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Abstract. Recent observations have shown that phytoplankton biomass increases in the North Atlantic during winter, even

when the mixed layer is deepening and light is limited. Current theories suggest that this is due to a release from grazing

pressure. Here we demonstrate that the often-used grazing models that are linear at low phytoplankton concentration do

not allow for a wintertime increase in phytoplankton biomass. However, certain mathematical formulations of grazing
::
as

::
a

:::::::
function

::
of

::::::::::::
phytoplankton

::::::::::::
concentration that are quadratic

:
at
::::
low

::::::::::::
concentrations

:
(or more generally decrease faster than lin-5

early ) in phytoplankton concentration at low concentrations
:
as

:::::::::::::
phytoplankton

:::::::::::
concentration

:::::::::
decreases)

:
can reproduce the

fall to spring transition in phytoplankton, including wintertime biomass accumulation. We illustrate this point with a minimal

model for the annual cycle of North Atlantic phytoplankton designed to simulate phytoplankton concentration as observed

by BioGeoChemical-Argo (BGC-Argo) floats in the North Atlantic. This analysis provides a mathematical framework for

assessing hypotheses of phytoplankton bloom formation.10

1 Introduction

One of the most prominent biological events in the surface ocean is the North Atlantic spring bloom (Boss et al., 2008; Siegel

et al., 2014; Cole et al., 2015). Each spring, in an event that is distinctive in satellite ocean color observations (Siegel et al.,

2014), there is a rapid accumulation of phytoplankton in the ocean surface layer across the North Atlantic. A bloom occurs

when the phytoplankton growth rates are sufficiently faster than the loss rates over a sustained time period (Sverdrup, 1953).15

The large annual cycle in the phytoplankton population in the North Atlantic occurs in the context of large seasonal cycles in

atmospheric conditions that drive changes in mixed layer depth, surface irradiance, and upper layer temperature. How these

environmental factors interact with ecological processes to produce a bloom is still being debated (Fischer et al., 2014).

The traditional theory of phytoplankton population dynamics in the North Atlantic attributes the spring bloom to the release

of phytoplankton from light limitation, which causes phytoplankton growth rates to increase. This has become known as the20

“critical depth hypothesis” (Sverdrup, 1953) because the theory states that phytoplankton can begin to grow when the mixed

layer has shoaled sufficiently so that the light-dependent phytoplankton growth terms are larger than the phytoplankton loss

terms, which are assumed to be constant throughout the winter and into the spring. This theory is based on the idea that

biological and physical processes are inherently coupled. The relative timescales of mixed layer turbulence and biological

growth influence the rate of phytoplankton accumulation. Phytoplankton can
:::
also be released from light limitation while the25
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mixed layer is deep if turbulence is temporarily reduced (Huisman et al., 1999; Taylor and Ferrari, 2011; Paparella and Vichi,

2020).

An alternative hypothesis proposed by Behrenfeld (2010) focuses on changes in both loss rates and growth rates. The

“disturbance-recovery hypothesis” states that even though phytoplankton growth rates are very low in the wintertime, due

primarily to light limitation, loss rates decrease even faster as the mixed layer deepens due to decreasing phytoplankton-30

zooplankton encounter rates. This hypothesis was formulated as an explanation of recent observations of increasing phyto-

plankton stocks in the wintertime (Behrenfeld, 2010; Boss and Behrenfeld, 2010). Wintertime biomass accumulation is in-

consistent with the critical depth hypothesis, which assumes that the winter growth rates are smaller than the constant loss

rates.

The critical depth hypothesis and the disturbance-recovery hypothesis differ in their predictions of the evolution of winter35

loss rates. Process-level understanding and quantification of phytoplankton population loss rates is challenging, because it is

very difficult to directly measure the factors that contribute to loss for the whole population. Phytoplankton are thought to be

tightly controlled by grazing and loss processes (Landry and Calbet, 2004; Calbet and Landry, 2004; Strom et al., 2007; Evans

and Brussaard, 2012; Prowe et al., 2012). Any accumulation depends on the imbalance betweeen growth and loss processes

(Behrenfeld and Boss, 2018). Loss due to grazing depends on both the concentration of phytoplankton and zooplankton pop-40

ulations and on the many factors that mediate the interactions between phytoplankton and zooplankton such as temperature,

light, and species composition (Chen et al., 2012; Moeller et al., 2019; Strom and Welschmeyer, 1991). Autonomous measure-

ments from satellites and BGC-Argo floats have made quantification of phytoplankton biomass possible over large spatial and

temporal scales (Siegel et al., 2002; Boss et al., 2008; Mignot et al., 2018; Randelhoff et al., 2020; Hague and Vichi, 2021). No

such equivalent measurements exist for zooplankton populations.45

The interactions between phytoplankton and zooplankton are
:::
can

::
be

:
modeled through mathematical relationships that ex-

press the rate of phytoplankton consumption by zooplankton as a function of phytoplankton concentration (Evans and Parslow,

1985; Franks, 2002). There are many functional responses that are supported by experiments and theory and that have been

used to represent grazing in numerical simulations and to interpret observations (Gentleman et al., 2003; Laufkötter et al.,

2015). The most commonly used functional responses increase linearly or quadratically and saturate to a constant rate at high50

concentrations (Gentleman et al., 2003).

During the spring bloom, phytoplankton accumulation is exponential due to the rapid increase in growth rates that makes

loss processes relatively much smaller. In the wintertime, the observed phytoplankton accumulation is slower and leading

hypotheses of phytoplankton bloom formation differ in their predictions both of phytoplankton population dynamics and of

phytoplankton loss rates. Comparing phytoplankton-zooplankton models with different representations of grazing against the55

observations of biomass accumulation during sub-optimal growth conditions, such as during the wintertime, may constrain

the range of appropriate grazing functions for winter conditions or even the winter-spring transition. Here, we demonstrate

that the disturbance-recovery hypothesis requires a grazing function that decreases more rapidly than linearly at low prey

concentrations. We show that a model with a quadratic grazing function at low winter phytoplankton concentrations captures

the full annual cycle of phytoplankton biomass in the North Atlantic, i.e. both weak wintertime biomass accumulation and an60
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explosive springtime bloom. Our aim is to provide empirically motivated guidance for the formulation and testing of grazing

models.

