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Abstract

In spring, the Mediterranean Sea, a well-stratified low nutrient low chlorophyll region, receives
atmospheric deposition both desert dust from the Sahara and airborne particles from
anthropogenic sources. Such deposition translates—into—g supply of new nutrients and trace
metals for, the surface waters that likely impact biogeochemical cycles. However, the
quantification of the impacts and the-processes involved are still far from being assessed-in-situ,

In-thispaper; we provide a-stateof the art regarding dust deposition and its impact on the

Mediterranean Sea biogeochemistry and we describe, in this context the objectives and strategy
1
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of the PEACETIME project and cruise, entirely dedicated to filling this knowledge gap. Our
strategy to go-a-step-forward-than-in-previous-approaches-in understanding, these impacts by
catching a real deposition event at sea is detailed. The PEACETIME oceanographic campaign
took place in May-June 2017 and we-describe-how we werg able to successfully adapt the
planned transect in-order to sample a Saharan dust deposition event,-thanks-to-adedicated
strategy; so-called ‘Fast Action’, That-was—successful, providing,for the first time ig our
knowledge, a coupled atmospheric and oceanographic sampling before; during and after an
atmospheric deposition event. Atmospheric and marine in situ observations and process studies

have been conducted in contrasted areg and-we summarize the work performed at sea, the type

of data acquired and their valorization inthe papers-published in the special issue,

1. Introduction

Understanding the exchange of energy, gases and particles at the ocean—atmosphere interface
is critical for the development of robust predictions of future climate change and its
consequences on marine ecosystems and the services they provide to society. Our
understanding of such exchanges has advanced rapidly over the past decade but we remain
unable to adequately parameterize fundamental controlling processes as identified in the new
research strategies of the international Surface Ocean—Lower Atmosphere Study group (Law et
al., 2013 and SOLAS 2015-2025: Science Plan and Organisation). A critical bottleneck is the
parameterization and representation of the key processes brought into play by atmospheric
deposition in Low Nutrient Low Chlorophyll (LNLC) regions. A perfect example of a LNLC
region, and of the role of the atmospheric deposition, is the Mediterranean Sea where the
ecosystem functioning may be modulated by pulsed atmospheric inputs in particular the
deposition of Saharan dust (Guieu et al., 2014a) and nutrients of anthropogenic origin (Richon

et al., 2018a, 2018b).
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Indeed, the Mediterranean quasi-enclosed basin continuously receives anthropogenic aerosols
originating from industrial and domestic activities from all around the basin and other parts of
Europe, both in the western (Bergametti et al., 1989; Desboeufs et al., 2018) and eastern
(Tsapakis et al., 2006; Moon et al., 2016) basin. In addition to this continuous ‘background’
inputs, the surface of the Mediterranean Sea episodically receives biomass burning particles
(Guieu et al., 2005) and Saharan dust (e.g. Loye-Pilot et al., 1986, Vincent et al., 2016). Some
deposition events are qualified as ‘extreme events’, as dust inputs as high as 22 g m™ (event in
Nov. 2001 recorded at Ostriconi-Corsica Island, Guieu et al., 2010; event in Feb. 2002 recorded
at Cap Ferrat, Bonnet and Guieu, 2006) can occur on very short time scales (hours to days)
representing the main annual dust flux. Associated atmospheric deposition of major macro-
nutrient (N, P) (Kouvarakis et al., 2001; Markaki et al., 2003, 2010; Guieu et al., 2010), of-iron
(Bonnet and Guieu, 2006) and of trace metals (Theodesi et al., 2010; Guieu et al., 2010;
Desboeufs et al., 2018) represents significant inputs likely supporting-the primary production
in surface waters especially during thestratification period, (Richon et al., 2018a, 2018b).
Among the atmospheric deposited nutrients, anthropogenic reactive nitrogen is critical on the
fluxes—of-inorganic and organic N (Markaki et al., 2010, Violaki et al., 2010). Soil dust
deposition plays an important role on-the fluxes of P and trace metals due to the-intensg but
sporadic—inputs (Bergametti et al., 1992; Guieu et al., 2010; Morales-Baquero and Perez-
Martinez, 2016), even—if the contribution of anthropogenic aerosol deposition is significant
(between less of 10 % (Fe) and 90% (Zn)) (Guieu et al., 2010, Desboeufs et al., 2018). The
atmospheric deposition of mineral dust is correlated with dissolved trace metals enrichment of
the sea-surface microlayer (Cd, Co, Cu, Fe) (Tovar Sanchez et al., 2014). However, it has been
shown that dust deposition can result either in a net release or in scavenging of dissolved

inorganic phosphorus and nitrate (Louis et al., 2015) and trace elements in seawater (\WWagener
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et al., 2010; Waulttig et al., 2013; Bressac & Guieu 2013), depending on the quantity and quality

of in situ dissolved organic matter at the time of the deposition.

Recent studies in pelagic large mesocosms also-allowing-quantifying-the-export-below, have

shown that wet Saharan dust analog deposition, by providing P and N for marine biosphere,
strongly stimulates primary production and phytoplanktonic biomass during several days
(Ridame et al., 2014; Guieu et al., 2014b; Tsagaraki et al., 2017). In addition to being strongly
stimulated by atmospheric P (Ridame et al., 2013), the trace metals in dust deposition have been
also suspected to stimulate N> fixation in the Mediterranean Sea (Ridame et al., 2011). The
extension of this fertilizing effect of dust events over the Mediterranean has been pointed out
from statisticallypositive correlations between dust deposition and surface chlorophyll
concentrations from remote sensing and modelling approaches (Gallisai et al., 2014). A
negative effect of atmospheric deposition on chlorophyll is, however, observed in the regions
under, a large influence of aerosols from European origin (Gallisai et al., 2014). Indeed, the
input of anthropogenic aerosols, ag Cu-rich-aerosol, has-beensuspected-g inhibit phytoplankton
growth (Jordi et al., 2012). Besides phytoplankton, dust deposition-modifies also the bacterial
community structure by selectively stimulating and inhibiting certain-members of the bacterial
community, (Pulido-Villena et al., 2014; Tsagarakis et al., 2017). The budgets established from
4 artificial seeding experiments during project DUNE (Guieu et al., 2014b) all showed that
stimulating predominantly heterotrophic bacteria; atmospheric dust deposition can enhance the
remineralization of dissolved organic carbon (DOC), thereby reducing net atmospheric CO>
drawdown, This also reduces the fraction of DOC that can-be-mixed-and exported to deep waters
during the-winter mixing (Pulido-Villena et al., 2008). Similarly, dust addition using-on-land
mesocosms, in the eastern Mediterranean Sea suggested that the auto- and hetero-trophic

components of the food web were enhanced by the dust-addition-thanks-tothe nitrogen and
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phosphorus added through dust (Pitta et al., 2017 and companion papers) and-that the response
was independent of the-way-the dust was added to the surface waters (single strong pulse or
three repetitive smaller pulses). One of the most intriguing results_is the role of Saharan dust
deposition in the export of particulate organic carbon (POC) to the-deep-Mediterranean-Sea by
both fertilizing and acting as ballast and-facilitating aggregation processes (i.e. Ternon et al.

