Supplementary Section S1. Tables

- Environmental parameters and *E. huxleyi* morphotypes abundances and biovolume (Table S1);
- Plankton abundances (Tables S2 and S3);
- Biovolume calculations for main micro-plankton species (Table S4);
- Indicator value (IndVal) analysis based on coccolithophore and diatoms species for the southern Patagonia fjords-channels system and nearby coastal/oceanic areas (Table S5);
- Niche parameters yielded by *E. huxleyi* morphotypes in the southern Patagonia fjordschannels system (Table S6) more nearby coastal and oceanic areas (Tables S8);
- Envfit results of five environmental variables fitted on the OMI spaces (Tables S7, S9).

Table S1. Physical and chemical parameters and associated abundance and biovolume of *E. huxleyi* morphotypes recorded in southern Patagonia during the austral late-spring 2015 and early-spring 2017. Asteriscs indicate samples included in statistical analysis (chosen to be representative of the upper 5 m). When more than one sample was available in the upper 5 m, the sample closest to 5 m was chosen. na = no available data. LC = *E. huxleyi* lightly-calcified A-morphotype, MC = *E. huxleyi* moderate-calcified A-morphotype, A-CC = *E. huxleyi* A-CC morphotype, R/h = *E. huxleyi* R/hypercalcified morphotype.