2 Predator-prey decoupling

In this section we formulate a simple ecosystem model and examine different grazing functions to clarify the relationship

between grazing rates and mixed layer depth during winter conditions (Figure 1).65

Marine planktonic ecosystem dynamics can be coarsely represented as an interaction between three compartments: nutrients,

phytoplankton, and zooplankton. These broad compartments integrate across all the chemical and biological diversity observed

in the ocean and are defined by their interactions with each other. In the simple formulation adopted here, the nutrients are

consumed by phytoplankton, the zooplankton consume phytoplankton, and the plankton are converted back to nutrients when

they die. The set of equations that describe these interactions for the concentrations of nutrients (n), phytoplankton (p), and70

zooplankton (z) as a function of the ocean depth ζ take the form:

Dn
Dt =−µ(n,t)e

Kdζp+ dpp+(1− a)g(p)z+ dzz
2 + ∂

∂ζκ
∂n
∂ζ ,

Dp
Dt = µ(n,t)eKdζp− g(p)z− dpp+ ∂

∂ζκ
∂p
∂ζ ,

Dz
Dt = ag(p)z− dzz2 + ∂

∂ζκ
∂z
∂ζ .

(1)

The vertical coordinate, ζ, is zero at ocean surface and negative below. All compartments are mixed in the vertical by ocean

turbulence at a rate set by the diffusivity κ. The phytoplankton specific growth rate depends on nutrients, according to the

function µ(n), and decays exponentially with depth due to the absorption of light with depth with an attenuation coefficient75

Kd. We model growth as a linear function of light, which reduces the number of parameters required. This choice increases

the sensitivity of growth to light at high irradiance relative to a saturating model, but at the low irradiance conditions typical

of the wintertime, the focus of this manuscript, growth depends approximately linearly on light (Franks, 2002). Phytoplankton

mortality (from causes other than grazing by zooplankton), −dpp, is linear in p. Zooplankton mortality, −dzz2, is quadratic

in z to accountfor intratrophic and, implicitly, predation by higher trophic levels on zooplankton
::
for

::::::::::
intratrophic

::::
and

::::::
higher80

::::::
trophic

::::
level

::::::::
predation; this choice has the additional property of preventing extinction of zooplankton in winter. The grazing

of phytoplankton by zooplankton is linear in z and proportional to p according to the grazing function g(p). Zooplankton are

messy eaters and ingest only a fraction a < 1 of g(p)z. The grazing function represents a density-dependent mortality process.

Other mortality processes such as viral lysis are also believed to be density-dependent and could be studied within the same

framework (Weitz et al., 2015; Mateus, 2017). While we retrict the analysis to zooplankton grazing, our qualitative conclusions85

are likely to apply to other density-dependent mortality processes.

We will focus on analyzing
::
To

::::::::
illustrate

:::
the

:::::::::
importance

::
of

:::
the

::::
form

:::
the

:::::::
grazing

::::
term,

:::
we

::::
will

:::::::
examine the model in equation

1 during
:::
for the wintertime period through the bloom onset. During this period, we can make a few simplifying assumptions.

First, we will assume that turbulence is strong enough to keep all compartments well mixed in the vertical over a mixed

layer of depth H . This assumption holds if the turbulence mixes all compartments throughout H on a timescale faster than90

any biological timescale (Taylor and Ferrari, 2011). Equivalently, all references to the mixed layer should be interpreted as
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Figure 1. Grazing rate g(p) as a function of phytoplankton concentration for Holling Type I, II, and III functional responses. The parameters

g0 and p0 are given in Table 1 for the Holling type II and III functional responses. The forms of the Holling type II and III is as in equation

6. The form of the Holling type I is the linearized type II, gHI (p) = g0/p0p.

the actively mixing layer. Second, we will assume that winter growth is not nutrient limited (n� n0 ::
so

::::
that

:::::::::

n
n+n0

→ 1) and

thus µ(n) saturates to a constant mixed layer-averaged value µ0 (we will not make this assumption about a time and nutrient

independent growth rate in section 3). For simplicity, we also assume that nutrients are exactly conserved in the mixed layer

and model the nutrient concentration implicitly as n=Nmax− p− z, where Nmax is the total nutrient content which gets95

redistributed across the three compartments. Finally, we assume that the mixed layer is deep relative to the depth of light

penetration (HKd� 1)
::::
such

:::
that

:::::
eKdH

::
is
:::::
small. All these assumptions are appropriate in winter, the focus of our study, but

they are less defensible in other seasons when turbulence is weak (Taylor and Ferrari, 2011) .
:::
and

:::
are

:::
not

::
all

::::
used

::
in

::::::
section

::
3.

:

We formulate a bulk mixed layer model by employing these simplifying assumptions and taking the vertical average of the

equations in (1) over the mixed layer depth H(t),100

Dp
Dt =

(
1

KdH(t)

(
1− eKdH(t)

)
µ0

n
n+n0

− dp
)
p− g(p)z− s+p≈

(
1

KdH(t)µ0− dp
)
p− g(p)z− s+p

Dz
Dt = ag(p)z− dzz2− s+z,

(2)

where p and z are the constant mixed layer concentrations of phytoplankton and zooplankton, respectively. The term µ0/(KdH(t))

is the average growth rate over the mixed layer, which is computed as the integral of the light-dependent growth over the mixed

layer depth divided by the mixed layer depth.
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The term s+ appears when taking the vertical average of the mixing term in equation (1). It represents the dilution of105

phytoplankton and zooplankton that results from the turbulent entrainment of water without biomass across the mixed layer

base and is given by,

s+ =


1
H
dH
dt

dH
dt > 0

0 dH
dt ≤ 0

(3)

We can derive an equation for the standing stock of biomass in the mixed layer by taking a vertical integral of the equations

in (1). Introducing P =Hp and Z =Hz to represent the total biomass of phytoplankton and zooplankton respectively we have110

DP
Dt =

(
1

KdH
µ0− dp

)
P − g(P/H)Z − s−P

DZ
Dt = ag(P/H)Z − 1

H dzZ
2− s−Z

(4)

