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Abstract. The Moderate Resolution Imaging Spectroradiometer vegetation continuous fields (MODIS 30 

VCF) Earth observation product is widely used to estimate forest cover changes, parameterise 

vegetation and Earth System models, and as a reference for validation or calibration where field data 

are limited. However, while limited independent validations of MODIS VCF have shown that MODIS 

VCF’s accuracy decreases when estimating tree cover in sparsely-vegetated areas such as tropical 

savannas, no study has yet assessed the impact this may have on the VCF-based tree cover data 35 

used by many in their research. Using tropical forest and savanna inventory data collected by the 

TROpical Biomes in Transition (TROBIT) project, we produce a series of corrections that take into 

account (i) the spatial disparity between the in-situ plot size and the MODIS VCF pixel, and (ii) the 

trees’ spatial distribution within in-situ plots. We then applied our corrections to areas identified as 

forest or savanna in the International Geosphere-Biosphere Programme (IGBP) land cover mapping 40 

product. All IGBP classes identified as ‘savanna’ show substantial increases in cover after correction, 

indicating that the most recent version of MODIS VCF consistently underestimates woody cover in 

tropical savannas. We estimate that MODIS VCF could be underestimating tropical tree cover by as 

much as 29 %. Models that use MODIS VCF as their benchmark could therefore be underestimating 

the carbon uptake in forest-savanna areas and misrepresenting forest-savanna dynamics. Because of 45 

the limited in-situ plot number, our results are designed to be used as an indicator of where the 

product is potentially more or less reliable. Until more in-situ data are available to produce more 

accurate corrections, we recommend caution when using uncalibrated MODIS VCF in tropical 

savannas. 
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1 Introduction 

 

Tree cover values derived from Earth observation (EO) data form a fundamental part of ecological 

research. They are used to estimate forest cover change, biomass, and carbon stocks (Bastin et al., 55 

2019; Giriraj et al., 2017; Saatchi et al., 2011; Song et al., 2014); help identify key areas for 

conservation efforts (Miles et al., 2006); and are used as a basis for climatic and vegetation modelling 

and model evaluation (Brovkin et al., 2013; Burton et al., 2019; Kelley et al., 2013). All this research, 

in turn, plays a vital role in informing local, regional, and global environmental policies (Harris et al., 

2012). As such, an EO product’s accuracy is important to consider, as any errors in the initial tree 60 

cover estimate can be further compounded in downstream work.  

 

Only a handful of EO products provide global maps of percentage tree cover or forest and shrub cover 

distributions (Bartholomé and Belward, 2005; Bicheron et al., 2008), and fewer still provide 

information stretching over at least a decade (Friedl et al., 2002; Hansen et al., 2003). Of these, one 65 

of the products most widely used in ecological modelling is the Moderate Resolution Imaging 

Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product (DiMiceli, 2017). MODIS VCF 

is a yearly product that provides percent tree cover globally at a spatial resolution of 250 m and is 

available for the years 2000 through to 2020. Its quantitative measure of woody cover is recorded 

annually and is described as a percentage of ground cover, making it particularly suited for use in 70 

evaluating dynamic global models (Lasslop et al., 2018; Rabin et al., 2017), as a proxy for in-situ data 

that are harder to collect (Kelley et al., 2019), and to help define parameters for calculating global tree 

restoration potential (Bastin et al., 2019). Collection 6 is the most recent iteration of the product. 

 

As the VCF product has progressed from Collection 1 to its current Collection 6, several validations 75 

using in-situ field data or higher-resolution remotely sensed data as a reference measurement have 

been carried out. These have been few and limited to sites within a biome (Montesano et al., 2009a), 

a region (Hansen et al., 2005; White et al., 2005), or within a country (Gao et al., 2014; Sexton et al., 

2013). The MODIS VCF product evaluated was the most recent collection available at the time (i.e., 

Hansen et al., 2005 and White et al., 2005 for Collection 3; Montesano et al., 2009a for Collection 4; 80 

and Gao et al., 2015 and Sexton et al., 2013 for Collection 5). To our knowledge, no such 

independent validation experiment has yet been conducted on Collection 6, which produces tree 

cover estimates in the same manner as Collection 5 but with improvements made to the upstream 

inputs to enhance its accuracy (DiMiceli, 2017). 

 85 

The validations found that MODIS VCF may be less suitable for estimating tree cover in sparsely 

vegetated areas. Huang & Siegert (2006) noted that MODIS VCF classified large areas of land as 

‘bare’ where their land cover classification system identified it as sparsely-vegetated. Montesano et al. 

(2009) found that MODIS VCF data (Collection 4) overestimated cover in areas of low tree cover in 

taiga-tundra transition zones. Sexton et al. (2013) found that the Collection 5 product overestimated 90 

cover in areas of low cover (below 20 %) and underestimated in areas of higher tree cover, while Gao 

et al. (2015) found that MODIS VCF can only partially discriminate between tropical forest and non-

forest, struggling in areas that have greater heterogeneity. What is clear from the history of these 

validation and comparison experiments is that MODIS VCF has accuracy issues in areas with low 

woody vegetation cover, which has implications when its tree cover estimates are treated as 95 

accurately representative of real-world conditions. Failure to accurately account for the product’s 

difficulty in estimating low woody covers can, therefore, lead to miscalibrated models and estimations 

that do not reflect real-world conditions. This, in turn, has knock-on effects on environmental policy-

making, conservation efforts, and future ecological research, especially in areas with vegetation cover 

types that are most prone to error. 100 

 