Station	Date/hour	Depth	Latitude	Longitude	Temp.	Sal.	pCO ₂	Ocal	II	NO ₃ ⁻	DSi	PO4 ³⁻	Opal	E. hux	<i>leyi</i> mo	rphotyp	es (%)	Volume
Station	dd.mm.yy/hh:mm	(m)	S deg.	W deg.	(°C)	(psu)	(µatm)	szcai	рп	(µM)	(µM)	(µM)	(µM)	LC	MC	A-CC	R/h	(µm ³)
1*	26.11.15/10:15	1	50.3280	75.3516	9.31	30.42	343	2.67	8.066	na	na	na	na	2.50	75.0	17.50	5.00	106.7
2*	26.11.15/12:09	1	50.3794	75.4093	9.13	30.63	343	2.69	8.067	na	na	na	na	2.56	66.7	10.26	20.51	121.5
3	26.11.15/16:00	1	50.3467	75.3633	9.97	29.98	386	2.53	8.027	6.12	6.13	na	0.51	0.00	83.3	13.89	2.78	115.9
3*	26.11.15/16:00	4	50.3467	75.3633	9.42	30.68	364	2.60	8.045	4.16	na	na	0.51	0.00	92.3	5.13	2.56	123.4
3	26.11.15/16:00	8	50.3467	75.3633	9.20	30.96	359	2.70	8.056	na	na	na	0.50	4.29	70.0	15.71	10.00	138.2
3	26.11.15/16:00	14	50.3467	75.3633	9.32	31.09	354	2.70	8.058	na	na	na	0.78	0.00	64.1	30.77	5.13	98.1
3	26.11.15/16:00	36	50.3467	75.3633	9.03	31.20	365	2.66	8.050	4.36	4.20	na	0.53	7.50	70.0	2.50	20.00	85.5
4	27.11.15/11:02	1	50.3688	75.3656	9.54	30.95	241	3.64	8.205	1.06	na	na	1.75	na	na	na	na	na
4*	27.11.15/11:02	4	50.3688	75.3656	9.33	31.28	266	3.42	8.170	2.94	na	na	1.80	0.00	87.5	5.00	7.50	113.0
4	27.11.15/11:02	9	50.3688	75.3656	9.09	31.56	347	2.86	8.073	4.75	na	na	1.08	0.00	90.0	7.50	2.50	89.1
4	27.11.15/11:02	19	50.3688	75.3656	9.12	31.67	347	2.84	8.072	7.92	na	na	1.04	10.53	78.9	7.89	2.63	75.1
4	27.11.15/11:02	30	50.3688	75.3656	8.91	31.68	375	2.68	8.044	5.02	na	na	0.55	2.56	87.2	7.69	2.56	85.3
5*	28.11.15/21:30	1	50.4252	74.9988	9.75	30.89	322	3.03	8.101	2.43	1.30	na	0.75	0.00	85.0	12.50	2.50	120.9
5	28.11.15/21:30	8	50.4252	74.9988	9.26	31.66	350	2.81	8.066	3.27	2.65	na	1.07	5.26	92.1	2.63	0.00	99.3
5	28.11.15/21:30	15	50.4252	74,9988	9.18	31.75	386	2.61	8.029	4.20	2.56	na	1.38	5.26	78.9	7.89	7.89	94.9
5	28.11.15/21:30	25	50.4252	74.9988	8.99	31.88	425	2.44	7.994	5.53	4.49	na	1.80	7.89	86.8	2.63	2.63	94.6
6*	29.11.15/02:10	2	50.7649	74,4343	9.70	29.5	341	2.56	8.060	na	na	na	na	2.56	97.4	0.00	0.00	101.4
7*	29.11.15/06:00	2	51 2884	74 1223	8.94	29.0	329	2.47	8.068	na	na	na	na	2.78	97.2	0.00	0.00	102.4
8*	29.11.15/10:10	2	51.2001	73 7327	8 79	28.2	346	2.23	8.041	na	na	na	na	4 65	95.3	0.00	0.00	91.5
9*	29.11.15/14:00	2	52,3000	73 6567	8.68	26.6	339	1.98	8.030	2.94	0.34	na	na	0.00	100.0	0.00	0.00	148.2
10*	29.11.15/18:10	2	52,7672	73 8111	8.69	29.5	323	2 57	8.080	na 12.91	na	na	na	2.56	97.4	0.00	0.00	146.8
10	29.11.15/22:20	2	53 2203	73 2871	8.11	30.3	362	2.57	8.042	na	na	na	na	0.00	100.0	0.00	0.00	159.6
12*	30.11.15/02:05	2	53 5578	72 4752	7.97	29.7	330	2.43	8.073	na	na	na	na	0.00	100.0	0.00	0.00	131.2
12	30.11.15/02:05	2	53 1332	72.4732	7.96	29.7	360	2.47	8.070	na	na	na	na	0.00	100.0	0.00	0.00	107.0
1.1*	30.11.15/10.10	2	53 0217	72.0012	7.00 8.74	28.7	300	2.10	8.029	na	na	na	na	0.00	100.0	0.00	0.00	03.3
14	01 12 15/10:06	2	52 5610	72 3200	7.70	16.02	542	2.49	7 725	0.32	1.53	na	2.07	obsent	absent	obsent	absent	95.5
15*	02.12.15/14:10	2	52 5844	72.3209	9.02	21.1	252	2.62	9.061	0.52	1.55	na	2.07					116.2
10*	02.12.15/14:10	2	52 9024	72.3092	0.23	21.0	255	2.05	8.001 8.056	na	na	na	na	10.81	09.2	0.00	0.00	110.2
17.	02.12.15/15.52	2	52 9447	72.1396	7.92	20.9	276	2.50	8.030 8.021	na	na	na	na	2.12	100.0	0.00	0.00	122.7
18*	02.12.15/22:10	2	53.8447	72.1940	7.12	20.4	370	2.35	8.031	na	na	na	na	3.13	90.9	0.00	0.00	124.2
19*	03.12.15/02:34	2	53.8929	70.0221	7.09	30.4 20.2	245	2.58	8.079	na	na	na	na	0.00	100.0	0.00	0.00	07.5
20*	03.12.15/04:10	2	53.7485	70.9321	7.20	30.3	345	2.43	8.060	na	na	па	па	2.03	97.4	0.00	0.00	87.5
21*	03.12.15/05:44	2	53.5924	70.9320	7.55	20.9	347	2.59	8.000	na	na	na		2.03	97.4	0.00	0.00	80.0
22*	22.09.17/10:20	2	53.3925	72.3000	/.1	29.8	390	2.19	8.011	11.39	4.83	1.00	1.04	5.15	94.9	0.00	0.00	90.5
23*	22.09.17/14:05	2	53.3833	72.9328	6.7	28.0	364	2.02	8.025	9.93	3.80	0.89	1.92	10.26	89.7	0.00	0.00	110.7
24*	22.09.17/17:00	2	53.1424	/3.380/	6.7	28.3	383	2.01	8.011	8.21	2.59	0.75	2.57	5.00	95.0	0.00	0.00	108.5
25*	23.09.17/00:02	2	52.5913	/3.6485	6.3	26.5	396	1.6/	7.978	8.17	2.16	0.26	0.78	0.00	100.0	0.00	0.00	123.6
20*	23.09.17/04:05	2	52.1247	73.0899	0.4	25.1	412	1.48	7.952	9.52	6.90	0.84	1.54	0.00	100.0	0.00	0.00	114.1
27*	23.09.17/08:22	2	51.6840	73.9500	6.8	26.9	365	1.85	8.012	8.31	5.09	0.72	1.79	5.13	94.9	0.00	0.00	112.8
28*	23.09.17/10:08	2	51.4631	74.0435	7.3	27.6	342	2.09	8.044	8.14	3.11	0.66	1.83	0.00	100.0	0.00	0.00	111.0
29*	23.09.17/16:45	2	50.7479	74.4892	8.1	27.6	327	2.21	8.060	5.97	2.76	0.47	2.13	2.50	95.0	2.50	0.00	117.4
30	24.09.17/23:00	2	50.3368	75.3630	7.23	28.32	384	2.09	8.014	11.38	10.17	0.89	0.64	0.00	82.1	10.26	7.69	93.9
30*	24.09.17/23:00	5	50.3368	75.3630	7.74	28.95	365	2.27	8.037	12.83	12.41	0.91	0.84	0.00	80.0	20.00	0.00	100.6
30	24.09.17/23:00	10	50.3368	75.3630	7.77	29.27	381	2.23	8.021	12.09	10.94	0.90	0.84	0.00	78.6	19.05	2.38	90.7
30	24.09.17/23:00	20	50.3368	/5.3630	7.82	29.59	317	2.27	8.025	13.25	13.35	0.92	0.86	5.13	/6.9	17.95	0.00	97.5
30	24.09.17/23:00	50	50.3368	75.3630	8.40	30.79	449	2.16	7.965	14.76	15.16	1.18	0.33	5.71	62.9	28.57	2.86	67.5
30	24.09.17/23:00	75	50.3368	/5.3630	9.18	31.34	712	1.62	7.794	16.22	18.52	1.62	0.46	scarce	scarce	scarce	scarce	scarce
31*	26.09.17/14:45	2	50.4243	75.0016	7.70	28.30	320	2.38	8.080	6.69	4.57	0.55	2.81	0.00	94.9	5.13	0.00	110.9
32*	26.09.17/14:50	5	50.4777	74.9857	7.67	29.06	363	2.21	8.032	7.71	5.43	0.66	2.34	2.50	90.0	7.50	0.00	103.2
32	26.09.17/14:50	10	50.4777	74.9857	7.80	29.77	369	2.29	8.031	10.45	8.96	0.92	2.63	2.50	82.5	12.50	2.50	104.7
32	26.09.17/14:5	20	50.4777	74.9857	8.02	30.41	380	2.34	8.024	12.73	9.13	1.02	1.68	0.00	85.0	12.50	2.50	92.2
32	26.09.17/14:5	50	50.4777	74.9857	8.55	31.61	402	2.43	8.010	12.72	9.13	1.09	1.60	16.67	62.5	12.50	8.33	94.9
32	26.09.17/14:5	75	50.4777	74.9857	8.64	32.06	399	2.53	8.017	12.97	9.82	1.16	1.45	scarce	scarce	scarce	scarce	scarce

