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Abstract. Accurately measuring the turbulent transport of reactive and conservative greenhouse gases, heat, and organic com-

pounds between the surface and the atmosphere is critical for understanding trace gas exchange and its response to changes

in climate and anthropogenic activities. The Relaxed Eddy Accumulation (REA) method enables measuring the land surface

exchange when fast-response sensors are not available, broadening the suite of trace gases that can be investigated. The β

factor scales the concentration differences to the flux, and its choice is central to successfully using REA. Deadbands are used5

to select only certain turbulent motions to compute the flux.

This study evaluates a variety of different REA approaches with the goal of formulating universally applicable recommenda-

tions for an optimal choice of the β factor in combination with a suitable deadband. Observations were collected across three

contrasting ecosystems offering stark differences in scalar transport and dynamics: A mid-latitude grassland ecosystem in Eu-

rope, a loose gravel surface of the Dry Valleys of Antarctica, and a spruce forest site in the European mid-range mountains. We10

tested a total of four different REA models for the β factor: The first two methods, referred to as model 1 and model 2, derive βp

based on a proxy p for which high-frequency observations are available (sensible heat Ts). In the first case, a linear deadband

is applied, while in the second case, we are using a hyperbolic deadband. The third method, model 3, employs the approach

first published by Baker et al. (1992), which computes βw solely based upon the vertical wind statistics. The fourth method,

model 4, uses a constant βp,const derived from long-term averaging of the proxy-based βp factor. Each β model was optimized15

with respect to deadband type and size before intercomparison. To our best knowledge, this is the first study inter-comparing

these different approaches over a range of different sites.

With respect to overall REA performance, we found that the βw and constant βp,const performed more robustly than the proxy-

dependent approaches. The latter models still performed well when scalar similarity between the proxy (here Ts) and the scalar

of interest (here water vapor) show strong statistical correlation, i.e. during periods when the distribution and temporal behavior20

of sources and sinks were similar. Concerning the sensitivity of the different β factors to atmospheric stability, we observed

that βT slightly increased with increasing stability parameter z/Lwhen no deadband is applied, but this trend vanished with in-

creasing deadband size. βw was independent of z/L. To explain why the βw approach seems to be insensitive towards changes

in atmospheric stability, we separated the contribution of w′ kurtosis to the flux uncertainty.

For REA applications without deeper site-specific knowledge of the turbulent transport and degree of scalar similarity, we25
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recommend using either the βp,const or βw models when REA scalar fluxes are not expected to be limited by the detection

limit of the instrument. For conditions close to the instrument detection limit, the βp models using a hyperbolic deadband are

the recommended choice.

Copyright statement. TEXT

1 Introduction5

Trace gases play a significant role in the atmosphere because of their relationship to human-induced climate change, their wide

variety of natural and anthropogenic sources, and their impact on human and ecosystem health. Understanding their source and

transport behavior is needed to better quantify, predict, and mitigate anthropogenic effects on the environment. The exchange of

trace gases between the Earth’s surface and the atmosphere is often the result of a combination of several biophysical processes

and mechanisms. Observing the net turbulent exchange, i.e. the flux density of such gases can help identifying their sources and10

sinks, which in turn can help identifying their forcings. Micrometeorological techniques can measure area-integrated fluxes at

the ecosystem level and are therefore suitable for computing atmospheric budgets of trace gases and aerosol species.

The most direct method to measure flux density, hereafter referred to as ‘flux’, between the surface and the atmosphere is the

eddy covariance (EC) technique, which requires fast (≥ 10 Hz) response sensors to capture all scales of turbulent eddies con-

tributing to the flux. However, such sensors are not available for all trace gases of interest, particularly for reactive species with15

brief atmospheric lifetimes. In these cases, Disjunct Eddy Covariance (DEC, Rinne and Ammann, 2012), i.e. non-continuous

sub-sampling of the concentration and wind data series, offers one alternative to overcome this problem. Eddy Accumulation

(EA) methods provide another solution for estimating the net flux of chemically more stable atmospheric species existing at

very low concentrations. This technique was originally proposed by Desjardins (1972, 1977): In EA, a system of fast switch-

ing valves collects air into two separate reservoirs, i.e. one for upward moving eddies (updrafts, w+) and one for downward20

moving eddies (downdrafts, w−). However, in true eddy accumulation, the number of collected samples must be proportional

to the magnitude of the vertical wind speed. For systems with switching valves that are not fast enough to accommodate the

shortest time scale of turbulent eddies and/or cannot perform proportional sampling, a relaxation of the original true EA tech-

nique is necessary by introducing a proportionality factor. The resulting indirect REA technique, as proposed by Businger and

Oncley (1990), thus samples the air with a constant flow rate, dependent on the direction of vertical wind. While the first true25

EA system is currently under construction (Siebicke, 2016; Siebicke and Emad, 2019), REA approaches are a common and

convenient alternative to direct flux measurement of EC and EA when fast-response analyzers for the gas species of interest

are unavailable.

For the REA technique, the concentration difference between the two sample reservoirs, ∆s= (s+− s−), in which s+ indi-

cates the updrafts and s− the downdrafts, is linearly related to the vertical net flux F of the species of interest. Note that the30

term “concentration” refers to densities (expressed in e.g. mmol m−3) throughout this paper. Due to the sampling relaxation,
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a linear proportionality factor, usually denoted by the Greek letter β, is required to compute the flux:

FREA = β · ∆s · σw (1)

with σw being the standard deviation of the vertical wind component w. This approach resembles flux-gradient similarity

methods evaluated at a single height, where β ·σw can be interpreted as an efficiency measure, relating the concentration

difference of the scalar of interest to its flux. For practical and scientific reasons, several REA applications exclude samples5

associated with weak vertical wind speeds that fall into a certain range of values (“band") leading to an unsampled (“dead")

region, which effectively acts as a filter (Fig. 1). Deadbands are applied with the intention of (i) increasing the concentration

difference between updraft and downdraft reservoirs (Bowling et al., 1998), (ii) to avoid rapid switching between reservoirs

due to small eddies and thus reduce the wear of valves, and (iii) to reduce the random noise in gas concentrations of sampled

air, which is mostly due to the small-scale short-lived eddies with a minor flux contribution.10

Since the choice of the β coefficient and the size and form of the deadband are critical to deriving biophysically meaningful flux

measurements from REA, they have received much attention in the literature: Dependency of β on the atmospheric stability

z/L, where L is the Obukhov length (Obukhov, 1946), turbulence and scalar similarity has been discussed, and approaches

including fixed deadbands, constant β vs. dynamically adjusting β and/or the deadband to atmospheric conditions have been

proposed (Businger and Oncley, 1990; Beverland et al., 1996; Katul et al., 1996; Andreas et al., 1998; Milne et al., 1999;15