Tropical savannas have woody covers that fall within the range particularly affected by the reported 

MODIS VCF errors. A large proportion of these savannas can be found in tropical developing 
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countries (Boval and Dixon, 2012) and are predicted to be home to half of the world’s population by 

2050 (State of the Tropics, 2020). Tropical savannas are therefore highly vulnerable to anthropogenic 105 

change. In the face of a growing population, land fragmentation, and changing climate, a savanna’s 

ability to maintain robust ecosystem functions is directly linked to the amount of woody cover present 

(Sankaran et al., 2006). As a result, the ability to accurately monitor the state, dynamics, and woody 

cover trends of tropical savannas is a vital part of understanding how and why savannas are changing 

in the tropics (Harris et al., 2012; Miles et al., 2006), while also improving modelled climate projections 110 

and vegetation dynamics for this complex biome.  

 

In this study, we validate the accuracy of MODIS VCF Collection 6 in tropical savannas and forests by 

comparing the tree cover percentage of the product to corresponding field data. We then characterise 

the observed bias in woody covers across both savanna and forest ecosystems and apply our 115 

corrections across the tropics to highlight the regions most likely to be affected by these inaccuracies 

in the MODIS VCF product.  

 

2 Methods  

 120 

We used the MODIS VCF Collection 6 product (spatial resolution of 250 m, DiMiceli, 2017) with tree 

cover values averaged across the years 2006 through to 2009 to reflect the range of the field data 

collection period. The in-situ field data were sourced from the ‘TROpical Biomes In Transition’ project 

(TROBIT) (www.geog.leeds.ac.uk/TROBIT, Torello-Raventos et al., 2013) and accessed via the 

Forestplots.net database (Lopez-Gonzalez et al., 2011; Lopez-Gonzalez et al., 2009). The data we 125 

used include the corner locations and the Canopy Area Index (CAI) values for 17 forest and 31 

savanna sites distributed across Australia, Brazil, Bolivia, Cameroon, and Ghana (Fig. A1 and Table 

A1, Fig. 2 in Torello-Raventos et al., 2013). The TROBIT field campaigns were carried out over a 3-

year period, from 2006 to 2009, and the field plots used in this study are 1 hectare in size except for 

BFI-01 (0.5 ha), BFI-02 (0.5 ha), BFI-03 (0.5 ha), CTC-01 (0.93 ha), and VCR-01 (0.6 ha).  130 

 

All the sites fall within the tropics, that is, within 23.5 degrees north and south of the equator, and 

were selected in regions where savannas and forests were in close proximity and exist within 

ecotones or ‘zones of tension.’ As such, the sites sampled show a large variation in physiognomy and 

edaphic and climatic conditions (Table S1, Veenendaal et al., 2015). 135 

 

The classification of the TROBIT plots as either ‘forest’ or ‘savanna’ is based on the parameters 

described in Torello-Raventos et al. (2013) and Veenendaal et al. (2015). A ‘savanna’ is a natural land 

cover that is not a forest, bare ground, or a body of water.  ‘Forest’ is defined as woody vegetation 

with an average tree height of or exceeding 6 m and a canopy area index (CAI) value of at least 0.3 140 

for ‘open forests’ and 0.7 for ‘forests.’ In addition, floristic differences (i.e., dominance of ‘savanna’ 

species) are used to differentiate forests from taller-growing savannas that have similar CAIs and tree 

heights (see Fig. 9, Torello-Raventos et al., 2013). 

 

There is some ambiguity in how ‘savannas’ and ‘grasslands’ are defined. Some modelling-based 145 

research treat the two biomes as different (Whitley et al., 2017), while studies based on plant 

functional traits group them together (Solofondranohatra et al., 2018; White et al., 2000). As there is 

some concern that MODIS VCF will struggle to pick up woody cover in areas with really sparse 

vegetation, in this paper we decided to treat ‘grasslands’ as part of the savanna domain. 

 150 

CAI is defined as the sum of the projected areas of individual tree crowns divided by the ground area. 

In the TROBIT project (Torello-Raventos et al. (2013) and Veenendal et al. (2015)), plot-wide CAI is 

made up of the sum of the upper-stratum, mid-stratum, and subordinate-stratum crown areas. 

Membership to a stratum is determined by the tree’s dbh (upper-stratum: dbh > 10 cm, mid-stratum: 

2.5 cm < dbh < 10 cm, and subordinate-stratum: dbh < 2.5 cm, height > 1.5 m). About 50 trees per 155 

http://www.geog.leeds.ac.uk/TROBIT
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stratum per plot were measured to derive plot-specific allometric relations between stem diameter and 

crown area (supplement B of Torello Raventos et al. (2013)). These were then applied to the whole 

plot to establish plot-level CAI.  For the allometric relationships, tree crowns were treated as circles, 

and the individual tree projected crown area was determined using the average of crown radii 

measured along the four cardinal points (i.e., from the centre of the stem to the distance furthest from 160 

the stem). 

 

CAI values do not account for within-site tree canopy distribution patterns and the overlap between 

individual tree canopies. We account for this by converting each CAI value into a probability 

distribution function incorporating the following two extreme scenarios: ‘enforced overlap,’ where the 165 

location probability of individual canopies increases linearly from 0 to 1 across a site; and ‘unenforced 

overlap,’ where individual canopies follow a uniform random distribution pattern and canopy overlap is 

not purposefully introduced (Fig. A2). We repeated this 1000 times per CAI measurement to 

determine the probability distribution of expected CAI for each field plot.   