2010, Bressac et al., 2014; Desboeufs et al., 2014; Louis et al., 2017; Guieu et al., in prep.).

Experimental approaches have shown that wet dust deposition events,—by supplying
bioavailable-new nutrients—presents a higher positive impact compared to dry deposition, gn
both marine primary production, nitrogen fixation-and-chlorophyll concentrations (Ridame et

al., 2014; Guieu et al., 2014b).

Over the past decade, most of these valuable findings have been made thanks to experimental
approaches based on dust and aerosols addition into bottles-and up to large in-situ mesocosms
or-using remote sensing approaches. In this paper, we provide a state of the art regarding dust
deposition and its impact in the Mediterranean Sea and we describe our strategy to go a step
forward by catching a real wet deposition event at sea in order to study in situ the effects of the
rapid introduction of chemical elements and particles from the atmosphere onto the marine

element cycles, the biology and the export of material to the deep waters.

2. PEACETIME objectives

In this context, the PEACETIME project (ProcEss studies at the Air-sEa Interface after dust

deposition in the MEditerranean sea) (http://peacetime-project.org/; last access 9 Feb. 2020)

aimed at extensively studying and parameterizing the chain of processes occurring in the
Mediterranean Sea after atmospheric deposition, especially of Saharan dust, and to-put them-in

assess how these
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mechanisms impact, and will impact in the future, the functioning of the marine biogeochemical

cycles, the pelagic ecosystem and the feedback to the atmosphere.

The PEACETIME project was centered on a one-month oceanographic cruise in the central and
western Mediterranean Sea in May-June 2017. The strategy during the cruise was designed to

tackle the following questions:

1. How does atmospheric deposition impact trace element distribution in the column
water-including the sea surface microlayer?

2. What is the role of dissolved organic matter/particulate dynamics on the fate of
deposited atmospheric trace elements?

3. How does atmospheric deposition impact biogeochemical processes and fluxes? Do in
situ biogeochemical /physical conditions matter?

4. What is the impact of atmospheric deposition on biological activity and on the
structure and composition of the planktonic communities?

5. How does atmospheric deposition impact the downward POC export and the
subsequent carbon sequestration?

6. What is the impact of biogeochemical conditions on gases and aerosol emissions from
the surface water?

7. How are optical properties above and below the air-sea interface impacted by aerosols

emission and dust deposition?

During the 33 day cruise, 40 scientists from the atmosphere and ocean communities travelled
2750 nautical miles (4300 km) performing simultaneously in situ sampling in the lower
atmosphere and the water column, and conducting on board experiments in climate reactors
simulating present and future marine physical conditions. The impacts on the cycles of chemical
elements, on marine biogeochemical processes and fluxes, on marine aerosols emission were

6
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investigated in a variety of oligotrophic regimes. Characterizations of the chemical, biological,

physical and optical properties of both the atmosphere and the sea-surface microlayer, mixed

layer and deeper waters were performed,

The time of the campaign and the adaptive strategy for the cruise track, based on the daily
analysis of a number of operational forecast and near real-time observational products were
designed to maximize the probability to catch a Saharan dust deposition event in a stratified
water column in order to folow-in-sity the associated processes. In this paper, we describe how
our strategy was designed before the campaign and how we were able to adapt it during the
cruise in order to sample a Saharan dust deposition event at sea, thanks to a dedicated and so-

called Fast Action prompted during the cruise.

3. Best time to schedule PEACETIME cruise

In order to fulfil the objectives of the PEACETIME cruise, the-occurrence probability of a

sing-to-do the cruise during a

period of surface water stratification. Thiscriterium matters becauseg atmospheric inputs can-be
the-main-external-nutrient supply to offshore surface waters during-the stratificationperiod
(Guerzoni et al., 1999; The Mermex Group, 2011; Richon et al., 2018a). The Mediterranean
surface mixed layer depth monthly climatology (figure 1) shows a basin scale deepening from
November to February—March and an abrupt re-stratification in April, which is maintained
throughout summer and early autumn (D’Ortenzio et al., 2005). With mixed layer depths below,
30 m in the whole Mediterranean basin, the May-September period looks particularly favorable

to sample highly stratified waters, with-possible-consideration_of April and October months

(=40 m).
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occur-during-the-cruise. The satellite-derived monthly climatologies of dust in the atmospherig
column over the Mediterranean show a maximum in summer in the western basin and g, spring

and summer in the central basin (e.g., Moulin et al., 1998; Varga et al., 2014). Consistently;

Octoberto-February. In addition to this-seasonality-of the dust columnar-load, the climatology

of PM1p and associated African dust concentration at the surface in the Mediterranean indicates

that the occurrence of dust plumes close to the surface, i.e. prone to dry deposition, is maxinum,
in April-May in Greece, April-June in Sicily, May-June in continental Italy, May in SE France,
June-July in NE Spain and July-August in SE Spain (Pey et al., 2013). From weekly insoluble
deposition monitoring at 4 sites of western Mediterranean islands (Frioul, Corsica, Mallorca
and Lampedusa)-in-the period-2011-2013, Vincent et al. (2016) report that most-of the most

intense African dust deposition events occurred between March and June,

Literature from deposition measurements at various sites in the western Mediterranean
highlights a spring maxima for dust deposition (Bergametti et al., 1989; Loye-Pilot and Martin,
1986; Avila et al., 1997; Ternon et al., 2010; Desboeufs et al., 2018). Moreover, observations
indicate that the highest deposition fluxes of dust are most often associated with wet deposition
episodes (e.g. Loye-Pilot et al., 1986; Bergametti et al., 1989; Guerzoni et al., 1995; Loye-Pilot
and Martin, 1996; Avila et al., 1997; Kubilay et al., 2000, Dulac et al., 2004; Guieu et al., 2009;

Ternon et al., 2010; Vincent et al., 2016). A survey of dust wet deposition events at Montseny
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stations in NE Spain over, 1996-2002 concluded-that the maximum frequency was-in May (about
3 events per month) and June and November (about 1 event per month). Datafrom-\incent et
al(2016)-also-show-that most of the two-three highest dust deposition events recorded-at-each
of the 4-island-stations—cited-above occurred between March and May, and are—most often

associated with rainfall.