Table S2. Abundances of planktonic iter	ms (cells L	⁻¹) found	in souther	rn Patagoı	ia during	the austra	al late-sprin	ıg 2015.																				
	St.1 (1 m)	St.2 (1 m)	St.3 (1 m)	st.3 (4 m)	St.3 14 m) (;	St.3 [4]	St.4 St 4 m) (9	t.4 St. m) (19 1	4 St. ⁴ n) (30 n	() St.5 (1 m)	St.5 (15 m)	St.5 (25 m)	St.6 (2 m)	St.7 (2 m)	St.8 (2 m)	St.9 (2 m)	St.10 (2 m)	St.11 (2 m)	St.12 (2 m)	St.13 Si (2 m) (2		15 St. (D) (21	16 St.17 n) (2 m)	7 St.18) (2 m)	St.19 (2 m)	St.20 (2 m)	St.21 (2 m)	
Diatoms				-		-		-		-					-	-				-	-	-	-	-	-	-		
Centric small (5-40 µm diameter)	1,130	550	0	770	490	970	740 4	10 661) 1,52) 1,360	096	780	1,460	820	340	0	680	780	1,540	380 2	60 32	00 80	0 520	140	280	1,000	1,080	
Centric medium (40-100 µm diam.)	0	0	0	0	0	10	0	0 0	0	0	0	0	20	20	0	60	20	40	40	0	0 0	0 0	20	10	0	120	0	
Chaetoceros spp.	1,700	480	1,010	2,860	1,990	2,370 32	1,809 141,	,381 14,7	80 29,96	0 33,300	56,020	119,110	1,040	920	120	140	2,880	4,020	10,500	1,120	0 101,	194 14,6	67,01	4 63,200	331,825	254,800	154,560	
Leptocylindrus spp.	170	100	0	440	230	280 3(),460 6,5	360 2,2 2	0, 3,74) 3,360	2,020	720	580	44,052	1,060	0	9,760	59,352 3.	58,127	1,180 2	20 0) 58,1	60 2,880	4,520	29,540	0	0	
Rhizosolenia spp.	440	240	80	280	150	100 1	,420 8()0 44() 440	420	460	100	0	20	120	20	20	60	40	0	0 0	2() 60	0	20	0	0	
Eucampia spp.	0	0	0	0	0	0	120 4	0 0	0	40	80	0	80	0	0	0	0	120	0	0	0	0	0	0	0	0	0	
Asterionellopsis spp.	0	0	40	40	40	0	580 (0 (160	0	0	0	0	0	0	0	0	300	0	0	0	4,1	60 6,200	7,840	26,820	800	1,280	
Corethron spp.	20	20	30	50	30	50	20 2	0 0	40	120	200	140	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Cerataulina spp. + Guinardia spp.	0	0	0	130	40	0	980 It	50 30	60	3,580	40	780	0	0	1,480	860	560	500	200	40	0 00	0 62	0 540	0	840	640	0	
Pennate large (> 100 µm length)	20	10	40	10	20	0	20 8	0 20	20	10	80	20	0	20	20	0	0	20	0	80	0 2	0 40) 50	20	140	80	20	
Pennate medium (50-100 μm length)	60	0	0	0	0	0	0	0 (20	0	20	20	0	0	20	0	0	0	60	40	30 (0	0	0	40	0	60	
Pennate small (< 50 μ m length)	10	130	50	10	0	10	0 6	0 90	120	120	40	0	0	60	0	0	0	140	0	0	0	2(1,140) 240	560	0	20	
Thalassionema spp.	0	0	0	0	0	0	0	0 (0	0	0	80	0	0	80	0	0	0	0	0	0 7,2	20 26	0 820	180	260	0	40	
Licmophora spp.	0	60	10	10	30	0	0	0 (20	0	20	20	0	0	0	20	0	0	0	0	0	0	10	10	20	0	0	
Pseudo-nitzschia spp.	1,020	730	810	1,790	1,310	,820 22	2,360 30,	076 2,54	0 4,20) 7,380	4,460	3,340	580	8,180	0	0	60	60	180	160	0	34	0 540	180	1,260	960	980	
<i>Nitzschia</i> spp. (< 40 μm length)	150	40	0	110	0	40	260 6	0 40	40	200	40	180	20	4,120	20	0	0	40	20	0	3L 0	80 40) 1,880) 560	2,400	40	0	
Stephanopyxis turris	0	0	0	0	0	0	100 28	30 8C	20	220	140	400	160	160	100	0	0	200	240	4,220 2,	780 (2,0	20 1,120	096 (2,060	0	220	
Thalassiosira spp.	0	20	90	100	100	50 7	,160 3,0)40 1,9t	60 720	1,840	2,020	210	0	0	1,880	700	840	2,860	4,740	120	20 5,7	20 13,2	120 48,77	2 102,964	166,348	3,320	3,320	
Skeletonema spp.	0	80	0	0	70	60 1	,840 8	0 26) 1,18) 2,500	720	1,260	280	620	0	0	0	0	0	0	0 92	0 0	680	0	200	0	0	
Striatella spp.	560	0	0	160	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 28	0 0	0	0	0	0	0	
Ditylum spp.	0	0	0	0	0	0	20 () 20	0	0	0	0	0	0	0	0	0	0	0	0	0 0) 4() 20	0	0	0	0	
Plagiogrammopsis spp.	100	0	0	0	0	0	0	0 0	0	0	160	0	0	0	0	0	0	0	0	0	0 0) 32	0 0	0	680	0	0	
Detonula spp.	0	0	90	0	0	0	0 11	20 0	0	2,820	3,060	0	20,300	0	3,540	1,840	0	0	0	0	0 0(0 4,8	0 00	540	0	24,200	15,560	
Dinoflagellates			-	-	-	-	-	-	-	-					-	-				-	-	-	-	-	-	-		
Ceratium pentagonium	0	0	0	10	0	0	0	0	0	0	0	0	0	0	380	100	40	10	1,320	1,960 7	00 1	0 46	0 0	20	100	40	20	
Ceratium lineatum	0	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0	0	320 (50 (0	10	0	160	0	0	
Protoperidinium spp.	0	0	0	30	40	20	120 4	0 20	0	380	0	20	20	0	0	760	240	180	780	120	70 4(0 44	0 20	140	980	880	320	
Dinophysis spp.	0	0	0	0	20	0	10 1 ²	40 0	0	0	0	0	20	0	0	60	0	120	160	240 4	50 8	0 20	0 20	0	80	0	0	
$Gymnodinium \text{ spp.} > 60 \ \mu m \ \text{length}$	20	0	10	20	0	0	140 2	0 0	0	280	60	0	20	0	200	160	20	0	60	640 3	90 4	0 0	60	60	220	0	0	
Scrippsiella spp.	0	0	610	0	50	0	0	0 0	0	1,300	20	0	7,280	20	340	80	560	0	80	80	0	10	0 200	60	600	280	200	
Pyrophacus spp.	0	0	0	0	10	0	40 8	0 20	0	80	60	0	30	0	120	60	140	80	540	280 1	60 4	0 34	0 200	100	500	440	40	
Naked flagellates			-		-		-	-	-												_	-	-	_				
Naked flagellates	12,232	54,994	21,229 (64,698 1	2,940 2	0,218 7;	5,616 20,	016 8,59	13 23,04	19 65,103	52,163	22,240	140,719	134,249	21,633	151,637	40,032	71,168	36,797 t	58,338 49	,332 40,4	436 26,8	390 26,08	2 13,614	33,764	40,841	22,240	
Coccolithophores					F		-	-	F							-				-	_		-					
Emiliania huxleyi	20,089	51,868	15,811 2	24,056 2	1,949 3	2,240 4;	3,154 31,	454 21,0	18 42,4	0 28,768	19,717	33,234	62,126	161,454	102,676	276,035	146,574	69,567	25,296 4	18,734 42	,410 (17,2	98 42,41	0 11,719	41,293	31,994	25,296	
Syracosphaera spp.	0	1,330	0	0	0	0	0 7	36 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Dictyochophyceae			ŀ	-		-	-	-	-						-	-	-		-		-	-	-		-			
Pseudochattonella verruculosa	50	1,180	1,270	640	0	10	0	3 20	0	3,280	460	80	8,440	300	700	3,720	240	0	40	100	0	0	240	20	100	80	240	
Silicoflagellates		F		╞		-											F	-		ŀ	_	_						
Unidentified	20	40	0	10	80	30	60 3	0 0	20	40	80	20	20	200	100	40	0	60	0	0	0	5	0 10	0	20	0	0	
Foraminitera	_	_	,	_		-	-				,		,	_	,	,		,	_	_		_	,	,	,	,		
Unidentified	0	0	0	0	20	0	0 4	0 2(20	100	0	0	0	0	0	0	0	0	40	0	0	0	0	0	0	0	0	
Ciliates		4	<			C L			Ŷ			007					000	000	00					č	c L	¢	ç	
Tintinnids	0	0	0	0	20	50	20	0 2(09	340	140	120	120	20	0	0	280	200	80	80	40	0 10	0 140	30	50	0	60	
Oligotrichida + Cyclotrichiida	220	250	1,330	7,620	280	150	860 2,2	260 52) 18(3,760	3,600	160	780	700	980	2,580	9,100	840	720	1,900 1,	490 32	-0 80	0 460	360	600	3,280	740	
																												\mathfrak{S}

