30 ml of EtOAc and (iii) 30 228 

ml of MeOH. 3-OH FAs contained in the second fraction were derivatized at 70°C for 30 min 229 

with a solution of N,O- bis(trimethylsilyl)trifluoroacetamide (BSTFA) – Trimethylchlorosilane 230 

(TMCS) 99:1 (Grace Davison Discovery Science, USA) before gas chromatography-mass 231 

spectrometry (GC-MS) analysis. 232 

3-OH FAs were analyzed with an Agilent 6890N GC-5973N using a Restek RXI-5 Sil 233 

MS silica column (60 m × 0.25 mm, i.d. 0.25 μm film thickness), as previously described 234 

(Huguet et al., 2019). 3-OH FAs were quantified by integrating the appropriate peak on the ion 235 

chromatogram and comparing the area with an internal standard (3-hydroxytetradecanoic acid, 236 

2,2,3,4,4-d5; Sigma-Aldrich, France). The internal standard (0.5 mg/ml) was added just before 237 

injection as a proportion of 3 µl of standard to 100 µl of sample, as detailed by Huguet et al. 238 

(2019). The different 3-OH FAs were identified based on their retention time, after extraction 239 

of the characteristic m/z 175 fragment (m/z 178 for the deuterated internal standard; cf. Huguet 240 

et al., 2019). 241 

The RIAN index was calculated as follows (Wang et al., 2016 ; Eq. 1) in the range 242 

C10-C18 : 243 

 RIAN = -log[(I + A)/ N]      (1) 244 

where I, A, N represent the sum of all iso, anteiso and normal 3-OH FAs, respectively.  245 

 246 

RAN15 and RAN17 indices are defined as follows (Wang et al., 2016; Eq. 2 and 3): 247 

RAN15 = [ anteiso C15] / [normal C15] (2) 248 

RAN17 = [ anteiso C17] / [normal C17] (3) 249 

Analytical errors associated with the calculation of RIAN, RAN15 and RAN17 indices 250 

are respectively 0.006, 0.3 and 0.2 based on the analysis of one sample injected nine times 251 

during the analysis and five samples injected in triplicates. 252 

 253 

 2.2.2. brGDGT analysis 254 

Sample preparation for brGDGT analysis was similar to that reported by Coffinet et 255 

al. (2014). Briefly, ca. 5-10 g of soil was extracted using an accelerated solvent extractor (ASE 256 
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100, Dionex-ThermoScientific, USA) with a dichloromethane (DCM) / methanol (MeOH) 257 

mixture (9: 1) for 3×5 min at 100 °C and a pressure of 100 bars in 34 ml cells. The total lipid 258 

extract was rotary evaporated and separated into two fractions of increasing polarity on a 259 

column of activated alumina: (i) 30 ml of heptane: DCM (9: 1, v:v) ; (ii) 30 ml of DCM: MeOH 260 

(1: 1, v:v). GDGTs are contained in the second fraction, which was rotary evaporated. An 261 

aliquot (300 µL) was re-dissolved in heptane and centrifuged using an Eppendorf MiniSpin 262 

centrifuge (Eppendorf AG, Hamberg, Germany) at 7000 rpm for 1 min. 263 

GDGTs were then analyzed by high pressure liquid chromatography coupled with 264 

mass spectrometry with an atmospheric pressure chemical ionisation source (HPLC-APCI-MS) 265 

using a Shimadzu LCMS 2020. GDGT analysis was performed using two Hypersil Gold silica 266 

columns in tandem (150 mm × 2.1 mm, 1.9 μm; Thermo Finnigan, USA) thermally controlled 267 

at 40 °C, as described by Huguet et al. (2019). This methodology enables the separation of 5- 268 

and 6-methyl brGDGTs. Semi-quantification of brGDGTs was performed by comparing the 269 

integrated signal of the respective compound with the signal of a C46 synthesized internal 270 

standard (Huguet et al., 2006) assuming their response factors to be identical. 271 

The MBT’5Me index, reflecting the average number of methyl groups in 5-methyl 272 

isomers of GDGTs and considered as related to MAAT, was calculated according to De Jonge 273 

et al. (2014; Eq. 4):  274 

 275 

MBT’5Me =  
[𝐼𝑎+𝐼𝑏+𝐼𝑐]

[𝐼𝑎+𝐼𝑏+𝐼𝑐]+ [𝐼𝐼𝑎+𝐼𝐼𝑏+𝐼𝐼𝑐]+[𝐼𝐼𝐼𝑎] 
  (4) 276 

 277 

The CBT’ index, reflecting the average number of cyclopentyl rings in GDGTs and 278 

considered as related to pH, was calculated as follows (De Jonge et al., 2014; Eq. 5 ): 279 

 280 

𝐶𝐵𝑇′ = log  ( 
[𝐼𝑐]+[𝐼𝐼𝑎′]+[𝐼𝐼𝑏′]+[𝐼𝐼𝑐′]+[𝐼𝐼𝐼𝑎′]+[𝐼𝐼𝐼𝑏′]+[𝐼𝐼𝐼𝑐′]

[𝐼𝑎]+[𝐼𝐼𝑎+𝐼𝐼𝐼𝑎]
)                       (5) 281 

 282 

The Roman numerals correspond to the different GDGT structures presented in De 283 

Jonge et al. (2014). The 6-methyl brGDGTs are denoted by an apostrophe after the Roman 284 

numerals for their corresponding 5-methyl isomers. Analytical errors associated with the 285 

calculation of MBT’5Me and CBT’ indices are 0.015 and 0.02 respectively, based on the analysis 286 

of three samples in triplicate among the 44 soil samples. 287 

 288 
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2.3. Statistical analysis 289 

In order to investigate the correlations between environmental variables (pH, MAAT) 290 

and the relative abundances of bacterial lipids (brGDGTs and 3-OH FAs) or the indices based 291 

on these compounds, pairwise correlation matrices were performed in addition to single or 292 

multiple linear regressions. As the dataset is not normally distributed, Spearman correlation was 293 

used with a confidence level of 5%.  294 

Principal component analyses (PCA) were performed on the different soil samples to 295 

statistically compare the 3-OH FA/brGDGT distributions along the different altitudinal 296 

transects. The fractional abundances of the bacterial lipids (3-OH FAs and brGDGTs) were 297 

used for these PCAs, with MAAT, pH and location of the sampling site representing 298 

supplementary variables (i.e. not influencing the principal components of the analysis). 299 

Independent models should be used for the development of environmental calibrations, 300 

as each of them has its own advantages and limits. Linear regression methods are simple to use 301 

but many of them suffer from the phenomenon of regression dilution, as previously noted 302 

(Naafs et al., 2017; Dearing Crampton-Flood et al., 2020). That is why other models than 303 

ordinary least squares or single/multiple regression were also proposed in this study (cf. section 304 

4.2. for discussion of the models): the k-nearest neighbor (k-NN) and random forest models. 305 

These models are based on machine-learning algorithms, which are built on a proportion of the 306 

total dataset (randomly defined, i.e., training dataset) and then tested on the rest of the dataset, 307 

considered as independent (test dataset).  308 

The k-NN model is based on the estimation of the mean distances between the different 309 

samples. This is a supervised learning method (e.g. Gangopadhyay et al., 2009). A training 310 

database composed of N "input-output" pairs is initially constituted to estimate the output 311 

associated with a new input x. The method of the k-neighbors takes into account the k training 312 

samples whose input is the closest to the new input x, according to a distance to be defined. 313 