Ammann and Meixner, 2002; Fotiadi et al., 2005; Ruppert et al., 2006; Held et al., 2008; Grönholm et al., 2008). The large

number of potential combinations for the critical REA parameters and varying site conditions may often seem overwhelming

to either the first-time user focusing on investigating the dynamics of a certain trace gas species or even to the advanced user

lacking a detailed understanding of the site-specific turbulent flow conditions. To provide some science-based guidance, our

study aims at giving a comprehensive overview covering the most common parameterizations of the β factor and the deadband20

with the goal of providing a practical selection guide for choosing an optimal β and deadband model by evaluating them across

contrasting ecosystem types. Our choice of contrasting ecosystems is expected to increase the robustness of the findings. We

evaluate the β models by simulating an idealized REA sampling applied to high time-resolution data of wind components and

scalar concentrations from field campaigns carried out over contrasting vegetated and non-vegetated surfaces: The McMurdo

Dry Valleys of Antarctica, which represent an almost exclusively physically driven ecosystem predominately covered by loose25

gravel, a biologically active grassland in direct vicinity to agricultural areas in Lindenberg, Germany, and the Waldstein spruce

forest site in Germany, where measurements were carried out on a 33-m high tower. ‘Idealized’ REA sampling here means that

any effects of instrument performance are neglected to isolate the flux uncertainty solely related to choosing the critical REA

parameters, i.e. β factor, and deadband size and type. We acknowledge that other challenges for measuring trace gas fluxes

particularly of reactive components exist, which may substantially add to the uncertainty in REA flux estimates, including low30

detection limits, high precision demands, and other technical challenges posed by short-lived chemical species. A discussion

of these sources of uncertainty are outside the scope of our study. However, even if the latter dominate selecting an optimal β

model for a specific type of surface can still minimize the overall flux uncertainty.
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2 Theory of REA and overview of β parametrizations

2.1 Proxy βp model

The most commonly employed REA variant is based upon scalar-scalar similarity: Observations of a scalar p, which is mea-

sured with fast-response sensors thus enabling the computation of the direct EC flux w′p′, is used as a proxy for the scalar of

interest s. The β factor needed for the simulated REA flux of p to equal its measured EC flux is calculated and used for the5

flux computation of scalar s. From this point on, we will refer to it as βp to represent this proxy approach:

βp =
w′p′

σw ·∆p
(2)

where ∆p is the proxy scalar concentration difference between updrafts (p(w > 0)) and downdrafts (p(w < 0)). Often, sonic

temperature Ts is chosen as proxy scalar (e.g. Ren et al., 2011; Osterwalder et al., 2016, 2017) due to its availability and

negligible measurement uncertainty.10

The βp method is based on the strong assumption that the proxy scalar and the scalar of interest behave similarly in their

exchange mechanism, which requires the vertical and horizontal distribution of the sinks and sources of both scalars to be

identical. A violation of this assumption will inevitably lead to large errors in the REA flux estimate (Katul et al., 1995; Katul

and Hsieh, 1999; Ruppert et al., 2006; Riederer et al., 2014). The similarity between s and p can be evaluated by examining

the correlation coefficients between the high-resolution time series of the two scalars, if available. The scalar-scalar correlation15

coefficients, rsp, as used in other publications (e.g. Gao, 1995; Katul and Hsieh, 1999; Ruppert et al., 2006; Riederer et al.,

2014), are defined as follows:

rsp =
s′p′

σs ·σp
(3)

2.2 Vertical wind statistics βw model

An alternative REA method was originally derived by Baker et al. (1992), and Baker (2000) provided a comprehensive deriva-20

tion. The technique rests upon the standard deviation of the vertical wind, and assumes velocity-scalar correlation. In brief, the

flux is defined as:

w′s′ = m ·σ2
w (4)

where m is the regression-estimated slope of the w′ vs. s′ correlation. m can be approximated, using conditional sampling

techniques, as25

m =
∆s

∆w
(5)

∆w is the difference of the mean vertical wind while sampling into the up- and downdraft reservoirs, respectively. This makes

FREA =
∆s

∆w
·σ2

w (6)
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and thus

βw =
σw
∆w

. (7)

Above equations show that the scalar flux is directly proportional to the vertical wind speed’s variance σ2
w, and thus to the

turbulence statistics. This approach combines elements of the flux-gradient and flux-variance similarity theories.

The requirements for this parameterization are (i) a linear relationship between s′ and w′ through the origin, as well as (ii)5

the Gaussian distribution of the vertical wind velocity fluctuations. If both are fulfilled, βw = 0.63, however, usually, smaller

values of the βw parameter are measured (Katul et al., 2018).

The statistical moments of the w′ distribution can be used to investigate deviations from an ideally Gaussian distribution. The

fourth moment, i.e. the kurtosis or tailedness, has been explored by Katul et al. (1996), who found an increase of βw with an

increasing kurtosis of the w′ distribution. Apart from excursions from an ideal Gaussian w′ distribution, the s′-w′ correlation10

also affects βw. It was found that large energy-containing eddies (i.e. eddies with large w′) are associated with smaller s′ than

predicted by the linear ∆s vs. ∆w fit, resulting in the βw method overestimating the scalar fluxes (Katul et al., 1996; Baker,

2000). Recently, Katul et al. (2018) disentangled effects due to intermittency of the vertical velocity and asymmetry of large

coherent structures in w′ during the transport of s′, and were able to explain that β is smaller than the theoretical value of 0.63

when taking into account the sweep and ejection phases of coherent structures, which are subject to forcings other than those15

of the stochastic isotropic homogeneous background turbulence.

2.3 Dynamic deadband with constant βp,const

Grönholm et al. (2008) proposed that a constant value of β can be used in REA flux calculation in combination with a dynamic

linear deadband scaled by σw. A more detailed description of the deadband application can be found in Section 2.4. The value

of βp,const is derived by taking the median of βp, β̂p, over a period of several days:20

βp,const = β̂p, (8)

This method has e.g. been used by Osterwalder et al. (2016) to measure mercury fluxes at a peatland site.

2.4 Deadband models

Deadbands are widely used in REA applications. The use of a deadband can provide improved resolution of concentration

differences by selectively sampling eddies with a larger contribution to the trace gas exchange. The turbulence characteristics25

can differ greatly across different ecosystems, therefore, an optimal deadband size must be chosen carefully. In the βw approach,

they can limit the impact of weak “distorting” eddies, which contribute little to the flux. Thus, deadbands help improve the

linearity of the s′-w′ relationship leading to a well defined m (see Eq. 6).