  170 

Unlike CAI, which is the fraction of ground covered by tree crowns, the percent tree cover value from 

MODIS VCF is defined as “the portion of the skylight orthogonal to the surface which is intercepted by 

trees” (Hansen et al. 2002). To make MODIS VCF tree cover comparable to tree cover derived from 

TROBIT plot CAIs, we divided the MODIS VCF values by 0.8 as suggested by Hansen et al. (2002). 

This is the standard approach in most modelling studies that use MODIS VCF (e.g., Lasslop et al., 175 

2020; Kelley et al., 2013; Burton et al., 2019). The 0.8 value can be thought of as a gap correction 

factor (GCF) that accounts for within-canopy gaps. Although the GCF has been shown to vary with 

vegetation type (Lloyd et al., 2008; 0.34 - 0.60) and crown cover (Tang et al., 2019: 0.96 - 0.7), we 

opted to use 0.8 as we found that it yielded more conservative results compared to a variable GCF. It 

also avoided introducing additional parameters into our analysis. 180 

 

Next, to account for the difference in size between the MODIS VCF pixel (250 m x 250 m) and the 

smaller field plot size (100 m x 100 m), we calculated the possible percent tree cover an area the size 

of a TROBIT field plot could have, given the MODIS VCF percent tree cover for a MODIS-sized pixel. 

This was done for two extreme scenarios: “enforced clumping,” where all the tree cover for the given 185 

MODIS VCF value is forcibly ‘clumped’ on one side of the pixel, or “unenforced clumping,” where 

‘clumping’ is not enforced, and tree cover is distributed randomly within the pixel (Fig. A3). The 

clumping scenarios introduce possible variations in percent cover due to the area and location 

mismatch between a TROBIT field plot and a MODIS pixel. A probability distribution was generated 

for each MODIS VCF pixel by calculating percent tree cover values for 1000 samples (100 m x 100 m) 190 

randomly placed within the 250 m x 250 m MODIS VCF pixel. 

 

We thereby compared MODIS VCF and TROBIT under four different scenarios: 1) unenforced overlap 

and clumping; 2) enforce overlap and unenforced clumping; 3) unenforced overlap and enforced 

clumping; 4) enforced overlap and clumping. Comparisons were conducted by fitting the following logit 195 

function:  

 

𝑙𝑜𝑔𝑖𝑡(𝑉𝐶𝐹)  = 𝐶0  +  𝛥 ×  𝑙𝑜𝑔(𝐶𝜏1/(1 − 𝐶𝜏2)    (Equation 1) 

 

Where 𝐶0, 𝛥, 𝜏1, 𝜏2 are optimised parameters and VCF and C are the MODIS VCF pixel and TROBIT 200 

site probability distributions, respectively. This is similar to a standard linear regression of logit 

transformed data, accounting for maximum and minimum bounds of 0 - 100 % tree cover, with 𝜏1, 𝜏2 

allowing for a non-symmetric transformation of tree cover. To account for the probability density of 

each point, we inferred the parameters in Equation 1 using a Total Least Squares Bayesian Inference 

technique using a Metropolis-Hastings Markov Chain Monte Carlo step.  Priors were uninformed but 205 

physically bounded (i.e., 𝛥, 𝜏1, 𝜏2  > 0) to assume an increasing relationship between MODIS VCF and 

C. Equation 1 allowed us to assume normally distributed model errors, thus describing our conditional 
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probability of observations for a given parameter combination by a normal distribution (Gelman et al., 

2013). Each combination was run over 10 chains, with 1000 warm-up iterations and 10,000 sampling 

iterations. Optimisation was performed using the rstan2.19.2 (Stan Development Team, 2019) 210 

package in R3.5.2 (R Core Team, 2018). Our optimization accounts for potential errors in TROBIT 

cover, which includes those caused by the allometric construction of the CAI, provided that the errors 

are unbiased and remain roughly consistent across sites (Gelman et al., 2013). As the TROBIT plots 

have relatively small total errors associated with the allometric relationships (Table B1, Torello-

Raventos et al., 2013), systematic errors are unlikely to affect our results. 215 

 

We evaluated the impact of the MODIS VCF biases inferred from this correction across the tropics by 

inverting our calculation of MODIS VCF bias (Fig. A4) as follows: first, the inverse (i.e., solving for C) 

of Equation 1 was applied to MODIS VCF values after conversion to a 100 m x 100 m pixel size grid 

(matching the field site area); then this corrected value was translated back to the original 250 m x 220 

250 m VCF pixel size. As the inverse of Equation 1 has no analytical solution, we found the rounded 

percent value of C that minimises the absolute difference between the left- and right-hand side of the 

equation. For computational feasibility, we constructed maps of the tropics with corrected MODIS VCF 

values (Fig. 2) by sampling 5 iterations that were randomly sampled from each of our 10 optimisation 

chains (50 in total) and masking out pixels with cover types not considered as ‘forest’ or ‘savanna’. 225 

 

We used the 500 m MODIS Land Cover Type (MCD12Q1 - collection 6) product to identify the areas 

of ‘forest’ and ‘savanna’ across the tropics in the MODIS VCF product. MCD12Q1 is widely used by 

the global land surface modelling community (e.g., Sellar et al., 2019; Wiltshire et al., 2020) and 

describes land cover in terms of 17 global land cover classes as per the International Geosphere-230 

Biosphere Programme (IGBP, Table 3 in Sulla-Menashe and Friedl, 2018). The product is based on 

the same spectroradiometer (MODIS) and temporal resolution as the VCF product. Referring to the 

definition of ‘savanna’ of Veenendaal et al. (2015), the following land cover classes were chosen to 

represent ‘savanna’: Closed Shrubland, Open Shrubland, Woody Savanna, Savanna, and Grassland, 

while ‘forest’ encompasses: Evergreen Needleleaf Forests, Evergreen Broadleaf Forests, Deciduous 235 

Needleleaf Forests, Deciduous Broadleaf Forests, and Mixed Forests. We subset MCD12Q1 to the 

tropical zone between +/- 30° North and took the median class for the 2006 to 2009 period, matching 

the field data collection period. 

