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Table S1. Reaction network governing heterotrophic organic matter degradation in marine sediments implemented in the Reaction-Transport Model 30 
(Adapted from Aguilera et al., 2005; Thullner et al., 2009; Wehrmann et al., 2013). 

 Reaction Pathway Stoichiometry Reaction rate 

  Primary redox reactions  

𝑟1 Aerobic OM degradation (𝐶𝐻2𝑂)𝑥(𝑁𝐻3)𝑦(𝐻3𝑃𝑂4)𝑧 + (𝑥 + 2𝑦)𝑂2 + (𝑦 + 2𝑧)𝐻𝐶𝑂3
− → (𝑥 + 𝑦 + 2𝑧)𝐶𝑂2 + 𝑦𝑁𝐻4

+ + 𝑧𝐻𝑃𝑂4
2− + (𝑥 + 𝑦 + 2𝑧)𝐻2𝑂 𝑟1 = 𝑣 ∙ (𝑎 + 𝑎𝑔𝑒)−1 ∙ 𝐶𝐻2𝑂 ∙ 𝑓𝑂2 

𝑟2 Denitrification (𝐶𝐻2𝑂)𝑥(𝑁𝐻3)𝑦(𝐻3𝑃𝑂4)𝑧 + (
4𝑥+3𝑦

5
)𝑁𝑂3

− → (
2𝑥+4𝑦

5
)𝑁2 + (

𝑥−3𝑦+10𝑧

5
)𝐶𝑂2 + (

4𝑥+3𝑦−10𝑧

5
)𝐻𝐶𝑂3

− + 𝑧𝑃𝑂4
2− + (

3𝑥+6𝑦+10𝑧

5
)𝐻2𝑂 𝑟2 = 𝑣 ∙ (𝑎 + 𝑎𝑔𝑒)

−1 ∙ 𝐶𝐻2𝑂 ∙ 𝑓𝑁𝑂3 

𝑟3 Sulfate reduction (𝐶𝐻2𝑂)𝑥(𝑁𝐻3)𝑦(𝐻3𝑃𝑂4)𝑧 +
𝑥

2
𝑆𝑂4

2− + (𝑦 − 2𝑧)𝐶𝑂2 + (𝑦 − 2𝑧)𝐻2𝑂 → (𝑥 + 𝑦 − 2𝑧)𝐻𝐶𝑂3
− + 𝑦𝑁𝐻4

+ + 𝑧𝐻𝑃𝑂4
2− +

𝑥

2
𝐻2𝑆 𝑟3 = 𝑣 ∙ (𝑎 + 𝑎𝑔𝑒)

−1 ∙ 𝐶𝐻2𝑂 ∙ 𝑓𝑆𝑂42− 

𝑟4 Methanogenesis (𝐶𝐻2𝑂)𝑥(𝑁𝐻3)𝑦(𝐻3𝑃𝑂4)𝑧 + (𝑦 − 2𝑧)𝐻2𝑂 → (𝑥−2𝑦+4𝑧
2

)𝐶𝑂2 + (𝑦 − 2𝑧)𝐻𝐶𝑂3
− + 𝑦𝑁𝐻4

+ + 𝑧𝐻𝑃𝑂4
2− +

𝑥

2
𝐶𝐻4 𝑟4 = 𝑣 ∙ (𝑎 + 𝑎𝑔𝑒)

−1 ∙ 𝐶𝐻2𝑂 ∙ 𝑓𝐶𝐻4 

    

  Secondary redox reactions  

𝑟5 Ammonium oxidation by oxygen 𝑁𝐻4
+ + 2𝑂2 + 2𝐻𝐶𝑂3

− → 𝑁𝑂3
− + 3𝐻2𝑂 𝑟5 = 𝑘5 ∙ 𝑁𝐻4

+ ∙ 𝑂2 

𝑟6 Sulfide oxidation by oxygen 𝐻2𝑆 + 2𝑂2 + 2𝐻𝐶𝑂3
− → 𝑆𝑂4

2− + 2𝐶𝑂2 + 2𝐻2𝑂 𝑟6 = 𝑘6 ∙ (𝐻𝑆
− +𝐻2𝑆) ∙ 𝑂2 

𝑟7 Anaerobic oxidation of methane (AOM) 𝐶𝐻4 + 𝐶𝑂2 + 𝑆𝑂4
2− → 2𝐻𝐶𝑂3

− +𝐻2𝑆 𝑟7 = 𝑘7 ∙ 𝐶𝐻4 ∙ 𝑆𝑂4
2− 

𝑟8 Methane oxidation by oxygen 𝐶𝐻4 + 2𝑂2 → 𝐶𝑂2 + 2𝐻2𝑂 𝑟8 = 𝑘8 ∙ 𝐶𝐻4 ∙ 𝑂2 

 



 

 

Table S2. Kinetic rate laws controlling the reaction network (Adapted from Jourabchi, 2005). 

