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Abstract. Environmental science is increasingly reliant on remotely-sensed observations of the Earth’s surface and 

atmosphere. Observations from polar-orbiting satellites have long supported investigations on land cover change, ecosystem 20 

productivity, hydrology, climate, the impacts of disturbance, and more, and are critical for extrapolating (“upscaling”) ground-

based measurements to larger areas. However, the limited temporal frequency at which polar-orbiting satellites observe the 

Earth limits our understanding of rapidly evolving ecosystem processes, especially in areas with frequent cloud cover. 

Geostationary satellites have observed the Earth’s surface and atmosphere at high temporal frequency for decades, and their 

imagers now have spectral resolutions in the visible and near-infrared regions that are comparable to commonly-used polar-25 

orbiting sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer 

Suite (VIIRS), or Landsat. These advances extend applications of geostationary Earth observations from weather monitoring 

to multiple disciplines in ecology and environmental science. We review a number of existing applications that use data from 

geostationary platforms and present upcoming opportunities for observing key ecosystem properties using high-frequency 

observations from the Advanced Baseline Imagers (ABI) on the Geostationary Operational Environmental Satellites (GOES), 30 

which routinely observe the Western Hemisphere every 5 - 15 minutes. Many of the existing applications in environmental 

science from ABI are focused on estimating land surface temperature, solar radiation, evapotranspiration, and biomass burning 

emissions along with detecting rapid drought development and wildfire. Ongoing work in estimating vegetation properties and 

phenology from other geostationary platforms demonstrates the potential for expanding ABI observations to estimate 

vegetation greenness, moisture, and productivity at high temporal frequency across the Western Hemisphere. Finally, we 35 
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present emerging opportunities to address the relatively coarse resolution of ABI observations through multi-sensor fusion to 

resolve landscape heterogeneity and to leverage observations from ABI to study the carbon cycle and ecosystem function at 

unprecedented temporal frequency. 

1 Introduction 

Modern environmental science would be unrecognizable without satellite remote sensing, which has revolutionized our field 40 

since its advent over a half-century ago (Kerr and Ostrovsky, 2003). The platforms by which we observe the Earth system are 

increasingly diverse and now include miniaturized satellites (CubeSats), sensors like ECOSTRESS traveling onboard the 

International Space Station (Hulley et al., 2017), and even lidar systems (Coyle et al., 2015; Qi et al., 2019), yet most 

environmental science applications employ polar-orbiting satellites, namely Landsat and the Moderate Resolution Imaging 

Spectroradiometer (MODIS). The Landsat and MODIS programs have radically improved the ability of ecologists to track 45 

vegetation change and its impacts on habitat, biogeochemical cycling, and other ecosystem services (De Araujo Barbosa et al., 

2015). Like all remote sensing platforms, polar-orbiting satellites must make compromises with respect to spectral resolution, 

spatial scale, and temporal scale that limit their ability to ‘measure all things, all the time’. Notably, the 1-to-2 day cadence of 

MODIS and VIIRS and 3-to-5 day cadence of the combined Landsat- and Sentinel-2-class sensors may be insufficient to track 

ecological phenomena that occur at shorter time scales, including the timing of rapid environmental change (White et al., 2009) 50 

and the diurnal behavior of land surface function such as sub-hourly variations in ecosystem carbon and water fluxes 

(Chudnovsky et al., 2004; Grant et al., 2000).  

As a part of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), the Satellite 

Application Facility for Land Surface Analysis (LSA SAF) has leveraged high frequency observations from the Spinning 

Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) geostationary satellites to 55 

provide operational products relevant for studying vegetation, wildfires, the surface radiation budget, and the carbon and water 

cycle (Trigo et al., 2011) at sub-daily time scales. These opportunities are also available in the Western Hemisphere. Focusing 

on the Advanced Baseline Imager (ABI), a joint effort by the National Oceanic and Atmospheric Administration (NOAA) and 

the National Aeronautics and Space Association (NASA), onboard the Geostationary Operational Environmental Satellites 

(GOES), we argue that the GOES constellation – commonly used as weather satellites – represents an under-explored 60 

opportunity for environmental science in situations where spatial resolution can be compromised in favor of more frequent 

imagery, especially now that ABI’s spectral sensitivity has approached that of Landsat and MODIS (Table 1; Fig. 1). Given 

the constellation of geostationary satellites around the world, extending environmental science applications to ABI and 

generating relevant data products is crucial for achieving near-global coverage of satellite environmental data available at the 

time scale of minutes. Developing algorithms that can be applied to data from multiple geostationary satellites will be an 65 

important component for achieving near-global coverage. 
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Here, we detail a number of applications by which GOES and other geostationary satellites have enhanced or could 

enhance our understanding of ecological phenomena that occur at time scales as short as minutes. We keep our focus on the 

GOES constellation, but we also discuss research and applications from various satellites in the global constellation of 

geostationary satellites to provide the larger context for emerging applications from GOES ABI. We outline the technical steps 70 

necessary to make imagery from ABI more useful for environmental science with an eye toward near real-time monitoring of 

environmental phenomena across the globe. We also note complementarity between GOES other geostationary platforms 

including Japan’s Himawari-8&9, South Korea’s GEO-KOMPSAT-2A, and European Union Meteosat satellites – especially 

the forthcoming third-generation (MTG) – all of which have similar spectral resolution that make near-global observation 

possible (Table 1). We first review the recent efforts regarding geolocation and atmospheric correction to produce surface 75 

reflectance from ABI and other geostationary imagers. We then describe new data products that can be created using state-of-

the-art geostationary satellite data with a brief description of existing data products that are providing key insight into Earth 

surface processes. Finally, we outline existing and emerging applications of observations from geostationary satellites that are 

ushering in the era of ‘hyper-temporal’ remote sensing (Miura et al., 2019) for environmental science. 

2 Background 80 

2.1 Geostationary satellites: Past, present, and future  

Geostationary remote sensing began with the launch of six Applications Technology Satellites (ATS) starting in 1966 (Suomi 

and Parent, 1968). The subsequent successful launches of the Synchronous Meteorological Satellites (SMS) were the precursor 

to the GOES mission, which began in 1974 and continues to the present (Menzel, 2020). By 1979, the global constellation of 

geostationary satellites included the European Space Agency’s Meteosat, the Japanese Geostationary Meteorological Satellite 85 

(GMS), and two GOES (Menzel, 2020). Seventeen GOES have been successfully sent to space as of 2018, two of which – 

GOES-16 positioned at 75.2 W (currently GOES-East) and GOES-17 positioned at 137.2 W (currently GOES-West) – arise 

from the GOES-R Series that include additional visible and near-IR channels that are commensurate with channels observed 

by Landsat and MODIS (Table 1, Fig. 1). The GOES-R Series has an expected operational lifetime to 2036 which promises 

multiple years of continuous data availability. This will be followed by the Geostationary and Extended Orbits program, which 90 

is planned for operation in 2030-2050 and is anticipated to include “GOES-R-class” imagers (Sullivan et al., 2020). 