 

For a more detailed land-cover-specific evaluation, we resampled the corrected 250 m MODIS VCF 240 

pixels to a 500 m grid and combined it with the MCD12Q1 product to construct land-cover-specific 

MODIS VCF tree cover frequency distributions (Fig. A5). Our tree cover correction by cover type (Fig. 

3) for the four clumping/overlap regression combinations was then calculated by multiplying each 

cover type MODIS VCF frequency distribution (Fig. A5) with curves representing the median, 5 %, 

and 95 % confidence lines of the correction equation ensembles.   245 

 

 

 

3 Results 

3.1 Comparing MODIS VCF to tree cover from TROBIT field sites 250 
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Figure 1. MODIS VCF percent tree cover versus percent tree cover from TROBIT field data, taking into account 
uncertainties associated with tree cover spatial distributions within a MODIS pixel and field plot. The 4 
combinations are: (1) no overlap and no clumping, where tree canopies are randomly distributed within both pixel 255 
and site; (2) no overlap and maximum clumping, where tree canopies are clustered in one area of the pixel, and 
randomly distributed throughout the field site; (3) with overlap and no clumping, where tree canopies are 
randomly distributed within the pixel, but overlap substantially within the field site; and (4) with overlap and 
maximum clumping, where tree canopies are clustered to one side within a pixel, and overlap substantially within 
the site. The bolded dashed line in black shows the 1:1 relationship. The solid lines represent the median of the 260 
respective regressions (green for forest; orange for savanna; black for forest and savanna combined). The thin 
lines represent the 5 and 95 % confidence interval of their respective regression lines. The vertical error bars 
represent uncertainty introduced by clumping; the horizontal error bars represent the uncertainty introduced by 
overlap.  

MODIS VCF underestimates tree cover within the 19 % to 81 % range across all four combinations of 265 
enforced-unenforced overlap and clumping (black line, Fig. 1). Below 12 %, MODIS VCF tree cover 
values do not significantly disagree with TROBIT field data, and may instead be overestimating tree 
cover (50 % confidence, dashed line, Fig. 1). A similar pattern is seen when tree cover exceeds 84 %: 
MODIS VCF does not differ significantly from TROBIT when there is no enforced overlap (i.e., when 
tree canopies are spaced randomly within the site - Fig. A2 left), but may overestimate tree cover 270 
when overlap is enforced (i.e., trees are clustering towards one side increasing the degree of canopy 
overlap - Fig. A2 right). 
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There is a clear difference in how accurately MODIS VCF estimates tree cover in forested areas (in 
green, Figure 1) as opposed to areas identified as savannas (in orange, Fig. 1). In savanna sites, 
MODIS VCF significantly and consistently underestimates tree cover regardless of the amount of 275 
overlap and clumping. Significant underestimation (at 95 % confidence) occurs when in-situ tree cover 
exceeds 18 – 19 % (without enforced clumping) or 9 - 10 % (with enforced clumping). In forest sites, 
MODIS VCF does not show the same pattern of systematic underestimation. Divergence does occur 
at high covers, depending on the enforcement of overlap or clumping. MODIS VCF overestimates tree 
cover where tree cover exceeds 78 % (at the 95 % confidence interval) when neither overlap nor 280 
clumping is enforced, and overestimates where tree cover exceeds 90 % (at 5 % confidence interval) 
when both overlap and clumping are enforced. 

3.2 Global estimates of change in tropical tree cover 

We assessed the impact of MODIS VCF’s underestimation of tree covers across the tropics restricted 
to the IGBP classes we identified as being either ‘forest’ or ‘savanna,’ using a ‘correction’ based on 285 
the combined forest and savanna sites (black curve, Fig. 1). We did not use the savanna-only sites for 
a savanna-specific correction (orange curve, Fig. 1) because there were few TROBIT sites 
representing savanna with MODIS VCF tree cover values exceeding 40 %, and global land cover 
maps disagree on the distribution of savannas within the forest-savanna ecotone (Herold et al., 2008).  

 290 

 

 

Figure 2: Distribution of tree cover across the tropics according to original MODIS VCF values (top left), the 
change in tree cover post-correction for all four scenarios (bottom four maps), and the change in tree cover that 
was statistically significant (95 % interval) in the same direction (positive or negative correction) across all four 295 
scenarios (top right). Black dots on the scenario maps indicate areas where the post-correction values have a 95 
% certainty of being positive or negative corrections. These uncertainty maps are indicators of areas where 
MODIS VCF estimates may be more or less reliable, and cannot be used as definitive corrections due to the 
limited number of field sites used as reference. 