17
0
2
а С
·Ξ
d
ĩ
Ĥ
ГЯ Г
Ē
g
sti
E
0
μ
ů
Ē
ļu
J C
Ϊί
o
<u>5</u> 0
tt:
ñ
E
Å,
f
00
5
·=
id İd
und i
found i
) found i
, ⁻¹) found i
L^{-1}) found i
ls L ⁻¹) found i
ells L ⁻¹) found i
(cells L ⁻¹) found ii
es (cells L ⁻¹) found i
res (cells L ⁻¹) found i
nores (cells L ⁻¹) found i
phores (cells L ⁻¹) found i
hophores (cells L ⁻¹) found in
ithophores (cells L ⁻¹) found in
olithophores (cells L ⁻¹) found in
scolithophores (cells L^{-1}) found in
occolithophores (cells L^{-1}) found in
$coccolithophores$ (cells L^{-1}) found in
of coccolithophores (cells L^{-1}) found in
is of coccolithophores (cells L^{-1}) found in
ces of coccolithophores (cells L^{-1}) found i
inces of coccolithophores (cells L ⁻¹) found in
dances of coccolithophores (cells L ⁻¹) found i
indances of coccolithophores (cells L^{-1}) found in
pundances of coccolithophores (cells L^{-1}) found in
Abundances of coccolithophores (cells L^{-1}) found i
. Abundances of coccolithophores (cells L^{-1}) found i
33. Abundances of coccolithophores (cells L ⁻¹) found in
\approx S3. Abundances of coccolithophores (cells L ⁻¹) found in
ble S3. Abundances of coccolithophores (cells L^{-1}) found in
able S3. Abundances of coccolithophores (cells L^{-1}) found in