In contrast to the average concentration, the total biomass does not change due to the physical effects of dilution. However,

when the mixed layer shoals, biomass is lost below the mixed layer through detrainment and the total biomass decreases at a

rate given by s−115

s− =

0 dH
dt > 0

1
H
dH
dt

dH
dt ≤ 0

(5)

In the following subsections we will analyze the phenology of phytoplankton for different choices of grazing functions (Fig-

ure 1). The linear (Holling type I) grazing function assumes that the plankton-specific grazing rate (units of per day) increases

linearly with phytoplankton concentration, gHI
(p) = g0p. The saturating functional responses are linear at low prey concen-

tration and saturate at high prey concentrations. An example saturating response is the Holling type II functional response,120

gHII
(p) = g0

p
p0+p

. This functional response assumes that processing of food and searching for food are mutually exclusive

behaviors (Visser, 2007; Kiørboe et al., 2018). The parameter g0 is a function of processing time and the parameter p0 is a

function of both search and processing time. This parsimonious theoretical basis and ability to fit the parameters from ex-

perimental data has made this functional response one of the most commonly used (Verity, 1991; Kiørboe et al., 2018). The

Holling type III functional response has a reduction in grazing at low prey concentration. One formulation is a sigmoidal func-125

tion, gHIII
(p) = g0

p2

p20+p
2 which is

:::
can

::
be

::::::::::::
approximated

::
as

:
quadratic in p for low p and asymptotes to a constant rate for high

p. This type III functional response can be derived as a generalization of the type II response where the search time is a linear

function of prey concentration. Effectively, there is a prey refuge at low concentration because it is more difficult for predators

to find each prey item. There are other possible mechanisms for a type III functional response, including a threshold response

by predators (Mullin et al., 1975; Ohman, 1984) and prey switching (Vallina et al., 2014). To compare the functional responses,130

we formulate the zooplankton specific grazing rate as a function of phytoplankton concentration

g(p) = g0
(p/p0)

k−1

1+ (p/p0)k−1
. (6)
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The exponent k determines the degree of non-linearity of the functional response. The Holling type II functional response is

k = 2 and the Holling type III response is k = 3. The parameter p0 is a half saturation constant. When p= p0, the grazing is at

half of the maximum rate g(p0) = g0
2 .135

2.1 Grazing linear in phytoplankton concentration for constant zooplankton concentration: Critical Depth

Hypothesis

Phytoplankton are known to respond faster than zooplankton to environmental changes (Fileman and Leakey, 2005). The

critical depth hypothesis first proposed by Sverdrup (1953) assumes that such an assumption applies to the rapid onset of the

spring bloom and proposed to model the phytoplankton growth rate according to equation (2), but setting g(p)z = g0
p0
z0p with140

z0 the constant zooplankton concentration before the bloom onset,

Dp

Dt
=

(
1

KdH(t)
µ0− dp− g0z0/p0

)
p. (7)

Sverdrup (1953) focused on the time at the end of winter when the mixed layer starts shoaling in response to spring atmospheric

conditions and thus could ignore the entrainment, i.e. s+ = 0. Under these assumptions the mixed layer depth H(t) is the only

time dependent parameter which can determine whether the phytoplankton concentration is exponentially decaying (winter145

conditions) or exponentially increasing (spring bloom onset). This gave rise to the widely applied ‘critical depth hypothesis’

which states that phytoplankton accumulation starts when the mixed layer shoals beyond a critical depth,

Hc =
µ0

(dp+ g0z0/p0)Kd
. (8)

While the critical depth hypothesis has become the most widely accepted framework to interpret the onset of spring blooms–but

there are growing objections (Behrenfeld, 2010)–it is not very useful to make quantitative predictions. The criterion requires150

knowledge of the grazing rate at the end of winter before bloom onset, which is very difficult to measure. Sometimes this

obstacle is overcome by assuming that g0z0� dp, in which case the critical depth dependence on grazing can be ignored.

However, the assumption is likely inappropriate for most blooms where grazing is a main source of mortality immediately prior

to bloom formation (Calbet and Landry, 2004; Irigoien et al., 2005). For example, assuming a typical attenuation coefficient of

Kd = 0.05 m−1 in the winter North Atlantic (Organelli et al., 2017; Mignot et al., 2018), where bloom onset is often observed155

at a critical depth of around 200 m (as reported in Siegel et al. (2002)), the ratio of growth to mortality rate, dp+g0z0/p0µ0
, is

predicted to be close to be 0.1. Mortality timescales of phytoplankton are believed to be longer than ten times their division

rates implying that grazing, not mortality, dominates phytoplankton losses at bloom onset (López-Sandoval et al., 2014). A

theory of blooms must therefore include a predictions of the zooplankton concentrations and their grazing rates at the end of

winter, if it is to make falsifiable predictions. Additionally, on seasonal timescales there is substantial variation in zooplankton160

concentrations so a theory that includes variable phytoplankton and zooplankton concentrations is necessary. The goal of the

next two sections is to present two models of grazing with a focus on wintertime conditions.
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2.2 Grazing linear in
:
at

::::
low phytoplankton concentration: g(p) ∼ p

Consider first the saturating (type II) grazing function. In winter, prey concentrations are very low and this function is approx-

imately linear gHII
(p)≈ g0

p0
p (Figure 2b). During the wintertime, as the mixed layer deepens, water from below the mixed165

layer is entrained, decreasing the concentration of the phytoplankton and zooplankton (s+ > 0) but not their standing stock

(s− = 0).