When applying a linear deadband to w′ (left panel in Fig. 1), no sample is taken if the magnitude of w′ is below a certain

threshold. This threshold can be held constant or adjusted dynamically in time. Dynamical adjustments are often done by30

scaling with the standard deviation of the vertical wind σw. The linear deadband appears as two horizontal lines in the quadrant

5
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Figure 1. Schematic quadrant plots to visualize the application of linear (left) and hyperbolic (right) deadbands. Different colored lines show

which data points are included for different deadband sizes. The white dot marks the origin in both panels. In the right-hand panel, solid red

dots mark the mean w′/σw and mean T ′s/σTs for up- and downdrafts when a hyperbolic deadband with H = 1.2 is applied (red). The white

dashed lines in the right-hand panel connect the red dots with the coordinate system origin. The deviation from 180◦ of the angle spanned

between these lines is a measure for the asymmetry of the sample distribution.

plot in Fig. 1 (left panel), defined by the linear equation

a ·σw + 0 (9)

where a is a constant.

This approach offers the advantage of the deadband being proportional to the integral strength of the turbulent diffusive process

transporting the trace gas of interest. During field sampling, the size of the deadband is dynamically adjusted by applying a5

back-looking running time window of fixed length to compute a σw. Baker (2000) recommends a linear deadband with a width

of a = 0.9 to obtain the best estimate of the slope m in the βw approach.

Hyperbolic deadbands are specifically designed to exclude eddies with little flux contribution and maximize the concentration

difference between the two sampling reservoirs. The exclusion of up- or downdrafts is in this case not only based on vertical

wind velocity, but also on the fluctuations of a proxy scalar. Hyperbolic deadbands are defined by the dimensionless factor H10

(“hole size”), which is defined as in Bowling et al. (1999):

H =

∣∣∣∣( w′σw
)(

p′

σp

)∣∣∣∣ (10)
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Plotting a such defined function in velocity-scalar space demonstrates that an area in the shape of two hyperbolas is excluded

(right panel in Fig. 1). The REA method using a hyperbolic deadband is often referred to as the HREA technique. Here, we

only consider symmetrical deadbands, presuming symmetrically distributed flow and concentration statistics. Effects of non-

Gaussian distributed w′ and p′ can be gleaned from investigating higher central statistical moments.

The use of large deadbands must be done with caution because they exclude a significant fraction of the data from being5

sampled. As a result, the random sampling error, which is related to 1/
√
n, can be increased due to the decreased sample

size n. In addition, the time period between opening and closing a sampling valve is reduced for large deadbands, which may

introduce additional errors because of the increased difficulty of sampling short-lived events precisely. An estimate for random

error can be derived from the asymmetry of the sample distribution. Considering the quadrant plot of the data points sampled in

one averaging period, the distribution can be represented by two points: (s(w > 0)),(w(w > 0)) and (s(w < 0)), (w(w < 0)).10

Considering the example in Fig. 1, these points are drawn in the right-hand panel for the largest deadband size (red dots).

Ideally, these two points fall onto a unique linear relationship intersecting the coordinate system’s origin (white dot). However,

the use of large deadbands can introduce large asymmetry between up- and downdrafts. The asymmetry is shown as a white

dashed line in the right panel of Fig. 1, containing a bend. This bend, which can be expressed as an angle different from 180◦,

is one measure for the asymmetry of the sample distribution.15

2.5 Selected models and evaluation metrics

In this study, we compare β and deadband approaches used in literature and evaluate their performance for the prediction of

the latent heat flux over different terrestrial surfaces. The following four REA methods have been chosen for the analysis:

– Model 1: βT (Eq. 2) using the sensible heat as proxy and a dynamically adjusted linear deadband scaled with σw (Eq. 9)

– Model 2: βT (Eq. 2) using the sensible heat as proxy and a dynamically adjusted hyperbolic deadband scaled with σw20

(Eq. 10)

– Model 3: βw (Eq. 7) using a dynamically adjusted linear deadband scaled with σw (Eq. 9)

– Model 4: βT,const (Eq. 8; median over the complete field experiments) using sensible heat as a proxy and a dynamically

adjusted linear deadband scaled with σw (Eq. 9)

For each of the models, four different deadband widths are examined both for linear (0.2 ·σw, 0.5 ·σw, 0.9 ·σw and 1.2 ·σw) and25

hyperbolic (H = 0.2, H = 0.5, H = 0.9 and H = 1.2) deadbands. One simulation was run as a control with a null deadband.

To dynamically adjust deadband size, back-looking windows of 60 s and 300 s duration were tested. Comparison of these two

window sizes yielded only negligible differences between the computed fluxes for the three datasets, hence we chose to present

results from the 300 s window only.

In the next steps, we proceed as follows: each of the above models is first optimized with respect to the deadband size. To do30

so, the accuracy of each β model is assessed by comparing the median ratio of the modeled flux, FREA, and the corresponding

direct EC-measured flux, FEC , FREA

FEC
: If this ratio is greater than 1, then the flux is overestimated by the model, and if it is < 1,

7



the flux is underpredicted. In addition, the variability of this ratio is inferred using the root mean square error (RMSE), which

provides a measure of the precision of each model. It is computed using the difference between the modeled REA flux and the

measured EC flux:

RMSE =

√√√√ n∑
i=1

(FREA,i−FEC,i)2

n
(11)

The deadband width, which is found to yield the most accurate water vapor flux (taking into account relative error and RMSE),5

is then further evaluated. Table 2 summarizes the different tested model setups along with the optimal deadband sizes.

3 Sites and data processing

3.1 Site descriptions

We selected three sites with strongly contrasting vegetation cover and surface roughness, vegetation architecture, and bio-

geochemical processes governing the vertical exchange of CO2, water vapor and sensible heat to test the different β models10

(Table 1). Using sites with stark differences provides robust recommendations for REA users choosing an optimal β for their

site.

The grassland data (Thomas et al., 2021) were collected in Falkenberg, Germany at the German Meteorological Service (Me-

teorological Observatory Lindenberg), (see Table 1 for details). The central part of the field site is a flat meadow of dimensions

150 x 250 m covered by short grass (vegetation height < 20 cm). This area is surrounded by grassland and agricultural fields15

in the immediate vicinity, a small village is situated about 600 m to the southeast, and a small, but heterogeneous forest area

lies to the west and northwest at about 1 to 1.5 km distance. Within the flux footprint of the tower, the main vegetation cover

consisted of grassland and recently harvested maize. The soil type distribution in the area around Lindenberg is dominated

by sandy soils covered by a layer of loam, which is typically found at a depth of between 50 cm and 80 cm. Lindenberg rep-

resents moderate mid-latitude climate conditions at the transition between marine and continental influences. Monthly mean20

temperatures (1961-1990) vary between 1.2◦C (January) and 17.9◦C (July), and the mean annual precipitation sum is 563 mm

(Beyrich et al., 2002; Neisser et al., 2002).