	St.22 (2 m)	St.23 (2 m)	St.24 (2 m)	St.25 (2 m)	St.26 (2 m)	St.27 (2 m)	St.28 (2 m)	St.29 (2 m)	St.30 (2 m)	St.30 (5 m)	St.30 (10 m)	St.30 (20 m)	St.30 (50 m)	St.30 (75 m)	St.31 (2 m)	St.32 (5 m)	St.32 (10 m)	St.32 (20 m)	St.32 (50 m)	St.32 (75 m)
Emiliania huxleyi	51,257	51,552	62,099	16,948	90,551	82,742	23,407	26,512	38,558	27,924	37,466	17,862	13,747	2,062	27,965	34,797	28,812	21,186	7,406	7,733
Acanthoica quattrospina	0	0	0	0	0	0	0	0	0	0	436	0	0	0	0	1,289	847	1,695	0	0
Coronosphaera mediterranea	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	847	436	2,148
Gephyrocapsa muellerae	0	0	0	0	0	0	0	0	0	0	0	0	0	1,031	0	0	0	0	0	859
Helicosphaera carteri	0	0	0	0	0	0	0	0	0	0	0	0	430	0	0	0	0	0	0	0
Calciosolenia murrayi	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	436	0
Alisphaera unicornis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	430

Table S4. Biovolume and equivalent spherical diameter (ESD) of main planktonic species found in southern Patagonia during the austral late-spring 2015. *assuming frustule or theca and vacuole volumes representing 50 % and 22 % of the total volume of diatoms and dinoflagellates respectively. ^agroup composed of small flagellates and athecated dinoflagellates cells including *Torodinium* spp., *Gyrodinium* spp.,

	Geometric shape	Volume formula	Trophy	Ν	Volume (µm ³)*	ESD (µm)
Diatoms						
Chaetoceros spp.	Elliptic prism	π/4•a•b•h	AU	26	2371.8	16.5
Centric small 5-40 µm diameter	Cylinder	π/4•d^2•h	AU	26	11115.5	27.7
Centric medium 40-100 µm diameter	Cylinder	π/4•d^2•h	AU	13	148346.5	65.7
Leptocylindrus spp.	Cylinder	π/4•d^2•h	AU	28	1848.6	15.2
Rhizosolenia spp.	Cylinder	π/4•d^2•h	AU	31	36804.9	41.3
Asterionellopsis spp.	Prism on triangle-base	1/2•a•b•h	AU	8	319.4	8.5
Corethron spp.	Cylinder + 2 half spheres	π•d^2• (h/4+d/6)	AU	20	11438.9	28.0
Cerataulina spp. + Guinardia spp.	Cylinder	π/4•d^2•h	AU	18	11304.1	27.8
Pennate large > 100 μ m length	Prism on parallelogram	1/2•a•b•h	AU	23	25217.9	36.4
Pennate medium 50-100 µm length	Prism on parallelogram	1/2•a•b•h	AU	2	3513.9	18.9
Pennate small $< 50 \mu m$ length	Prism on parallelogram	1/2•a•b•h	AU	7	1334.0	13.7
Thallassiosena spp.	Rectangular box	a•b•h	AU	15	508.0	9.9
Licmophora spp.	Truncated square pyramid	1/3•(a^2+a•b+b^2)•h	AU	7	18826.1	33.0
Pseudo-nitzschia spp.	Prism on parallelogram	1/2•a•b•h	AU	11	1638.5	14.6
<i>Nitzschia</i> spp. < 40 µm length	Prism on parallelogram	1/2•a•b•h	AU	15	206.7	7.3
Amphiprora spp.	Elliptic prism	π/4•a•b•h	AU	2	50391.5	45.8
Stephanopyxis turris	Cylinder + 2 half spheres	$\pi \cdot d^2 \cdot (h/4 + d/6)$	AU	25	331885.0	85.9
Thalassiosira spp.	Cylinder	π/4•d^2•h	AU	36	15652.8	31.0
Skeletonema spp.	Cylinder + 2 half spheres	π•d^2• (h/4+d/6)	AU	2	685.4	10.9
Striatella spp.	Elliptic prism	π/4•a•b•h	AU	2	1632.1	14.6
Ditylum spp.	Prism on triangle-base	1/2•a•b•h	AU	2	70323.2	51.2
Plagiogrammopsis spp.	Elliptic prism	π/4•a•b•h	AU	3	1120.9	12.9
Detonula spp.	Cylinder	π/4•d^2•h	AU	21	2530.1	16.9
Dinoflagellates						
Ceratium pentagonium	Ellipsoid + cylinder + 2 cones	$(\pi/6 \bullet a1 \bullet b1 \bullet h) + (\pi/4 \bullet b2^{2} \bullet a2) + (\pi/12 \bullet b3^{2} \bullet a3) + (\pi/12 \bullet b4^{2} \bullet a4)$	М	15	154344.3	66.6
Ceratium lineatum	Ellipsoid + cylinder + 2 cones	$(\pi/6 \bullet a1 \bullet b1 \bullet h) + (\pi/4 \bullet b2^{2} \bullet a2) + (\pi/12 \bullet b3^{2} \bullet a3) + (\pi/12 \bullet b4^{2} \bullet a4)$	М	7	24032.2	35.8
Protoperidinium spp.	2 cones	$(\pi/12 \cdot a^2 \cdot b1) + (\pi/12 \cdot a^2 \cdot b2)$	Н	40	17705.2	32.3
Dinophysis spp.	Ellipsoid	$(\pi/6 \bullet a \bullet b \bullet h)$	Н	19	17511.3	32.2
<i>Gymnodinium</i> spp. $> 60 \mu\text{m}$ in length	Ellipsoid	(π/6•a•b•h)	H, M	29	55523.5	47.3
Pyrophacus spp.	Ellipsoid	(π/6•a•b•h)	М	20	59512.2	48.4
Scrippsiella-like spp.	2 cones	$(\pi/12 \bullet a^2 \bullet b1) + (\pi/12 \bullet a^2 \bullet b2)$	A, H	27	2950.3	17.8
Naked flagellates 10-60 µm in length ^a	Ellipsoid	(π/6•a•b•h)	H, M	17	2527.1	16.9