DP
Dt = 1

H

(
µ0

Kd
− g0

p0
Z
)
P − dpP

DZ
Dt = 1

H

(
a g0p0P − dzZ

)
Z

(9)

Assuming the natural mortality of phytoplankton is negligibly small, the growth and grazing terms in the P and Z equations

have the same dependence on mixed layer depth H and thus any increase in H does not reduce grazing any more than it170

reduces the growth of phytoplankton. Consider for example a population in equilibrium, i.e. dPdt = dZ
dt = 0. The equilibrium

populations are Z∗ ≈ µ0p0
Kdg0

and P ∗ = dzp0
ag0

Z∗ =
dzµ0p

2
0

Kdag20
are independent of H , and thus an equilibrium population will remain

in equilibrium even as the mixed layer deepens (Figure 2a). If phytoplankton biomass decreases at some point in winter then

subsequent changes in mixed layer depth cannot trigger any biomass accumulation as long as the biological parameters µ0, a,

g0, dp, dz , and Kd remain constant.175

It could be rebutted that winter accumulation is possible if zooplankton mortality is represented as a linear, rather than

quadratic loss term. In that case, as the mixed layer deepens, zooplankton biomass loss rates would not decrease as quickly as

the rate of zooplankton grazing on phytoplankton, eventually reaching a crossing over point at which there would be a net loss

of zooplankton biomass and consequently an increase in phytoplankton biomass. This is the case of Lotka-Volterra predatory-

prey dynamics in a variable environment (Yorke and Anderson Jr, 1973; Dubois, 1975). However, this model is problematic180

because a linear zooplankton mortality at low concentrations is only defensible in the absence of grazing by higher trophic

levels. Such grazing is what is implicitly modelled with a quadratic mortality term such as the one used in equation (9).

2.3 Grazing quadratic in
::
at

:::
low

:
phytoplankton concentration: g(p) ∼ p2

The situation is different if we prescribe a phytoplankton grazing function with a dependence on p that is stronger than linear
:::
that

::::::::
decreases

::::
more

:::::::
rapidly

::::
than

::::::
linearly

:::
as

:
p
:::::::::
decreases. The Holling type III functional response is a popular choice and can be185

written as gHIII
(p) = g0

p2

p2+p20
, which can be approximated as gHIII

(p)≈ g0
p20
p2 at low prey concentration

::
and

:::::::::::::
asymptotically

:::::::::
approaches

:
a
::::::::
constant

::::
value

:::
for

::::
high

::
p. With this functional response, the rate of change of biomass

::
at

:::
low

::
p is given by,

DP
Dt = 1

H

(
µ0

Kd
P − g0

Hp20
ZP 2

)
− dpP

DZ
Dt = 1

H

(
a g0
Hp20

ZP 2− dzZ2
)
.

(10)

In this case, the grazing rate decreases faster than the phytoplankton growth rate as the mixed layer deepens due to the additional
1
H factor in the grazing term (Figure 2c). This opens the possibility of a net increase in phytoplankton biomass due to deepening190

of the mixed layer, consistent with the scenario invoked in the disturbance-recovery hypothesis (Behrenfeld, 2010; Behrenfeld
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Figure 2. Ratio of grazing to growth (as a function of phytoplankton biomass and mixed layer depth for mixed layer integrated models(
:
, e.g.

equations 4). The black line separates regions where growth is faster than grazing (greens) from regions where grazing is faster than growth

(browns). The growth rate is given by µ0
Kd

P
H :::

Note
:::
the

:::::::
different

::::
color

:::::
scales

::
in

::::
each

::::
panel. The parameter values used

:::
and

:::
the

:::::::::
expressions

::
for

::::
each

::::::::
functional

::::
type are given in table 1. (A) Holling type I (linear). The integrated grazing rate is gHI (

P
H
) = g0

p0
z0

P
H
H assuming

constant zooplankton concentration (z0). The ratio of grazing to growth is g0z0Kd
p0µ0

H . A value of z0 = 0.5 mgC m−3 is used in this plot.

Note that if a constant value of zooplankton biomass rather than concentration is used, the ratio of growth to grazing is constant as in

equation 9. (B) Holling type II (saturating). The integrated grazing rate is gHII (
P
H
, Z
H
) = g0

P/H
P/H+p0

Z
H
H . The ratio of grazing to growth

is g0Kd
µ0

ZH
P+Hp0

(C) Holling type III (inflection at low concentrations). The integrated grazing rate
:::::::::
zooplankton

::::::::::
concentration

::::
(z0)

::::
used

::
in

::::
panel

::
A is gHIII = g0

(P/H)2

(P/H)2+p20

Z
H
H . The ratio of grazing to growth is g0Kd

µ0

ZPH
P2+H2p20

. The
:::
0.5

:::
mg

:
C
::::
m−3

:::
and

:::
the zooplankton biomass

(Z) used in panels B and C is 100 mgC
::
mg

::
C m−2. It is well-established that growth dominates over grazing when the mixed layer is

shallow due to increased light availability. In the case of the Holling type I functional response (A), the black line is the critical depth, which

is independent of phytoplankton biomass.
:::
Note

::::
that

:
if
::
a
::::::
constant

:::::
value

::
of

:::::::::
zooplankton

::::::
biomass

:::::
rather

::::
than

::::::::::
concentration

::
is

::::
used,

:::
the

::::
ratio

:
of
::::::

growth
::
to

::::::
grazing

::::
using

:::
the

::::::
Holling

::::
type

:
I
::::::::
functional

:::::::
response

::
is

::::::
constant

::
as

::
in

:::::::
equation

::
9. The switchover between growth to grazing

dominance depends on phytoplankton concentration in the case of a Holling type II functional response and therefore on the combination of

mixed layer depth and phytoplankton biomass. Only in the case of Holling type III functional response is there also a decrease in the grazing

rate as the mixed layer depth increases.

and Boss, 2014). This is the key result of this paper. In what follows, we will use observations to explore the implications of

this insight beyond the low phytoplankton limit.

3 Modeling the annual cycle

We aim to demonstrate that when implemented in a full NPZ model, a grazing function with a quadratic (or higher) depen-195

dence on phytoplankton concentration at low p is sufficient to reproduce both wintertime biomass accumulation and a spring
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bloom. In order to model the full annual cycle, we utilize a more realistic phytoplankton growth rate that depends on nutrient

concentration and has a yearly cycle. We replace the growth term µ0

KdH(t) in equation (2) with

µ(t,n) = µ0
n

n0 +n

3

10
sin

t+10

365
π+1

n(t)

n0 +n(t)

I(t)

I(t)+ I0
::::::::::::::::

1

KdH(t)

(
1− e−KdH(t)

)
. (11)

:::::
where200

I(t) = 20

(
0.6sin

(
t+270

365
2π

)
+1

)
:::::::::::::::::::::::::::::::

(12)

This growth rate has temporal dependence through the mixed layer depth and through the surface irradiance. It also depends

on nutrient concentration through the function n/(n+n0) which varies throughout the year and is close to one in winter when

p and z are small. This model contains a number of simplifications, for example utilizing a linear photosynthesis-irradiance

response. These simplifications reduce the number of model parameters with minimal impact on the wintertime period
::::::::
Although205

:::
one

:::::
could

:::
add

:::::
other

::::::::
processes,

::::
this

:::::
model

::::
can

:::::::::
reasonably

::::::::
reproduce

:::
the

:::::::
seasonal

:::::
cycle

:::
and

::::::::
illustrate

:::
our

:::::
point.