In contrast, the McMurdo Dry Valleys (Thomas and Levy, 2021) span 4800 km2 of ice-free land in Antarctica and are covered

by rocks and glacial till (Linhardt et al., 2019). The area ranges from sea level to 2000 m in elevation composed of ice-covered

lakes, short-lived streams, and rocky ice cemented soils that are surrounded by glaciers. The mean annual temperature in the25

Dry Valleys ranges between -17 and -20◦C. The low precipitation relative to potential evaporation, low surface albedo, and dry

katabatic winds descending from the Polar Plateau result in extremely arid conditions (Clow et al., 1998).

Finally, we use a data set acquired at a spruce forest site in the German Fichtelgebirge (Thomas and Babel, 2021) that spans ca.

1000 km2 of north-eastern Bavaria, Germany. Its summits reach 1053 m a.s.l. (Schneeberg) and 1023 m a.s.l. (Ochsenkopf).

The Waldstein hillsides comprise a mountainous ridge reaching up to 877 m a.s.l. (Gerstberger et al., 2004). The measurement30

site is located at about 800 m a.s.l.. The prevailing tree species at the Waldstein site is Norway spruce (Picea abies, L.) with a

8



Table 1. Description of the three data sets used in this study, numbers from quality-screened data, aggregated to 30 min temporal resolution

surface type Grassland Loose gravel Spruce forest

site Falkenberg site, Lindenberg, Ger-

many

McMurdo Dry Valleys, Antarctica Waldstein site, ridge in the Fichtel-

gebirge Mountains in Bavaria, Ger-

many

measurement period 2015-09-22 to 2015-10-01 2012-12-26 to 2013-01-26 2016-06-18 to 2016-07-17

lat/lon 52.17◦N 14.12◦E 77.57◦S 163.48◦E 50.13◦N 11.87◦E

elevation above sea level

(a.s.l.) [m]

73 35 775

estimated surface roughness

length (z0)[m] according to

Panofsky (1984)

0.18 0.06 4.87

dynamic stability range

(zL−1)

-1.95 to 9.38 -9.61 to -0.01 -6.74 to 3.96

horizontal wind speed u

[ms−1]

0.06 to 3.67 0.11 to 6.44 0.32 to 6.50

IQR of friction velocity u∗
[ms−1]

0.047 to 0.205 0.126 to 0.256 0.371 to 0.730

mean canopy height of 19 m. The flux measurements were conducted on top of a 31-m high scaffolding tower reaching above

the highest tree tops, resulting in a total measurement height of 33 m above ground. Monthly mean temperatures (1961-1990)

vary between -4.2◦C (January) and 14.1◦C (July), and the mean annual precipitation sum is 1156 mm (Foken, 2003).

Comparison of the kinematic heat, moisture and CO2 fluxes in the three ecosystems highlights the diverse exchange behavior

trace gases can exhibit depending on the environments (Fig. 2): The differences in albedo and length of daylight are reflected5

in the variation in the sensible heat fluxes. The heat flux at the loose-gravel covered site in the Dry Valleys of Antarctica par-

ticularly stands out due to the perpetual sunlight experienced during the campaign period. A diel course is still observed, but

is constantly directed away from the surface indicated by the positive values. The diel patterns visible at both the forest and

the grassland site are similar, showing positive sensible heat flux during daytime and negative at nighttime. The difference in

flux magnitude between forest and grassland can be attributed to the distinct differences in vegetative canopy properties. The10

tall dark canopy with low albedo surface is considerably different from the shorter and more reflective grassland canopy. The

range in latent heat and CO2 fluxes displays the impact of the vegetation. The loose-gravel site, which is the most extreme site

void of vegetation, shows a net exchange of CO2 equal or close to zero between the surface and the atmosphere, where both

9



Figure 2. Ensemble-averaged diurnal fluxes of kinematic heat flux (left panel), moisture flux (center panel) and CO2 flux (right panel) at

each of the three sites. The traces where the sign of the flux changes are filled to the zero line for clarity.

forest and grassland sites display an expected pattern of dominant CO2 uptake during the daytime and respiration during the

nighttime. The larger leaf area index in the forest of around 5 m2m−2, compared to 3 m2m−2 for typical grassland areas, like

in Lindenberg, causes a greater magnitude of latent heat flux because of the transpiration and concurrent greater exchange of

CO2.

3.2 Instrumentation and post-field data processing5

The turbulence observations consisted of the three-dimensional wind vector and sonic temperature collected by a sonic anemome-

ter (Lindenberg: CSAT3, Campbell Scientific Ltd., Logan, UT, USA; Dry Valleys: 81000 VRE, R.M. Young Company, Traverse

City, Michigan, USA; Waldstein forest: USA-1 FHN, Metek, Elmshorn, Germany) and water vapor and carbon dioxide mo-

lar densities measured by an open path analyzer (LI-7500, LI-COR Inc., Lincoln, NE, USA) both recorded by a data logger

(CR3000, Campbell Scientific Ltd., Logan, UT, USA). The sampling rate was 20 Hz. Spikes and outliers in raw turbulence time10

series were discarded according to Vickers and Mahrt (1997) with an initial 5σ criterion. Resulting gaps in the high-frequency

time series were linearly interpolated. Covariances were maximized by shifting the scalar time series relative to that of the ver-

tical velocity by a dynamically determined lag. This means that, for each sampling period, the scalar time series were shifted to

achieve maximum cross-correlation with the vertical wind time series (Foken, 2008). For the Reynolds decomposition, a per-

turbation and averaging time scale of 300 s was chosen. Using this shorter than the common 30 min time scale is motivated by15

the intention to filter out the effects of longer-lived motions, as described in Vickers et al. (2009). Raw velocities were rotated

using the first two steps in the common 3D rotation method ensuring that the mean cross-wind and vertical wind components

equal zero. A spectral correction was applied to EC fluxes following Moore (1986) to account for flux losses resulting from the

sensor design and data collection. Quality assurance and quality control flags were applied to the computed REA and EC fluxes

by testing for stationarity and developed turbulence following Foken et al. (2004). All data with flags > 1 were discarded from20

subsequent analysis. Since the flags do not capture all unphysical flux estimates, additional hard thresholding was applied. To
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minimize the substantial random error in turbulent flux estimates over short averaging intervals, six subsequent 300 s intervals

were block-averaged to yield one 30 min flux estimate for both the REA and EC method following Vickers et al. (2009).