This method is non-parametric and is used for classification and regression. In k-NN regression, 314 

the result is the value for this object, which is the average of the values of the k nearest 315 

neighbors. Its constraints lie in the fact that, by definition, if a range of values is more frequent 316 

than the others, then it will be statistically predominant among the k closest neighbors. To 317 

overcome this limitation of the k-NN method, data selection was performed randomly on the 318 

dataset with a stratification modality according to the MAAT or the pH. This approach allows 319 

to limit the impact of extreme values as detailed below.  320 

 321 
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The random forest algorithm is also a supervised learning method used, among other 322 

things, for regressions (e.g. Ho, 1995; Breiman, 2001; Denisko and Hoffman, 2018;). This 323 

model works by constructing a multitude of decision trees at training time and producing the 324 

mean prediction of the individual trees. Decision tree learning is one of the predictive modeling 325 

approaches used to move from observations to conclusions about the target value of an item. 326 

Decision trees where variables are continuous values are called regression trees.  327 

The training phase required for the random forests, k-NN and multiple linear 328 

regression was performed on 75% of the sample set with an iteration of ten cross-validations 329 

per model. Data selection was performed randomly on the dataset (with no pre-processing of 330 

the individual 3-OH FAs) but with a stratification modality according to the MAAT or the pH 331 

to limit the impact of extreme values on the different models used.  Then, the robustness and 332 

precision of the different models were tested on the remaining 25 % of samples, considered as 333 

an independent dataset. Simple and Multiple linear regressions, PCA, k-NN and random forest 334 

models were performed with R software, version 3.6.1 (R Core Team, 2014) using the packages 335 

- tidymodels (version 0.1.0)- kknn (version 1.3.1), ranger (version 0.11.2). A web application 336 

is available online (https://athibault.shinyapps.io/paleotools) for the reconstruction of 3-OH 337 

FA-derived MAAT using the machine learning models proposed in the present study. 338 

 339 

 340 

3. Results 341 

3.1. Distribution of bacterial lipids  342 

3.1.1. 3-OH FAs  343 

3-OH FAs were identified in the whole dataset, representing eight elevation transects 344 

and 168 samples (Supplementary table 1; Yang et al., 2015; Wang et al., 2016; Coffinet et al., 345 

2017; Huguet et al., 2019; Véquaud et al., 2021). Their chain lengths range between 8 and 26 346 

C atoms, indicating that these compounds have various origins (bacteria, plants, and fungi; 347 

Zelles, 1999; Wang et al., 2016 and reference therein). The homologues of 3-OH FAs with 10 348 

to 18 C atoms are considered to be produced exclusively by Gram-negative bacteria 349 

(Wollenweber and Rietschel, 1990; Szponar et al., 2003) and will be the only ones considered 350 

in the following. Compounds with an even carbon number and normal chains were the most 351 

abundant 3-OH FAs in all samples (mean 67.9 % of the total 3-OH FAs, Standard Deviation 352 

(SD) 6.8%), with a predominance of the n-C14 homologue (21.9%, SD 3.23%; Fig. 1). Iso (mean 353 

https://athibault.shinyapps.io/paleotools
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22.9%, SD 5.01%) and anteiso (mean 6.33 %, SD 1.79%) isomers were also present. It must be 354 

noted that anteiso isomers were only detected for odd carbon-numbered 3-OH FAs (Yang et 355 

al., 2015; Wang et al., 2016; Coffinet et al., 2017; Huguet et al., 2019).  356 

The distribution of 3-OH FAs in the soils of the different altitudinal transects did not 357 

show a large variability (Fig. 1). Thus, there was no major difference in the relative abundances 358 

of most of the 3-OH FAs (i-C11, a-C11, n-C11, i-C12, a-C13, n-C13, i-C14, n-C15, i-C16, a-C17 and 359 

n-C17) between the 8 study sites, even though slight differences could be observed for some 360 

compounds as detailed below. For example, the Peruvian samples were characterized by higher 361 

average proportions of n-C18 3-OH FA and lower contribution of the n-C10 and n-C12 362 

homologues than those from the other transects. Soils from Mt. Shegyla were characterized by 363 

lower average proportions of n-C14 3-OH FAs and higher abundances of i-C17 compounds 364 

compared to the other transects (Fig. 1).  365 

 366 

3.1.2. brGDGTs  367 

The relative abundances of brGDGTs were compared between the same transects as 368 

for 3-OH FAs, representing a total of 168 samples. The 5- and 6-methyl isomers were separated 369 

in most of the samples (Fig. 2, Supp. Table 2), except in older dataset, i.e. soils from Mt. 370 

Rungwe (Coffinet et al., 2014, 2017). BrGDGT data from Mt. Rungwe will not be further 371 

considered in this study. 372 

The brGDGT distribution was dominated by acyclic compounds (Ia, IIa, IIa’, IIIa, 373 

IIIa’) which represent on average ca. 83.4% of total brGDGTs (SD = 14.5%; Fig. 2). The 374 

tetramethylated (Ia-c; mean 39.3%, SD of 20.5%) and the pentamethylated (IIa-c; 44.8%, SD 375 

12.8%) brGDGTs were predominant over the hexamethylated ones (IIIa-c; Fig. 2). The 5-376 

methyl isomers were on average present in a higher proportion (mean 71.9%, SD 23.4%) than 377 

the 6-methyl compounds (Fig. 2). 378 

 High variability of the brGDGT distribution was observed among the different 379 

transects. The relative abundance of brGDGT Ia was much higher in the Peruvian soils (mean 380 

83%, SD 12.6%) than in the other transects (mean between 17.3% and 61.7%; Fig. 2).  The 5-381 

methyl isomers were more abundant than the 6-methyl isomers for all sites except for Mt. 382 

Pollino (mean 5-methyl = 44%, SD=11.7%) and Mt. Majella (mean 5-methyl = 33.7 %, SD = 383 

5.5%; Fig. 2). 384 

 385 
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3.2. 3-OH FA and brGDGT-derived indices 386 

3.2.1. 3-OH FA 387 

The RIAN index varied between 0.1 and 0.8 among the eight elevation transects (Table 388 

1). The RIAN index ranged from 0.37 to 0.67 for the Peruvian Andes, 0.23 to 0.56 for Mt. 389 

Shegyla, 0.15 to 0.34 for Mt. Pollino, 0.21 to 0.53 for the Chilean Andes, 0.26 to 0.80 for Mt. 390 

Rungwe (Huguet et al., 2019), 0.16 to 0.46 for Mt. Majella (Huguet et al., 2019), 0.20 to 0.69 391 

for Mt. Shennongjia (Wang et al., 2016) and 0.13 to 0.56 for the French Alps (Véquaud et al., 392 

2021). 393 

The RAN15 varied greatly among the different sites (Table 1). It was in the same range 394 

along Mts. Rungwe (1.04-5.73) and Majella (0.68-6.43; Huguet et al., 2019). In contrast, its 395 

upper limit was higher for Mts. Shennongjia (0.68-10.18; Wang et al., 2016), Shegyla (4.07-396 

12.17), Pollino (2.41-10.26), the Peruvian Andes (2.45-13.77) and the French Alps (1.44-397 

12.26). The range of variation in RAN15 was narrower for the Chilean Andes (3.82-6.40). 398 

The RAN17 values were similar among the different altitudinal transects (Table 1), 399 

ranging from 1.72 to 3.90 along Mt. Shegyla, 0.73 to 4.75 along Mt. Majella (Huguet et al., 400 

2019), 1.19 to 4.54 along Mt. Pollino, 1.91 to 4.25 for the Chilean Andes and 1.12 to 3.57 along 401 

Mt. Shennongjia (Wang et al., 2016). The range of RAN17 values was narrower for Mt. Rungwe 402 