2.2 Advanced Baseline Imager (ABI) 

The ABI is the primary instrument onboard GOES-16/17 and is designed for monitoring land and ocean surfaces, the 

atmosphere, and cloud formation (Schmit et al., 2017, 2018). The ABI has 16 spectral bands that measure solar reflected 

radiance in the visible and near-infrared wavelengths and emitted radiance at infrared wavelengths (Schmit and Gunshor, 95 

2020). With multiple infrared bands positioned in atmospheric absorption regions and in atmospheric windows, the ABI can 

collect information from the Earth’s surface and multiple levels in the atmosphere (Schmit and Gunshor, 2020). Multiple scan 
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modes are used to provide near-hemispheric geographic coverage with spatial resolutions between 0.5 and 2 km. The full disk 

scene consists of near hemispheric coverage centered at the equator and the longitude of the sensing satellite (D O C et al.,  

2019). The ABI also scans a scene of the contiguous United States (CONUS) and two mesoscale scenes (1000 km by 1000 100 

km). Operating in the flex mode, the ABI collected a full disk image every 15 minutes until April 2019 but now collects a full 

disk image every 10 minutes (with the exception of GOES-17 during parts of the year). The ABI also collects a CONUS scene 

every 5 minutes, and two mesoscale scenes every minute in the flex mode (Schmit and Gunshor, 2020).  

In late April 2018, an issue with the GOES 17 ABI cooling system was detected due to malfunctioning of the loop 

heat pipe which transfers heat from the ABI detectors and helps maintain adequate temperatures for proper functioning (Yu et 105 

al., 2019). This results in the loss of infrared data during some nighttime hours around 13:30 UTC during parts of the year due 

to the sun heating the seven ABI detectors faster than they can be cooled resulting in infrared emissions from the overheated 

detectors (NOAA and NASA, n.d.; NOAA, n.d.). This nighttime data loss can also fluctuate seasonally depending on how 

much solar radiation the instrument absorbs (NOAA, n.d.). A data quality flag in the metadata of the Level 1b radiances and 

Level 2 Cloud and Moisture Imagery can identify the faulty nighttime data (NOAA and NASA, n.d.). This malfunction will 110 

result in the loss of some nighttime data for data products that utilize the infrared bands and are relevant for observing the full 

diurnal cycle. 

3 ABI top-of-atmosphere data to surface reflectance and surface temperature 

ABI top-of-atmosphere data to surface reflectance and surface temperature 

The ABI collects top-of-atmosphere (TOA) data from a given location at a constant view zenith angle (VZA) and varying solar 115 

zenith angles (SZA) throughout the day. While the increased sampling of SZA creates opportunities in surface Bidirectional 

Reflectance Factor (BRF) modeling (Ma et al., 2020), the large VZA at off-nadir locations can present challenges for studying 

the land surface including coarsened resolution, potentially degraded locational accuracy, and more complex atmospheric 

compensation due to longer slant paths. Below, we review the existing efforts to address these challenges and make ABI 

imagery more suitable for studying the land surface.   120 

3.1 Geolocation 

The geolocation accuracy of ABI on GOES-16 and GOES-17 has been tracked and improved throughout its provisional and 

operational stages using the Image Navigation and Registration Performance Assessment Tool Set (IPATS) (Tan et al., 2018, 

2019, 2020). IPATS quantifies the navigation error: the difference between the location of a pixel in ABI imagery and a 

reference location (Tan et al., 2020). Some of the largest navigation errors, calculated from correlations between subsets of 125 

ABI and Landsat 8 imagery concentrated along the coast of North and South America, were 10 - 13 μrad less than the mission 

requirement of 28 μrad (1 km at nadir) in October 2019 (Tan et al., 2020). In addition to IPATS, the Geostationary-NASA 

Earth Exchange (GeoNEX) processing chain adjusts the geolocation of ABI imagery using a reference map from the Shuttle 

Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) and more than 30,000 landmarks along coastlines (Wang 
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et al., 2020). The shift in the geolocation of the red band (500 m at nadir) between IPATS and the GeoNEX algorithm was 130 

under 0.5 pixels for a majority of the time throughout the full disk scene but can be as large as 1 - 2 pixels for short periods of 

time (Wang et al., 2020). 

3.2 Parallax 

Geostationary satellites observe most of the hemisphere at an angle relative to the zenith, which introduces a challenge due to 

parallax: the effect of observing an object from a large VZA. Parallax can result in uncertainties in land surface observations 135 

in mountainous terrain and can introduce errors in the mapped location of clouds (Bieliński, 2020). These errors vary by VZA 

and the height of the feature and are largest for high VZA and high feature altitude relative to the surface (Bieliński, 2020; 

Zakšek et al., 2013). For example, the parallax shift at 49 degrees latitude from GOES-16 ABI can be as large as 51 km for an 

object that is 15 km high (Whittaker, 2014). Since the mapped location of the clouds detected depends, in part, on the VZA, 

parallax shifts can also complicate comparing the location of clouds between sensors with different VZA (Zakšek et al., 2013). 140 

However, it is possible to correct for parallax shifts with knowledge of VZA and feature (cloud or surface) altitude (Kim et 

al., 2017; Yeom et al., 2020). 

3.3 Atmospheric correction 

3.3.1 Surface reflectance 

Correcting for atmospheric attenuation of radiation to derive surface reflectance from TOA reflectance is a crucial prerequisite 145 

to studying surface processes from satellite platforms. Current efforts to estimate surface reflectance from the ABI, the 

Advanced Himawari Imager (AHI), and the Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, 

and Meteorological Satellite (COMS) include generating lookup tables from the Second Simulation of the Satellite Signal in 

the Solar Spectrum (6S) radiative transfer model (He et al., 2019; Tian et al., 2010; Vermote et al., 1997; Yeom and Kim, 

2015; Yeom et al., 2018, 2020). Optimal estimation methods that estimate surface BRF from SEVIRI have been extended to 150 

estimate surface broadband albedo and surface reflectance from the ABI and the AHI on Himawari-8 (Govaerts et al., 2010; 

He et al., 2019, 2012; Wagner et al., 2010). These algorithms estimate surface reflectance and broadband surface albedo by 

minimizing the difference between TOA BRF estimated through radiative transfer modeling and measured by the satellite (He 

et al., 2019, 2012). Unlike the surface reflectance algorithm currently used for SEVIRI, the algorithm for the ABI and the AHI 

takes the diurnal variation of aerosol optical depth into account (He et al., 2019). Originally developed for atmospheric 155 

correction of MODIS imagery, the Multi-Angle Implementation of Atmospheric Correction (MAIAC) has also been adapted 

to provide provisional daytime surface reflectance every 10 minutes for bands 1 - 6 of the AHI with plans to extend the 

algorithm to ABI (Li et al., 2019b). The surface reflectance from the AHI showed less variation compared to surface reflectance 

from MODIS and the differences in surface reflectance between the AHI and MODIS were smaller for the red, near-infrared 

(NIR), and shortwave infrared (SWIR) bands compared to the blue and green bands (Li et al., 2019b). ABI channels 1, 3, 5, 160 
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and 6 are accurate to within 2% but channel 2 has a bias error of up to 5% (McCorkel et al., 2020). With geolocation, parallax, 

atmospheric correction, and sensor accuracy taken into account, imagery from the ABI can provide sub-hourly estimates of 

various land surface variables. 

3.3.2 Surface temperature 

Atmospheric attenuation due to water vapor requires atmospheric correction of thermal data collected from satellites, and also 165 

limits surface temperature retrieval to thermal bands that have the lowest atmospheric absorption (Sun and Pinker, 2003). A 

single-channel approach requires the use of one thermal channel within an atmospheric window at around 10 μm and radiative 

transfer modeling to simulate atmospheric transmittance and emission of longwave radiation (Li et al., 2013; Pinker et al., 

2019). With known land surface emissivity and atmospheric profiles and simulated atmospheric transmittance/emission, 

surface temperature can be retrieved through the inversion of a radiative transfer equation that explains the different 170 

components of at-sensor radiance (Li et al., 2013). Since accurate atmospheric profiles over a study area can be difficult to 

obtain, a split-window technique can be used to correct atmospheric absorption to estimate surface temperature from at-sensor 

radiance in two thermal bands with differential water vapor absorption (Li et al., 2013; Ulivieri and Cannizzaro, 1985). Split-

window techniques were used in earlier estimates of surface temperature from GOES thermal data and they are based on the 

relationship between surface temperature and the difference in temperature between two adjacent thermal bands with high 175 

emissivity and low atmospheric absorption typically centered at 11 and 12  μm (Li et al., 2013; Sun and Pinker, 2003). The 

split window techniques used to generate the GOES-R hourly LST product is discussed in section 4.4 which further expands 

on surface temperature retrieval from GOES. In section 4.4, we also discuss the importance of emissivity for estimating land 

surface temperature (LST) and current sources of emissivity estimates used in LST retrievals from geostationary satellites. 