Kinetic rate laws 

𝑟1 {

𝑓𝑂2 = 1 for 𝑂2 > 𝐾𝑂2

𝑓𝑂2 =
𝑂2
𝐾𝑂2

 for 𝑂2 ≤ 𝐾𝑂2
 

𝑟2 

{
 
 

 
 
𝑓𝑁𝑂3− = 0 for 𝑓𝑂2 = 1

𝑓𝑁𝑂3− = (1 − 𝑓𝑂2) for 𝑓𝑂2 < 1 and 𝑁𝑂3
− > 𝐾𝑁𝑂3−

𝑓𝑁𝑂3− = (1 − 𝑓𝑂2)
𝑁𝑂3

−

𝐾𝑁𝑂3−
 for 𝑓𝑂2 < 1 and 𝑁𝑂3

− ≤  𝐾𝑁𝑂3−

 

𝑟3 

{
 
 

 
 
𝑓𝑆𝑂42− = 0 for 𝑓5 ≡ 𝑓𝑂2 + 𝑓𝑁𝑂3− = 1

𝑓𝑆𝑂42− = (1 − 𝑓5) for 𝑓5 < 1 and 𝑆𝑂4
2− > 𝐾𝑆𝑂42−

𝑓𝑆𝑂42− = (1 − 𝑓5)
𝑆𝑂4

2−

𝐾𝑆𝑂42−
 for 𝑓5 < 1 and 𝑆𝑂4

2− ≤  𝐾𝑆𝑂42−

 

𝑟4 𝑓𝐶𝐻4 = (1 − (𝑓𝑂2 + 𝑓𝑁𝑂3− + 𝑓𝑆𝑂42−)) 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table S3. Model parameters and boundary conditions adopted in the sensitivity analyses used to determine the minimum dataset 

necessary to constrain apparent organic matter reactivity 𝒌 based on the Reactive Continuum Model parameters 𝒂 and 𝒗. 

 

Parameter Symbol Unit Value 

Transport Parameters 

Model domain 𝐿 cm 150 

Bioirrigation coefficient 𝛼0 y−1 10 

Bioirrigation attenuation depth 𝑥𝑖𝑟𝑟 cm 3.5 

Bioturbation depth 𝑧𝑏𝑖𝑜 cm 10 

Bioturbation coefficient 𝐷𝑏𝑖𝑜 cm2 y−1 23.98 

Porosity 𝜑 − 0.47 

Sedimentation rate 𝜔 cm y−1 0.06 

Temperature 𝑇 °C 0.65 

Salinity 𝑆 − 35 

Water depth ℎ m 250 

    

Reaction Parameters 

Stoichiometric coefficients 𝑥/𝑦/𝑧 − 106/16/1 

Reactive continuum model scaling parameter 𝑎 y [10−2 – 104] 

Reactive continuum model shaping parameter 𝑣 − [10−1 – l00] 

    

Boundary Conditions 

Particulate organic carbon 𝑃𝑂𝐶 wt% 0.32 

Oxygen 𝑂2 µM 325 

Nitrate 𝑁𝑂3
− µM 9 

Sulfate 𝑆𝑂4
2− mM 28 

Ammonium 𝑁𝐻4
+ µM 0 

Sulfides 𝐻𝑆− µM 0 

Methane 𝐶𝐻4 µM 0 



 

 

 

 
Figure S1. Total organic carbon depth profiles yielded by the sensitivity analysis for an ensemble of scaling parameter 𝒗 and shaping 

parameter 𝒂 (see Table S3). Based on 𝑻𝑶𝑪 alone multiple pairs of 𝒂 and 𝒗 would be extracted from the same depth-profile. 



 

 

 

Figure S2. Sulfate depth profiles yielded by the sensitivity analysis for an ensemble of scaling parameter 𝒗 and shaping parameter 

𝒂 (see Table S3). Considering 𝑺𝑶𝟒
𝟐− alongside 𝑻𝑶𝑪 improves the determination of 𝒂 and 𝒗 by excluding those pairs that only fit 

𝑻𝑶𝑪. 

 

 

 

 

 



 

 

 

 

Figure S3. Sensitivity analysis best-fit based on Reactive Continuum model parameters 𝒂 and 𝒗 for (a) total organic carbon and (b) 

sulfate. The adoption of two species (i.e. 𝑻𝑶𝑪 and 𝑺𝑶𝟒
𝟐−) relieves the uncertainties in constraining organic matter reactivity 

parameters. 
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