::::::::
However,

:::::
other

::::::::
processes

::::
may

::
be

:::::
need

::
to

::::::::
represent

::
all

:::::::
aspects

::
of

:::
the

::::::
annual

:::::
cycle. Using this model we now test the impact of the grazing

function on the yearly evolution of biomass and compare with in-situ observations.

Float measurements of the phytoplankton annual cycle in the North Atlantic

We calibrate the NPZ model using the averaged annual cycle of phytoplankton biomass as observed by BGC-Argo floats in210

the high-latitude North Atlantic (Mignot et al., 2018). Our model ignores the effect of lateral heterogeneity or restratification

on phytoplankton dynamics (Mahadevan et al., 2012; Karimpour et al., 2018). In order to relate the model results to empirical

data, we followed Mignot et al. (2018) and selected observations where vertical mixing dominates over lateral transport, i.e.

trajectories where lateral density gradients that drive horizontal flows are weak. This was done by restricting the analysis

to floats that did not cross into different water masses (defined as a change in water mass properties in T-S space). Twelve215

annual cycles that met this criterion were observed during the period 2013-2016 between the latitudes of 50◦N and 65◦N. All

individual float trajectories are plotted in the appendix of Mignot et al. (2018).

We estimated phytoplankton concentration p(t) from backscatter measurements. The mixed layer depth H(t) is defined as

the depth at which the potential density increases by 0.03 kg m−3 from the potential density at 10m
::
10

::
m

::::::::::::::::
(Kara et al., 2000)

. As in Mignot et al. (2018),
:
the net phytoplankton population accumulation rate was then calculated using the observed220

phytoplankton concentration and mixed layer depth as

rp =
1

P

0∫
−H

∂p

∂t
dζ =

1

P

(
∂P

∂t
− p(−H)

∂H

∂t

)
. (13)

In contrast to Mignot et al. (2018), the accumulation rate was computed over the mixed layer rather than the productive layer.

In order to account for interannual and regional variability in bloom timing, we rescaled the time axis of each individual float

time series to account for variability in the start and end dates of winter and spring each year. The rescaled time is defined225
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as τ = t−t1
t2−t1 where t1 is the calendar day of the onset of weak winter accumulation (the first time in the year when the

accumulation rate is positive for at least 24 consecutive days) and t2 is the calendar day of the onset of spring (the first time

in the year when the mixed layer shoals for at least 24 consecutive days) (Mignot et al., 2018). The average population growth

rates was then estimated by averaging over all float time series as a function of the time τ . The result is then plotted in Figure

3 as a function of calendar days setting τ = 0 as the median of all t1 and τ = 1 as the median of all t2.230

Model parameters

The NPZ model equations (2) are solved replacing µ0 with µ(n,t) as given in equation (11) and using the yearly time-

series of H(t) estimated from the average from all float measurements. The total nitrogen pool is assumed to be constant at

:::::::
nitrogen

:::::::::::
concentration

:::::
below

:::
the

::::::
mixed

:::::
layer

:
is
:::
set

::
to

:
Nmax = 30 mg N m−3 which implies that phytoplankton

::::
based

:::
on

:::
the

:::::
nitrate

::::::::::::
concentration

:::::::
observed

:::
at

:::::
depth

::
by

:::
the

::::::::::::::
biogeochemical

::::
Argo

::::::
floats.

::::::::::::
Phytoplankton

:
and zooplankton are immediately235

remineralized
:::::::
assumed

::
to

:::::::::::
immediately

:::::::::::
remineralize

:
once they die so that n+ p+ z =Nmax at all times and one needs

equations only for p and z, while the nutrient concentration can be inferred from n=Nmax− p− z:::::::::::::::::
n+ p+ z = constant

:::::
when

::::
there

::
is

::
no

:::::::::::
entrainment

::
or

::::::::::
detrainment. Some parameters are prescribed based on reasonably well established values found in

the literature: µ0 = 0.8 day−1 (Eppley, 1972; Geider et al., 1998; Bissinger et al., 2008), a=0.5 (Landry et al., 1984; Moore et al.,

2001), n0=4 mg N m−3 (Moore et al., 2001), andKd=0.05 m−1. However ,
:::
and

::::::
I0=40

::::
µmol

::::::
quanta

::::
m−2

::::
s−1

:::::::::::::::::
(Bouman et al., 2018)240

:
.
::::::::
However, other parameters relating to grazing and zooplankton and phytoplankton mortality are much more uncertain (see

Table 1). The focus of this manuscript is on the functional formulation of the model. If the model cannot reproduce the key fea-

tures of the observations for any values of the parameters, then the model must be rejected. If we can find parameter values for

which the model reproduces key features of the observations, we then assess if those values are consistent with observational

estimates. The parameters related to grazing and mortality are therefore calibrated by fitting each model accumulation rate and245

concentrations to observations over the full annual cycle. We use a trust-region-reflective least-squares algorithm (Coleman

and Li, 1996). Prior values for the biological parameters were chosen based on estimates from the literature (Moore et al.,

2001; Behrenfeld and Boss, 2014). Parameter values are constrained to remain within realistic bounds during fitting. We tested

the sensitivity of our estimates to the priors by systematically varying the initial parameter choice within the range of values

reported in empirical studies. While the fitting algorithm found multiple local minima, all the biologically sensible ones cluster250

around the values given in Table 1. The accumulation rates are smoothed before fitting with a five-point Savitzky-Golay filter.