Since simulating REA sampling requires selecting individual high frequency data from a continuous time series and comput-

ing density-corrected scalar higher-order moments, an ad-hoc density correction was applied to the water vapor and carbon

dioxide molar densities (Detto and Katul, 2007) prior to flux computations. To this end, molar densities were multiplied by the5

ratio of the instantaneous to mean density of dry air ρaρa−1. This correction removes the density fluctuations due to changes

in external conditions. EC fluxes were computed using the common post-hoc density correction (Webb et al., 1980). Even

though open-path observations in cold environments such as the McMurdo Dry Valleys suffer from sensor heating artifacts not

captured by either our ad-hoc or the common post-hoc WPL correction (Burba et al., 2008), we decided to not apply this addi-

tional correction in this study since we are interested in the relative flux error (FREA−FEC)F−1EC only. Instead, we applied a10

constant offset of 0.35 µmol m−2s−1 to the CO2 flux densities to force them through zero for illustrative purposes. This choice

has no effect on the study results.

For the REA flux estimation, hyperbolic and linear deadbands of varying sizes were tested. The linear deadband size was scaled

by increasing fractions of σw computed over a back-looking running window of length 300 s (e.g., Ren et al., 2011; Arnts et al.,

2013; Movarek et al., 2014). It must be noted that the deadbands are applied only to the w′-s′ statistics to compute ∆s and15

∆w (see Eq. (6)). In contrast, the entire population of vertical velocities observed in an averaging period were used to compute

σ2
w. Applying the deadbands for computing also the vertical velocity variance leads to significant flux overestimation since

σw increases with increasing deadband size. In the final step, the same thresholds for physical plausibility which were applied

to the computed EC fluxes were also used to remove unplausible REA flux estimates from the data sets. These thresholds

were chosen individually for each scalar and each data set due to the wide range of meteorological and biochemical conditions20

covered in this study.

This study evaluates estimates of the latent heat flux w′q′ obtained using different REA techniques. The approaches requiring

a proxy scalar rely on the sensible heat flux w′T ′, which is common choice since it can be measured with a higher precision

compared to e.g. CO2 in certain low-flux conditions.

4 Results and Discussion25

We structured this section as follows: First, scalar correlation coefficients for the different ecosystems are presented in Section

4.1. In Section 4.2, we describe the choice of an optimal deadband size for each REA model, based on both FREA

FEC
and the

RMSE. The optimized REA models are then evaluated in Section 4.3 with respect to the effects of the diurnal course and

atmospheric stability. To test the applicability of our findings to other scalars, we are including an evaluation of simulated CO2

REA fluxes for all four models, using Ts as proxy for models 1 and 2, in Appendix A. Here, the same deadband sizes are used,30

which were previously chosen as the optimum for the water vapor flux in Section 4.2 .
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Figure 3. Diurnal course of scalar-scalar correlation coefficients rsp at the meadow site (left panel), the loose gravel-covered Dry Valleys site

(center panel) and the Waldstein forest site (right panel). ± one standard deviation σ is drawn as a semi-transparent area around the mean

curves of rsp.

4.1 Scalar similarity across land surfaces

Scalar similarity is an important assumption for the βT models (models 1 and 2), and can be used as one evaluation metric

for the method. To assess whether a scalar can serve as a viable proxy p for the trace gas of interest s, the similarity in source

and sink strength of two can be represented by their correlation coefficient rsp (Eq. 3). We first analyze the temporal dynamics

of scalar similarity across the different land surfaces: The diurnal courses of the correlation coefficients of w′c′ and w′T ′,5

w′c′ and w′q′ and w′T ′ and w′q′, ensemble-averaged over the complete field campaigns, are presented in Fig. 3. Pronounced

temporal changes in scalar similarity within the diurnal cycle at the grassland and forest sites are in strong contrast to the

constant values observed for all analyzed rsp in the Dry Valleys. The patterns can be explained by the influence of radiative

forcing, which governs both the physical heat exchanges and biological photosynthesis and evapotranpsiration, highlighting the

constant daylight observed during the measurement period in the Dry Valleys. All three correlation coefficients change sign at10

the grassland site around 14:00 local time, associated with the expected change in dynamic stability resulting from the change

in the direction of the sensible heat flux. A similar diurnal pattern is observed in the forest site, however, the change in sign

of the correlation coefficient happens approximately two hours later in the day. In contrast, the correlation between w′c′ and

w′q′ is positive throughout the nocturnal period in the forest site and negatively correlated in the grassland site, where regular

dew formation occurs (which can be also observed in Fig. 2). The scalars tend to be poorly correlated at nighttime compared15

to daytime as a result of weak turbulence and associated diminished scalar transport efficiency for both sites.
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Figure 4. Effect of deadband size on the concentration difference and measures of the random error. The top two panels show the concen-

tration difference between up- and downdraft reservoir as a function of deadband size (linear deadbands in left and hyperbolic deadbands

in right panel); bottom panels: The bars show the fraction of samples used for flux computation and the overdrawn circles show the asym-

metry between up- and downdraft vector in the quadrant plot. The asymmetry is calculated as the absolute deviation in the angle between

a straight line and a bent line constructed using the center points of up- and downdrafts and the origin in the quadrant plots, see Fig. 1 and

accompanying text for details.
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4.2 Determining the optimal deadband size for each of the β methods

Fig. 4 summarizes the effects of deadband size on the water vapor concentration difference between up- and downdraft reser-

voirs ∆q, and the fraction of samples used for flux computation, along with the asymmetry measure introduced in Section 2.4.

As expected, ∆q increases with increasing deadband size, for both linear and hyperbolic deadbands, at all three sites. This

increase is more pronounced for hyperbolic deadbands compared to the linear deadbands (Fig. 4a and b). The hyperbolic dead-5

bands have the desired effect of maximizing the concentration difference between the two sampling reservoirs. For H = 1.2,

almost a factor of 3 increase in water vapor concentration difference between updraft and downdraft sampling reservoirs can be

achieved. The HREA technique therefore has the potential to provide concentration differences detectable by instrumentation

with high detection limits or when measuring chemical species with very low mixing ratios. However, as mentioned above,

large deadbands can introduce a large random error because they exclude a large portion of the sample data points. The de-10

crease in sample size with increasing deadband size is similar across all three sites (Fig. 4c and d) and should be considered

when choosing an optimal deadband. For example, for a hyperbolic deadband with H = 0.2, approximately 40% of the sam-

pling period is excluded, which results in an increased asymmetry (Fig. 4d). This effect is more pronounced for the forest and

meadow surfaces than for the gravel site, possibly caused by a larger heterogeneity in scalar sink and source distribution.