It was also important that the cruise crossed different trophic regimes to get-likely contrasted
responses to atmospheric deposition. Although the Mediterrancan is classified as an
oligotrophic basin characterized by low-nutrient concentrations, there is a general west-to-east

gradient of increasing oligotrophy (The Mermex Group (2011) and references within). Figure

from April to June, various trophic conditions can be found in the basin, with still relatively

“high” Chl-a concentrations (0.3 mg m™®) in the Ligurian and Alboran Sea and ultra-oligotrophic

conditions in the central and eastern basin (< 0.03 mg m™) (Bosc et al., 2004).

From all the preceding considerations, we finally concluded-that mid-April to mid-June was the

target period for the cruise.

4. Spatial consideration: transect of principle of the PEACETIME cruise.

The central Mediterranean Sea (MS) was-our-main targeted area since all the marine ecoregions

of the MS can be found in a relatively small zone(figure 4). Each_ecoregion detected-on-that
figure presents-a characteristic species-association, from primary producers to top predators of
the epipelagic domain, forced by similar environmental conditions (Reygondeau et al., 2014).
As-seen-infigure 4the initial transect designed for PEACETIME aimed at visiting most of the

identified ecoregions within the 4 weeks of cruise, alowing-us to test the impact of atmospheric

s. The planned long stations of the transect of
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principal were located within or at the center of 3 main ecoregions. Short stations (occupation

time was less than 6 hours) were positi

long-enough (~8 hours) to allow the continuous measurement of both lower atmosphere and

surface seawater while cruising. Depending-on-a

It has-to be noted-that the coastal climate observatory of the Italian National Agency for New

Technology, Energy and Environment (ENEA) on Lampedusa Island (35°31°06™N,
12°37°48”E; figure 5) could provide an excellent support for, atmospheric conditions in the
central basin before and during the cruise. ladeed; continuous measurements of aerosols
concentrations (Marconi et al., 2014) and composition (Becagli et al., 2012 and 2013), nutrients
deposition (Galletti et al., this issue), dust deposition (Vincent et al., 2016), optical
measurements (Meloni et al., 2007) and the vertical distribution of aerosols in the atmospheric
column by lidar (e.g. Di lorio et al., 2009) are-conducted at this site. During the cruise, 15
AERONET stations (Holben et al., 1998) plotted, in figure 5 also provided continuous daytime

measurements of the spectral aerosol optical depth (AOD).

5. Implementation of the PEACETIME cruise

Based on the scientific arguments detailed above and on-the-availability of the ship, the
PEACETIME cruise was conducted during late spring conditions from May 10 to June 11, 2017,

on board the R/V Pourquoi Pas ? Along the 4300 km transect, 10 short stations (with an average

duration of 8 hours) and 3 long stations (respectively 4 days, 4 days and 5 days duration), were

occupied(figure 5 and table 1).
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Everyday, thanks to the PEACETIME Operation Center (POC; see next section) based-on-land,

the relevance-to-follow-the initial track was discussed-in-the-view of several typesof available

or derived products from various operational centers producing model forecasts and near-real

time remote sensing products).—Figure-5-represents-both the planned and realized transect

following the day-to-day adaptive strategy,

5.1 Tools for decision: the PEACETIME Operation Center

Based on the experience of the ChArMEX airborne campaigns (Mallet et al., 20016) and of
previous oceanographic cruises needing an adaptive planning strategy based on pbservations

and short-term forecasts (see section “Satellite monitoring of the ocean”), an operational server

named the PEACETIME Operation Center (POC; http://poc.sedoo.fr/; last access 9 Feb. 2020)

was set-up by the Service de Données de 1’Observatoire Midi-Pyrénées (OMP/SEDOO,
Toulouse, France) for-the cruise. It operated from early May to mid-June 2017, gathering a set
of quick-looks of (i) near-real time selected remote sensing or other observational products and
(ii) meteorological and chemistry-transport model forecasts, considered useful for the campaign
planning decisions. The quick-looks were either directly transferred to the POC following their
production by respective operational centers, or linked from their original browser. Various
reports were also produced and made available on a quasi-daily basis {meteorology and dust
over the basin, regional and local oceanographic conditions (SPASSO; see hereafter), ship
trajectory... The complete series of reports IS available at

http://poc.sedoo.fr/source/indexGarde.php?current=20170602&nav=Reports (last access 9

Feb. 2020). In the following, more details will be given on products that were found the most

useful for daily decisions during the cruise.

The actual positions of stations were-discussed and determined on the basis of near-real time

satellite data analysis (SPASSO, see later) in order to account for local oceanic conditions (e,
11
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presence or-not of mesoscale structures). In parallel, short- and middle-term forecast models of

weather conditions and of dust transport and deposition were systematically analyzed to verify

the conditions, and eventually start the Fast Action. Fhe-Fast-Action-strategy consisted-in

conditions. The goal was to position the ship in the center of the area of dust deposition, at least
one day (24 hours) before the event in order to sample the water column before, during and

. Several constraints had to be

considered for the Fast Action decision:

1. the uncertainties of the operational forecast models, which increased proportionally to

the length of the forecasted period;

2. the relative position of the ship {which-was following the initial plan)-and the forecasted

area of deposition,

and the need to be positioned at the station 24 h before the deposition event;

3. national and international authorisations related to the EEZ (Exclusive Economic
Zones); the Mediterranean area is almost completely submitted to national EEZ of
surrounding countries and, consequently, international oceanic areas are very scarce;

authorisation to sample an EEZ should_be ds

for-the next 48 h oreventually, modified.-For most of the cruise (see figure 5), only slight

modifications of the initial plan were decided, as atmospheric conditions were not considered

favorable for the Fast Action. They dramatically changed on the 28" of May, during the
12
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sampling of the ION station, conducting-to-the-decision-to-start the Fast Action, Fhe-sequence
of eventsleadingto-the Fast Action-are described later.