The distribution of tree cover change after calibrating against field data are similar across the four 300 
scenarios (Fig. 2), and the regions where all four scenarios agree on the direction of change (positive 
and negative) are substantial. However, there are some differences caused by the uncertainty 
introduced by different extents of overlap and clumping. While we see a significant increase in tree 
cover across all clumping-overlap combinations in many regions of tropical savannas and grasslands 
(Pennington et al., 2018), such as in the forest-savanna mosaics that surround Congolian rainforests, 305 
we do not see the same pattern in the Cerrado of Brazil. This is likely because the African forest-



8 
 

savanna regions fall within the range of MODIS VCF values that consistently undergo a positive 
correction (~ 30 - 50 %, see Fig. A4), while the Cerrado of Brazil does not.  

We also see a significant tree cover decrease in the Sahel post-correction in most or all of the 
scenarios, which runs counter to the results of Brandt et al. (2020) that found that tree cover was 310 
underestimated in the region. This disparity may be explained by our lack of field sites in more arid 
regions. As these corrections were based on a limited number of sites in a limited number of regions, 
it is important to note that the maps shown in Figure 2 are not definitive. Instead, it should be used to 
identify areas where MODIS VCF estimates may be more or less reliable.  

3.3 Change in tree cover within different vegetation classes in tropical ecosystems 315 

 

Figure 3. Percent change in tree cover after the application of the appropriate correction (clockwise: no enforced 
clumping or overlap (black); enforced clumping and no enforced overlap (blue); no enforced clumping and 
enforced overlap (red); enforced clumping and overlap (pink) in the ‘forest’ supercategory and the 5 savanna 
classes. Palest tone indicates positive change, mid-tone indicates negative change, and the darkest tone 320 
indicates net change. Error bars denote the 5-95 % confidence interval; if the error bar extends past the x-axis, 
the post-correction change is not considered significant.  



9 
 

When looking at our correction in more detail, we see that MODIS VCF significantly underestimates 
tree cover in all the IGBP land cover classes that we considered, regardless of overlap or clumping 
(95 % confidence interval) (Fig. 3). The most substantial and significant underestimation is in the 325 
classes ‘woody savannas’ and ‘savannas.’ The underestimation is the largest in woody savannas, 
except when clumping and overlap are enforced (in purple, Fig. 3). This is because the peak in the 
tree cover frequency distribution for savannas aligns with where the correction for maximum overlap 
and clumping is the largest (i.e., at about 20 % tree cover, see Fig. A5), while the peak in cover 
distribution for woody savannas (26 - 67 %, Fig. A5) aligns with the cover range that undergoes the 330 
greatest correction (Fig. 4, Fig. A5) in the other clumping and overlap scenarios. 

‘Open shrublands’ only show a small underestimation of tree cover, despite its woody cover definition 
(10 - 60 %) matching the range where MODIS VCF most underestimates tree cover (26 - 67 % cover). 
The discrepancy may be because the majority of the ‘open shrublands’ class commission error is with 
the ‘grasslands’ class (see Table S6 in Sulla-Menashe et al., 2019).  The MODIS VCF tree cover in 335 
areas classified as ‘open shrublands’ is therefore likely to be lower than the IGBP definition would 
suggest (see Fig. A5), resulting in corrections that are more conservative.  

We found significant increases in tree cover for ‘forests’ in every correction scenario, though net 
change is only significant (95 % confidence) when overlap is unenforced. This can be explained by 
the presence of both negative and positive corrections in the higher ranges of tree cover when overlap 340 
is enforced. Similarly, the net change is insignificant across all clumping and overlap scenarios for the 
IGBP classes matching the lower ranges of tree cover (grassland, close shrubland and open 
shrubland). 

4 Discussion  

While MODIS VCF is a powerful and accessible tool to map tree cover, our field data-based 345 
corrections indicate that the latest MODIS VCF collection 6 is missing a lot of woody cover even when 
uncertainty introduced by site canopy overlap and clumping within the MODIS VCF pixel are 
accounted for. Our maps (Fig. 2) highlight that this potential underestimation of woody cover is mainly 
occurring in tropical savannas. Moreover, the highest underestimation in the savanna classes occurs 
when there is no enforced overlap (i.e., when there is a uniform random distribution of trees) which is 350 
the most likely scenario for the TROBIT savanna plots as evidenced by work done by Veenendaal et 
al. (2015), where plots were tested for complete spatial randomness and only minor indications of 
overlap were found. Woody savannas, as an example, may have their tree cover underestimated by 
up to 32 % (95 % confidence) when neither clumping nor overlap is enforced (in black, Fig. 3). If our 
results are representative of the tropics, then overall, MODIS VCF may be underestimating tropical 355 
tree cover by between 7 - 29 % for unenforced clumping and overlap or 0 - 21 % for when either 
clumping or overlap are enforced (5 - 95 % confidence).   

An overestimation at the lower end of the cover (< 20 %) (Hansen et al., 2002; Sexton et al., 2013) 
and underestimation in the lower to middle range of cover (20 % - 60 %) have been identified in 
validations of previous MODIS VCF collections (Gross et al., 2018; Yang and Crews, 2019). 360 
According to its definition, MODIS VCF only maps trees that are 5 m or taller (Hansen et al. 2003), 
while the TROBIT CAI includes all trees with a minimum dbh of 2.5 cm, as well as trees with a height 
exceeding 1.5 m when dbh < 2.5 cm. This could explain the observed underestimation in the lower 
tree cover ranges. However, because of how our field reference CAI is derived, we were not able to 
conclusively link the 5 m threshold to our observed underestimation. 365 

On the other hand, when looking at the relationship between TROBIT’s upper stratum canopy height 
and the difference between TROBIT and MODIS VCF we would have expected an increasing 
underestimation in the lower height ranges. Instead, we found a low R2 and a mixture of under and 
overestimations in heights between 0 and 10 m (Fig. A6). This suggests that the inclusion of trees 
below 5 m height in the TROBIT inventory does not fully explain the observed underestimation. 370 
However, as the relationship between upper canopy heights and the subordinate strata composition 
(and canopy cover thereof) varies widely depending on factors including ecosystem type and altitude 
(Rutten et al., 2015), more research needs to be done with more in-situ height data.  