Similar to surface reflectances, the directional thermal radiation recorded by sensors on satellites can also be impacted 180 

by the VZA of the sensor (Diak and Whipple, 1995). Products that utilize diurnal thermal data from GOES have used the 

difference in surface radiometric temperature during the morning hours which has shown to be less sensitive to changes in 

VZA compared to absolute surface radiometric temperature (Anderson et al., 1997; Diak and Whipple, 1995). Other methods 

to address the impacts of varying VZA include adding zenith angle correction terms to split window algorithms in order to 

address the large path lengths at high VZA (Sun and Pinker, 2003; Yu et al., 2009) 185 

4 Data products 

Geostationary satellites can now measure a number of common vegetation indices used for ecological applications and make 

measurements that support derived products including land surface temperature as noted, incident solar radiation, and more. 

We describe these measurements with an eye toward explaining the benefits and challenges of using geostationary platforms 

such as the ABI for ecology and environmental science. 190 
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4.1 Incident solar radiation and Photosynthetically Active Radiation (PAR) 

Geostationary satellites are equipped to estimate incident solar radiation at the Earth’s surface (Diak, 2017; Pinker et al., 2002), 

critical for the surface energy balance, photosynthesis, and solar power applications. Earlier efforts to do so include a simple 

physical model by Gautier et al. (1980) which estimated incident solar radiation during clear and cloudy conditions using the 

reflectance from the visible band of the Visible Infrared Spin Scan Radiometer (VISSR) on GOES-2. The model included 195 

Rayleigh scattering and water vapor absorption of downwelling and reflected shortwave radiation. Cloud albedo and absorption 

were estimated from a linear relationship with the satellite-measured cloud reflectance, and estimates of incident solar radiation 

were subsequently improved by including ozone absorption of shortwave radiation in the atmosphere (Diak and Gautier, 1983; 

Diak, 2017). Continued improvements in both the physical model and the spatiotemporal resolution of the GOES imagery 

have resulted in higher accuracy of hourly and daily insolation estimates when compared to pyranometer measurements (Diak, 200 

2017; Otkin et al., 2005). More recent models of the transmittance of direct and diffuse shortwave radiation through aerosol 

extinction by different aerosol components, gaseous absorption, and Rayleigh scattering have provided estimates of the surface 

shortwave radiation flux and its diffuse fraction from SEVIRI observations at 15-min resolution (Carrer et al., 2019) and could 

also be applied to ABI observations. Applying algorithms for estimating incident solar radiation to data from multiple 

geostationary satellites can lead to near-global coverage and be beneficial for near-global estimates of evapotranspiration and 205 

gross primary productivity that are driven in part by solar radiation. 

Incident solar radiation in the wavelengths of photosynthetically active radiation (PAR, 400 - 700 nm) can also be 

estimated using the visible bands of geostationary satellites (Janjai and Wattan, 2011). Specifying a range of SZA, VZA, cloud 

types, aerosol types, cloud extinction coefficient, and atmospheric visibility, lookup tables generated from simulations of 

Moderate Resolution Atmospheric Transmission (MODTRAN) have been used to estimate downwelling PAR from at-sensor 210 

radiance (Zhang et al., 2014; Zheng et al., 2008). These methods have been extended to multiple geostationary satellites 

including GOES-11 and GOES-12 and MODIS surface reflectance data to generate global incident PAR estimates (Zhang et 

al., 2014). 

Although these methods account for elevation, validation efforts have shown that satellite-derived PAR in high-

altitude areas can be biased when compared to ground measurements, possibly due to inaccurate specification of atmospheric 215 

profiles governing water vapor corrections (Zhang et al., 2014). Furthermore, PAR estimated from satellites has been reported 

to underestimate PAR measured on the ground when the model assumed urban aerosol absorption over areas where maritime 

aerosols were more dominant (Janjai and Wattan, 2011). Despite these limitations, frequent estimates of PAR and incident 

solar radiation from geostationary satellites may be uniquely suited to drive the land surface models that are operating at 

increasingly fine spatial and temporal resolutions, providing a natural link for using geostationary satellite observations to 220 

improve our understanding of the carbon, water, and energy cycles (Williams et al., 2009). 

Terrestrial photosynthesis is particularly responsive to diffuse PAR, which penetrates plant canopies more efficiently 

than direct PAR (Emmel et al., 2020; Gu et al., 2003). The diffuse fraction of incoming PAR is well-described as a linear 
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function of transmissivity, or a clearness index, through the atmosphere within certain inflection points (Erbs et al., 1982; 

Oliphant and Stoy, 2018; Weiss and Norman, 1985). Estimates of cloud height, optical depth, and particle size along with 225 

aerosols from GOES can be used to further partition incoming PAR into direct and diffuse beam fractions as currently provided 

by EUMETSAT at 15-minute intervals (Carrer et al., 2019). Such observations could ultimately prove useful for analyses of 

the diurnal pattern of carbon cycling (see section 6.1), given that the variability in terrestrial carbon cycling is often most 

sensitive to the variability of PAR at time scales from minutes to days (Stoy et al., 2005). 

4.2 Vegetation greenness 230 

The Normalized Difference Vegetation Index (NDVI) – the normalized difference between the reflectance in red and near-

infrared wavelengths – is strongly correlated to chlorophyll content, green biomass, leaf area index (LAI), and the fraction of 

incoming PAR absorbed by leaves (fAPAR) (Gamon et al., 1995; Jordan, 1969; Rouse et al., 1974; Running et al., 1986; 

Tucker, 1979; Tucker et al., 1985) and therefore is a critical variable for monitoring the land surface. The ABI also has the 

ability to measure the Enhanced Vegetation Index (EVI) which is beneficial in areas (and periods) of dense vegetation cover 235 

where, unlike NDVI, EVI does not saturate and in open canopy areas because of a correction factor applied for canopy 

background (Huete et al., 2002; Zhou et al., 2014). The near-infrared reflectance of vegetation (NIRv) is strongly correlated 

to the amount of incoming PAR absorbed by plants and therefore photosynthesis at half-hourly to annual timescales and has 

shown stronger relationships with photosynthesis compared to NDVI (Badgley et al., 2017, 2019; Baldocchi et al., 2020; Wu 

et al., 2020), and can also in principle be measured by GOES (Table 1).  240 

LAI from SEVIRI is produced on a daily and 10-day basis through the LSA SAF program (Trigo et al., 2011). High 

temporal estimates of LAI from ABI will have widespread utility in the Western Hemisphere by providing an important 

variable needed for modeling seasonal vegetation dynamics and energy, water and carbon fluxes (Anderson et al., 2011; Guan 

et al., 2014; Robinson et al., 2018). An ABI LAI product can provide harmony in temporal scales and data sources needed to 

estimate fractional vegetation cover needed for a two-source energy balance model used for estimating evapotranspiration 245 

from GOES thermal data (further discussion in section 5.1) (Anderson et al., 2011). Similarly, the ABI LAI product can provide 

a data source for plant respiration modeling (see further discussion in section 6.1) (Robinson et al., 2018). 