Atmospheric conditions

Several near-real time remote sensing products and model forecasts were-used.-In-terms-of

aerosol-remote-sensing,-we-mainly relied-on two products. The first one was the aerosol optical
depth at 550 nm (AODsso) distribution-over-the sea, as produced in near-real time by the ICARE

data and service centre, Lille, France (product SEV_AER-OC-L2; http://www.icare.univ-

lillel.fr/projects/seviri-aerosols; last access 9 Feb., 2020). Data from the Spinning Enhanced

Visible and Infra-red Imager (SEVIRI) on-board the geostationary satellite Meteosat Second
Generation (MSG) are directly acquired every 15 min by the Service d'Archivage et de
Traitement Météorologique des Observations Satellitaires of the Centre de Météorologie
Spatiale (CMS/SATMOS), Lannion, France, and processed within hours by ICARE based on
the algorithm of Thieuleux et al. (2005). The MSG satellite position at 0° longitude allows a
good coverage for aerosol climatologies and case studies of aerosol transport over the
Mediterranean basin (e.g. figure 1.19 in Lionello et al., 2012; Chazette et al., 2016 and 2019)
and surrounding continental regions (Carrer et al., 2014) as well as of desert dust source regions
in Africa (e.g. Gonzales and Briottet, 2017). In addition to the quick-look from the level-2
product (SEV_AER-OC-L2) available between 4:30 and 18:00 UT at-the-maximum in mid-
June in our area of interest, a daily mean level-3 (SEV_AER-OC-D3) is produced every night

by averaging all available time slots during the previous day between 4:00 and 19:45 UT, Figure

horizontal resolution of the product is of 3 x 3 km? at nadir, of the order of 12.5 km? in the

Alboran Sea, 15 km? in the North of the Gulf of Genova, and 18 km? in the northeasternmost

13
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basin (about 13.07, 13.64, and 13.96 at the FAST, ION, and TYR station, respectively).
Although less accurate than AOD from MODIS when compared to AERONET data, the high
temporal resolution of MSG/SEVIRI-derived AOD offers a much better daily coverage of the
area than any orbiting satellite (Bréon et al., 2011), especially when partial cloud coverage can

be compensated thanks to successive images, as-Hlustrated-in-figure 6,

The second useful-remote sensing product was the North African Sand Storm Survey
(NASCube) also produced from MSG/SEVIRI, at the Laboratoire d’Optique Atmosphérique,

Lille, France (http://nascube.univ-lillel.fr; last access, 9 Feb. 2020). It generates continuous

day and night images of desert dust plumes over the northern African continent and Arabian
Peninsula, using an artificial neural network methodology producing colour composite images
by processing 8 visible, near-infrared and thermal infrared bands of SEVIRI (Gonzales and
Briottet, 2017). Figure 7 shows a window of this product for the 1% June 2017, showing the
probable dust source regions (south of Morocco and western Algeria) of the plume found the

following days over the westernmost Mediterranean basin as-seen in figure 6.

During the campaign, we also used on a regular basis air mass trajectories computed with the
Hysplit tool of the Air Resources Laboratory of the National Ocean and Atmosphere
Administration (NOAA/ARL; https://ready.arl.noaa.gov/HYSPLIT _traj.php; last access 9 Feb.
2020; Stein et al., 2015; Rolph et al., 2017) based on global meteorological 192-h forecasts
from the Global Forecasting System (GFS) model (1-deg, 3-h resolution) operated by the
National Centers for Environmental Prediction (NCEP; Yang et al., 2006). It could-be used both
in forward mode to forecast the transport over the western Mediterranean of dust plumes
detected over Africa by NASCube, and in backward mode to identify the origin of air masses

over the ship position.

14
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In addition to aerosol remote sensing observations we also used near real time rainfall remote
sensing produced by, the Meteo Company, an international weather network
(https://meteoradar.co.uk; last access 9 Feb. 2020) providing every-15-mn-real time weather
radar- and satellite-derived maps of precipitation, clouds, and lightning on a European window
covering most of the Mediterranean basin (north of 32°N or 35.5°N, depending on products).
The satellite infrared images from SEVIRI are filtered to show the thicker clouds, and,
observations from 45 European rain radar are-integrated. Figure 8 illustrates the combined
SEVIRI satellite and radar product showing both clouds, precipitation and lightning for two
time slots on 3 June 2017. They show the beginning and the end, respectively, of a convective
rainfall of low intensity (<2 mm h-1) between Algeria and Spain in the dusty and cloudy area

visible in Figure 6 west of the ship.

A number of operational forecast models were also used, both for weather forecast and aerosol
transport. In order to understand the synoptic circulation, we especially considered surface
pressure (P) and 500-hPa (about 5.5-km altitude) geopotential (Z500) maps over the European
domain covering the whole Mediterranean basin and northern Atlantic, from the global
numerical weather prediction model ARPEGE (Courtier and Geleyn, 1988), developed and
maintained at Météo-France. Its horizontal resolution varies from 7.5 km in France to 37 km
over Southern Pacific, and four daily forecasts including data assimilation are carried out every
day (available by http://www.meteociel.fr, last access 9 Feb. 2020). Because we were
especially targeting possible aerosol deposition events, we-also-analysed-daily-a set of up-to-5-

13- - I ; precipitation forecasts from several models
ncluding those made available by meteociel.fr including global weather forecast models such
as ARPEGE, IFS (the model developed at ECMWEF; Barros et al. 1995), the Canadian CMC-

MRB GEM model (C6té and Gravel, 1998), the GFS atmospheric model from NCEP
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(Kanamitsu, 1989) and its ensemble GEFS, but also, the regional non-hydrostatic model

AROME (Seity et al., 2011) for the NW Mediterranean only-at 1.3 km resolution.