In the next step, we evaluate each REA model individually and select an optimal deadband size with respect to selected uncer-15

tainty metrics of the β model: We chose to include measures of the precision and the accuracy of the methods by comparing
FREA

FEC
and RMSE for the simulated deadbands. The ratio FREA

FEC
and RMSE obtained for different linear deadband widths using

the βT model (model 1) are shown in Fig. 5. Results strongly vary across the different ecosystem types: While the REA water

vapor flux at the Antarctic gravel site is very similar to that obtained from the EC technique, as indicated by negligible RMSEs,

the estimates obtained at the forest and meadow sites feature a much larger RSME. This difference can be explained by the20

differences in the degree of scalar-scalar similarity between the latent and sensible heat fluxes of the purely physically driven

site as opposed to the biologically active sites. The scalar fluxes are modulated by a varying degree of vegetation responses

adding to the complexity of the scalar-scalar correlation rq,T and diurnal changes in sign (Fig 3). The use of no deadband

(deadband width = 0) leads to an overall small underestimation of the EC fluxes (4 to 8%) across all sites. This underestimation

is reduced with the use of a deadband at the gravel site; however, the systematic bias is not resolved by applying a deadband25

at the other two sites, but on the contrary increases this underestimation. Such a systematic bias could in theory be corrected

for in post-processing, but the magnitude of the correction would have to be determined for each site defying our intention of

providing general recommendations. This flux bias varies more between sites than with deadband width, therefore, this correc-

tion method should only be applied if the user knows the transport characteristics and scalar sink and source distribution well.

Based on the flux bias and RMSE, a linear deadband with 0.5σw width is chosen as the optimized deadband size for further30

comparisons with the linear βT approach.

The results for the βT model using a hyperbolic deadband (model 2) are shown in Fig. 6. Both median FREA/FEC and RMSE

are of the same order of magnitude compared to the linear deadband approach for βT (Fig. 5, model 1). However, the hyper-

bolic deadband offers an increase in concentration difference that is considerably larger in comparison, which led to its use in
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Figure 5. Errors as a function of dynamic linear deadband width. The x axis is the scaling factor a multiplied with the vertical wind standard

deviation σw in Eq. 9 to define the deadband threshold. Left panel: Median FREA/FEC (latent heat flux simulated with sensible heat as a

proxy) ratio for each of the simulated dynamic deadband widths; right panel: RMSE for each of the simulated dynamic deadband widths

several studies (e.g. Held et al., 2008; Movarek et al., 2014). Interestingly, the observed underestimation of the latent heat flux is

lessened for the forest and gravel sites when hyperbolic deadbands are applied, whereas it becomes larger for the meadow site.

For the gravel site, the bias even changes sign for large hyperbolic deadbands. The RMSE shows no significant improvement

when the small-scale eddies with small flux contributions are excluded irrespective of ecosystem. Based on Fig. 6, a hyperbolic

deadband of H = 0.5 is chosen for further analysis, as it offers an increase of ∆q by 100% (Fig. 4).5

When applying a linear deadband to model 3 using βw derived from the wind statistics alone, a positive flux bias (5-10%)

becomes evident when no deadband is applied (Fig. 7). This observation confirms the findings of Katul et al. (1996): Eddies

characterized by a large vertical perturbation (w′) are known to contain smaller perturbations in sensible heat (T′s) than pre-

dicted by the linear fit of ∆w and ∆Ts, whose slope is dominated by the many small-scale eddies characterized by a greater

T′s. The use of deadbands puts more weight on large eddies, thus deadbands are convenient to improve the estimate of the w′10

vs. T′s resulting in a smaller slope m for this model. The choice of deadband size has clear implications in how well the βw

model performs. The RMSE for this method is significantly smaller than the values observed in the two βT models. Overall,

the pattern in relative and absolute error is more consistent for the βw model across the three ecosystems compared to the

βT models. The optimal deadband width 0.9 σw, which was proposed by Baker (2000), provides low systematic bias, high

precision, and the minimum in RMSE for all sites in Fig. 7. However, the use of this deadband size excludes more than 60%15

of the available data (see Fig. 4), so we chose a linear deadband width of 0.5 σw instead. This choice yields a similarly high

accuracy and precision and therefore was our optimal choice for model comparisons.
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Figure 6. Errors as a function of dynamic hyperbolic deadband size. The x axis is the H parameter in Eq. 10, which defines the deadband size.

Left panel: Median FREA/FEC (latent heat flux simulated with sensible heat as a proxy) ratio for each of the simulated dynamic deadband

sizes; right panel: RMSE for each of the simulated dynamic deadband sizes

Table 2. median β parameters for the chosen optimum deadband sizes for each of the four models and each of the three sites

model β, deadband meadow gravel forest

model 1 βT , linear deadband width σw = 0.5 0.38 0.39 0.42

model 2 βT , hyperbolic deadband width H = 0.5 0.25 0.26 0.27

model 3 βw, linear deadband width σw = 0.5 0.43 0.43 0.44

model 4 βT,const, linear deadband width σw = 0.5 0.38 0.39 0.42

The performance of the constant βT,const (model 4) is illustrated in Figure 8, in which the FREA/FEC and RMSE was cal-

culated using a constant β and dynamic linear deadbands of different sizes. FREA/FEC is close to 1 for all deadband sizes in

this model. The RMSE is, similarly to that of the βw (model 3, Fig. 7), constantly low for all ecosystems. Following Grönholm

et al. (2008), we chose a deadband size of 0.5 σw for further comparison.

Table 2 summarizes the chosen optimum deadband widths for each of the four methods and gives the medians of the respective5

β parameters for each of the three sites. The values for model 1 and model 4 are equivalent because the medians over the whole

considered period are shown, which results in the definition of model 4.
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Figure 7. Errors as a function of dynamic linear deadband width. The x axis is the scaling factor a multiplied with the vertical wind standard

deviation σw in Eq. 9 to define the deadband threshold. Left panel: Median FREA/FEC ratio (latent heat flux simulated using the REA

approach described in Baker (2000)) for each of the simulated dynamic deadband widths; right panel: RMSE for each of the simulated

dynamic deadband widths

4.3 Evaluation of optimized β models

After choosing an optimal deadband size for each REA model, we now proceed to analyzing the effects of the diurnal light

variability and atmospheric stability on flux estimates.

4.3.1 Effect of the diurnal course

Data were binned according to the hour of day and the RMSE was computed for each hour. Each panel in Figure 9 shows the5

result for the different models 1–4 at the optimal deadband size. All four REA models successfully capture the flux at the loose

gravel site, however, discrepancies between FREA and FEC become obvious for the meadow and forest sites: Here, the RMSE

for model 1 and model 2 (Fig. 9a and b) is significantly larger compared to the REA methods applied by model 3 and 4 (Fig. 9c

and d): The constant βT,const (model 4) and the βw method (model 3), both utilizing a dynamic linear deadband, feature a

negligible RMSE for the gravel and the meadow sites, and a small RMSE below unity for the forest site. The βT models have a10

distinct peak in RMSE at the meadow site around 14:00 local time, which coincides with low scalar-scalar correlation of water

vapor and heat (Fig. 3). At the forest site, the uncertainty in FREA is large throughout the diurnal course for both βT models

due to the large variability in rq,T . During times of strong variability, the difference FREA - FEC can be on the same order of

magnitude as the absolute evapotranspiration. This occasional poor performance of the βT model does not change significantly
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Figure 8. Median FREA/FEC ratio as a function of dynamic linear deadband width. The x axis is the scaling factor a multiplied with the

vertical wind standard deviation σw in Eq. 9 to define the deadband threshold. Left panel: Median FREA/FEC ratio (latent heat flux simulated

using constant β and dynamic linear vertical wind deadband) for each of the simulated dynamic deadband widths; right panel: RMSE for

each of the simulated dynamic deadband widths

across the range of tested linear and hyperbolic deadbands. Filtering out small-scale eddies therefore does not improve flux

estimates. However, hyperbolic deadbands still increase the concentration difference ∆c if the detection limit is of concern.