The increased temporal frequency of measurements available from geostationary satellites compared to polar-orbiting 

satellites provide more opportunities for measuring NDVI, EVI, LAI, and NIRv in areas with frequent cloud cover (Miura et 

al., 2019). However, the geostationary position captures reflected radiation at varying SZA throughout the day and these novel 250 

sun-sensor geometries, not previously captured by polar orbiting satellites, can cause diurnal variation in vegetation indices 

calculated from TOA reflectance (Tran et al., 2020).  EVI shows less SZA-induced diurnal variation compared to NDVI and 

is less impacted by the midday hot spot effect during times of the year (spring and autumn equinox) when the SZA and AHI 

VZA are aligned (Tran et al., 2020). NDVI measurements can be normalized to a reference sun-target-sensor geometry by 

estimating bidirectional reflectance distribution functions (BRDF) to address the impacts of varying sun-sensor geometry 255 

(Fensholt et al., 2006; Seong et al., 2020; Tian et al., 2010; Yeom and Kim, 2015; Yeom et al., 2018). Given the SZA sensitivity 
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of NDVI measurements, Wheeler and Dietze (2019) demonstrated a Bayesian model to estimate a daily midday NDVI value 

from diurnal NDVI calculations using ABI observations. 

4.3 Vegetation moisture 

Liquid water absorption influences reflectance by plants in the atmospheric windows of shortwave infrared (SWIR) 260 

wavelengths (1.3 - 2.5 μm). Reflectance by plants in the SWIR has a negative relationship with leaf water content (Chen et al., 

2005; Gao, 1996; Tucker, 1980), and multiple vegetation indices have been developed from bands in the SWIR wavelengths 

to capture these phenomena, especially in the 1.55 - 1.75 μm range (Fensholt and Sandholt, 2003; Tucker, 1980). Some notable 

vegetation indices that use SWIR wavelengths are the Normalized Difference Infrared Index (NDII) and the Normalized 

Difference Water Index (NDWI) which have been formulated from the difference in reflectance (⍴) in the NIR (0.76 - 0.9)  265 

and SWIR (1.55 - 2.5 μm) bands as: (⍴NIR - ⍴SWIR) / (⍴NIR + ⍴SWIR) (Chen et al., 2005; Fensholt and Sandholt, 2003; 

Gao, 1996; Hardisky et al., 1983; Tucker, 1980). NDII has been used to improve global estimates of canopy water content and 

provided more realistic estimates of canopy water content in semiarid shrublands when compared to regression models without 

NDII (García-Haro et al., 2020). NDWI has been useful in estimating the water content of corn (maize) fields because it 

saturates at higher values than NDVI in response to changing vegetation water content during the growing season (Chen et al., 270 

2005; Jackson et al., 2004). The shortwave infrared water stress indices derived from MODIS have stronger correlations with 

growing season soil moisture than NDVI in the semiarid grasses of northern Senegal, Africa (Fensholt and Sandholt, 2003). 

Many of these indices and their changes over time can now in principle be measured by geostationary satellites (Table 1). 

The ABI, along with the Advanced Meteorological Imager (AMI) on GEO-KOMPSAT-2A, the AHI, and SEVIRI all 

offer bands in the SWIR regions, with ABI band 5 placed in the refined interval of 1.55 - 1.75 μm identified by Tucker (1980) 275 

(Table 1). Atmospherically corrected surface reflectances from ABI, SEVIRI, AHI, and AMI can provide near-real-time and 

near-global coverage for vegetation water content. This remains a relatively unexplored opportunity given the potential benefits 

of near-real-time monitoring of vegetation status (Verger et al., 2014). 

4.4 Land surface temperature 

The ABI features three longwave infrared bands with spatial resolutions of about 2 km for measuring land surface temperature 280 

(LST) – the skin temperature of the uppermost layer of the land surface – including correction for atmospheric moisture (Yu 

et al., 2012). Since the emission from the land surface diverges from a blackbody, the knowledge of land surface emissivity is 

a crucial component of retrieval of LST from at-sensor radiance (Li et al., 2013; Sun and Pinker, 2003). Global emissivity data 

may be gathered by consulting compiled tables of emissivities for various land covers along with land cover classifications of 

the landscape (Li et al., 2013). Land surface emissivity can also be estimated through its relationship with the NDVI. This 285 

method only applies to vegetation and soil and requires knowledge about the fractional cover of vegetation in a pixel (Li et al., 

2013). Furthermore, land surface emissivities can be estimated by using surface temperature-emissivity separation techniques 

applied to multi-spectral thermal satellite observations (Li et al., 2013). Data sources for land surface emissivity in LST 
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retrievals from geostationary satellites can include spectral libraries given a specific type of environmental surface (Peres and 

DaCamara, 2005), the MODIS operational land surface emissivity product (MOD11) or the Combined ASTER and MODIS 290 

Emissivity over Land (CAMEL) product (Pinker et al., 2019).  

The hourly ABI LST product uses the difference between the brightness temperatures of ABI bands 14 (11.2 μm) and 

15 (12.3 μm) in a split-window algorithm with an added term to correct for path length at high view zenith angles (Yu et al., 

2009, 2012). These bands were chosen because they are placed in regions of maximum surface emission with low atmospheric 

absorption (Yu et al., 2009). However, water vapor absorption in a more moist atmosphere (e.g. a water vapor content greater 295 

than 2 g cm-2) at large view zenith angles (> 45°) remains an issue for the ABI LST algorithm (Yu et al., 2009). 

 For the generation of a consistent long-term record of LST, a single channel approach has also been proposed for LST 

retrieval from GOES 12 channel 4 (10.7 μm) in order to develop an algorithm that can be applied to data from multiple GOES 

satellites including for time periods from mid-2004 - 2017 when only one thermal channel was available (Pinker et al., 2019). 

Diurnal LST time series available from geostationary platforms have a wide range of applications in environmental monitoring, 300 

from mapping surface-atmosphere fluxes of heat, water, and carbon dioxide to tracking drought and fire dynamics.  These and 

other applications are discussed further in the following sections. 

5 Existing applications of geostationary satellites for environmental science 

5.1 Evapotranspiration, latent heat flux, and sensible heat flux 

Diurnal observations from GOES provide multiple estimates of directional surface radiometric temperature and downwelling 305 

solar radiation each day to estimate water and energy fluxes from the soil and canopy (Diak and Stewart, 1989). One approach 

for estimating evapotranspiration (ET) that is well-suited for geostationary implementation is the Atmosphere-Land Exchange 

Inverse (ALEXI) model (Anderson et al., 1997, 2007a; Mecikalski et al., 1999), which estimates the bulk surface energy 

balance (net radiation, sensible heat flux, latent heat flux, and soil heat flux) as well as the nominal partitioning of these fluxes 

between the soil and canopy. ALEXI is a time-integrated model based on the two-source (vegetation and soil) energy balance 310 

(TSEB) approach of Norman et al. (1995). ALEXI models the growth and sensible heating of the atmospheric boundary layer 

based on the morning rise in surface radiometric temperature that can be measured by GOES, estimating time-integrated latent 

heat flux (or ET in units of mass flux) as a residual to the overall energy balance (Anderson et al., 1997). The model performs 

best when the insolation inputs are also derived from geostationary satellite data (Sec. 4.1), giving optimal spatial and temporal 

correspondence between net radiation forcings and surface temperature response signals. In comparison with other sources of 315 

insolation data, geostationary-based insolation could significantly improve ET retrievals particularly in areas of frequent cloud 

cover where reanalysis estimates may not accurately capture the timing and spatial extents of clouds (Anderson et al., 2019; 

Wonsook et al., 2020). 