Three regional dust transport models have also been considered, namely SKIRON operated by
the Atmospheric Modeling and Weather Forecasting Group (AM&WEFG) of the University of
Athens (Kallos et al., 2009; Spyrou et al., 2010) and the two models NMMB-BSC (Non-
Hydrostatic Multiscale Model; Pérez et al., 2011) and BSC-DREAMS8b (Basart et et al., 2012)
operated by the Barcelona Supercomputing Centre (BSC). SKIRON and BSC-DREAM8b have
a horizontal resolution of 0.24° and 0.33°, respectively, and are both initialized and constrained
at their boundaries by NCEP/GFS 6-hourly data. NMMB-BSC regional model has a resolution

of 0.47° x 1/3° and is constrained by the NCEP global version of the model (Pérez et al., 2011).

dust optical depth and dry
and wet dust deposition fluxes forecasted daily from 12 UTC over the next 72 h by the NMMB-

BSC-Dust and BSC-DREAMS8b v2.0 models and, over, the next 180 h (5.5 d) by SKIRON,

the wet dust deposition product by SKIRON
was particularly useful to issue an early pre-alert for the Fast Action during the cruise. Figure
9 compares the forecast maps of 6-h accumulated dust deposition flux at 4-time steps from 3%
June 2017,12 UTC to 5 Jung 00 UTC, from the 2nd-June runs of those 3 models, Fhis-period
corresponds to the scavenging of the dust plume shown in Figure 6 that was targeted for the

Fast Action (seg below).

We also used a set of forecast of aerosol or dust optical depth from a series of models:—(1)-60-h,

operated by
the BSC for the World Meteorological Organization (WMO) Sand and Dust Storm Warning
Advisory and Assessment System (SDS-WAS), and made available by the Spanish Agencia
Estatal de Meteorologia (AEMET; https://sds-was.aemet.es/forecast-products/dust-forecasts/;
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last access 9 Feb. 2020 it is worth noting that Basart et al. (2016) model data comparison over
summer 2012 showed better average performances of the model ensemble dust forecasts
compared to forecasts from any individual model (ii) 5-days, 3-hourly dust and sulphate AOD
Copernicus/GMES products over Europe and North Africa produced by the European Center
for Medium-Range Forecast (ECMWF), and (iii) 114-h, 6-hourly sulfate, dust and smoke AOD
over Europe and the Mediterranean region north of 35°N from the Naval Research Laboratory
(NRL) global NRL Aerosol Analysis and Prediction System (NAAPS) model that is using an
AOD assimilation package (Zhang et al., 2008); further, we used the kml formatted animations
of the NAAPS 5-days global forecasts of AOD projected on a GoogleEarth satellite view

centered on the western Mediterranean, which-shows-areas-with-significant AOD(>0.1) of
sulfate,dust or smoke. Finally, we also considered the daily maps (at time 00 UTC) produced

by the Earth Wind Map community (https://earth.nullschool.net; last access 9 Feb. 2020),
consisting of AOD from sulfate or dust from the NASA Global Modeling and Assimilation
Office (GMAO) Goddard Earth Observing System version 5 (GEOS-5) model overlaid by
surface or 700 hPa winds from the GFS model in order to check the dominant aerosol type and

transport conditions at the ship position.

Ocean conditions

Concerning—thesurface—ocean; several remote-sensing datasets were—exploited—usingthe

SPASSO (Software Package for an Adaptive Satellite-based Sampling for Ocean campaigns

https://spasso.mio.osupytheas.fr/; last access: 9 Feb. 2020) in order to guide the cruise through

a Lagrangian adaptive sampling-strategy aiming at avoiding region of complex circulation and
dynamics (fronts, small scale eddies). Fhe-idea-behind this approach was-to-aim-at a situation
where the air-sea exchanges dominate and lateral advection and diffusion can be neglected.

Such an approach was already successfully adopted during several previous cruises such as
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LATEX (Nencioli et al., 2011; Doglioli et al., 2013, Petrenko et al., 2017), KEOPS2 (d'Ovidio
etal., 2015), OUTPACE (Moutin et al., 2017; de Verneil et al., 2018) and OSCAHR (Rousselet
et al., 2019). During PEACETIME, we used the following datasets: (1) altimetry data from the

AVISO Mediterranean regional product (https://www.aviso.altimetry.fr/data/products/sea-

surface-height-products/regional/mediterranean-sea-gridded-sea-level-heights-and-derived-

variables.html); the altimetry-derived currents were then processed by SPASSO to derive
Eulerian and Lagrangian diagnostics of ocean circulation: Okubo-Weiss parameter, particle
retention time and advection, Finite Size Lyapunov Exposant (e.g-figure 10); {2)-the sea surface
temperature (level 3 with resolutions of 4 and 1 km) and (3)-the chlorophyll concentration (level
3 with a resolution of 1 km, MODIS Aqua and NPPVIIRS sensors combined after May 27,

2017 into a unique product) provided by CMEMS - Copernicus Marine Environment

Monitoring Service (http://marine.copernicus.eu/).

5.2 The Fast Action

The decision process and atmospheric conditions

On the 28" of May, the ship was ending the long station ION in the lonian Sea under a
continuing-northern atmospheric flux, A low pressure system reaching Spain from the Atlantic,
atypical situation for African dust transport in summer in this area {Moulin et al., 1998) caused
a southern-flux over the western basin. But no significant gmission of-dust-was-yet detected in
Africa with NASCube. Aerosol transport models forecasted, however, the presence of dust
plume of moderate intensity for the following days, mainly confined to the southern part of the
western Mediterranean basin following a persistent western flux for several days limiting the
extension of dust transport towards the north of the basin. Some dust was predicted by NMMB-
BSC and SKIRON model runs ef27-June to be deposited by rain south of the Balearic islands

on 30 and 31 May, but meteorological forecasts did not converge on the time and location of
18
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precipitation. In addition, the possible area of dust deposition was far from the ship, 16° in
longitude west from the ION station. Consequently, no modification of the initial plan was

decided and the-station 8 was-carried-out southwest of Sicily on 30 May.