Applying the REA proxy model for observing the diurnal variation of the exchange of a trace gas must be done carefully when

choosing a proxy that exhibits a pronounced diurnal cycle. The key assumption in this approach is that the proxy and trace

gas of interest have similar temporal or spatial dynamics, which introduces large uncertainties if the temporal dynamics of the5

scalar of interest remain unknown or are not known a priori.

To test the applicability of the chosen optimized deadband sizes to other scalars, the CO2 flux was simulated as well with the

optimized models 1–4, using sensible heat as the proxy for models 1 and 2. The results for the hourly RMSEs are included in

Appendix A in Fig. A1. Also in the case of CO2, both proxy-based approaches yield higher RMSEs than the βw and βT,const

method.10

4.3.2 Effect of atmospheric stability

The observed relationship between the βT model bias and changes in scalar-scalar similarity suggests a dependence from

shortwave radiative forcing leading to changes in atmospheric dynamic stability. A dependence of the βT factor on atmo-

spheric stability has been shown in previous studies. Here, we extend this analysis to the effects of deadband type and size in
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Figure 9. Flux RMSE as a function of the hour of day (local time) for each of the optimized β models. (a) shows the RMSE of the proxy-

based model using a dynamically adjusted linear deadband (model 1), scaled with 0.5σw. In this panel, there is one extreme value with RMSE

> 3, which is outside of the plot boundaries. (b) shows the proxy-based model using a dynamically adjusted hyperbolic deadband (model 2)

withH = 0.5. (c) and (d) show the RMSE of the βw REA model (model 3), and the constant βT,const approach (model 4), respectively, both

with a dynamically adjusted linear deadband of width 0.5σw.
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Figure 10. Dependence of the βT and βw factors on the atmospheric stability z/L. Data were binned in logarithmic evenly spaced stability

classes. The markers are drawn at the median β of each bin, the bars mark the inter-quartile range (IQR). This figure combines valid data

points from all three sites.

addition to the βw method. For comparison reasons, we evaluate the dependence of the β on dynamic stability (z/L) similar

to Ammann and Meixner (2002) (their Fig. 3), who first documented a relationship between βT and atmospheric stability.

Figure 10 shows the models for time-varying β binned into logarithmically spaced classes of dynamic stability. These classes

were defined such that the range of dynamic stability spanned by each bin is equally sized in the logarithmic space. For the

two proxy models (left and center panel in Fig. 10), βT follows the relationship found by Ammann and Meixner (2002) of a5

constant βT for unstable conditions, and an increase from neutral and stable conditions of z/L ≥ 0.06. However, this increase

is associated with large statistical uncertainty. We therefore recommend exercising caution when using stability-dependent

parameterizations of βT for neutral and stable conditions. Ammann and Meixner (2002) analyzed data without a deadband

(indentical to our deadband size σw = 0 and H = 0 in the left and center panels of Fig. 10). A similar trend is observed for

the models with linear and hyperbolic deadbands. Variability of βT generally decreases with increasing deadband width. The10

βw model (right panel in Fig. 10) shows significant differences compared to the proxy approaches: βw does not change with

dynamic stability and is less variable compared to that of βT , as seen in the narrower spread of the bars defining the inter-

quartile range. This finding explains why the results in Figures 5, 8 and 9 for the βw and constant β applying a dynamic linear

deadband are so strikingly similar: βw for the selected optimal deadband width of 0.5σw shows little variability, which makes

this approach similar to applying a constant β factor.15

It was pointed out in previous REA studies that βw scales with the fourth central statistical moment of the vertical velocity

perturbations’ distribution by altering the w′ vs. c′ relationship. We therefore investigated the impact of the w′ kurtosis on the

βw factor for different linear deadband sizes. Katul et al. (2018) found that two different factors, which both depend on z/L,

contribute to βw and whose impacts can cancel out if their magnitudes are similar. The first effect, leading to an decrease of βw

with increasing (positive) z/L, depends on the excess kurtosis, or flatness factor of the w′ distribution. The second effect, re-20
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Figure 11. This figure only presents results from REA model 3 (βw). Left panel: βw as a function of w′ kurtosis for different deadband

widths (not binned). Valid data points from all three sites are combined in this panel. Center panel: the stability parameter z/L as a function of

the w′ kurtosis. Data were binned into eight kurtosis bins with equivalent number of data points. Only bin medians are displayed, bars mark

the IQR. Right panel: Median FREA by FEC as a function of w′ kurtosis for the optimal deadband widths, 0.9σw and 0.5σw, which were

determined by Baker (2000) and in this study. Data were grouped into the same kurtosis bins as in the center panel. The grey area marks the

±10% range, which is the error assumed in EC applications.

sulting in an increase of βw with increasing z/L, is a result of the transport efficiency eT (Wyngaard and Moeng, 1992), as well

as source strength and asymmetry in the w′ distribution. The superimposition of these two processes could be an explanation

why there is no clear dependence of βw on dynamic stability visible in Figure 10. The relationship between the w′ distribution’s

kurtosis and the βw factor is illustrated in Figure 11: consistent with Katul et al. (1996, 2018) the βw factor without deadband

increases as a function of w′ kurtosis (Fig. 11, left panel). The plot collapses data from all three ecosystems onto a single linear5

relationship. This finding suggests that the turbulence statistics are ubiquitous despite the significant differences in climate and

surface characteristics across the three ecosystems. The increasing linear trend becomes less pronounced when deadbands are

applied.