We also found discrepancies between the tree cover values derived from MODIS VCF and the 
corresponding class definition of the MCD12Q1 product (Fig. A5), which again suggests that the 5 m 375 

https://www.zotero.org/google-docs/?r5r6Z4
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height threshold may not always apply in MODIS VCF. For example, MODIS VCF recorded tree cover 
in the ‘open shrublands’ and ‘closed shrublands’ classes of the MCD12Q1 product (Fig. A5), even 
though the height range for these classes is 1 - 2 m. For the ‘savannas’ class, MODIS VCF yields a 
percent tree cover range that matches closely with the ‘savannas’ class definition (between 10 % and 
30 %), despite the differing tree thresholds for MODIS VCF and IGBP (5 m minimum for MODIS VCF, 380 
and 2 m minimum for IGBP). These discrepancies suggest one of the following three things: 
‘open/closed shrublands’ and ’savannas’ contain trees taller than 5 m; MODIS VCF is distinguishing 
trees below the 5 m threshold; or some combination of both.  

Another explanation for the discrepancy between the IGBP class definitions and those estimated 
through MODIS VCF could be the between-class omission and commission errors (Fig. 4, and Table 385 
S6 in Sulla-Menashe et al., 2019). For example, the accuracy for ‘closed shrublands’ is particularly 
low. It is mainly confused with ‘open shrublands,’ ‘woody savannas,’ and ‘savannas.’ The majority of 
the ‘open shrublands’ class commission error is with the ‘grasslands’ class, and there is confusion to a 
lesser extent between ‘open shrubland,’ ‘woody savannas’ and ‘savannas.’ Also, the ‘cropland/natural 
vegetation mosaics’ class is often mapped as ‘closed shrubland,’ ‘woody savannas,’ ‘savannas’ or 390 
‘grasslands.’ 
 
More work needs to be done to evaluate how effective both MODIS VCF and MCD12Q1 are at 
implementing the height thresholds in their respective ‘tree’ definitions, as this may have implications 
when MODIS VCF and MCD12Q1 are used for global model calibration or validation.  395 

Overall, our results suggest that the biases found in the previous collections may have persisted in 
collection 6, despite reported improvement in accuracy (DiMiceli et al., 2017). This indicates that the 
biases introduced by binning the training data (Gerard et al. 2017) and using a CART (Classification 
and Regression Tree) model (Hanan et al., 2013) are inherent and still present within this version of 
MODIS VCF. Models calibrated using MODIS VCF (Brandt et al., 2017; Lasslop et al., 2020; Burton et 400 
al., 2019; Kelley et al., 2019, 2020) risk inheriting these biases and should therefore be validated 
using other sources of data. We suggest that while MODIS VCF gives a good overview of tree cover 
on a global scale, it should be re-calibrated before it is used as a reference or training data. Special 
care should be taken in savannas, a biome that has long been noted as being challenging for EO 
products to characterise, as solitary trees in the landscape tend to be missed by global tree cover 405 
products (Jung et al., 2006, Brandt et al., 2020). The poor performance of MODIS VCF in savannas in 
particular (Gaughan et al., 2013; Gross et al., 2018; Kumar et al., 2019) emphasises the importance 
of continuous independent validation and re-calibration of the product. The ecosystem functions of 
savannas can vary drastically with just a slight difference in tree cover (Gaughan et al., 2013) and 
even slight errors may create issues in how we interpret the state and dynamics of the biome, which 410 
in turn affects how the land is managed. 

Work on forest restoration potential would also be impacted. Bastin et al. (2019), for example, used 
MODIS VCF to estimate tree cover in agricultural land. As this tree cover is likely to have been 
underestimated substantially, the derived available land space for replanting may be less than 
projected, with the restoration potential overestimated. However, our results also indicate an 415 
underestimated tree cover in woodier savannas and forests. Accounting for this, the restoration 
potential could actually be greater than anticipated, as the carrying capacity of a unit of land may be 
greater than previously thought. The MODIS VCF correction could also result in a more uniform cover 
distribution across regions, producing a more gradual transition between low-cover savannas and 
high-cover forests. This could have implications for work that, for example, uses MODIS VCF to study 420 
forest-savanna dynamics and bi-stability (Lasslop et al., 2018; Wuyts et al., 2017; Xu et al., 2016). 

To ensure the appropriate use of the product, we suggest that where field data are available, the 
MODIS VCF product should be calibrated for use in the target region. However, calibrating MODIS 
VCF on a large scale using field data as a reference do present several challenges. Firstly, different 
in-situ measurement techniques tend to measure different types of tree cover (e.g., Fiala et al., 2006; 425 
Korhonen et al., 2006; Rautiainen et al., 2005) and each will require a conversion to enable direct 
comparison with MODIS VCF. In our case, to account for gaps between tree crowns, we applied the 
0.8 ‘gap correction factor’ to the CAI. However, the GCF and resulting tree cover could vary widely on 
a plot-by-plot basis (Lloyd et al., 2008). With further in-situ data that describe tropical vegetation type-
specific GCF variation, we may be able to incorporate site-specific GCFs into our analysis.  430 
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There is also the uncertainty associated with the field data collection. In our case, the site-specific CAI 
standard errors (supplement B in Torello-Raventos et al., 2013) are small and show no systematic 
bias and are therefore not expected to significantly change our results. Using field plots over a limited 
geographic extent creates additional uncertainty that may still be unaccounted for in our analysis 
when calibration is applied across the highly variable tropical forest-savanna ecotone.  The bottom 435 
map in Fig. A7 combines our uncertainty maps (Fig. 2) with a map plotting the distance of a point from 
the sampled TROBIT plots, and highlights Southeast Asia, Central America, and Mexico as areas 
where additional in-situ observations would greatly help improve confidence. Field data from the 
north-western region of South America, the southeast of the African continent, and Madagascar would 
also help.  440 