(0.33-1.62; Huguet et al., 2019) and the Peruvian Andes (0.61-2.39) and wider for the French 403 

Alps (0.89-6.42; Véquaud et al., 2021) compared to the other sites. 404 

 405 

3.2.2. brGDGT 406 

The range of variation in the MBT’5Me index was homogeneous along most transects 407 

(0.32-0.63; Table 1), except the Peruvian Andes, with higher values (0.58-0.98; Table 1). 408 

Regarding the CBT’ index, it showed similar ranges along Chilean Andes (-2.28 to -0.32) and 409 

Mt. Shegyla (-2.39 to -0.35; Table 1). This index showed different ranges of variations along 410 

the other altitudinal transects, Mts. Shennongjia (-1.18 to 0.50; Yang et al., 2015), Pollino (-411 

0.24 to 0.43) and Peruvian Andes (-1.91 to -1.09).  Finally, The CBT’ values varied within a 412 

narrow range along Mt.Majella (0.23-0.59; Huguet et al., 2019) and within a wide range along 413 

the French Alps (-2.29 to 0.52 ; Véquaud et al., 2021).  414 

 415 
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3.3. Principal component analysis and clustering of 3-OH FA and brGDGT 416 

distribution 417 

Principal component analyses were performed to refine the comparison of bacterial 418 

lipid distribution (3-OH FAs and brGDGTs) among the different altitudinal transects.  419 

 420 

3.3.1. 3-OH FA 421 

The first two axes of the 3-OH FA PCA explained 39.1% of the total variance in the 422 

dataset (Fig. 3a).  Dimension 1 (23.9%) opposed samples from Mt. Pollino in the right quadrant 423 

to Peruvian soils and samples from Mt. Shennongjia. Dimension 2 (15.2%) especially separated 424 

individuals from Chile and Mt. Rungwe. The Wilks' test showed that the location of the 425 

sampling sites was the best variable discriminating the distribution of the individuals in the 426 

PCA.  427 

Principal component analysis performed on the temperature (RAN15, RAN17) and pH 428 

(RIAN) indices derived from 3-OH FAs showed that most of the variance was carried by the 429 

first two axes of the PCA (Axis 1 = 56.09%; Axis 2 = 35.29%; Supp. Fig. 2). The first axis was 430 

highly correlated with the RAN15 (r = 0.87) and RAN17 (r = 0.93) as well as with MAAT (r=-431 

0.67), while Axis 2 showed strong correlations with the RIAN (r = 0.96) and pH (r = -0.61). 432 

The PCA allowed visualizing relationships at the scale of the whole dataset, between MAAT 433 

and RAN15 and RAN17 (r= -0.61; r = -0.64 respectively) and between pH and RIAN (r = -0.53). 434 

 435 

3.3.2. brGDGT 436 

The first two axes of the brGDGT PCA explained 57.7% of the total variance in the 437 

dataset (Fig. 3b). Dimension 1 (42.6%) strongly discriminated soils from Mt. Majella and, to a 438 

lesser extent, Mt. Pollino, in the right quadrant from those from Mt. Shegyla, Peruvian Andes 439 

and Chilean Andes in the left quadrant. Mts Majella and Pollino were also discriminated 440 

negatively along dimension 2 (15.1%). Samples from Mts. Shennongjia and Lautaret-Galibier 441 

were distributed over the entire PCA. As for the 3-OH FAs, Wilks' test showed that the location 442 

of the sampling sites was the best variable discriminating the distribution of the brGDGTs in 443 

the PCA.  444 

  445 
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4. Discussion 446 

4.1. 3-OH FA and brGDGT-derived proxies 447 

Previous studies conducted on soils from individual altitudinal transects revealed (1) 448 

local linear relationships between MAAT/pH and 3-OH FA indices and (2) the potential for 449 

combined calibrations using simple linear regressions (Wang et al., 2016; Huguet et al., 2019; 450 

Véquaud et al., 2021). In the present study, the existence of linear relationships between 3-OH 451 

FA-derived indices and environmental variables was further investigated using an extended soil 452 

dataset and the corresponding results were compared with those derived from the brGDGTs, 453 

used as an established reference proxy.  454 

 455 

4.1.1. Relationships between pH and bacterial lipid-derived proxies 456 

The relationship between RIAN and pH was investigated along each of the altitudinal 457 

transects (Fig. 4a; Supp. Table 3). No significant linear relationship was obtained for the 458 

Peruvian Andes, Mts. Rungwe, Pollino and Majella (Huguet et al., 2019) and weak to moderate 459 

correlations were observed along Mts. Shegyla and Lautaret-Bauges (R2 = 0.29-0.46; Supp. 460 

Table 3). In contrast, strong regressions between RIAN and pH were observed along Mt. 461 

Shennongjia (R2 = 0.71) and in Chilean Andes (R2 = 0.66). A weak linear relationship between 462 

RIAN and pH (R²=0.34; RMSE = 0.99; p = 7.39 × 10-17) was also obtained when considering 463 

the 168 samples for the eight elevation transects altogether. Therefore, our results confirm the 464 

general influence of pH on the relative abundance of 3-OH FAs (Huguet et al., 2019) but 465 

suggest that strong linear correlations between RIAN and pH can only be obtained (i) at a local 466 

level and (ii) only for some of the sites.  467 

As previously suggested (Huguet et al., 2019), the absence or weakness of linear 468 

correlations between RIAN and pH may be at least partly due to the small range of variation of 469 

pH (<2 units) along some mountains, such as Mts. Rungwe, Majella, and the Peruvian Andes 470 

(Fig. 4a; Table 1, Huguet et al., 2019). Transects for the Peruvian Andes and Mt. Majella were 471 

also characterized by the absence of relationships between pH and the brGDGT-derived CBT’ 472 

index, supporting the hypothesis that narrow pH ranges limit the potential of obtaining linear 473 

relationships between indices based on bacterial lipids and pH. Nevertheless, the existence of a 474 

narrow pH range was not the only limiting factor in obtaining a strong linear regression between 475 

RIAN and pH. Indeed, MAAT rather than soil pH was the dominant driver of soil bacterial 476 

diversity and community composition for the Peruvian transect (using 16S rRNA sequencing 477 

(Nottingham et al., 2018); and using phospholipid fatty acids (Whitaker et al., 2014)), consistent 478 



16 

 

with the weak correlation between soil pH and bacterial lipids. The weakness of the RIAN-pH 479 

relationship may also be partly due to the heterogeneity of soils encountered along a given 480 

altitudinal transect, representing specific microenvironments and to the large diversity of 481 

bacterial communities in soils from different elevations (Siles and Margesin, 2016). The 482 

distribution of 3-OH FAs varies greatly among Gram-negative bacterial species (Bhat and 483 

Carlson, 1992) which may account for the significant variability in RIAN values observed in 484 

soils from a given transect. Altogether, these results suggest that linear models are not the most 485 

suitable for establishing a global calibration between RIAN and pH in soils.  486 

Concerning GDGTs, moderate to strong relationships between brGDGT-derived CBT’ 487 

index and pH were observed along 5 of the 7 altitudinal transects investigated (Fig. 4b; Supp. 488 

Table 3). All the individual linear relationships between CBT’ and pH, where present, had 489 

similar slopes and ordinates and share (for most of the samples) the same 95% confidence 490 

intervals (p-value <0.5). This resulted in a strong linear relationship between CBT’ index and 491 

pH values for the dataset (R² = 0.68; RMSE = 0.71; n = 140), which is weaker than the global 492 

calibration (R2 = 0.85; RMSE = 0.52; n = 221) proposed by De Jonge et al. (2014).  493 