ALEXI-based ET estimates are produced routinely at 4 km resolution for the United States (Anderson et al., 2020). 

Also, daily 2-km resolution ALEXI-based ET estimates have been generated from ABI observations as a part of the GOES ET 320 
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and Drought (GET-D) product system (Fang et al., 2019). A surface energy balance approach has also been used to estimate 

30-minute ET from albedo and downwelling radiation from MSG SEVIRI over the areas covered by MSG and 3-hourly ET in 

the Haihe River Basin in China from hourly LST observations from MTSAT, a Japanese geostationary satellite (Ghilain et al., 

2011; Zhao et al., 2019). By measuring LST, geostationary satellites can estimate sensible heat flux and therefore also the 

Bowen ratio, which can give insight into atmospheric boundary layer heat and moisture transport as well as plant water stress 325 

(Diak and Whipple, 1995). Applications of ALEXI-based ET and energy fluxes for drought monitoring and modeling carbon 

fluxes are discussed below. 

5.2 Drought monitoring 

Drought indicators based on remotely sensed thermal observations can improve the effectiveness of drought early warning 

systems due to their high spatial resolution and the tendency for large decreases in ET to precede visible reductions in 330 

vegetation biomass during early stages of drought development (Anderson et al., 2013a; Otkin et al., 2015). The Evaporative 

Stress Index (ESI; Anderson et al., 2013a) is a drought indicator based on standardized anomalies in the actual-to-reference 

ET ratio, where actual ET is retrieved with ALEXI using the morning LST rise signal, typically obtained from GOES. ESI has 

demonstrated ability to provide early signals of developing vegetation stress (Anderson et al., 2007b, 2013a, 2016; Otkin et 

al., 2015, 2018a). 335 

A recent prominent application of the ESI has been in the detection of flash droughts (Otkin et al., 2013). Flash 

drought conditions are characterized by a period of rapid drought intensification and typically include warm air temperature 

and low cloud cover anomalies, with dew point suppressions and high winds that can increase ET and hasten the removal of 

water from ecosystems (Gerken et al., 2018; Otkin et al., 2014, 2016, 2018b). ESI has proven to be an effective indicator of 

moisture stress in vegetation and the onset of flash drought conditions (Otkin et al., 2014, 2016, 2018b). For example, rapid 340 

temporal changes in the ESI toward increasing vegetation stress appeared several weeks earlier than the point at which the US 

Drought Monitor (USDM) classified regions of the central United States to be experiencing moderate to exceptional drought 

in 2003 and 2012 (Otkin et al., 2014). The ESI was also able to capture the onset of vegetation stress and the subsequent 

vegetation recovery during the flash-drought and flash-recovery sequence of 2015 in the south central United States (Otkin et 

al., 2019).  345 

Drought indices based on precipitation and atmospheric demand highlight areas with potential for vegetation stress, 

but these stresses may not materialize due for example to beneficial rainfall, management (e.g., irrigation), or plant root access 

to groundwater.  ESI uses LST to diagnose actual stress materializing on the ground, and therefore has been used as a moisture 

stress indicator for estimating drought impacts on crop yields (Anderson et al., 2016; Mladenova et al., 2017). ESI is routinely 

generated at 4 km resolution over the CONUS, and 5 km globally, or can be downscaled to sub-field or stand scales (30 m) 350 

using higher resolution thermal data from Landsat (Yang et al., 2018, 2020). The ability of ESI to detect drought stress earlier 

than USDM and other indices is shown in Fig. 2 adapted from Anderson et al. (2013b). 
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5.3 Wildfire detection and biomass burning emissions 

The Automated Biomass Burning Algorithm (ABBA) was developed from the 4 μm and 11 μm bands of the GOES visible 

infrared spin scan radiometer atmospheric sounder (VAS) to identify fire pixels (Prins and Menzel, 1994) based on the 355 

differential increases in emitted radiation with increases in temperature between the two bands. The ABI fire algorithm has 

adapted ABBA to detect fires from differences in the brightness temperatures of the 3.9 μm and 11.2 μm bands and provides 

the location, sub-pixel size, temperature, and radiative power of fires (Schmidt et al., 2012; Schmit et al., 2015). Fire Radiative 

Power (FRP) is the rate at which radiation is emitted from a fire and, for a 600 - 1400 K temperature range, FRP is proportional 

to the difference between radiance in the middle infrared (MIR) at 3.9 μm and the regional background radiance in MIR 360 

(Schmidt et al., 2012; Wooster, 2003; Xu et al., 2010). Fire Radiative Energy (FRE) is the time-integrated FRP during the 

course of a fire. Emissions of trace gasses and aerosols from biomass burning can be estimated using FRE, a biomass 

combustion rate, and an emission factor specific to land cover and emitted species (Zhang et al., 2012). The diurnal FRP cycles 

of various ecosystems have been estimated from GOES and from fusion of FRP estimates from GOES and MODIS to provide 

biomass burning emissions at hourly, daily, and monthly scales (Li et al., 2019a; Zhang et al., 2012).  365 

 While GOES-R thermal observations can provide biomass burning emissions at a fine temporal scale, the coarse 

spatial resolution of GOES-R presents a challenge in detecting small sub-pixel fires and emissions. Differences between 

medium (20 m) and coarse resolution (500 m) imagery can result in substantial differences in total detected burned area, 

estimated emissions, and the length of the fire season (Ramo et al., 2021). Small fires can make up a great portion of total 

burned area, emissions, and they can result in a lengthening of the fire season in regions where anthropogenic fires are prevalent 370 

(Ramo et al., 2021). Similar to other coarse spatial scale emissions datasets, emissions from GOES-R should be considered 

conservative in areas with substantial undetected small fires (Ramo et al., 2021). Similar to (2021), studies comparing biomass 

burning emissions from GOES-R with emissions from finer spatial resolution satellite imagery should reveal the magnitude of 

differences and trade-offs between high temporal and spatial resolution in estimating emissions. 

5.4 Plant phenology 375 

Plant canopies have unique and observable events that occur annually as a part of their phenology. The phenology of 

photosynthesis and plant growth is sensitive to temperature, precipitation, and photoperiod (Bauerle et al., 2012; Fu et al., 

2017; Piao et al., 2019; Stoy et al., 2014b), and shifts in the phenology of carbon uptake and plant growing season in response 

to changing climate have important implications for ecosystems (Bradley et al., 1999; Xu et al., 2020). These shifts often occur 

on time scales that cause uncertainty from polar-orbiting satellites, especially when cloudy conditions are present during spring 380 

in the temperate zone (Richardson et al., 2013) and dry-to-wet (and wet-to-dry) seasonal transitions in tropical forests (Ganguly 

et al., 2010). Research on land surface phenology to date has used a combination of satellite remote sensing and near-surface 

remote sensing via webcams to detect seasonal transitions in vegetation greenness and photosynthesis such as the start, peak, 

and end of the growing season (Dannenberg et al., 2020; Gamon et al., 2016; Seyednasrollah et al., 2019; Wong et al., 2019; 
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Zhang et al., 2003). These observations have varying spatial and temporal resolutions depending on the method and 385 

instrumentation used (Brown et al., 2016; Filippa et al., 2018; Liu et al., 2017).  

 Geostationary satellites such as GOES have unique capabilities that could further enhance plant phenology research. 