84 data points are used in the fitting. The best fit parameters values are given in Table 1. Phytoplankton biomass is compared

to the observations in carbon units and conversions between nitrogen and carbon units are performed using a Redfield ratio of

16:106.

The temporal rescaling used to average the
::::::::::
observational

:
timeseries creates a spurious peak in net population growth rate255

at the beginning of winter
::::
(days

:::
315

:::
to

::
4). Throughout the winter there is variability in accumulation rates among individual

timeseries, including some negative values, even when the average is positive. Our choice to define the start of winter as the

period when all timeseries have positive accumulation rates creates the spurious maximum in the observations at that time. We

remove this artifact before parameter fitting by interpolating linearly from day 315 to day 4 (Figure 3a).
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Table 1. Parameters used in figures
:
2,
:

3,
:
and 4. Parameters above the line were prescribed based on literature values. Parameters below the

line were fit by linear least squares parameter fitting of the phytoplankton growth rates.
:::
The

::::
final

:::::
section

::::
lists

:::
the

::::::::
expressions

::::
used

::
in

:::::
figure

:
2.
::::
The

:::::::
integrated

::::::
growth

:::
rate

::::
used

:
in
:::

the
::::
ratio

::
of

::::::
grazing

::
to

:::::
growth

::
is

:::::

µ0
Kd

P
H

.

Parameter Significance (units)
:::
Type

:
I Type II Type III

u0 maximum growth rate (day−1) 0.8 0.8
::
0.8

a zooplankton assimilation efficiency 0.5 0.5
::
0.5

n0 nutrient half saturation constant (mg N m−3) 4 4
:
4
:

Nmax deep nutrient concentration (mg N m−3) 30 30
::
30

Kd attenuation coefficient (m−1) 0.05 0.05
:::
0.05

:

::
I0: :::

light
:::::::::
dependence

:::::
(µmol

:::::
quanta

::::
m−2

::::
s−1)

::
40

::
40

::
40

g0 maximum grazing rate (day−1) -
:

5.9 4.0

p0 grazing saturation factor (mg C m−3) -
:

15 10
::
15

dz zooplankton mortality rate (day−1mg C−1 m3) 3.5 -
:

2.4
::
6.0

: ::
1.8

dp phytoplankton linear mortality rate (day−1) 0.004 -
:

0.01
:::::
0.0004

: ::::
0.001

:::::::::
Expression

:::::::::
Significance

::::::
(units)

:::
Type

:
I

::::
Type

::
II

::::
Type

::
III

:
G

:::::::
integrated

::::::
grazing

:::
rate

:::
(mg

::
C

::::
m−2

:::::
day−1)

: :::::::

g0
p0
z0

P
H
H

: ::::::::::::
g0

P/H
P/H+p0

Z
H
H

::::::::::::::
g0

(P/H)2

(P/H)2+p20

Z
H
H

:::
G/µ

:::
ratio

::
of

::::::
grazing

::
to

:::::
growth

: :::::::

g0z0Kd
p0µ0

H
: ::::::::::

g0Kd
µ0

ZH
P+Hp0 :::::::::::

g0Kd
µ0

ZPH
P2+H2p20:

Comparison of model and observations260

Using either Holling type II or III grazing functions, the model with the best fit parameters generates a spring bloom with a

rapid increase in phytoplankton concentration and biomass that coincides with the spring shoaling of the mixed layer (Figure

3b). However, the Holling type III model results in net positive phytoplankton population growth through the winter, while

the Holling type II model does not (Figure 3a). The commonly used grazing functions of Holling type I and II do not satisfy

the requirement of superlinear dependence of grazing on phytoplankton at low phytoplankton concentrations, and thus cannot265

capture the observed wintertime biomass accumulation, while the Holling type III functional response has the appropriate

nonlinear dependence (Holling, 1959).

During the winter (day 320-365 and continuing 1-75), the phytoplankton concentration is larger when using the type III

grazing function than when using the type II grazing function (Figure 3b). Despite this
:::::::
However, the winter grazing rate is

lower with the type III grazing function (Figure 3a). In order to compensate for the larger winter grazing with the type II270

function, the parameter fitting procedure infers a much lower linear phytoplankton mortality dp for that case (Table 1). One

process that is included in the linear mortality in both cases is phytoplankton respiration. The linear mortality estimates from

parameter fitting fall within the range of phytoplankton respiration rates from in situ observations and incubation experiments

(López-Sandoval et al., 2014; Briggs et al., 2018).
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Figure 3. (a) Net mixed layer population growth rate in observations and model. Inset is grazing rate g(p). The thin
:::::
dashed

:
black line from

day 315 to day 4 shows the interpolated growth rate used in parameter fitting. (b) Annual cycle of phytoplankton surface concentration in

observations and models
:::::
model

:::::::::
simulations (c) Mixed layer depth. The observations, black line, are the median quantity measured by Argo

floats with the interquartile range shown in grey lines. The green line is the
:::::::
prediction

::
of

:::
the model in equations 1 with a Holling type III

functional response. The orange line is the
:::::::
prediction

::
of

:::
the model with a Holling type II functional response.

During the summertime, the mixed layer depth is fairly constant and phytoplankton and zooplankton populations are close275

to equilibrium. This model does not include export from the mixed layer through sinking or migrating particles. Instead, any

carbon export from the mixed layer only occurs when the mixed layer is shoaling due to biomass being left in the stratified

layer below the new mixed layer.