Kurtosis is in turn expected to be related to dynamic stability, when changes in turbulence statistics and diabatic conditions lead

to non-Gaussian distribution of w′. As a result, the kurtosis of the w′ distribution becomes different from 3, which is the value10

for a Gaussian distribution. In the center panel in Fig. 11, w′ kurtosis is plotted against the stability parameter z/L. The right

panel of Fig. 11 displays the resulting median FREA

FEC
as a function of w′ kurtosis. Only the model results for REA applying a

linear deadband with widths of 0.5 and 0.9 σw are displayed here for improved visibility. While no clear trend is observed at

the grassland site, and only a slightly negative trend is visible for the gravel site, we can detect a strong decrease of the median
FREA

FEC
as a function of w′ kurtosis for the forest site. However, as is indicated by the shaded area in the rightmost panel of15

Fig. 11, most points lie within the boundaries of± 10%. Only the bins with the highest and lowest kurtosis classes at the forest

site are outside of this range. These error bounds are of the magnitude as the error assumed in EC applications. We suspect that
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the large excursions from Gaussian statistics for the forest site are caused by coherent structures forcing cross-canopy vertical

exchange, which are a dominant flow mode in the forest flows documented for this site (Thomas and Foken, 2007a, b).

At first sight, it is puzzling why the βw model without deadband (deadband size 0.00) in Fig. 11 shows a considerable vari-

ation with the kurtosis, which in turn is related to stability, but basically no dependence of the βw factor on stability can be

seen in Fig. 10. This effect is due to the binning: The values in the center panel of Fig. 10 are bin medians of the kurtosis,5

while in the left panel, the unbinned 30-minute data are shown. Comparing the ranges of the w-kurtosis in these panels, it

becomes apparent that the range between 3 and 4 (Fig. 10 center) is much smaller compared to the range between 2 and 5

displayed in the left panel of Fig. 10. Within the approximate bounds of 3 and 4 (where most of the data are for all three

sites), the βw for zero deadband also has a much smaller systematic variability. Combining these insights with Fig. 10, it

means that the bin median value of the w-kurtosis exaggerates the stability dependence, since the within-bin variability is very10

large, leading to its effect disappearing in the effective βw (Fig. 10, right) and FREA/FEC (Fig 11, right) results. Our findings

indicate that the variation of the βw factor with the turbulence statistics seems to have no significant impact on the flux estimate.

5 Conclusions and practical recommendations

This study has compared the performance of four different conditional sampling models to compute the water vapor flux. The15

tested REA models included the following methods: Two proxy-based approaches relying on the sensible heat Ts, using linear

(model 1) and hyperbolic deadbands (model 2); a parameterization of the βw factor first introduced by Baker et al. (1992)

(model 3), and an approach using a constant βT factor described in Grönholm et al. (2008) (model 4). Models 3 and 4 both use

linear deadbands. All deadbands were adjusted dynamically and simulated using a 300 s back-looking window to determine the

standard deviation of the vertical wind σw, and, for the hyperbolic deadbands, the standard deviation of the proxy scalar Ts, σT .20

Table 3 summarizes the REA models investigated along with the main results of this study. The proxy-based (βT ) REA models

(model 1 and 2) performed well during conditions when the proxy scalar (Ts) and scalar of interest (water vapor) were strongly

correlated, i.e. during periods when sources and sinks were similarly spatially distributed and temporally synchronized. Median

ratios FREA

FEC
over the campaign length were close to unity, indicating a generally high accuracy of these two methods. However,

during times of low proxy-scalar correlation, the variability of this ratio, measured by the RMSE, was large. This happened25

particularly at those times of the day when the direction (sign) of the flux changed. Users are strongly cautioned when using the

proxy-dependent REA techniques; the diurnal dynamics of the proxy scalar and trace gas of interest is of central importance.

This is also true for scalars subject to both biological and physical forcings driven by time- and space-variant source-sink

distributions. Choosing the optimal proxy scalar is critical for the method’s success. Hyperbolic deadbands, which also require

the use of a proxy scalar, are well suited to maximize the concentration difference between up- and downdraft reservoirs30

more effectively than linear deadbands. The effects of linear and hyperbolic deadbands on the flux estimates were found to be

strongly site-dependent for the proxy-based approaches.

For the βw (model 3) and constant βT,const (model 4) approaches, an optimum deadband size was found at 0.5 σw. At this
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Table 3. Summary of the REA models compared in this study, along with main findings

model # model 1 model 2 model 3 model 4

βT + linear deadband βT + hyperbolic dead-

band

βw + linear deadband constant βT,const + lin-

ear deadband

optimal deadband size 0.5·σw H = 0.5 0.5·σw 0.5·σw

site-specific effects magnitude of underesti-

mation differs between

sites

positive or negative bias

differs between sites

no strong site-dependent

implications found;

intermittent turbulence

could have a weak effect

on the accuracy of the

method

no strong site effects

accuracy within 8% within 5% within 5% within 5%

precision RMSE ≈

1mmol m−2s−1 for

biologically active sites

RMSE ≈

1mmol m−2s−1 for

biologically active sites

RMSE below

0.3mmol m−2s−1

RMSE below

0.3mmolm−2s−1

diel dependency strong correlation with

rsp

strong correlation with

rsp

none none

remarks recommended when de-

tection limit is an issue

robust method robust method

deadband size, the variation of βw became very small and was almost equal to applying a constant β factor. These two models

yielded flux estimates as accurate as the proxy-dependent approaches, and actually performed more robustly in terms of RMSE.

The dependence on atmospheric stability conditions was evaluated for each method and deadband size. No universal behaviour

of any stability-dependent (z/L) β model for either site was observed. We therefore cannot recommend its use.

Based on the findings obtained in this study, we attempt to formulate the following general recommendations: For applications5

without deeper site-specific knowledge, we recommend using either the βw or βT,const approach (model 3 or model 4). These

two models have been shown to perform robustly and be less sensitive to changes in proxy-scalar similarity than model 1 and 2.

In case of a well-known site, including scalar-scalar similarity, we propose to use the proxy-dependent approach in connection

with a hyperbolic deadband (model 2). Model 2 yielded very similar results to model 1 with respect to the precision and

accuracy measures considered in this study. However, hyperbolic deadbands are better suited to maximize the concentration10

difference between up- and downdraft reservoirs, which is of advantage when investigating fluxes of compounds with very low

atmospheric concentrations.
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Figure A1. Same as Fig. 9 but for the CO2 flux. The gravel site results (solid black lines) should be regarded with caution as the magnitude

of the CO2 flux at this site is close to zero (compare to Fig. 2)

Data availability. data sets used are available at Zenodo: Thomas and Levy (2021), Thomas et al. (2021), Thomas and Babel (2021)

Appendix A: Simulated CO2 REA fluxes

Fig. A1 shows the diurnal course of the RMSE for model 1–4 for the CO2 flux. The same deadband sizes, which were found to

be optimal for the estimation of the water vapor flux, were applied. Both proxy approaches (models 1 and 2; panels (a) and (b))

result in higher values of the RMSE than the βw (model3, panel (c)) and the constant βT,const (model 4, panel (d)) methods.5

The RMSE for the gravel site is included in this figure even though the magnitude of the CO2 flux is close to 0 throughout the

daily course and thus no conclusions should be drawn from its RMSE.
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