Compared to polar-orbiting satellites, the large number of diurnal observations from geostationary satellites capture greater 

variation in sun-angle geometries. This increased variability allows for better BRDF adjustments and improved investigations 

about the impact of the SZA on the vegetation indices used for extracting phenological transitions (Ma et al., 2020). Time 390 

series of LAI, NDVI, and the two-band Enhanced Vegetation Index (EVI2) from SEVIRI, AHI, and GOCI show increased 

observations during cloudy conditions and improved estimates of phenological cycles and transitions (Guan et al., 2014; Miura 

et al., 2019; Yan et al., 2016; Yeom and Kim, 2015; Yeom et al., 2018). Figures of time series from various papers cited above 

demonstrate the value of geostationary imagers in capturing greenness trajectories as a complement to polar orbiting satellites. 

NDVI from BRDF-adjusted reflectance from GOCI has demonstrated an improved ability to monitor the growth of rice paddies 395 

in North Korea and South Korea compared to MODIS NDVI from BRDF adjusted reflectance, especially during the monsoon 

season with frequent cloud cover that limits the ability of polar-orbiting sensors to observe the surface (Yeom et al., 2015, 

2018). In the Congo Basin, the multiple annual phenological cycles of greenness in evergreen broadleaf forests were better 

captured by the increased observations from SEVIRI compared to MODIS (Yan et al., 2016). In Japan, the greenness 

trajectories from an EVI2 time series revealed differences in the length of seasonal transitions (timing between start of spring 400 

to end of spring) between AHI and MODIS (Yan et al., 2019). 

GOES-R can also provide increased observations for the remote sensing of dryland phenology which can include 

multiple growing cycles per year and where phenological transitions can be triggered by pusles of rainfall and present an 

ongoing challenge for the remote sensing of land surface phenology (Smith et al., 2019). However, since drylands feature 

heterogeneous vegetation, studies will need to investigate whether increases in temporal resolution with coarse spatial 405 

resolution are enough to offer an improvement in dryland phenology (Smith et al., 2019). Leveraging diurnal observations 

from GOES to estimate greenness trajectories and phenological transitions (Hashimoto et al., 2021; Wheeler and Dietze, 2021) 

across the Western Hemisphere coupled with the ability to extract these transitions from AHI, SEVIRI, and GOCI can result 

in a near-global improvement in estimating seasonal vegetation growth and decline. The capacity of GOES to track events in 

plant phenology is shown in Figs. 3 and 4 for pixels within and outside of the Kincade Fire scar with notable increases in 410 

vegetation greenness and moisture during March and April at the end of the typical rainy season in California’s Mediterranean 

ecosystems. 

5.5 Ocean color 

Geostationary satellites have been used for nearly a decade for monitoring the dynamics of ocean color. The ocean color signal 

can identify suspended particulate matter and phytoplankton (Neukermans et al., 2009; Ruddick et al., 2014) including harmful 415 

algal blooms (Choi et al., 2014; Noh et al., 2018) and may be a sentinel for the impacts of climate change on marine ecosystems 

(Dutkiewicz et al., 2019). Most research to date has involved the Geostationary Ocean Color Imager (GOCI), which has 
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transmitted eight images per day since 2010 in six visible (412, 443, 490, 555, 660, and 680 nm) and two infrared channels 

(745 and 865 nm) with 20 nm bandwidth at 500 m spatial resolution centered around the Korean Peninsula at 128.2 °E (Ahn 

et al., 2012; Choi et al., 2012; Ryu and Ishizaka, 2012; Ryu et al., 2012) (Table 1). GOCI has been used to estimate ocean 420 

biogeochemical dynamics (Wang et al., 2013) including photosynthesis via chlorophyll-a absorption (Concha et al., 2018; 

Park et al., 2012) at diurnal time scales. Other geostationary sensors including SEVIRI on the 2nd generation of Meteosat 

(Schmetz et al., 2002) and (forthcoming) flexible combined imager (FCI) on the 3rd generation of Meteosat (Ouaknine et al., 

2013) are not designed explicitly for ocean color monitoring but have proven useful for monitoring marine suspended 

particulates and PAR attenuation in water (Neukermans et al., 2009; Ruddick et al., 2014) as has GOES (Jolliff et al., 2019). 425 

All of these sensors provide an important complement to ocean color monitoring from polar-orbiting satellites like MODIS-

AQUA, MERIS, and the Ocean Land Color Instrument (OLCI) on Sentinel-3 (Nieke et al., 2012; Peschoud et al., 2017). The 

persistent and consistent atmospheric characterization afforded by the geostationary sensors is critical for interpreting the 

relatively weak marine color signature (Ruddick et al., 2014). 

6 Emerging Applications 430 

6.1 Carbon cycle science 

Estimates of surface-atmosphere carbon flux from polar-orbiting instruments like MODIS are usually produced on eight-day 

to annual time steps (Zhao et al., 2005). The impact of rapidly evolving meteorological conditions on terrestrial carbon uptake 

has gained recent attention, suggesting that more frequent observations will improve our understanding of the carbon cycle. 

Precipitation events and the resulting short-term changes in meteorological conditions on the order of days result in local 435 

anomalies in canopy photosynthesis and respiration that influence seasonal ecosystem exchange (Randazzo et al., 2020). 

Fluctuations in carbon uptake can result from upwind climate extremes through heat and moisture advection, revealing more 

complexity in how climate extremes impact ecosystem carbon fluxes (Schumacher et al., 2020). Smoke from large wildfires 

can result in a short-term decrease in incoming PAR but an increase in the diffuse fraction of incoming PAR which, under the 

right circumstances, can increase seasonal carbon uptake through changes in Light-Use Efficiency (LUE, Hemes et al., 2020). 440 

The resulting daily anomalies in gross primary productivity (GPP) from sudden changes in limiting resources have been shown 

to disproportionately affect longer-term ecosystem carbon uptake (Kannenberg et al., 2020). Multi-day positive anomalies in 

GPP are critical for explaining its interannual variation at ecosystem and global scales (Fu et al., 2019; Zscheischler et al., 

2016). All of these recent findings point to the importance of more frequent observations of ecosystem carbon cycling to 

improve our understanding of global carbon cycling. 445 

Now that geostationary satellite imagers, such as the ABI, measure similar spectral bands to MODIS (Fig. 1, Table 

1), they can be used to monitor the carbon cycle in similar ways but at higher temporal frequency. Estimates of GPP often rely 

on LUE models which are rooted in a linear relationship between absorbed PAR (APAR) and net primary production (Medlyn, 

1998; Monteith, 1972). An ideal LUE in the absence of environmental stresses is specified and attenuated with the use of stress 
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functions that describe the relationship between LUE and environmental stressors (Anderson et al., 2000; Mahadevan et al., 450 

2008; Robinson et al., 2018; Running et al., 2004; Yuan et al., 2007; Zhang et al., 2016; Zhao et al., 2005). The most widely 

used environmental stressors include functions to describe temperature and moisture stress on LUE. Multiple approaches for 

estimating GPP from space exist based on the LUE approach with differences arising from the spatio-temporal resolution of 

the inputs, the meteorological data used, incorporating the impacts of CO2 fertilization, environmental scalars used for 

adjusting LUE, and the treatment of LUE as a constant or specific to biome, plant functional type, or photosynthetic pathway 455 

(McCallum et al., 2009; Robinson et al., 2018; Sims et al., 2006; Xiao et al., 2019).   

Vegetation indices calculated from GOES-R observations will provide spatiotemporal harmony with other GOES-R 

inputs such as downwelling shortwave radiation in estimating APAR. Various remotely sensed vegetation indices have been 

used for both estimating fAPAR to estimate APAR and in formulations of environmental stresses on LUE. The MODIS GPP 

algorithm uses NDVI and the MODIS fAPAR/LAI product to estimate APAR. The Vegetation Photosynthesis and Respiration 460 

Model (VPRM) (Mahadevan et al., 2008) uses a similar approach and estimates gross ecosystem exchange (GEE, similar to 

GPP) using the Enhanced Vegetation Index (EVI) instead of NDVI. The Land Surface Water Index (LSWI), the normalized 

difference between satellite-derived reflectance in near-infrared and shortwave infrared, is used to adjust LUE in response to 

water stress and leaf phenology (Mahadevan et al., 2008).  