The modeled relationship between phytoplankton and zooplankton shows notable differences between the two grazing func-

tions. This is best illustrated by plotting the temporal evolution of the two communities in a z− p plane as shown in Figure 4.280

At the end of winter, zooplankton are at slightly higher concentration with type III than type II grazing, because they have fared

better throughout the winter by feeding on a larger phytoplankton population. Zooplankton respond slowly to the explosive

spring phytoplankton bloom with the type II grazing, resulting in higher phytoplankton growth rates and a lower zooplankton

concentration. By contrast, with the type III grazing, zooplankton are strongly coupled to phytoplankton and start grazing as

soon as the bloom gets going reducing its amplitude. Importantly the rate of increase of phytoplankton concentration during285

the spring bloom is slower than exponential (Mignot et al., 2018), consistent with the prediction of the disturbance-recovery

hypothesis (Behrenfeld and Boss, 2014). With both grazing functions, the spring bloom populations are out of equilibrium with

phytoplankton concentrations being higher and zooplankton concentrations being lower than at equilibrium.
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The simple n− p− z model used here is an imperfect representation of the observations. For example, the model only

includes one phytoplankton type and one zooplankton type, which precludes both the succession of different phytoplankton290

types during the spring and summer and the presence of a microbial loop that could reduce the flow of carbon up the food

chain (Azam et al., 1983). The bulk zero-dimensional model assumes that phytoplankton and zooplankton concentrations are

uniform in the mixed layer and zero below, a defensible approximation for winter conditions–the focus of this study–when

the mixed layer is deep and turbulent mixing is strong, but not in other seasons when turbulence is weak (Taylor and Ferrari,

2011). The deficiencies of the bulk model are evident at the spring bloom onset, which
::::::::
onset–the

::::
time

::
of

::::::::
dramatic

::::::::::
acceleration295

::
of

::::::::::::
phytoplankton

::::::
growth

::
at

:::
the

::::
end

::
of

::::::::::::
winter–which is slightly delayed in the model relative to the observations, occurring

once the mixed layer has shoaled rather
:::
than

:
during mixed layer shoaling. In observations, blooms start as soon as turbulent

mixing subsides because phytoplankton is no longer mixed away from the surface, while there is a lag of days to weeks before

the mixed layer restratifies and shoals (Taylor and Ferrari, 2011). The bulk model is also problematic in summer when the

mixed layer is shallower than the euphotic layer and some of the productivity takes place below the mixed layer base where300

the model assumes p= z = 0. Despite these deficiencies, bulk mixed layer models have been shown to qualitatively reproduce

the full annual cycle of plankton dynamics in other regions (c.f. Evans and Parslow (1985)) and are especially appropriate for

our work which focuses on phytoplankton growth in winter.

4 Discussion

Our work suggests that the winter accumulation of biomass recently documented from float observations in the North At-305

lantic (Behrenfeld, 2010; Mignot et al., 2018), while much weaker than that the spring and summer accumulation (Lutz et al.,

2007; Uitz et al., 2010), reveals otherwise hard to document top-down controls on phytoplankton populations. By studying

winter time phytoplankton population dynamics, when growth conditions are less than optimal, we have been able to make

inferences about the rate of zooplankton grazing. We demonstrated that the grazing rate as a function of phytoplankton con-

centration must decrease superlinearly at low phytoplankton concentrations in order to release the phytoplankton from grazing310

pressure. A quadratic grazer response function at low phytoplankton biomass is sufficient for phytoplankton biomass accumu-

lation, although higher order nonlinearities would also reproduce the observed dynamics.

Relatively little is known about phytoplankton loss through grazing (Dolan and McKeon, 2005) in comparison to the other

factors that control the dynamics of phytoplankton populations like macro- and micronutrients, light availability, and tempera-

ture (Eppley, 1972). Our work suggests that winter conditions may offer a unique opportunity to study phytoplankton grazing in315

the field. In the wintertime, cell division rates decrease because of light limitation due to both deepening of the mixed layer and

decrease in sea surface light. In order for phytoplankton accumulation rates to be positive while cell division rates are declining,

the phytoplankton loss rates must decrease faster than division rates. While grazing is not the only concentration-dependent

process, it is an interesting and compelling example of one process that could lead to biomass accumulation during the winter-

time and it is the fundamental tenet of the “disturbance-recovery hypothesis” (Behrenfeld, 2010)
:::::::::::::::::::::::
(Behrenfeld and Boss, 2018)320

.
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Figure 4. Surface phytoplankton and zooplankton concentrations through the annual cycle for both models. Green curve shows concentra-

tions that result from the type III model. Orange curve shows concentrations that result from the type II model. The labeled dots indicate

day of year for particular locations in the phase portrait. Over the annual cycle, the phytoplankton and zooplankton populations transit these

curves counter-clockwise. The grey curves show the steady state concentrations throughout the annual cycle.

The wintertime growth is not only important to sustain phytoplankton populations in winter, but it is believed to play a

crucial role for the development of the subsequent spring bloom. We showed that the reduction in grazing rate results in larger

populations of both zooplankton and phytoplankton at the end of winter than would occur with a linear coupling. Furthermore
:
,

the larger zooplankton concentrations result in a faster acceleration in zooplankton grazing once phytoplankton concentrations325

increase during a bloom. The combination of more abundant wintertime populations and stronger/more rapid coupling between

phytoplankton and zooplankton populations curb explosive phytoplankton growth.
:::
The

:::::::::
magnitude

::::
and

::::::
timing

::
of

:::
the

::::::
spring

:::::
bloom

::::
and

::::::::::
interactions

:::::::
between

:::::::::::
zooplankton

::::
and

::::::::::::
phytoplankton

::::::::::
populations

::
in

:::
the

::::::::::
springtime

::::
may

:::
be

:::::::
affected

:::
by

::::::
factors

:::
not

:::::::::
considered

::::
here,

:::::
such

::
as

:
a
::::::::::::
non-linearities

:::
in

::::::::::::
phytoplankton

::::::::::::::
photophysiology,

:::
but

:::
our

:::::
goal

:::
was

::
to

::::::::
illustrate

::
in

::
as

::::::
simple

::
a

:::::::::
framework

::
as

:::::::
possible

:::
the

::::::
impact

::
of

:::
the

::::::::
functional

:::::
form

::
of

::::::
grazing

:::
on

:::::
winter

::::::
growth

::::
and

:::
not

::
to

:::::
derive

:::
the

::::
most

:::::::::::::
comprehensive330

:::::
model

:::
of

::::::::::::
phytoplankton

::::::::::
phenology.