The discrepancy in relationships between temperature and brGDGTs and 3-OH FAs might 494 

partly be due to differences in the relative abundance of these lipids among bacterial 495 

communities. The brGDGTs are produced by a more restricted and less diverse number of 496 

bacterial species than 3-OH FAs, which are arguably biosynthesized by a large diversity of 497 

Gram-negative bacteria species (e.g. Wakeham et al., 2003, Zelles et al., 1995; Zelles, 1999). 498 

So far, only bacteria from the Acidobacteria phylum were identified as putative brGDGT 499 

producers in soils (Sinninghe Damsté et al., 2018). The hypothetical lower diversity of brGDGT 500 

producers, in contrast with 3-OH FAs might explain the more homogenous response and lower 501 

scatter of the relationships between pH and CBT’ index. Moreover, the CBT’ index is a ratio 502 

based on a restricted number of compounds, representing the direct dependence of the degree 503 

of cyclisation of bacterial GDGTs on pH. Conversely, the RIAN index is calculated from the 504 

relative abundances of all the individual 3-OH FAs between C10 and C18 (Wang et al., 2016). It 505 

cannot be ruled out that some of the compounds used to calculate the RIAN index are 506 

preferentially synthesized, as part of the homeoviscous mechanism, in response to 507 

environmental variables other than pH. This calls for a better understanding of the ecology of 508 

3-OH FA-producing bacteria and their adaptation mechanisms.  509 

  510 
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4.1.2 Relationships between MAAT and bacterial lipid-derived proxies 511 

RAN15 was previously shown to be correlated with MAAT along Mts. Rungwe, 512 

Majella and Shennongjia (Wang et al., 2016; Huguet et al., 2019). Moderate to strong linear 513 

correlations (R2 =0.49-0.79) between RAN15 and MAAT were also observed along most of the 514 

individual transects investigated (Fig. 5a; Supp. Table 3, except along the Chilean and Lautaret-515 

Bauges transects. The individual correlations do not share the same 95% confidence intervals 516 

and even when some of them present similar slopes, the regression lines display significantly 517 

different intercepts (p-value > 0.05) (Fig. 5a).  This supports the hypothesis of a site-dependent 518 

effect of the linear RAN15-MAAT relationship previously made by Huguet et al. (2019).  519 

Similarly, to RAN15, RAN17 was moderately to strongly correlated (R2 =0.53-0.81) 520 

with MAAT along 5 out of 8 individual transects (Fig. 5b; Supp. Table 3). The small range of 521 

variation in MAAT along the Chilean transect (6.0-9.2 °C) (Table 1), associated with that of 522 

the RAN15 /RAN17, could explain the lack of a linear relationship between the MAAT and these 523 

indices. As for the French Alps (Mts Lautaret-Bauges), the influence of local environmental 524 

parameters (pH and to a lesser extent soil moisture and grain size, related to vegetation and soil 525 

types, or thermal regimes associated with the snow cover) on 3-OH FA distribution was shown 526 

to be predominant over that of MAAT (Véquaud et al., 2021). In contrast with RAN15, the linear 527 

regressions between RAN17 and MAAT along Mts. Shegyla, Shennongjia, Rungwe and the 528 

Peruvian Andes transects share confidence intervals at 95% and have similar slope and intercept 529 

values (p-value <0.05; Fig. 5b; Supp. Table 3), suggesting that RAN17 could be a more effective 530 

global proxy for MAAT reconstructions than RAN15. 531 

In order to test the hypothesis that RAN17, rather than RAN15, is a more effective 532 

global proxy for MAAT, the global calibrations between RAN15/RAN17 and MAAT based on 533 

the entire soil dataset (n = 168) were compared. The two linear regressions had similar moderate 534 

determination coefficients (R² = 0.37 and 0.41 for RAN15 and RAN17, respectively) and similar 535 

high RMSE (RMSE = 5.46°C and 5.28°C for RAN15 and RAN17, respectively; Supp. Table 3). 536 

For all transects (except for the Mt Majella RAN17/MAAT relationship), the individual local 537 

regressions between RAN15/RAN17 and MAAT outperformed the proposed global linear 538 

calibrations in terms of determination coefficients (0.49-0.81) and RMSE (1.98-3.57 °C; Supp. 539 

Table 3), suggesting that local rather than global linear transfer functions based on RAN15 or 540 

RAN17 may be more appropriate for paleotemperature reconstructions in soils. 541 

The difficulties in establishing global linear RAN15/RAN17-MAAT calibrations may 542 

partly be due to the fact that microbial diversity, especially for 3-OH FA-producing Gram-543 

negative bacteria (Margesin et al., 2009; Siles and Margesin, 2016), can vary greatly from one 544 
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soil to another, resulting in variation of the RAN15/RAN17 indices, as also assumed for the 545 

RIAN. The strong regional dependence of the 3-OH FA distribution may thus explain the weak 546 

correlation between 3-OH FA-derived indices (RAN15, RAN17 and RIAN) and environmental 547 

variables (MAAT/pH) at a global level. This regional dependency was further supported by the 548 

PCA of the relative abundance of 3-OH FAs across the global dataset, which showed that the 549 

individuals were grouped based on the sampling location (Fig. 3a). 550 

In addition to 3-OH FAs, the relationships between brGDGT distribution and MAAT 551 

were investigated along the seven transects for which the 5- and 6-methyl brGDGT isomers 552 

were separated (Mts Shegyla, Pollino Majella, Lautaret-Bauges, Shennongjia, Peruvian Andes 553 

and Chilean Andes). These individual transects showed moderate to strong relationships 554 

between MAAT and MBT’5Me (R² 0.35-0.89; Fig. 6 and Supp. Table 3), with similar slopes and 555 

ordinates (except for the Peruvian Andes) and shared 95% confidence intervals for most of the 556 

samples. A distinct relationship between MBT’5Me and MAAT was observed along the Peruvian 557 

Andes and Mt Majella transects (Fig. 6a), as also observed for the RIAN and RAN15 indices 558 

(Figs 4a and 5a). The singularity of the Peruvian soils is also visible on the PCA performed on 559 

the brGDGT distribution (Fig. 3b), where the samples from this region are pooled separately 560 

from the rest of the dataset. This specific trend is difficult to explain, even though the Peruvian 561 

Andes are subjected to warmer climatic conditions (Table 1) than the other temperate transects, 562 

which may in turn affect the nature of the microbial communities encountered in the soils and 563 

the bacteria lipid distribution (Siles and Margesin, 2016; Hofmann et al., 2016; De Jonge et al., 564 

2019). 565 

A moderate linear relationship between MAAT and MBT’5Me (MAAT = 24.5 × MBT'5Me 566 

-4.78; R² = 0.57, RMSE = 3.39 °C, n = 140; Supp. Table 3) was observed after combining the 567 

data for the seven aforementioned altitudinal transects. This global relationship follows a 568 

similar trend as the calibration proposed by De Jonge et al. 2014 (MAAT = 31.45 × MBT'5Me - 569 

8.57) and is more robust and accurate than those obtained between the RAN15/RAN17 and 570 

MAAT (Supp. Table 3). This confirms that the MBT’5Me index can be applied at a global scale 571 

using a simple linear regression model as previously shown (De Jonge et al., 2014; Naafs et al., 572 

2017), in contrast with the RAN15 and RAN17 proxies, for which only strong local calibrations 573 

with MAAT were found.  574 

As a similar conclusion was obtained for the RIAN-pH proxy, it appears necessary to use 575 

more complex models to develop global calibrations between 3-OH FA-derived proxies and 576 

MAAT/pH. This novel method allows taking into account the complexity and specificity of 577 

each environmental site.  578 
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4.2. Development of new models for the reconstruction of MAAT and pH from 3-579 