Implementing a model to estimate carbon uptake from ABI presents opportunities to improve LUE-based models by 465 

using emerging variables, as opposed to the commonly used air temperature and vapor pressure deficit, to represent 

environmental stressors on LUE such as soil moisture, diffuse radiation, LST, and the evaporative fraction (Anderson et al., 

2000; Li et al., 2021; Yuan et al., 2007; Zhang et al., 2016). Ecosystem GPP increases with increases in diffuse radiation if 

light does not limit photosynthesis because diffuse radiation penetrates plant canopies more readily resulting in a more even 

distribution of light among shaded and sunlit leaves. (Hemes et al., 2020; Mercado et al., 2009). Incorporating the diffuse 470 

component of incoming PAR has been noted as a priority for improving LUE models (McCallum et al., 2009; Yuan et al., 

2014). Recent attempts at incorporating diffuse radiation into LUE models as a stress on GPP have demonstrated an 

enhancement of LUE during overcast skies (Zhang et al., 2016). Fog events can be identified using GOES and increase both 

diffuse fraction of radiation and ecosystem water use efficiency (Baguskas et al., 2021). Partitioning estimates of PAR from 

ABI into diffuse and direct components along with the ABI LST product and ALEXI based estimates of sensible and latent 475 

heat flux can provide harmony between inputs for environmental stressors on LUE, PAR, and vegetation indices by not having 

to rely on estimates from sources other than ABI. Furthermore, estimates of LAI from GOES can contribute to respiration 

modeling data needs for estimating NPP (Robinson et al., 2018).  

Estimating GPP with ABI data can also benefit from various LUE model formulations that incorporate the coupling 

between carbon uptake and water loss through stomatal processes and water use efficiency (Anderson et al., 2000; Zhang et 480 

al., 2016). Estimates of APAR from ABI can be used in existing carbon-water coupled models through the ALEXI framework 

which can estimate hourly fluxes which respond to diurnal variations in solar radiation and VPD along with capturing the 

effect of soil moisture stress on LUE (Anderson et al., 2000). The ALEXI framework presents an opportunity to use both ABI 



16 

 

thermal data as previously mentioned in section 5.1 and ABI reflectance data to estimate carbon, water, and energy fluxes 

simultaneously (Anderson et al., 2008). Diurnal estimates of carbon uptake and water loss from ABI will enhance our 485 

understanding of ecosystem water-use efficiency and its response to environmental variation across geographic space. 

Furthermore, there are various opportunities to study the response of carbon fluxes estimated from ABI data to soil moisture 

variability with soil water content measured at various ground locations. This could be an important investigation considering 

the noted limitations of satellite GPP estimates in their ability to capture soil moisture effects on carbon uptake (Stocker et al., 

2019). Observations from geostationary satellites could also, in principle, be used to assimilate instantaneous carbon flux 490 

observations from eddy covariance towers into ecosystem models (LeBauer et al., 2011). 

6.2 Disturbance and recovery 

Remotely sensed data have made it possible to map regional burn severity from wildfires, while time series of measures of 

greenness and primary productivity enable monitoring of vegetation disturbance and recovery (Bolton et al., 2017; Goetz et 

al., 2006; Meng et al., 2018). Mapping damage from hurricanes and the resulting impact to the carbon cycle has also been 495 

possible using remotely sensed data through the use of various vegetation indices related to greenness and moisture (Chambers 

et al., 2007; Wang et al., 2010). The difference in NDVI from pre- and post-fire imagery from GOES-16 shows the potential 

to detect variation in burn severity and recovery from wildfires as demonstrated for the notable Kincade Fire in 2019 in 

California (Fig. 5). High-frequency estimates of NDVI (Fig. 3) and NDII (Fig. 4) from GOES-16 can track vegetation 

disturbance and recovery from wildfire in a similar manner to MODIS although the magnitude of the vegetation indices differs 500 

between the two due to the atmospheric corrections and BRDF-adjustments of the MODIS TOA reflectance (Fig. 3 and 4). 

Variations in SZA and VZA can lead to differences in NDVI values between GOES, MODIS, and other sensors (Fensholt et 

al., 2006; Pinker and Ewing, 1985) with MODIS having the advantage of a low SZA during its overflight. These differences 

in viewing geometry need to be resolved to reconcile differences between sensors. Imagery from ABI also has the potential to 

estimate the regional decline in vegetation indices after hurricanes (Fig. 6) which can potentially be converted into the decline 505 

in GPP using methods described in section 6.1. A recent review has also highlighted the use of geostationary imagers in 

monitoring landslides and flooding (Higuchi, 2021). 

6.3 Ecosystem thermodynamics 

Observations of the diurnal behavior of land surface attributes can also be used to improve our understanding of the thermal 

properties of ecosystems. Large-scale changes to ecosystems, such as logging, the conversion of grasslands or forests to 510 

farmland, and wildland fires alter the mechanisms by which ecosystems regulate their energy acquisition and heat exchange, 

thought to be related to the degree of complexity of the system (Kay and Schneider, 1992). The process of ecological succession 

modifies the structure of an ecosystem over time by gradually increasing its complexity (Odum, 1969). Ecosystems should 

therefore develop an increasing ability to dissipate incoming solar radiation as succession proceeds (Schneider and Kay, 1994) 

and, due to a higher order of complex structures, will improve cooling by transferring solar radiation into latent heat and 515 
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metabolic energy (Norris et al., 2011). Effective energy dissipation results in a cooler surface (with less waste heat) for 

biological processes to occur. Diurnal patterns of LST can be used to quantify ecological complexity (Lin et al., 2009) and 

entropy production (Brunsell et al., 2011; Holdaway et al., 2010; Stoy et al., 2014a; Wiesner et al., 2019) and may be useful 

for monitoring the success of ecological restoration projects that seek to re-establish ecological function (Aerts et al., 2004). 

6.4 Satellite data fusion products 520 

One of the most promising applications of geostationary satellites for land surface science may simply be their ability to 

provide temporally dense observations that can be combined (“fused”) with spatially dense observations from polar-orbiting 

or other satellite platforms. Such fusion products take advantage of the best features of different platforms, for example by 

exploiting the finer spatial resolution of observations from Landsat, Sentinel-2, MODIS, VIIRS, or the recently harmonized 

Landsat Sentinel-2 surface reflectance and the temporal resolution of GOES observations. Based on the assumption that 525 

changes in a Landsat pixel are equivalent or proportional to the changes in the co-located MODIS pixel between two dates, 

fusion algorithms are able to predict the surface reflectance of a Landsat pixel between acquisition dates using the change 

observed in MODIS pixels between the reference and prediction date (Gao et al., 2015). Multi-sensor fusion using polar-

orbiting and geostationary satellites have provided higher spatiotemporal resolution for estimates of forest disturbance, NDVI, 

phenology, LST, ET, and water management, yield estimation, and fire radiative power (Cammalleri et al., 2013, 2014; Gao 530 

et al., 2015; Hilker et al., 2009; Knauer et al., 2016; Li et al., 2019a; Semmens et al., 2016; Wu et al., 2015; Yang et al., 2018; 

Zhao and Duan, 2020). Given the importance of considering landscape heterogeneity in using satellite data to estimate various 

ecosystem variables and model processes such as LUE, carbon flux and storage, phenology, and ET (Ahl et al., 2004; 

Cammalleri et al., 2014; Leitão et al., 2018; Zeng et al., 2020), multi-sensor data fusion offers a way to address the relatively 

coarse spatial scale of imagery from geostationary satellites as we expand their use in studying ecosystem function and surface-535 

atmosphere exchange. 