There are other possible explanations for wintertime biomass accumulation beyond the dilution of phytoplankton. The

biological functions encapsulated in the NPZ model parameters may vary over time. For example, the zooplankton assimilation
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rate, a, could depend on the nutrient content of the prey introducing an alternative nonlinear effect (Landry et al., 1984; Irigoien

et al., 2005). In our model, the only time-dependent terms are maximum insolation, which has little influence on wintertime335

biomass accumulation, and mixed layer depth, which drives the wintertime biomass accumulation. Additional factors such

as temperature, which is correlated with mixed layer depth, may also have an impact on wintertime growth and grazing,

representing another possible non-linear effect (Rose and Caron, 2007; López-Urrutia, 2008; Chen et al., 2012). Functional

diversity beyond that included in this model is also likely important. For example, mixotrophic metabolisms may contribute

to phytoplankton accumulation in light-limited conditions (Barton et al., 2013; Flynn et al., 2013; Leles et al., 2020). Finally,340

there is evidence that wintertime growth can be triggered by mixed layer instabilities that occasionally restratify the mixed layer

during the winter and thus increase the light available for phytoplankton (Taylor and Ferrari, 2011; Karimpour et al., 2018).

However this cannot be the unique explanation, because float observations presented in (Mignot et al., 2018) and reviewed here

show many examples of wintertime accumulation where these mixed layer dynamics did not seem to apply.

The sensitive dependence of phytoplankton phenology on the rate of grazing by higher trophic levels at low concentrations345

provides a powerful quantitative framework in which to evaluate theories of plankton phenology. Observations of wintertime

phytoplankton biomass accumulation have been interpreted as evidence of a release from grazing pressure in deep mixed

layers, but little attention has been given to the key role played by the choice of grazing functions in these theories. Some

studies have used a Holling type III grazing function (Behrenfeld and Boss, 2014; Yang et al., 2020) while others relied on a

prey switching formulation, where the zooplankton preferentially consumes the most common type of phytoplankton (Llort350

et al., 2015). The observational evidence for a lower bound on phytoplankton concentrations (Lessard and Murrell, 1998) ought

to be studied within the framework presented here. The interpretation of the response of phytoplankton to sudden environmental

perturbations on subseasonal timescales, such as storms (Behrenfeld and Boss, 2018), will also require a careful assessment of

the grazing functions which control how fast zooplankton grazing responds to increases in phytoplankton concentrations. Last,

but not least, this framework ought to be applied to test the predictions of different theories of bloom onset (Verity et al., 1993;355

Morison et al., 2020; Mojica et al., 2020). While our work pointed out the key role played by the choice of grazing functions

in such theories and models, it is important to note that state of the art Earth System Models often use multi-species ecosystem

models (Laufkötter et al., 2015). Multispecies models do not necessarily result in the same dynamics as the single-species

functional responses used here (Gentleman et al., 2003), but our result that phytoplankton phenology is very sensitive to the

degree of non-linearity in growth and mortality functions is very likely to hold for more complex ecosystem models as well.360

It is worth commenting on the ecological underpinnings for the different models of grazing. The grazing functions used in

our model represent the coupling between all species of each trophic level of phytoplankton and zooplankton; the phytoplank-

ton class includes all autotrophs, while the zooplankton class includes all grazers that consume phytoplankton. A superlinear

decrease in grazing rates at low prey concentration has been observed in the lab studies of aquatic vertebrates and invertebrates

and in theoretical studies (Real, 1977; Barrios-O’Neill et al., 2016). In the China Seas, the microzooplankton grazing rates365

are best described by a Holling type III functional response (Liu et al., 2021), providing evidence for the applicability of this

functional response to whole populations, at least in the low and mid latitudes. Similarly, copepods go into diapause in the

wintertime (Baumgartner and Tarrant, 2017), and this effectively reduces grazing pressure during winter; however, micro-
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zooplankton account for the majority of phytoplankton mortality in the ocean (Landry and Calbet, 2004). Other mechanisms

described by the Holling type III functional response include prey switching (Vallina et al., 2014), predator learning (Holling,370

1966), and prey refuges (Taylor, 2013). While there are few structural prey refuges in an oceanic mixed layer, a patchy envi-

ronment can also provide a type of prey refuge. A Holling type III functional response can arise due to non-random grazing

behavior when population dynamics are integrated over a patchy environment (Nachman, 2006; Morozov, 2010).

5 Conclusions

A reduction in the grazing rate at low phytoplankton concentration has been proposed as the mechanism to explain the emerging375

observation that biomass often increases, albeit weakly, during the wintertime when mixed layers deepen (Behrenfeld, 2010).

It has also been pointed out that the critical depth hypothesis fails to capture wintertime growth because it implicitly assumes

that loss rates are constant either because they are dominated by constant respiration or by grazing by a constant zooplankton

population. Previous modeling results have not acknowledged that a reduction in grazing pressure through dilution of plankton

populations in deep mixed layers requires a grazing function that decreases faster than linearly in phytoplankton concentration380

at low concentrations.

While our analysis focused on wintertime conditions, we believe that more attention on the functional form of grazing

functions may shed light on other phases of phytoplankton phenology as well. Observations show a tight coupling between

the evolution of phytoplankton and zooplankton populations in all seasons Stelfox-Widdicombe et al. (2000); Karayanni et al.

(2005). This coupling has been interpreted as evidence that zooplankton grazing pressure can respond very rapidly to any385

changes in phytoplankton concentrations (Behrenfeld and Boss, 2018). To the extent that these interpretations are correct, our

study suggests that observations can therefore be used to infer the functional form of grazing functions, an aspect of plankton

ecology that is otherwise very difficult to quantify.

Observational validation of the functional forms of grazing functions is key to build confidence in predictions based on

biogeochemical models. Different models can be tuned to provide reasonable estimates of the annual cycle of phytoplankton390

biomass, like our NPZ model with a saturating grazing function. However, in order to make predictions that are robust to

changing conditions, it is important that models have the correct functional dependencies. Tuning of model parameters is no

guarantee of model performance in an evolving environment that has not been observed yet. Climate change may reshape

North Atlantic phytoplankton populations and primary production (Balaguru et al., 2018) due to increasing surface tempera-

ture, shoaling mixed layer depths, and increasing upper ocean stratification (Edwards and Richardson, 2004). Predicting and395

quantifying the impact of these changes requires robust model formulations, not models tuned to present climate conditions.

Code and data availability. All code and data are available at https://github.com/mara-freilich/grazing_functions_bg

(DOI: 10.5281/zenodo.4282657)
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