At the end of station 8-on 30 May, satellite observations confirmed the presence of atmospheric
dust in a cloudy air mass over the western part of the Mediterranean and long-term predictions
of AOD indicated the continuing presence of dust over the Alboran Sea, with a new dust plume
likely extending northwest on June 2-or-3. Although models still diverged inforecastingrain
over this region, the southwestern part of the Mediterranean basin looked-to-be the most dusty
area for the next days and-it- wasdecided to-modify the initial plan and-to-move towards the

west for the last part of the cruise (see-figure 5,the-long transect south of Sicily).

islands.-Significant dust emissions were again observed over North Africa from-the-nightof 30-

31, May on, and-thg predictions for a new significant dust event over the southwestern
Mediterranean on June 3-5-were confirmed. Although the differences between the models were
still important (only SKIRON forecasted a wet deposition event south of Spain for the-3-4% of
June), it was decided to continuously move the ship westward, and to-shift station 9 from its
initial position in the Tyrrhenian Sea to a new position in the Alboran Sea. We-considered-that
another station in the Tyrrhenian area was not critical for the cruise objectives and that

establishing the area of next operations in the Alboran Sea could facilitate the re-positioning of

the-ship-in-the case of a confirmed prediction of a wet deposition event.

The1% of June; during the-sampling at station 9 midway between Sicily and Spain, it-was
decided-to-start the Fast Action, Indeed,-dust emissions continued in Algeria and southern
Morocco associated to a southern flux; aerosol transport models confirmed a new significant
dust episode with AOD >0.8 (i.e. roughly 1 g m of dust in the atmospheric column) fox, June
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3-5, and the occurrence of associated rains appeared most likely from most-meteorological
forecasts. SKIRON and NMMB-BSC predicted the-dust-wet deposition flux to be more
important on 3"-June jn the Alboran Sea west of 0° longitude, of the order of 1.5 and 0.5 g m
2, respectively)but longer-term forecasts by SKIRON predicted wet dust deposition meore east
south of the Balearic Islands on-June-4(~0.5-g m=2) and-especially on first-half of June 5
(possibly >1.5 g m2); g possibility confirmed by other rain forecasts. The Fast Action station
was positioned 145 km south the Balearic Island of Mallorca and 126 km north of the Algerian
coast (Figure 5), where a limited portion of the seg is part-of international waters (i.e. not
included in an EEZ), and in-an-area-where the influence of Atlantic waters reacher-in-nutrients
than-Mediterranean-waters should be limited compared to the more western Alboran Sea. The
ship reached the FAST station location on the 2" of June at the end of the day (Table 1) and

the ocean and atmospheric sampling started immediately.

Although cloudy;, only from the 3™ of June rain-conditions-werg observed in the neighbouring
area (see—rain—radar composite images—in figure 11). The SEVIRI AOD remote sensing
confirmed the export of a dust plume from North Africa south of the Balearic Islands with-high
AOD (>0.8; Figure 6) and NASCube confirmed new dust emissions in the night from 3 to 4,
June. The dust plume was transported to the NE up-tg Sardinia on June 4; with AOD <0.5in all

the area and-clear sky with low AOD was-left west of 4°E on June 5 (Desboeufs et al., in

preparation, this issue). Wet deposition of dust for the 4™ and early 5" June in the FAST station

area were confirmed by the deposition-maps-from-the 3 regional dust transport model forecast

runs of June 2, although with decreasing intensity compared to the previous runs (except for
BSC-DREAMSD that did not forecast dust wet deposition in earlier run); from a very small flux
of a few mg m? (BSC-DREAMS8b) to about 100 mg m2 (NMMB-BSC) and up to more than 1

g m? (SKIRON) (Figure 9). A rain front, moving eastward from Spain and North Africa
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regions, reached the Fast Action position the night between the 4™ and the 5" of June (Figure
11). A single event-of rain was observed and sampled on-the-ship at the station FAST on 51
June from 2:36 am to 3:04 am. Continuous lidar measurements on board the ship confirmed the
presence of a dust layer mainly, over the atmospheric boundary layer-over, the FAST station and
its below-cloud deposition during the rain event of early 5th June (Desboeufs et al., in
preparation, this issue). The chemical composition of this rain sample confirmed wet deposition
of dust reaching a total particulate flux of 12 mg.m (Fu et al., in preparation, this issue), which
is among the lowest most intense dust deposition fluxes recorded in this area from long time-

series of deposition network (Vincent et al., 2016).

Sea Surface dynamic context at FAST

Several approaches have been implemented to highlight the dynamical context around the
FAST station in-the-waters-above 200m,-the physical-structures-and, the possible influences of
the dynamics on the stability of the water masses at the station. These approaches are based on
in situ observations (Moving Vessel Profiler (VMP) transect and drifters trajectories) and

diagnostic tools.

On board, a MVP collected high frequency Conductivity- Temperature- Depth (CTD) data
along two transects: the first one when the vessel approached the FAST station from the east,
before the station took place, and the second one west of the FAST station, on the transect back
from station 10. Figure 12 shows-these data-in-a-longitude-depth-section. To the east of the
FAST station the surface water was colder and saltier than to the west, where a—strong
deformation-of the isopycnals suggests the presence of an Algerian anticyclonic eddy. Such
eddy carries recent Atlantic water and generates a southward current that only partially impacts

the FAST station area.
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The post-cruise comparison of the hull-mounted ADCP data combined with the SVP drifters
trajectories and the altimery-derived currents shows a good agreement all-aloeng-the cruise and
in particular at the FAST station (Figure 12). Moreover, the agreement between SVP and
numerical particle trajectories has-been slightly improved when we-also-took-into-account-the

Ekman drift calculated-with wind data from the high resolution regional model WRF 3.7,

This allowed us to calculatg backward trajectories of the surface water masses using the

ARIANE Lagrangian tool (Blanke and Raynaud, 1997; Blanke et al., 1999) in order to estimate

the origins of the sampled surface-water, at the LD stations. As-seen-from the repeated CTDs

eddy was present. We estimated that ove
of water remained_in-the station—zone after 1(2) day{s)—Meoreover.combining the particle

trajectories and the precipitation data from the WRF 3.7 model we concluded that the rain,
which fell slightly upstream the LD-FAST station in the previous days, likely impacted the

sampled water mass, (figure 14).