7 Conclusions 

The recently increased spectral and spatial resolution of imagers onboard geostationary satellites creates new opportunities to 

use remotely sensed observations in environmental science, especially when combined with ongoing and forthcoming 

improvements to the spectral sensitivity of other geostationary imagers. The increased diurnal sampling from the ABI can find 540 

cloud-free observations when polar-orbiting satellites may be hindered by cloud cover to improve time series of vegetation 

greenness, canopy water content, LST, and energy-water-carbon fluxes. Temporally dense geostationary observations have 

been crucial in detecting moisture stress and wildfires. Extending the use of these observations to measure more land surface 

variables can capture sudden changes in ecosystem fluxes due to changing atmospheric conditions and extreme events. 

Furthermore, estimations of vegetation phenological cycles can be improved using geostationary satellites, especially by taking 545 

advantage of short periods of clear skies occurring during times of otherwise persistent cloud cover. Studying ecosystem 

disturbance events should also benefit through increased availability of observations pre- and post-disturbance to estimate 
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burned area and vegetation recovery. Multi-sensor fusion between relatively coarse geostationary satellite observations and 

observations from platforms with finer spatial resolution offers a way to resolve within-pixel spatial variability in 

heterogeneous landscapes.  550 

The ongoing efforts to improve the geolocation and radiometric quality of imagery and providing higher level 

collections of data with surface reflectance, similar to the MODIS or Landsat program, will be a crucial component of using 

imagery from geostationary sensors. Furthermore, increased collaboration between the National Science Foundation, NASA, 

and NOAA with increased funding opportunities to pursue research utilizing imagery from geostationary sensors for 

investigations in the science topics we have detailed here will help realize the potential of these data. Leveraging the high-555 

frequency observations from geostationary sensors for investigations in environmental science where they have been largely 

untapped will expand the scope of hyper-temporal remote sensing of the environment. 
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 1165 

Figure 1: A comparison of the spectral sensitivity of the Advanced Baseline Imager (ABI) with the Landsat Operational 

Land Imager (OLI) and MODIS Terra (McCorkel et al., 2020). 
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Figure 2: Comparison of drought evolution between the US Drought Monitor classification, the Evaporative Stress 

Index (ESI), and the Vegetation Drought Response Index (VegDRI). The figure is adapted from Anderson et al. (2013b) 1170 

and distributed under a CC BY-NC-ND-3.0 license.  
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Figure 3: Normalized Difference Vegetation Index (NDVI) calculated using TOA reflectance factor from ABI on 

GOES-16 and Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance (NBAR) from MODIS on 1175 

the Terra and Aqua satellites for pixels inside and outside the Kincade fire (Oct. 23, 2019) perimeter in northern 

California for the period March 2019 to March 2020. The GOES Clear Sky Mask was applied to observations from 

GOES. MODIS NBAR with good quality flags were used. All observations are daytime with solar zenith angle < 70°. 

The locations of the points inside and outside of the fire perimeter are displayed in Figure 5.  
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 1180 

Figure 4: Normalized Difference Infrared Index (NDII) calculated using TOA reflectance factor from ABI on GOES-

16 and Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance (NBAR) from MODIS on the Terra 

and Aqua satellites for pixels inside and outside the Kincade fire (Oct. 23, 2019) perimeter in northern California for 

the period March 2019 to March 2020. The GOES Clear Sky Mask was applied to observations from GOES. MODIS 

NBAR with good quality flags were used. All observations are daytime with solar zenith angle < 70°. The locations of 1185 

the points inside and outside of the fire perimeter are displayed in Figure 5. 
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 1190 

Figure 5: Top-of-Atmosphere (TOA) Normalized Difference Vegetation Index (NDVI) calculated using TOA 

reflectance factor from GOES-16 imagery for (A) DOY 295 (Oct. 22, 2019) 21:00 UTC and (B) DOY 312 (Nov. 8, 2019) 

21:00 UTC and their difference (C) for the Kincade fire perimeter in northern California (D) (Oct. 23, 2019, DOY 296). 

Gray pixels were identified as cloudy from the GOES Clear Sky Mask. The points inside and outside of the fire 

perimeter correspond to the time series in Figure 3 and 4. 1195 
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Figure 6: Top-of-Atmosphere (TOA) Normalized Difference Vegetation Index (NDVI), near-infrared reflectance of 

vegetation (NIRv), Enhanced Vegetation Index (EVI) and Normalized Difference Infrared Index (NDII) calculated 1200 

using TOA reflectance factors from GOES-16 imagery for day of year (DOY) 235 (Aug. 22, 2020) 16:00 UTC, DOY 

246 (Sep. 2, 2019) 16:00 UTC and their difference around the advisory track for Hurricane Laura (red line) in southern 

Louisiana (Aug. 26, 2020, DOY 239). Gray pixels represent cloudy pixels from the GOES Clear Sky Mask or vegetation 

index values below 0 for NIRv and EVI. 
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Table 1: Instrument characteristics for the GOES-R Advanced Baseline Imager, Advanced Himawari Imager on 

Himawari-8/9, and the Advanced Meteorological Imager on the Geostationary - Korea Multi-Purpose Satellite-2 

(GEO-KOMPAST-2A) (a) and The Global Ocean Color Imager-II (GOCI-II) on GEO-KOMPSAT-2B (b) 

a. 

GOES-16/17 

Advanced Baseline Imager (ABI) 

Himawari-8/9 

Advanced Himawari Imager (AHI) 

GEO-KOMPSAT 2A 

Advanced Meteorological Imager 

(AMI) 

Band 

Central 

Wavelength 

(μm) 

Spatial 

Resolution 

(km) 

Band 

Central 

Wavelength 

(μm) 

Spatial 

Resolution 

(km) 

Band 

Central 

Wavelength 

(μm) 

Spatial 

Resolution 

(km) 

1 0.47 1 1 0.47 1 1 0.47 1 

   2 0.51 1 2 0.51 1 

2 0.64 0.5 3 0.64 0.5 3 0.64 0.5 

3 0.86 1 4 0.86 1 4 0.86 1 

4 1.37 2    5 1.4 2 

5 1.6 1 5 1.6 2 6 1.6 2 

6 2.2 2 6 2.3 2    

7 3.9 2 7 3.9 2 7 3.8 2 

8 6.2 2 8 6.2 2 8 6.2 2 

9 6.9 2 9 6.9 2 9 6.9 2 

10 7.3 2 10 7.3 2 10 7.3 2 

11 8.4 2 11 8.6 2 11 8.6 2 

12 9.6 2 12 9.6 2 12 9.6 2 

13 10.3 2 13 10.4 2 13 10.4 2 

14 11.2 2 14 11.2 2 14 11.2 2 

15 12.3 2 15 12.4 2 15 12.4 2 

16 13.3 2 16 13.3 2 16 13.3 2 
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b. 1210 

GEO-KOMPSAT-2B 

Global Ocean Color Imager-II (CGOCI-

II) 

Band 

Central 

Wavelength 

(nm) 

Spatial 

Resolution 

(m) 

1 380 250 

2 412 250 

3 443 250 

4 490 250 

5 510 250 

6 555 250 

7 620 250 

8 660 250 

9 680 250 

10 709 250 

11 745 250 

12 865 250 

13 Wideband 250 
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