OH FA 580 

Several complementary methods were recently used to derive calibrations with 581 

environmental parameters from organic proxies. Most calibrations between lipid distribution 582 

and environmental variables were based on simple linear regression models, most often the 583 

ordinary least square regression (e.g. for brGDGTs: De Jonge et al., 2014; Wang et al., 2016),  584 

as it is simple and easy to implement and understand. Other linear models, such as Deming 585 

regression (Naafs et al., 2017) or Bayesian regression (Tierney and Tingley, 2014; Dearing 586 

Crampton-Flood et al., 2020) were also used. Nevertheless, these single linear regression 587 

methods rely on a given index (e.g. MBT’5Me or CBT’ for brGDGTs) which is correlated with 588 

environmental parameters. This represents a limitation, as the relative distribution of bacterial 589 

lipids can be concomitantly influenced by several environmental parameters (e.g. Véquaud et 590 

al., 2021) and can also depend on the diversity of the bacteria producing these compounds 591 

(Parker et al., 1982; Bhat and Carlson, 1992; Zelles, 1999). In contrast, using bacterial lipid 592 

relative abundances rather than a single index in the relationships with environmental variables 593 

appears less restrictive, and more representative of the environmental complexity. Other models 594 

can be used in this way, such as those based on multiple regressions (e.g. Peterse et al., 2012; 595 

De Jonge et al., 2014; Russell et al., 2018), describing the relationships between one or several 596 

explained variables (e.g. bacterial lipid abundances) and one or several explanatory variables 597 

(e.g. MAAT, pH). Multiple regressions can reveal the presence of linear relationships among 598 

several known variables but cannot take into account non-linear influences, which may occur 599 

in complex environmental settings. This limitation, common to all linear models, can be 600 

overcome using non-parametric methods such as some of the machine-learning algorithms (e.g. 601 

nearest neighbours or random forest; Dunkley Jones et al., 2020). The reliability of the latter 602 

models lies in the fact that they are non-linear, which helps capturing the intrinsic complexity 603 

of the environmental setting, and that they avoid the regression dilution phenomenon observed 604 

in most linear models. Moreover, their robustness is improved by the fact that they are built on 605 

a randomly defined proportion of the total dataset and then tested on the rest of the dataset, 606 

considered as independent. Last, these machine-learning algorithms are flexible and are 607 

continuously evolving when adding new samples. 608 

As shown in section 4.1., robust global calibrations between 3-OH FA-derived indices 609 

(RIAN, RAN15 and RAN17) and MAAT/pH could not be established using a simple linear 610 

regression model, contrary to what was observed with brGDGT-derived indices. Therefore, 611 
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three different independent and complementary models were tested to potentially establish 612 

stronger statistical relationships between 3-OH FA distributions and pH/MAAT at the global 613 

level : (i) a parametric model – multiple linear regression; (ii) two non-parametric models –  614 

random forest (e.g. Ho, 1995; Denisko and Hoffman, 2018) and k-NN algorithms (e.g. 615 

Gangopadhyay et al., 2009). As discussed above, the multiple linear regression model allows 616 

the determination of linear relationships between MAAT/pH and the individual relative 617 

abundances of 3-OH FAs, instead of indices derived from the latter. As for the two non-618 

parametric models, they present among other things the advantage of taking into account non-619 

linear environmental influences.  620 

The three models, based on a supervised machine learning approach, were applied to 621 

the total soil dataset (n=168). All the 3-OH FA homologues of Gram-negative bacterial origin 622 

(i.e. with chain lengths between C10 and C18; Wilkinson et al., 1988) were included in the models 623 

whatever their abundance to keep the maximum variability and take into account the specificity 624 

and complexity of each altitudinal transect. Indeed, the nature of the individual 3-OH FAs 625 

whose fractional abundance is mainly influenced by MAAT/pH may be site-dependent, as 626 

previously observed (Véquaud et al., 2021). The performances of these three models were 627 

compared with those of the linear calibrations between 3-OH FA-derived indices (RAN15, 628 

RAN17, RIAN) and MAAT/pH (Table 2). 629 

 630 

4.2.1. Temperature calibrations 631 

 The multiple linear regression model yielded a strong relationship between 3-OH FA 632 

relative abundances and MAAT (Fig. 7a; Eq.6):   633 

MAAT (°C) = -59.02 × [nC10] + 102.1 × [iC11] + 2628.49 × [aC11] – 165.58× [nC11] – 79.799 634 

× [nC12] + 89.93 × [iC13] + 205.06 × [aC13] – 136.25 × [nC13] – 309.71 × [iC14] – 43.16 × 635 

[nC14] – 9.27 × [iC15] –  308.53 × [aC15]+ 66.06 × [nC15] – 60.57 × [iC16] +  15.53 × [nC16]+ 636 

13.52 × [iC17] – 228.76 × [aC17] – 91.12 × [nC17]+ 42.16 × [nC18]+43.71                                                                                                                                                   637 

(n = 168; R2 = 0.79; RMSE = 3.0 °C)           (6) 638 

This model, which takes into account the Gram-negative bacterial 3-OH FAs (C10-C18; 639 

Wilkinson et al., 1988), presents a higher strength than the global linear relationships between 640 

3-OH FA derived indices and MAAT (R²=0.37 and 0.41; RMSE =5.5°C and 5.3°C for RAN15 641 

and RAN17, respectively; Table 2). The multiple linear regression also improves the accuracy 642 

and robustness of MAAT prediction in comparison with single linear relationships, with lower 643 

RMSE (3.0 °C), variance of the residuals (9.2 °C; Fig. 7d) and mean absolute error (MAE; 2.3 644 



21 

 

°C) than with the RAN15 and RAN17 calibrations (RMSE of 5.5 and 5.3 °C; variance of 29.8 645 

and 27.9 °C; MAE of 4.0 and 3.9 °C for RAN15 and RAN17, respectively; Table 2). 646 

Similarly to the multiple linear regression model (Fig. 7a), the random forest (Fig. 7b) 647 

and k-NN (Fig. 7c) calibrations are characterized by strong determination coefficients (R2  0.83 648 

and 0.77, respectively). The variance in residuals, MAE and RMSE of the random forest 649 

calibration are slightly lower than those of the multiple linear regression and k-NN models 650 

(Table 2). An advantage of the random forest algorithm lies in the fact that the weight of the 651 

different variables used to define the model can be quantified using the permutation importance 652 

method (Breiman, 2001). The a-C15, i-C14, a-C17, n-C12, n-C15, and to a lesser extent n-C17, n-653 

C16 and i-C13 3-OH FAs were observed to be the homologues predominantly used by the model 654 

to estimate MAAT values (Fig. 9a). They include all the 3-OH FAs involved in the calculation 655 

of the RAN15 and RAN17 indices, especially the a-C15 homologue. This may explain why linear 656 

relationships between the RAN15/RAN17, and MAAT could be established along some, but not 657 

all, of the altitudinal transects investigated until now (Wang et al., 2016; Huguet al., 2019; 658 

Véquaud et al., 2021; this study). Nevertheless, other individual 3-OH FAs than those appearing 659 

in the calculation of the RAN15 and RAN17 have also a major weight in the random forest model 660 

and seem to be influenced by temperature changes, explaining the moderate determination 661 

coefficients of the global RAN15/RAN17-MAAT linear relationships observed in this study. 662 

On the whole, the strength and accuracy of the multiple linear regression, k-NN and 663 

random forest models are much higher than those based on the RAN15 and RAN17 indices 664 