Finally, factors such as cloud cover, landscape heterogeneity, phenology, vegetation type, and soil 
type affect the accuracy of remotely-sensed products like MODIS VCF (Hansen et al., 2003; Huete et 
al., 1997; Smith et al., 2002). Data characterising these at the plot level would help identify potential 
confounding factors affecting MODIS VCF performance, and so help further constrain uncertainties.   

Alternatively, comparing MODIS VCF to other land cover maps or higher-resolution remotely sensed 445 
data are recommended (Gross et al., 2018; Lary and Lait, 2006), though without a large-scale effort to 
re-calibrate MODIS VCF, the question of how appropriate MODIS VCF is for use in both forests and 
savannas in the tropics will remain. By highlighting the extent to which MODIS VCF struggles to 
estimate tree cover in tropical forests and savannas, we hope to inform the future use of this product 
to improve its useability. 450 

5 Conclusion 

We found that MODIS VCF significantly underestimates tree cover in tropical forests and savannas, 
even when within-field site and field site-pixel variation are accounted for during validation. As MODIS 
VCF is a product that is commonly used in a wide variety of ecological research including vegetation 
modelling, estimating restoration potential, and identifying forest-savanna bimodality, we stress that 455 
more independent work on validating and re-calibrating is required before its tree cover estimates can 
be relied upon in the tropics.  

  

https://www.zotero.org/google-docs/?IBCVIi
https://www.zotero.org/google-docs/?IBCVIi
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Appendix 

 460 

Figure A1. Location of sampling sites in Africa, Australia, and South America from the TROBIT Project (based on 
Fig. 2, Torello-Raventos et al., 2013) shown on MODIS VCF (DiMiceli, 2017). Of the 63 field sites, only the 48 
sites with available GPS coordinates were selected.  

 

Site 

Name Country 

Latitud

e 

Longitu

de 

MODIS 

VCF 

Tree 

Cover 

(%) 

Canop

y Area 

Index 

Average 

Upper 

Stratum 

Height 

(m) 

Cover 

Type TROBIT Site Description 

ALC-01 Brazil -2.53 -54.91 12.5 0.32 6.56 Savanna Savanna woodland 

ALF-01 Brazil -9.6 -55.94 77 2.31 37.02 Forest Tall forest 

ALF-02 Brazil -9.58 -55.92 76 2.65 41.32 Forest Tall forest 

ASU-01 Ghana 7.14 -2.45 41.33 2.54 45.27 Forest Tall forest 

BBI-01 

Burkina 

Faso 12.73 -1.17 1.33 0.52 12.53 Savanna Savanna woodland 

BBI-02 

Burkina 

Faso 12.73 -1.16 1.5 0.99 13.6 Savanna Savanna woodland 

BDA-01 

Burkina 

Faso 10.94 -3.15 6.17 0.3 14.53 Savanna Shrub-rich savanna woodland 

BDA-02 

Burkina 

Faso 10.94 -3.15 4.5 0.18 14.47 Savanna Shrub-rich savanna woodland 

BFI-01 Ghana 7.71 -1.69 15 1.22 29.67 Savanna Tall closed woodland 

BFI-02 Ghana 7.71 -1.69 12.83 1.08 28.2 Savanna Tall savanna woodland 

BFI-03 Ghana 7.71 -1.7 25.83 2.54 45.07 Savanna Tall savanna woodland 

CTC-01 Australia -16.1 145.45 72.67 2.35 40.37 Forest Tall forest 

DCR-01 Australia -17.02 145.58 21.67 1.67 27.19 Savanna Tall savanna woodland 

DCR-02 Australia -17.03 145.6 65.67 0.71 22.51 Savanna Tall savanna woodland 

EKP-01 Australia -18.07 145.99 43.5 0.74 28.13 Savanna Tall savanna woodland 
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FLO-01 Brazil -12.81 -51.85 65.67 2.4 28.21 Forest Forest 

FMS-01 Australia -18.09 144.84 7.67 0.32 20.03 Savanna Shrub-rich savanna woodland 