Temporal evolution of surface seawater properties during FAST

The hydrological-situationwas-characterized by a very shallow surface mixed layer and a sharp

seasonal thermocline that extended underneath-down to 75 m depth (Figure 15, upper rightand
middle right panels). In this upper layer, salinity values were lower than 37.5, which-is
characteristic of modified Atlantic waters flowing eastward inside the Mediterranean Sea. In
the deeper layers, salinity increased sharply with-depth-until 350 m where it reached its

maximum value {38.59), which—is—characteristic of Levantine intermediate waters flowing
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westward into the Mediterranean outflow. Deep waters, formed at winter convection zones of
the northwestern Mediterranean, had lower salinity values (38.48);-they-extended-from 1400 m

down to the sea bottom.

The hydrological conditions at this site between-June-2 and 8 during-the Fast-Action-mainly

evolved in the upper layer (Figure 15, upper left and middle left panels). The surface mixed
layer was-shallow with-variations-from 9-m to 19-m depth following the diurnal cycle. Mixed
layer salinity remained egual until the 7™ of June;-inparticular no dilution effect dug the rainfall
on 39 June hasbeen recorded. The stratification of the whole water column remained steady,
during the long station. Density horizons keptlain along isobars in the upper layer, which-signs
thg absence of geostrophic perturbations during the long station. However, the-current profilers
indicated a depth-independent (barotropic) motion of amplitude 3 cm s heading 220°, which

is in agreement with the position of the station within the large eastern Algerian Gyre,-a

by Testor et al. (2005). This

southwestward flow transported superficial water masses of distinct properties as—clearly
marked below the mixed layer by salinity anomalies (referenced to the initial profile of 29 Jung,

16:30). These water masses crossed the observation site, disrupting the water column in the
depth range of 25-100 m, lowering salinity values by 0.1 in the extension of the thermocline
and increasing salinity values by 0.05 underneath. Although-clearly present, this hydrological
anomaly did not affect the surface waters-and-the MLD was-stable-during theFast Action,
precluding any input from below that could have been linked to destratification induced by

strong wind associated to the dust event as-hypothesized in Guieu-et al. (2010) from time-series

a. Such conditions arg favorable to observe

any change strictly attributed to external inputs from above-(i.e.-atmospheric-deposition).
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the CTD package (Figure 15 lower—panels).—measurements of fluorescence and of beam
transmissionprovided similar patterns, stressing the biogenic character of particles present in

the water column. Intermittent signal at the sea surface has—been detected only by
transmissometry, however. no clear relationship with the rainfall event can-be-stated (see the
first profile after event in red). Fhe-vertical-distribution-was, displayed as-a deep chlorophyll
maximum of about 20-m thickness, located at the base of the thermocline (about 75 m). Short-
term-evolution during the seven days of observation displayed variations in intensity and depth

ak. Such

perturbations appeared after the rainfall event of the 3" June, however they more likely result
from the intrusion of water masses from north at this depth range. This hypothesis is reinforced
by the absence of any geostrophic perturbation in the density time series that could have injected
biomass or nutrients via diapycnal processes. Another candidate could be the mixing effect

associated to the breaking of internal gravity waves that propagated along the thermocline.

position.-During the cruise a general warming of the sea surface is observed and the FAST

station has been performed in waters warmer than the two others LD stations.

Chlorophyll concentrations as seen by satellite over the western and central Mediterranean Sea
were typical of the oligotrophic conditions encountered during the season characterized by-a
strong stratification (Figure 17). Fhe west-east gradient between oligotrophic to very

oligotrophic wasclearly established and minimal concentrations (about 0.05-mg m- )-were
observed in the lonian Sea,
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average concentration in 0
20 m layerwas 90 nM DIN and 15 nM DIP at the westernmost station (station 10) and 14 nM
DIN and 10 nM DIP at the easternmost station (ION). Along the longitudinal transect, a
deepening of the nutrient depleted layer toward the east was observed (figure 18) consistent
with the general trend of those nutrients in the Mediterranean basin as described in Mermex

Group (2011) and-references-inside.
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6. Conclusion

The PEACETIME oceanographic expedition conducted in spring 2017 cruised over a 20°
longitudinal gradient across the western and central Mediterranean Sea during the season
characterized by strong stratification, low productivity and high chance to be submitted-to dust
wet deposition. Those conditions were required in order to fulfil the objectives of the project
aiming at quantifying the biogeochemical processes at play after atmospheric deposition and its
impact on ecosystem functioning. Thanks to an adaptive strategy based on a large panel of
atmosphere and ocean real time observations and forecast models, the track-of the cruise was
optimized from day to day. In particular, we-were successful to-timely reroute the R/V, toward
an area where dust deposition was expected and actually observed and sampled. Different
atmospheric situations were encountered during the cruisg, allowing the acquisition of a large
dataset under different dynamical and biogeochemical in-situ-conditions to explore the chemical

and ecosystem in situ response to deposition.
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1151 Table 1. Date of occupation, position and depth of the short stations (ST1-ST10), of the long

1152  stations (TYRR, ION, FAST) and of the SAV station.

arrival date local time  departure date local time depthm lat N long E
ST1 12/05/2017 05:45 12/05/2017 2115 1580 41°53.5 6°20
ST2 13/05/2017 06:30 13/05/2017 13:08 2830 40°30.36 G°43.78
ST3 14/05/2017 06:00 14/05/2017 13:30 1404 39°08.0 7°41.0
ST4 15/05/2017 05:56 15/05/2017 13:04 2770 37°59.0 7°58.6
ST3 16/05/2017 04:00 16/05/2017 10:58 2366 38°57.2 11°1.4
TYRR  17/052017 05:08 21/05/2017 15:59 3395 39°20.4 12735 56
STé6 22/05/2017 04:50 22/05/2017 10:38 2275 38748 47 14°2997
SAV 23/05/2017 11:30 23/05/2017 14:17 2945 37750 4 17°36.4
ST7 23/05/2017 21:10 24/05/2017 07:15 3627 36°39.5 182093
ION 24/05/2017 18:02 2%/05/2017 08:25 3054 358291 19°47.77
ST8 30/05/2017 03:53 30/05/2017 09:41 3314 36°12.6 16°37.5
ST9 01/06/2017 19:13 02/06/2017 04:41 2837 38°08.1 5°50.5
FAST 02/06/2017 20:24 07/06/2017 2325 2775 37°56.8 2°54.6
ST10 08/06/2017 05:12 08/06/2017 10:25 2770 37°27.58 1°34.0
FAST -bis  08/06/2017 21:06 09/06/2017 00:16 2775 37°56.8 2°55.0
1153
1154
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Figure Captions.