Table S5. Indicator value analysis (IndVal) of coccolitophores and diatom species representative of Patagonian fjord and nearby coastal/oceanic locations. Only species with indicator values higher than 0.5 are shown.

	Code	IndVal	<i>p</i> -value
Patagonia fjords			
Thalassiosira spp.	Thala	0.8292	0.001
Stephanopyxis turris	Ste.tu	0.7778	0.001
Leptocylindrus spp.	Lepto	0.6706	0.001
Chaetoceros spp.	Chae	0.5895	0.008
Emiliania huxleyi moderate-calcified A-morphotype	MC	0.538	0.004
Coastal/oceanic areas			
cf. Lioloma spp.	Liol	0.7374	0.001
Pennate $< 50 \ \mu m$ length	Pen.sm	0.6789	0.001
Gephyrocapsa ericsonii	Geri	0.6061	0.001
Nitzschia spp. 50-100 µm length	Nit.me	0.6061	0.001
cf. Pseudo-nitzschia cuspidata	Pcus	0.6061	0.001
Emiliania huxleyi lighty-calcified A-morphotype	LC	0.5953	0.003
Gephyrocapsa parvula	Gpar	0.5758	0.002
Emiliania huxleyi A-CC morphotype	A-CC	0.5648	0.003
Gephyrocapsa muellerae	Gmue	0.5455	0.001
<i>Nitzschia</i> spp. > 100 μm length	Nit.la	0.5152	0.001
cf. Asteromphalus sarcophagus	Asar	0.5152	0.001

Table S6. Niche parameters yielded by the Outlying Mean Index (OMI) analysis for *Emiliania huxleyi* morphotypes found in the Patagonia fjords-channels system during the austral late-spring 2015 and early-spring 2017 (see Fig. 7a). Niche parameters are given in absolute and percentage of variability of each morphotype. Inertia = total variability, OMI = Outlying Mean Index (i.e., marginality), Tol = Tolerance, RTol = Residual Tolerance (i.e., proportion of total variability unexplained by the environmental variables included in the analysis), OMI% = percentage of variability given by OMI, Tol% = percentage of variability given by Tol, RTol% = percentage of variability given by RTol. *p*-values are given by the number of random permutations out of 10,000 that yielded a higher value than the observed marginality. Morphotypes in bold were the ones significant (p < 0.05).

	Cada	Inortio	Abs	olute va	lues	Percent	age of va	riability	n voluo
	Code	merua	OMI	Tol	RTol	OMI%	Tol%	RTol%	<i>p</i> -value
E. huxleyi lightly-calcified A-morphotype	LC	1.96	0.07	0.32	1.57	3.5	16.4	80.1	0.7190
E. huxleyi Moderate-calcified A-morphotype	MC	2.77	0.07	1.23	1.47	2.5	44.3	53.2	0.0271
E. huxleyi A-CC A-morphotype	A-CC	3.59	1.43	1.68	0.49	39.8	46.7	13.5	0.0598
E. huxleyi R/hyper-calcified morphotype	R/h	6.24	4.77	0.75	0.72	76.4	12.1	11.5	0.0403

Table S7. Results of five environmental variables fitted on the OMI space showed in figure 7a (using the envfit function of the vegan package, R software).

