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Abstract. Soil organic carbon (SOC) is one of the largest terrestrial carbon (C) stocks on Earth. The first meter of the Earths
Earth’s soils profile stores three times as much earben-C as the vegetation and twice the amount of C in the atmosphere. SOC
has been depleted by anthropogenic land-eeverland-cover change and agricultural management. However, the latter has so
far not been well represented in global earbon-C stock assessments. While SOC models often simulate detailed biochemical
processes that lead to the accumulation and decay of SOC, the management decisions driving these biophysical processes are
still little investigated at the global scale. Here we develop a spatial-spatially explicit data set for agricultural management on
cropland, considering crop production levels, residue returning rates, manure application, and the adoption of irrigation and
tillage practices. We combine it with a reduced-complexity model based on the IPCC Tier 2 steady-state-sot-modet-method to
create a half-degree resolution data set of SOC stocks and SOC stock changes for the first 30 cm of mineral soils. We estimate

that due to arable farming, soils have lost around 26-Gt€-34.6 GtC relative to a counterfactual hypothetical natural state in 1975.

Yet-within-Within the perlod 1975-2010 this SOC debt ha%bee&deefe&%mgﬁ}gam%y%ﬂe%quamﬁyue%@{—sg&wmebe&n

itycontinued to expand by 5 GtC
0.14GtCyr~1) to around 39.6 GtC. However, accounting for historical management led to 2.1 GtC less (0.06 GtC yr—!
emissions than under the assumption of constant management. We also find that is sensiti isions

fonsmanagement
decisions have influenced the historical SOC trajectory most strongly by residue returning, indicating that increasing SOC
sequestration by biomass retention may be a promising negative emissions technique. The reduced-complexity SOC model
may allow to simulate management-induced SOC sequestration also within computationally demanding integrated (land-use)
assessment modeling.
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1 Introduction

Soil Organie-Carbon-organic carbon (SOC), the amount of organic carbon stored in the Earth’s soil, is-constitutes the largest ter-
restrial organic carbon pool. It exceeds the carbon in the atmospheric and vegetation pools multiple times (Batjes, 1996). Even
small changes in processes affecting SOC lead therefore to substantial shifts in the terrestrial carbon cycle and influence the

amount of CO; in the atmosphere

. The specific amount of carbon stored in soils globally is quantified with estimates ranging from 1500 to 2400 GtC for the first
meter of the soil profile (Batjes, 1996; Sanderman et al., 2017).

Natural properties like climatic, biophysical, and landscape characteristics clearly play the most important roles to determine
SOC variations over space and time. Recent studies have focused on the evaluation of total SOC stocks of the world as
well as on the spatial disaggregation of soil properties such as SOC content (Batjes, 2016; Hengl et al., 2017; FAO, 2018).
However, these studies often do not include human interventions, like land cover change and agricultural management, in

their analysis. Compared to climatic and geological drivers;-they-driving forces, human interventions alter terrestrial carbon

pools over much shorter time scales and are currently one of the most dominant drivers of SOC changes on managed land

The anthropogenic impact can be measured by the SOC debt (also referred to as SOC component of land-use change
emissions, see Pongratz et al. (2014)), which is the amount of organic carbon soils have lost under cultivation compared to a
potential-natural-vegetated-hypothetical potential natural vegetation state. Sanderman et al. (2017) identified the anthropogenic
SOC debt for the first meter of the soil profile due to land cover change at around 116 GtC (37 GtC for the first 30 cm),
compared to previous estimates of 60-130 GtC for the first meter (Lal, 2001).