(Table 2). This is likely related to the fact that the three aforementioned models integrate the 665 

whole suite of 3-OH FAs homologues (C10 to C18) and thus better capture the complexity of the 666 

response of soil Gram-negative bacteria and their lipid distribution to temperature changes than 667 

the RAN15 and RAN17 indices. They also present the advantage of increasing the range of 668 

temperature which may be predicted by more than 4 °C in comparison with the RAN15 and 669 

RAN17 calibrations (Table 2). Indeed, even though the lower limit of MAAT estimates for the 670 

three models tested in the present study is slightly higher than those based on the RAN15 and 671 

RAN17 indices, the upper limit of the MAAT which can be estimated using the multiple linear 672 

regression, random forest and k-NN models is substantially higher (ca. 25 °C) than that based 673 

on the RAN15 or RAN17 indices (ca. 17 °C; Table 2).  674 

The three proposed models show the potential of 3-OH FAs as MAAT proxies at the 675 

global level, which was not visible using RAN15 and RAN17 indices. The non-parametric 676 

models (random forest and k-NN) may benefit from the fact that they take into account the 677 

complex, non-linear relationships between environmental parameters and bacterial lipid 678 
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abundance. This is highlighted when comparing the independent variations of the individual 3-679 

OH FA relative abundances with estimated MAAT for the three proposed models, with non-680 

linear trends for the k-NN and random forest models, in contrast with the multiple linear 681 

regression (Supp. Fig. 2). 682 

 683 

 4.2.2. pH calibrations 684 

A robust linear relationship between the RIAN and pH could not be obtained from the 685 

whole soil dataset (Fig. 4a; Table 2). In contrast, the multiple regression model provided a 686 

strong correlation between the 3-OH FA fractional abundances and pH (Fig. 8a; Eq. 7): 687 

pH = -1.45 × [nC10] – 31.70 × [iC11] – 162.09 × [aC11] – 53.22 × [nC11] – 6.21× [nC12] + 688 

56.24× [iC13] – 2.02 × [aC13] + 15.10 × [nC13] + 23.99 × [iC14] – 4.54× [nC14] – 13.79 × 689 

[iC15] – 15.74 × [aC15] + 1.93 × [nC15] – 46.29 × [iC16] – 3.20 × [nC16] – 1.80 × [iC17] – 690 

8.90 × [aC17] + 11.46 ×[nC17] – 3.63×[nC18] + 7.84    (n = 168; R2 = 0.64; RMSE = 0.8)    (7) 691 

The random forest (Fig. 8b) and k-NN pH models (Fig. 8c) appeared to be slightly more 692 

robust and accurate than the multiple linear regression (Fig. 8a), as the former two models 693 

presented slightly higher determination coefficients (R2 = 0.68 and 0.70 for k-NN and random 694 

forest, respectively) and slightly lower RMSE (0.7), variance in residuals (0.5) and MAE (0.5) 695 

than the multiple linear regression (Table 2). 696 

As for the MAAT random forest model, the weight of the individual 3-OH FAs in the pH 697 

random forest calibration was determined (Fig. 9b). Three homologues  ̶  i-C13, n-C15, i-C16   ̶ 698 

had a larger weight in the global pH model than the others (Fig. 9b). This is consistent with a 699 

detailed study of 3-OH FA distribution in soils from the French Alps (Véquaud et al., 2021), 700 

where the i-C13 and i-C16 3-OH FAs were observed to be predominantly influenced by pH. 701 

Nevertheless, in addition to the three aforementioned homologues, most of the C10 to C18 3-OH 702 

FAs have a non-negligible influence in the random forest pH model, except the a-C15 and i-C14 703 

compounds (Fig. 9b). This is in line with the definition of the 3-OH FA-based pH index (RIAN) 704 

defined by Wang et al. (2016) which includes the whole suite of 3-OH FAs. These results 705 

suggest that soil Gram-negative bacteria may respond to pH variations by modifying the whole 706 

distribution of associated 3-OH FAs (C10-C18). This would need to be further confirmed by e.g. 707 

investigating the influence of pH variations on pure strains of Gram-negative bacteria isolated 708 

from soils . 709 

In any case, in contrast with the RIAN index, the multiple linear regression, k-NN and 710 

random forest models provided strong global calibrations with pH (Fig. 8), as robust as the 711 

global CBT’-pH relationship (Fig. 4b). The three proposed models also increase the range of 712 
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pH which can be estimated (~ 4 pH units) in comparison with the RIAN global calibration (~ 3 713 

pH units), further strengthening the potential of these models for soil pH reconstruction. As 714 

MAAT models, the independent variations of the individual 3-OH FA relative abundances with 715 

estimated pH highlight non-linear trends for the k-NN and random forest models, in contrast 716 

with the multiple linear regression (Supp. Fig. 3), which might favor the use of the two non-717 

parametric models in order to take into account such non-linear influences. The machine-718 

learning MAAT and pH models proposed in this paper are flexible and could be further 719 

improved by increasing the number of soil samples analyzed and the representativeness of the 720 

different MAAT and pH values within the dataset.    721 

 722 

4.3. Paleoclimate application of the new 3-OH FA/MAAT models  723 

 724 

The multiple regression, random forest and k-NN models developed for MAAT 725 

reconstruction using 3-OH FAs were similar in terms of robustness and precision (Figs. 7a, b, 726 

c; Table 2). The performance and validity of these global terrestrial calibrations for 727 

paleotemperature reconstructions was thus tested and compared with the MAAT record from a 728 

Chinese speleothem (HS4 stalagmite) covering the last 9,000 years BP (Wang et al., 2018). 729 

This terrestrial archive was the object of previous paleostudies, thus providing a context for the 730 

interpretation of the MAAT data and, to the best of our knowledge, represents the only 731 

published application of 3-OH FAs as a paleotemperature proxy in terrestrial settings (Wang et 732 

al., 2018). The local comparison of 3-OH FA distributions in the overlying soils and stalagmites 733 

and the analyses of bacterial diversity and transport pathways suggested that the 3-OH FAs in 734 

the HS4 speleothem were mainly soil-derived (Wang et al., 2018), supporting the application 735 

of soil calibrations for MAAT reconstruction from this archive, although not being a paleosoil 736 

itself. The first paleoapplication of 3-OH FAs (Wang et al., 2018) on this speleothem relied on 737 

a local calibration between the RAN15 index and MAAT proposed by Wang et al. (2016) using 738 

soils from Mt. Shennogjia. The MAAT estimates derived from our global soil calibrations were 739 

compared with those obtained from this local soil calibration (Wang et al., 2016). 740 

 741 

 742 

4.3.1 Comparison of the multiple linear regression, k-NN and random forest global 743 

MAAT calibrations 744 

The multiple regression model (Eq. 6; Fig. 7a) yielded MAAT estimates ranging 745 

between -35 and 22.8 °C over the last 9,000 years (Supp. Fig. 4). The temperature minimum (-746 
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35°C) observed at 560 yrs BP can be considered as an outlier, with a significantly lower MAAT 747 

estimate than those provided by the other samples. After having ignored this apparent outlier, 748 

the MAAT range over the last 9,000 years was comprised between 3.2°C and 22.8°C, with 749 

temperature shifts of up to 15 °C within very short periods of time. The observed range of 750 

MAAT and large variations in temperature over such short periods appear far too excessive, as 751 

the expected amplitude of MAAT during the Holocene is expected to be up to ca. 2-3 °C (Liu 752 

et al., 2014). This highly questions the reliability of the multiple linear regression model for 753 