FMS-02 Australia -18.11 144.82 44.17 1.21 16.69 Forest Stunted shrub-rich forest 

HOM-01 Mali 15.34 -1.47 0.5 0.05 3.87 Savanna Savanna grassland 

HOM-02 Mali 15.33 -1.55 0.83 0.16 6.13 Savanna Savanna grassland 

IBG-01 Brazil -15.95 -47.87 20.83 0.22 7.48 Savanna Scrub savanna 

IBG-02 Brazil -15.95 -47.87 20 0.02 6.29 Savanna Scrub savanna 

IBG-03 Brazil -15.93 -47.87 20.5 0.12 8.01 Savanna Scrub savanna 

IBG-04 Brazil -15.94 -47.86 27.17 0.77 12.65 Savanna Savanna woodland 

KBL-01 Australia -17.77 145.54 75 1.69 39.5 Forest Tall forest 

KBL-02 Australia -17.85 145.53 61.17 0.81 29.2 Savanna Tall savanna woodland 

KBL-03 Australia -17.69 145.53 79.5 3 36.62 Forest Tall forest 

KCR-01 Australia -17.11 145.6 78.83 2.44 42.37 Forest Tall forest 

LFB-03 Bolivia -14.6 -60.85 28.17 0.39 9.93 Savanna Shrub-rich savanna woodland 

MDJ-01 Cameroon 6.17 12.83 42 3.24 45 Forest Tall forest 

MDJ-02 Cameroon 6.16 12.82 18.67 0.44 16.13 Savanna Long-grass savanna 

MDJ-03 Cameroon 5.98 12.87 64.67 2.97 36.53 Forest Stunted shrub-rich forest 

MDJ-04 Cameroon 6 12.87 15 0.37 18.93 Savanna Long-grass savanna 

MDJ-05 Cameroon 5.98 12.87 70.33 2.85 21.27 Forest Stunted shrub-rich forest 

MDJ-06 Cameroon 6 12.89 20.5 0.68 15.27 Savanna Long-grass savanna 

MDJ-07 Cameroon 6.01 12.89 57.33 1.75 42.67 Forest Tall forest 

MDJ-08 Cameroon 6.21 12.75 15 0.48 18 Savanna Long-grass savanna 

MLE-01 Ghana 9.3 -1.86 10 0.34 14.67 Savanna Savanna woodland 

NXV-02 Brazil -14.7 -52.35 20.83 1.82 15.76 Savanna Tall closed woodland 

RSC-01 Australia -20.16 146.54 28 1.15 13.14 Forest Stunted forest 

SMT-01 Brazil -12.82 -51.77 36.67 1.55 14.37 Savanna Savanna woodland 

SMT-02 Brazil -12.82 -51.77 41.5 1.44 14.64 Savanna Savanna woodland 

SMT-03 Brazil -12.83 -51.77 19.33 0.53 11.19 Savanna Savanna woodland 

TUC-01 Bolivia -18.52 -60.81 50.33 1.29 14.9 Forest Stunted forest 

TUC-02 Bolivia -18.53 -60.63 21.67 0.81 12.05 Savanna Shrub-rich woodland 

TUC-03 Bolivia -18.19 -60.86 10.83 0.37 14.11 Savanna Savanna woodland 

VCR-01 Brazil -14.83 -52.16 69.5 2.81 28.94 Forest Tall forest 

VCR-02 Brazil -14.83 -52.17 69.67 2.74 30.93 Forest Forest 

 465 
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Table A1. Site names, locations, Canopy Area Index values, MODIS VCF percent tree cover values, cover type, 
and TROBIT site descriptions of the 48 TROBIT Project plots used in this study. TROBIT site descriptions are 
based on Table S1 of Veenendaal et al., 2015. 

 

 470 

 

 

Figure A2. Visual representation of the effects of enforcing overlap within a (100 m x 100 m) TROBIT site with a 
given Canopy Area Index (CAI). Left: Overlap is not enforced, and individual crowns follow a uniform random 
distribution. Right: Overlap is enforced by linearly increasing the probability of a canopy being located more on 475 
one side of the site (i.e., illustrated here as the right side of the site) than the other. This results in tree canopies 
‘overlapping’ to a greater extent, which affects how accurately CAI represents actual canopy cover. 
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Figure A3. Visual representation of the effects of unenforced and enforced clumping in a 250 m x 250 m MODIS 480 
VCF pixel with 50 % tree cover. Clumping all the cover to one side of the pixel (bottom) affects the average 
canopy cover value of a 100 m x 100 m-sized average TROBIT site, illustrated here as the black boxes. 
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Figure A4. The correction curves developed for MODIS VCF based on the 4 pixel-site mismatch scenarios (no 485 
clumping and no overlap; enforced clumping no overlap; no clumping enforced overlap; and enforced clumping 
and enforced overlap). The dashed line signifies the ‘ideal’ 1:1 relationship wherein corrected MODIS VCF is 
unchanged from the original MODIS VCF values. The shaded regions represent 5 to 95 % confidence intervals 
for the respective corrected MODIS VCF values. 
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 490 

Figure A5. Frequency distributions of percent tree cover value as estimated by MODIS VCF across the ‘forest’ 
supercategory and the following IGBP classes that by our definition count as part of the ‘savanna’ domain: 
Closed Shrublands, Open Shrublands, Woody Savannas, Savannas, and Grasslands. Specific class definitions 
as per the User Guide for the MODIS Land Cover Product (Sulla-Menashe and Friedl, 2018).  
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 495 

 

Figure A6: TROBIT plot upper stratum height versus the difference between MODIS VCF and TROBIT percent 
tree cover in the four clumping-overlap scenarios. Upper and lower bars represent the uncertainty range’s 10th 
and 90th percentile, respectively, based on the convolution of MODIS VCF and TROBIT cover uncertainties from 
Fig. 1.  500 
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Figure A7. (Top) Uncertainty range of potential MODIS VCF mismatch, calculated as the 90th percentile (the 

highest value out of the four scenarios in Fig. 2) minus 10th percentile (the lowest value out of the four scenarios 

in Fig. 2). (Middle) Geographic distance to the closest TROBIT site sampled. (Bottom). Regions coloured to 

denote priority for field surveying to constrain map uncertainty, based on multiplying the (Top) and (Middle) maps.  505 
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