Figure 1. Mediterranean surface mixed layer depth (m) monthly climatology over 1940-2004

(in m; from D’Ortenzio et al., 2005; Copyright 2005 by the American Geophysical Union).

Figure 2. Monthly-averaged dust optical depth at 550 nm (1979-2013 period) over the
Mediterranean region from the CNRM-RCSMD5 regional coupled climate system model (after

Nabat et al., 2015).

Figure 3. Monthly averaged chlorophyll maps derived from SeaWiFS data for the year 1999

(Bosc et al., 2004; Copyright 2004 by the American Geophysical Union).

Figure 4. Spatial distribution of the Mediterranean epipelagic marine ecosystems of the
Mediterranean Sea (from Reygondeau et al. 2014). The consensus regions (in white, from Ayata
et al., 2018) from eight regionalisations of the Mediterranean Sea, are characterised by well
defined, relatively homogeneous biogeochemical and hydrodynamical conditions, with similar

temporal dynamics). The transect initially planned is superimposed.

Figure 5. Transect of the PEACETIME Cruise: Initial (dotted line) and final track (continuous
line); stations are indicated by filled circles (planned stations: smaller, pink: realized: larger,
orange). The 10 short stations are numbered from St.1 to St.10. TYR, ION, and FAST indicate
the 3 long stations. The SAV station was only performed for the retrieval and launch of floats.
The land-based Lampedusa observatory (purple triangle) and 15 AERONET stations operated

during the cruise are also represented (brown diamonds).

Figure 6. Aerosol optical depth at 550 nm derived from MSG/SEVIRI on 3 June 2017; left:
from the 15-mn image acquired at 13:00 UT; right: daily average from 52 images acquired

between 4 and 18:30 UT. The black circle indicates the position of the ship (station FAST) .
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The dark grey mask corresponds to land and coastal ocean pixels, the light grey, to cloudy

pixels.

Figure 7. NASCube image window over North Africa and southern Europe for 1 June 2017,
02 UT. This nighttime image is derived from MSG/SEVIRI thermal infrared channels by
comparison to a clear reference image for the period, allowing detecting high dust load over the
continental surfaces (Legrand et al., 2001). White tones indicate clouds, the highest being the
brightest and the thermal anomalies attributable to dust are coloured by increasing intensity
from blue to pink. They are associated with increasing AOD from light blue (typically <0.3) to

purple (~1) and pink (>2) (Gonzalez and Briottet, 2017).

Figure 8. Rain-lightning-clouds (RLC) image window over the western Mediterranean and
Spanish Peninsula showing clouds (white areas), estimated precipitation (blue shades), and
lightning strikes (yellow circles) obtained by combining SEVIRI infrared images and European

rain radars (from meteoradar.co.uk; access 3 June 2017).

Figure 9. Maps of 6-h accumulated desert dust wet deposition fluxes in the western
Mediterranean produced by the forecast run of 2 June 2017 of the three dust transport models

NNMB-BSC-Dust-v2 (top) BSC-DREAMS8b (middle) and SKIRON (bottom), at-times-3-Jun,

Figure 10. Map of the FSLE (Finite Size Lyapunov-Exposant, day-2) calculated from the near-
real-time altimetry-derived surface currents for June 4, 2017. The figure is taken from the
SPASSO bulletin of June 5, 2017 with the planned stations shown in black and the route toward

the FAST station highlighted in magenta.

Figure 11. (1) Rain rate (mm h™*) during the night between the 4™ and 5" of June (white dot is

the position of the FAST station). These European radar composite products were provided by
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the Odyssey system, created in the framework of the Opera Program thatis-the radar component

of the Eumetnet observation Program.

Figure 12. MVP measurements across the FAST station. In the upper panel, the positions of
each MVP cast-(and of-the FAST station) are shown as black {and red) crosses, Below, are

shown the sections-of temperature (top), salinity (middle) and density (bottom),

The map of the altimetry derived currents shows clearly the presence of the Algerian eddy west

to the FAST station sampled during the MVP transect (figure 13).

Figure 13. Geostrophic currents from satellite data with the Ekman component from WRF
model added (black arrows, mean-during-the shown transect). In addition, in situ drifter
trajectories during 30 days (launched at FAST and in its vicinity) are represented as white lines.
Horizontal currents measured by the VM-ADCP for the first two bins (purple arrows -18 m,

salmon arrows -26 m) are superimposed for comparison.

Figure 14. ARIANE particles initial positions (white) and after a backward integration of 1
(pink), 2 (light red), 3 (dark red), and 10 days (black) for the FAST station on the 3rd of June.
(@) large view, (b) zoomed view, (c) ratio of particles remaining in the initial zone as a function

of the number of backward integration days.

Figure 15. Left panels: temperature-salinity diagram (upper panel), temperature profiles
(middle panels), and profiles-of beam transmission (lower panel). Right panels: evolution of

the surface stratification (sq, upper panel), salinity (anomalies to-the profile of to— 2" June

16h30; middle panel) and chlorophyll fluorescence (lower panel) at the FAST station. Time

ution. The depth
of the mixed layer is indicated by white dots. The time of the rainfall is indicated by the red

line.
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Figures 16. Sea Surface Temperature during the-cruise; left) outwardroute (10-28 May), right)
returnroute (28 May-10 June). Fhedaily-satellite pixel data-are used-toproduce-a-weighted
mean. The weight for each pixel ig calculated by-—normalizing-by: the square of the inverse
distance from the pixel to the daily mean ship position. The ship track is shown in black, the
short (long) station positions are indicated with black dots {(squares). Data courtesy of

L.Rousselet.

Figure 17. As figure 17, but for the satellite-derived surface Chlorophyll-a concentration

averaged-over the entire duration-of the cruise. Data courtesy of L.Rousselet.

Figure 18. Ni

concentrations(in-nM)-above 100-m, during the PEACETIME cruise—alongthe west-gast
gradient shown on-the map-(left),

Figures
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See also comments in  the text: what is it LD_FAST here and in the section starting at line 483, while before only "FAS" was mentionned? 
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