	Code	OMI1	OMI2	R ²	<i>p</i> -value
Temperature	Temp	-0.57	0.82	1.00	< 0.001
Salinity	Sal	-0.65	-0.76	0.89	< 0.001
pCO ₂	pCO ₂	0.84	0.54	0.88	< 0.001
Ω calcite	Ωcal	-0.98	-0.21	0.97	< 0.001
pH	pН	-0.76	-0.65	0.98	< 0.001

Table S8. Niche parameters yielded by the Outlying Mean Index (OMI) analysis for *E. huxleyi* morphotypes and other coccolithophore species in the sothern Patagonia fjords-channel system and nearby coastal/oceanic areas (see Fig. 7b). Niche parameters are given in absolute and percentage of variability of each morphotype/species. Inertia = total variability, OMI = Outlying Mean Index (i.e., marginality), Tol = Tolerance, RTol = Residual Tolerance (i.e., proportion of total variability unexplained by the environmental variables included in the analysis), OMI% = percentage of total variability given by OMI, Tol% = percentage of total variability given by Tol, RTol% = percentage of variability given by RTol. *p*-values are given by the number of random permutations out of 10,000 that yielded a higher value than the observed marginality (OMI). All coccolithophores and *E. huxleyi* morphotypes tested were significant (p < 0.05).

	Cada	Inortio	Abs	olute va	lues	Percent	age of v	ariability	n voluo
	Code	merua	OMI	Tol	RTol	OMI%	Tol%	RTol%	<i>p</i> -value
E. huxleyi lightly-calcified A-morphotype	LC	5.76	0.75	2.85	2.15	13.0	49.7	37.3	< 0.001
E. huxleyi Moderate-calcified A-morphotype	MC	3.86	0.25	2.96	2.28	6.4	34.5	59.0	0.003
E. huxleyi A-CC A-morphotype	A-CC	5.24	0.58	2.91	1.70	11.1	56.5	32.4	< 0.001
E. huxleyi R/hyper-calcified morphotype	R/h	8.42	5.25	1.97	0.19	62.3	35.4	2.2	< 0.001
Gephyrocapsa parvula	Gpar	4.24	3.92	0.15	0.17	92.3	3.6	4.1	< 0.001
Gephyrocapsa ericsonii	Geri	4.24	3.89	0.16	0.19	91.7	3.7	4.6	< 0.001
Gephyrocapsa muellerae	Gmue	5.52	2.58	1.03	1.91	46.8	18.6	34.6	0.011
Calcidiscus leptoporus	Clep	5.65	2.33	0.38	2.94	41.2	6.7	52.1	< 0.001

Table S9. Results of five environmental variables fitted on the OMI space showed in figure 7b (using the envfit function of the vegan package, R software).

	Code	OMI1	OMI2	R ²	<i>p</i> -value
Temperature	Temp	-0.91	0.41	0.94	< 0.001
Salinity	Sal	-0.93	0.38	0.88	< 0.001
pCO ₂	pCO ₂	-0.66	-0.75	1.00	< 0.001
Ω calcite	Ωcal	-0.57	0.82	0.99	< 0.001
pН	pН	0.44	0.90	0.97	< 0.001

Supplementary Section S2. Figures

- Salinity and Ω calcite surface levels into the Archipelago Madre de Dios during austral spring 2015 (Fig. S1);
- *E. huxleyi* calcification anomalies observed in the southern Patagonia fjords-channels system (Fig. S2);
- Analysis of redundancy of environmental variables (Fig. S3);
- Surface temperature recorded throughout southern Patagonia during the late-spring 2015 and early-spring 2017 (Fig. S4);
- Surface Ω calcite recorded throughout southern Patagonia during late-spring 2015 and early-spring 2017 (Fig. S5);
- Nutrients and planktonic proxies recorded throughout southern Patagonia (Fig. S6);
- Physical, chemical and biological vertical conditions in the Archipelago Madre de Dios during late-spring 2015 (Fig. S7) and early-spring 2017 (Fig. S9);
- SEM image showing the phytoplankton assemblages in southern Patagonian waters during early-spring 2017 (Fig. S8);
- Non-metric multidimensional scaling (nMDS) based on coccolithophore and diatom abundances in the southern Patagonia fjords-channels system and nearby coastal/oceanic areas (Fig. S10a) and heatmap based on nMDs scores (Fig. S10b);
- Correspondence analysis (CA) between *E. huxleyi* and diatom biomasses in relation with environmental conditions recorded in the southern Patagonia fjords-channels system during late-spring 2015 and early-spring 2017 (Fig. S11).

Figure S1. Salinity and Ω calcite levels recorded in the surface waters of the Archipelago Madre de Dios during the austral spring 2015. Sampling stations for plankton analysis are labelled in black (open circles). Light- and dark-gray continental masses depict the "limestone" western and "silicate" eastern basins, respectively. Maps produced by Ocean Data View (Schlitzer, 2018).

Figure S2. Primary and secondary calcification anomalies in *E. huxleyi* specimens collected in southern Patagonia during the austral late-spring 2015 and early-spring 2017. (a-c) incomplete formation (left, black arrow) and teratological malformations of coccoliths (center and right), (d-f) weak dissolution of the light A, moderate A, and A-CC coccoliths, (g-i) coccoliths exhibiting thinning or missing of tube elements and weakening or loss of T-shaped elements resulting in the distal shield elements rest in part or wholly on the proximal shield, (j-l) severe secondary dissolution. White arrow in images b and j indicate recently extruded "normal" calcified coccoliths. Scale bar = $1 \mu m$.

Figure S3. Analysis of redundancy of environmental variables. Spearman correlation was computed on 12 physical and chemical variables on 32 surface samples (< 5 m depth) collected for plankton analysis in late-spring 2015 (N = 21) and early-spring 2017 (N = 11). Variables selected for further statistical analysis are indicated in bold and with asterisk.

