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30 Table S1. Reaction network governing heterotrophic organic matter degradation in marine sediments implemented in the Reaction-Transport Model
(Adapted from Aguilera et al., 2005; Thullner et al., 2009; Wehrmann et al., 2013).

Reaction Pathway Stoichiometry Reaction rate

Primary redox reactions

1, Aerobic OM degradation (CH,0),(NH;), (H3PO,), + (x + 2y)0, + (y + 22)HCO3 — (x +y + 22)C0, + yNH} + zHPO;™ + (x + y + 22)H,0 r=v-(a+age) CH0 " f,,
e - - — - . -1, .

7, Denitrification (CH,0),(NH2), (H:P0,), + (X2)N07 - (ZEN, + (222%)co, + (X2 HCog + 20§~ + (X220 12 = v (a+age)™  CHz0 - fuo,

r;  Sulfate reduction (CH,0),(NH,), (H;PO,), + 2504' + (y —22)C0, + (y — 22)H,0 - (x + y — 2z)HCO; + yNH; + zHPO?™ + %HZS r3=v-(a+age) CH0 - fyoz-

7, Methanogenesis (CH,0)(NH3)y (H3PO,), + (y = 22)H,0 » (22)C0, + (y — 22)HCO3 + yNH; + zHPO}™ +5CH, o =v-(a+age) CH0 - fey,

Secondary redox reactions

s Ammonium oxidation by oxygen NH} +20, + 2HCO; - NO3 + 3H,0 1s = ks NHf - 0,
re  Sulfide oxidation by oxygen H,S + 20, + 2HCO3 - SO}~ + 2C0, + 2H,0 re = ke (HS™ + H,S) - 0,
T Anaerobic oxidation of methane (AOM) CH, + CO, + S0~ - 2HCO; + H,S r; =k, CH, - SOF~

g Methane oxidation by oxygen CH, + 20, - CO, + 2H,0 g =kg'CH, " 0,




Table S2. Kinetic rate laws controlling the reaction network (Adapted from Jourabchi, 2005).

Kinetic rate laws

{foz =1for 0, > K,,

0
N
t fo, = ﬁ for 0, < Ko,
2

ffNo; =0forfp, =1
N !flvoz- = (1- fo,) for fo, < 1and NO3 > Kyo>
2 NOF _

[f,w,; = (1= fo,) g for fy, < 1and NO; < Kyog

NOT

(fsop- = 0for fs = fo, + fyo; =1

. fsoz- = (1= f5) for fy < 1and SO~ > K-

soz-

fsa}' =1-f) szi

for fy <1and SO;~ < Kgoz-

Ty ch,, = (1 - (faz +fm7; + fsaf'))




Table S3. Model parameters and boundary conditions adopted in the sensitivity analyses used to determine the minimum dataset
necessary to constrain apparent organic matter reactivity k based on the Reactive Continuum Model parameters a and v.

Parameter Symbol Unit Value

Transport Parameters

Model domain L cm 150
Bioirrigation coefficient a, y?t 10
Bioirrigation attenuation depth Xirr cm 35
Bioturbation depth Zhio cm 10
Bioturbation coefficient Dyio cm?yt 23.98
Porosity 7] - 0.47
Sedimentation rate w cmyt 0.06
Temperature T °C 0.65
Salinity N - 35
Water depth h m 250
Reaction Parameters
Stoichiometric coefficients x/y/z - 106/16/1
Reactive continuum model scaling parameter a y [102-104
Reactive continuum model shaping parameter v - [10 109
Boundary Conditions
Particulate organic carbon POC Wt% 0.32
Oxygen 0, uM 325
Nitrate NO3 M 9
Sulfate S0 mM 28
Ammonium NH} UM 0
Sulfides HS™ M 0

Methane CH, um 0
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Figure S1. Total organic carbon depth profiles yielded by the sensitivity analysis for an ensemble of scaling parameter v and shaping
parameter a (see Table S3). Based on TOC alone multiple pairs of a and v would be extracted from the same depth-profile.
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Figure S2. Sulfate depth profiles yielded by the sensitivity analysis for an ensemble of scaling parameter v and shaping parameter

a (see Table S3). Considering S03~ alongside TOC improves the determination of a and v by excluding those pairs that only fit
TOC.
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Figure S3. Sensitivity analysis best-fit based on Reactive Continuum model parameters a and v for (a) total organic carbon and (b)
sulfate. The adoption of two species (i.e. TOC and S0%7) relieves the uncertainties in constraining organic matter reactivity
parameters.



References

Aguilera, D. R., Jourabchi, P., Spiteri, C. and Regnier, P.: A knowledge-based reactive transport approach for the simulation
of biogeochemical dynamics in Earth systems, Geochem. Geophys. Geosystems, 6(7), 1-18, doi:10.1029/2004GC000899,
2005.

Jourabchi, P.: Quantitative interpretation of pH distributions in aquatic sediments: A reaction-transport modeling approach,
Am. J. Sci., 305(9), 919-956, doi:10.2475/ajs.305.9.919, 2005.

Thullner, M., Dale, A. W. and Regnier, P.: Global-scale quantification of mineralization pathways in marine sediments: A
reaction-transport modeling approach, Geochem. Geophys. Geosystems, 10(10), 1-24, doi:10.1029/2009GC002484, 2009.

Wehrmann, L. M., Arndt, S., Marz, C., Ferdelman, T. G. and Brunner, B.: The evolution of early diagenetic signals in Bering
Sea subseafloor sediments in response to varying organic carbon deposition over the last 4.3Ma, Geochim. Cosmochim. Acta,
109, 175-196, doi:10.1016/j.gca.2013.01.025, 2013.