MAAT reconstruction from this archive.  754 

MAAT estimates derived from the k-NN calibration ranged between 6.5 and 19.7 °C 755 

over the last 9,000 years (Supp. Fig. 4). Abrupt shifts in MAAT of more than 10 °C were 756 

observed between 2,000 and 4,000 yrs BP. Such variations, higher than the RMSE of the 757 

calibration, appear excessive for the Holocene period, as previously discussed for the multiple 758 

regression model. The bias in MAAT estimates may be due to the intrinsic definition of the k-759 

NN model, which is better suited for uniformly distributed datasets. This is not the case here, 760 

as the individual transects heterogeneously cover a wide range of temperatures. The application 761 

of a global calibration at the local scale – that of the HS4 stalagmite – using the k-NN method 762 

and based on the similarities among samples, thus does not appear appropriate. Such a 763 

calibration might be improved by extending the dataset with samples more equally distributed 764 

across a wider range of global climatic gradients. 765 

Finally, the random forest model yielded MAAT estimates between 10.6 and 19.3°C, 766 

i.e. a smaller estimation range than the k-NN algorithm and multiple regression model (Supp. 767 

Fig. 4). The amplitude of the shifts observed between 2,000 and 4,000 yrs BP was ca. 4°C, 768 

which is climatically more consistent than the variations obtained with the k-NN method and 769 

multiple regression model, even though these large variations in MAAT over such short periods 770 

of time still appear too excessive. Furthermore, the application of the global random forest 771 

calibration roughly provided similar temperature trends as those derived from the local RAN15 772 

calibration by Wang et al. (2018; Fig. 10), despite some largest oscillations for the global model. 773 

These results suggest that the random forest calibration is more reliable than the multiple 774 

regression and k-NN ones. This can be explained by the intrinsic definition of the random forest 775 

algorithm, which averages the results of several independent models (so-called decision trees), 776 

thus reducing the variance and thus the forecast error on the final model. This is also in line 777 

with the slightly higher accuracy of the random forest calibration compared with the other two 778 

models (Table 2), as previously discussed. In contrast, the multiple regression calibration was 779 

the less performant of the three models on the investigated archive. This may be related to its 780 
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parametric nature and the fact that it does not take into account the natural non-linear variations 781 

on 3-OH FA fractional abundances highlighted by the random forest and k-NN models (Supp. 782 

Figs. 2 and 3).  783 

In conclusion, the three models proposed in this study, especially the random forest, 784 

have potential for MAAT reconstruction, even though the application to a well-known 785 

paleoclimate archive showed their limitations. This highlights the importance of testing new 786 

calibrations on well-characterized archives to investigate their reliability.  787 

 788 

4.3.2. Comparison of the global random forest and local RAN15 calibrations for MAAT 789 

reconstruction 790 

The random forest model was observed to be the most reliable of the three proposed 791 

global MAAT calibrations (Fig. 7). To go further, we compared the temperature record derived 792 

from our global random forest calibration with that derived from the local MAAT/RAN15 793 

transfer function proposed by Wang et al. (2016; Fig. 10). The application of the local RAN15 794 

calibration to the HS4 stalagmite yielded an average MAAT of ca. 18.4 °C over the most recent 795 

part of the record (last 800 yrs; Fig. 10), consistent with the MAAT of 18 °C recorded in situ 796 

by a temperature logger (Hu et al., 2008; Wang et al., 2018). In contrast, absolute MAAT 797 

estimates derived from the random forest model were on average 14.2 °C over the last 800 yrs 798 

and were generally lower than those obtained from the local RAN15 calibration over the whole 799 

record. Altogether, these results suggest that the random forest model tends to underestimate 800 

absolute MAAT, in contrast with the RAN15 calibration proposed by Wang et al. (2016). This 801 

discrepancy may be due the fact that the calibration proposed in the present study is based on a 802 

global dataset, with samples subject to a large variety of environmental and climatic conditions, 803 

whereas the RAN15-MAAT transfer function by Wang et al. (2016) was constructed using soil 804 

samples from a regional altitudinal transect, located at only 120 km distance from the stalagmite 805 

site (Wang et al., 2018).  806 

Even though the local calibration by Wang et al. (2016) provides more accurate 807 

absolute MAAT values than the present global random forest model, as it could be expected, 808 

both calibrations roughly generate similar qualitative MAAT trends over time. A regular slight 809 

decrease in temperature of ca. 1 °C was observed between 9,000 and ca. 1,000 yrs BP based on 810 

the local RAN15 calibration (Fig. 10a; Wang et al., 2018). This general decreasing trend was 811 

also visible when using the random forest model, but with larger oscillations and mainly 812 

between 9,000 and 4,000 yrs BP, in agreement with the general trend recorded by the ∂18O 813 

record (mixture of temperature and hydrological signals, Wang et al., 2018) of the HS4 814 
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stalagmite (Fig. 10b,c; Hu et al., 2008). In addition, both the global random forest, local RAN15 815 

calibrations and the ∂18O record allowed the identification of several climatic events in the 816 

Northern hemisphere, in agreement with the reconstructed total solar irradiance (TSI, 817 

Steinhilber et al., 2009, Fig. 10d). Thus, both models highlighted, with slightly different 818 

amplitudes, the Medieval Warm Period (800-1000 years BP) and Little Ice Age (LIA; 200-500 819 

years BP) periods (Mann et al., 2008; Ljungqvist, 2010; Wang et al., 2018). The LIA event is 820 

particularly well represented by the global random forest calibration, in line with the decrease 821 

in the TSI (Fig. 10b,d) associated with a relative increase in the ∂18O of HS4 carbonates 822 

(dry/cool event, Wang et al., 2018). Before the MWP, the global random forest calibration 823 

shows slight oscillations, which can be assumed to be representative of TSI variations between 824 

500 and 1,300 yrs BP. Similarly, an important cooling event, well correlated with a significant 825 

decrease in the TSI (Fig. 10a, b, d), was recorded by the two calibrations at 1300 yr BP. 826 

 The global random forest calibration also highlighted two cooling events, poorly 827 

represented by the local RAN15 calibration: one at ca. 4,200 yrs BP ago and, to a lesser extent, 828 

another one between 2,800 and 3,000 yrs BP (Bond et al., 2001; Mayewski et al., 2004).  The 829 

event at 4,200 yrs BP is consistent with the ∂18O  and solar irradiance records and is referenced 830 

in the literature as the "4.2 kiloyear event" (deMenocal, 2001). This intense drought event was 831 

suggested to have had a major impact on different civilizations (collapses, migrations; 832 

(Gibbons, 1993; Staubwasser et al., 2003; Li et al., 2018; Bini et al., 2019). Thus, in some parts 833 

of China, the production of rice fields sharply decreased during this period, leading to a decrease 834 

in population (Gao et al., 2007). 835 

Both calibrations additionally shows a cooling period between 4,000 yrs and 3,200 yrs 836 

BP, more pronounced based on the global random forest model, followed by another cooling 837 

between 3,200 years BP and 3,000 yrs BP. This cooling period is consistent with the trends 838 

derived from ∂18O and solar irradiance records. It culminates with a cold episode at 3000 yrs 839 

BP, also known as Late Bronze Age Collapse (Kaniewski et al., 2013). Indeed, this cold 840 

episode, combined with droughts, may have led to a decrease in agricultural production in 841 

China, contributing to the degradation of trade routes and ultimately to the collapse of Bronze 842 