Figure S4. Maps of southern Patagonia showing the study sites and stations sampled during the austral late-spring 2015 (a) and early-spring 2017 (b). Temperature recorded at the surface during the two cruises is plotted. The approximate perimeter of the Southern Ice Fields (SIF) is depicted. Maps produced by Ocean Data View (Schlitzer, 2018).

Figure S5. Maps of southern Patagonia showing the study sites and stations sampled during the austral late-spring 2015 (a) and early-spring 2017 (b). Ω calcite recorded at the surface during the two cruises is plotted. The approximate perimeter of the Southern Ice Fields (SIF) is depicted. Maps produced by Ocean Data View (Schlitzer, 2018).

Figure S6. Concentration of nutrients and planktonic proxies recorded in surface waters of southern Patagonia during latespring 2015. Chlorophyll-*a* and biogenic silica (a), and nitrate and dissolved silicate (b) are shown. Study sites and station ID discussed in the text are given in plot b).

Figure S7. Physical, chemical, and biological vertical profiles recorded in the Archipelago Madre de Dios during the austral late-spring 2015. Photosynthetically Available Radiation (PAR) and fluorescence signals (a-c), biogenic silica, nitrate and dissolved silicate (d-f), and pCO₂, alkalinity, Ω calcite, and HCO₃⁻ (g-i) in the W-AMD (st. 3 left), between (st. 4 middle), and E-AMD zones (st. 5 right). Dotted lines in panels a-b indicate depths of 1% PAR penetration (st. 5 was conducted at night).

Figure S8. SEM image taken at $1,500 \times$ magnification (st. 23) showing the phytoplankton assemblages during the austral early-spring 2017 comprised mostly by chain-forming diatoms.

Figure S9. Physical, chemical and biological vertical profiles recorded in the Archipelago Madre de Dios during the austral early-spring 2017. Photosynthetically Available Radiation (PAR) and fluorescence signals (a-b), phosphate, nitrate, dissolved silicate and opal (c-d), and pCO₂, alkalinity, Ω calcite, and HCO₃⁻ (e-f) in the W-AMD (st. 30 left) and the E-AMD zones (st. 32 right). Dotted line in panel b indicates depth of 1% PAR penetration (st. 30 was conducted at night).

Figure S10. (a) Non-metric multidimensional scaling (nMDS) based on coccolithophore and diatom abundances attained in southern Patagonia fjords during late-spring 2015 (this study) and other coastal/oceanic areas (data from von Dassow et al., 2018). (b) Heatmap showing abundances of coccolithophore and diatom species used in the nMDS. The horizontal dendrogram (based on the nMDS samples scores) shows a clear separation between Patagonia fjords (red cluster) and coastal/oceanic (blue cluster) areas, whereas the vertical dendrogram (based on the nMDS species scores) indicates the separation of species in two main clusters. Black and blue species labels depict species with significant values in the IndVal analysis. A-CC = *Emiliania huxleyi* A-CC morphotype; Amphi = *Amphiprora* spp.; Asar = cf. Asteromphalus sarcophagus; Aster = Asteromphalus spp.; Astp = Asterionellopsis spp.; Cen.la = Centric diatoms > 100 µm diameter; Cen.me = Centric diatoms 40-100 μ m diameter; Cen.sm = Centric diatoms < 40 μ m diameter; Chae = Chaetoceros spp.; Clep = Calcidiscus *leptoporus*; Coret = Corethron spp.; Cer/Gui = Cerataulina spp. + Guinardia spp.; Deton = Detonula spp.; Dityl = Ditylum spp.; Eucam = Eucampia spp.; Geri = Gephyrocapsa ericsonii; Gmue = Gephyrocapsa muellerae; Gpar = Gephyrocapsa *parvula*; LC = *Emiliania huxleyi* lightly-calcified A-morphotype; Lepto = *Leptocylindrus* spp.; Licmo = *Licmophora* spp.; Liol = cf. Lioloma spp.; MC = Emiliania huxleyi moderate-calcifield A-morphotype; Nit.la = Nitzschia spp. large > 100 um length; Nit.me = *Nitzschia* spp. medium 100-50 um length; Nit.re = *Nitzschia reversa*; Nit.sm = *Nitzschia* spp. < 50 µm length; Pcus = cf. *Pseudo-nitzschia cuspidata*; Pen.la = Pennate diatoms > 100 μ m length; Pen.me = Pennate diatoms 50-100 μ m length; Pen.sm = Pennate diatoms $< 50 \ \mu m$ length; Pla.so = *Planktoniella sol*; Plagi = *Plagiogrammopsis* spp.; Pro.al = Proboscia alata; Pse.ni = Pseudo-nitzschia spp.; R/h = Emiliania huxleyi R/hyper-calcified morphotype; Rhizo = Rhizosolenia spp.; Skele = Skeletonema spp.; Ste.tu = Stephanopyxis turris; Stria = Striatella spp.; Thala = Thalassiosira spp.; Thala = *Thalassionema* spp.

Figure S11. Correspondence analysis (CA) assessing the relationship between *E. huxleyi* and diatom biomasses converted to categoric values (i.e., low, intermediate, and high biomasses) in Patagonia fjords during late-spring 2015 and early-spring 2017. The *envit* function of the 'vegan' package (R software) was used to fit the environmental variables to the CA plot (no variable was significant; p > 0.05).