Age civilizations (Weiss, 1982; Knapp and Manning, 2016). Last, the global random forest 843 

calibration also highlights two additional cold events, between 5,600 and 5,900 yrs BP, as well 844 

as around 7,100 yrs BP, corresponding to solar irradiance minima (Bond et al., 2001; Mayewski 845 

et al., 2004) and which are not as clearly visible with the local RAN15 calibration by Wang et 846 

al. (2016). 847 
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The first application of the random forest calibration to a natural archive shows the 848 

potential of 3-OH FAs as paleotemperature proxies at a global scale, as known and documented 849 

climatic events were recorded, with a similar RMSE (2.8 °C; Table 2) as that of the local 850 

calibration by Wang et al. (2.6 °C; 2016). In summary, we demonstrate that 3-OH FAs are 851 

promising and effective temperature proxies for terrestrial settings, complementary to, and 852 

independent of, the brGDGTs (De Jonge et al., 2014; Naafs et al., 2017; Dearing Crampton-853 

Flood et al., 2020), and also highlight the usefulness of non-parametric models using machine 854 

learning, especially the random forest algorithm, to establish global MAAT calibrations. We 855 

expect that analyses of 3-OH FAs in a larger number of globally distributed soils will further 856 

improve the accuracy and robustness of the global random forest calibration for 857 

paleotemperature reconstruction. Additional paleoapplications are also required to further test 858 

and validate the applicability of the global MAAT and pH calibrations based on 3-OH FAs 859 

presented in this study. 860 

 861 

5. Conclusions 862 

3-OH FAs have been recently proposed as environmental proxies in terrestrial settings, 863 

based on local studies. This study investigated for the first time the applicability of these 864 

compounds as MAAT and pH proxies at the global scale using an extended soil dataset across 865 

a series of globally distributed elevation transects (n = 168). Strong linear relationships between 866 

3-OH FA-derived indices (RAN15, RAN17 and RIAN) and MAAT/pH could only be obtained 867 

locally, for some individual transects, suggesting that these indices cannot be used as 868 

paleoproxies at the global scale through this kind of model. Other algorithms (multiple linear 869 

regression, k-NN and random forest models) were tested and, in contrast with simple linear 870 

regressions, provided strong global correlations between MAAT/pH and 3-OH FA relative 871 

abundances. The applicability of these three models for paleotemperature reconstruction was 872 

tested and compared with the MAAT record from the unique available record: a Chinese 873 

speleothem. The calibration based on the random forest model appeared to be the most robust 874 

and showed similar trends to previous reconstructions and known Holocene climate variations. 875 

Furthermore, the global random forest model highlighted documented climatic events poorly 876 

represented by the local RAN15 calibration. This new global model is promising for 877 

paleotemperature reconstructions in terrestrial settings and could be further improved by 878 

analyzing 3-OH FAs in a larger number of globally distributed soils. This study demonstrates 879 
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the major potential of 3-OH FAs as MAAT/pH proxies in terrestrial environments through the 880 

different models presented and their application for paleoreconstruction. 881 
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Figure 1. Average distribution of 3-OH FAs along the 8 altitudinal transects investigated in 

this study. Data from Mts. Majella and Rungwe were taken from Huguet et al. (2019). Data 

from Mt. Shennongjia were taken from Wang et al. (2016). Data from Mts. Lautaret-Galibier 

were taken from Véquaud et al. (2021).  
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Figure 2. Average distribution of 5- and 6-methyl brGDGTs, along Mts. Shegyla, Pollino 

Majella, Lautaret-Bauges, Peruvian Andes and Chilean Andes. Data from Mt. Majella were 

taken from Huguet et al. (2019). Data from Mt. Shennongjia were taken from Yang et al. (2015). 

Data from Mts. Lautaret-Galibier were taken from Véquaud et al. (2021). 
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Figure 3. PCA biplot of (a) 3-OH FA fractional abundances in soil samples from the 8 

altitudinal transects and (b) brGDGT fractional abundances in soil samples from 7 of the 8 

altitudinal transects. BrGDGT data from Mt. Rungwe, for which 5- and 6-methyl isomers were 

not separated, were not included in the PCA.
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Figure 4. Linear regressions between (a) pH and RIAN and (b) pH and CBT’ along the 8 

altitudinal transects investigated. Dotted lines represent the 95% confidence interval for each 

regression and colored areas represent the 95% confidence interval for each regression. Data 

for Mts. Majella and Rungwe were taken from Huguet et al. (2019). Data from Mt. Shennongjia 

were taken from Yang et al. (2015) and Wang et al. (2016). Data from Mts. Lautaret-Galibier 

were taken from Véquaud et al. (2021). Only significant regressions (p < 0.05) are shown. 
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Figure 5. Linear regressions between (a) MAAT and RAN15 and (b) MAAT and RAN17 along 

the 8 altitudinal transects investigated. Dotted lines represent the 95% confidence interval for 

each regression and colored areas represent the 95% confidence interval for each regression. 

Data from Mts. Majella and Rungwe were taken from Huguet et al. (2019). Data from Mt. 

Shennongjia were taken from Wang et al. (2016). Data from Mts. Lautaret-Galibier were taken 

from Véquaud et al. (2021). Only significant regressions (p < 0.05) are shown. 
 

 



41 

 

 

Figure 6. Linear regressions between (a) MAAT and MBT’5Me along 7 of the 8 altitudinal 

transects investigated. Data from Mt. Rungwe (Coffinet et al., 2014), for which 5- and 6-methyl 

brGDGTs were not separated, were not included in this graph. Dotted lines represent the 95% 

confidence interval for each regression and colored areas represent the 95% confidence interval 

for each regression. Data from Mt. Majella were taken from Huguet et al. (2019). Data from 

Mts. Lautaret-Galibier were taken from Véquaud et al. (2021). Data from Mt. Shennongjia were 

taken from Yang et al. (2015). The global soil calibration by De Jonge et al. (2014) was applied 

to all these transects. Only significant regressions (p < 0.05) are shown. 

 

 

 



42 

 

 

Figure 7. Results of the three different models tested to reconstruct the MAAT from 3-OH FA 

distribution: observed MAAT (°C) vs Predicted MAAT (°C) for (a) the multiple linear 

regression model, (b) the random forest model and (c) the k-NN method. MAAT residuals 

plotted against the predicted MAAT for (d) the multiple linear regression model, (e) the random 

forest model and (f) the k-NN method. 
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Figure 8. Results of the three different models tested to reconstruct the pH from 3-OH FA 

distribution: observed pH vs predicted pH for (a) the multiple linear regression model, (b) the 

random forest model, (c) the k-NN method. pH residuals plotted against the predicted pH for 

(d) the multiple linear regression model, (e) the random forest model and (f) the k-NN method. 
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Figure 9. Importance (arbitrary unit) of the 3-OH FAs used to estimate (a) MAAT and (b) pH 

in the random forest models proposed in this study according to the permutation importance 

method (Breiman, 2001). 
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Figure 10. Comparison of the 3-OH FA model-MAAT record with other time-series and proxy 

records for the HS4 speleothem (Wang et al., 2018). (a) RAN15-MAAT record reconstructed 

using a local Chinese calibration (Wang et al., 2016; Wang et al., 2018). (b) 3-OH FA random 

forest model-MAAT. (c) The CaCO3 oxygen isotope record (Hu et al., 2008b). (d) Total solar 

irradiance (TSI; W/m²) during the Holocene (past 9300 years) based on a composite described 

in Steinhilber et al. (2009). 

  



46 

 

 

Table 1. List of the soil samples collected along Mts. Shegyla, Pollino, Peruvian Andes and 

Chilean Andes, with corresponding altitude (m), MAAT (°C), pH and 3-OH FA/brGDGT-

derived indices.  
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Table 2. Characteristics of the different models proposed in this study to estimate MAAT and 

pH: R², RMSE, variance of the residuals, mean absolute error (MAE) and the upper and lower 

limits of estimation. The "training" samples were used to develop the different machine learning 

models, which were then tested on a "test" sample set. 
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