Global assessments of the carbon cycle via dynamic global vegetation models (DGVMs)and-, Earth System Models (ESMs)
or bookkeeping models (BKMs) have analyzed SOC losses as part of a comprehensive evaluation of the global carbon budget
and land-use change (LUC) emissions (Friedlingsteinetal52049)(Friedlingstein et al., 2020). While providing estimates of
the magnitude of SOC losses due to fand-cover-land-cover change, most models lack a detailed eonsideration-representation
of agricultural management. Earlier PGV M-and-ESM-based-DGVM- and ESM-based assessments only considered changes
in land cover, but ignored the removal of biomass at harvest (Strassmann et al., 2008; Betts et al., 2015). BKMs are de-

signed to estimate LUC related emissons-but-emissions but often ignore changes in SOC due to climate change, CO, fertil-

and N deposition.
Whereas BKM have largely improved in estimating additional emissions from wood harvest and shifting cultivation, state of the

art models do not consider impacts of va

ization

Managed agricultural systems were introduced in greater detail to DGVMs and ESMs to improve the assessment of the
terrestrial carbon balance (e.g. Bondeau et al., 2007; Lindeskog et al., 2013). Pugh et al. (2015) explicitly consider agricultural
management in the form of tillage, irrigation and biomass extraction at harvest, but worked with stylized scenarios rather than

with histerie-historical management data. They also showed the importance of accounting for the land-use history, as many

Friedlingstein et al., 2020; Minasny et al., 2017)

ing agricultural management (Friedlingstein et al., 2020; Houghton et al., 2012; Hansis et al., 20
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carbon emissions from agricultural soils are caused by histerie-historical LUC and the slow decline of SOC under cropland
before itreaches-a new equilibrium is reached.

In global-scale carbon cycle assessments, management systems are typically represented as spatially explicit patterns that are
static in time (e.g. growing seasons (Portmann et al., 2010), multiple cropping systems (Waha et al., 2020), irrigation systems

(Jagermeyr et al., 2015)) or as stylized scenarios .g. Pughetal, 2015; Lutz et al., 2019

. Herzfeld et al. (2021) account for historical changes in fertilizer and manure inputs, residue removal rates and tillage systems
and report SOC losses from cropland expansion over the period from 1700-2018 of 215 GtC. Within their stylized future
management scenarios they find that none of the management aspects considered (residue management, no-tillage) can create

a net carbon sink on current cropland areas under future climate change.
More data sets on spatially explicit agricultural management time series with global coverage become-are becoming available

(e.g. on tillage systems, see (Porwolik-etal;2048)(Prestele-et-al2048))and-medet(Porwollik et al., 2019; Prestele et al., 2018)
) and modeling approaches are increasingly being developed to project the dynamics of management systems into the future

(e.g. hzumi-etal;2019)-(Minoli-et-al52049)(lizumi et al., 2019; Minoli et al., 2019)), but have — to our knowledge — not

yet found their way into comprehensive assessments of the terrestrial carbon cycle in DGVMs and BKMs.

Field-scale models

are able to better account for histerie-historical agricultural management if detailed information on crop yield levels, fertilizer
inputs and various other on-farm measures is available for the studied sites. However, due to the lack of comprehensive global

management data as input to these models, scaling up to the global domain remains a complex challenge (Morais et al., 2019).

have been increasingly studied not only for their carbon emitting behavior, but also because of their capacity to re-store
carbon (soil carbon sequestration (SCS) techniques). However, assessing SCS dynamically considering the interdependenc

with environmental, social and economic sustainability targets has been difficult so far, as integrated assessment models (IAMs
Po

et al., 2016; Rogelj et al., 2018; Forster et al., 2018) have not integrated soil management into their mitigation pathways.

More detailed process-based models are typically computationally too demanding to be integrated into optimization-based
IAMs. Better accounting for soil carbon management in IAMs thus requires a light-weight model suitable for iterative modeling
with detailed options to represent agricultural soil management.

The objectives of our study are (1) to develop a reduced-complexity SOC model able to account for SCS in IAM frameworks;

(2) to create a comprehensive data set of the global gridded management time seriesdata, including crop production levels,

residue returairg-input rates, manure applieatioramendments, and the adoption of irrigation and tillage practices—We-simttate

OC-stoeks;-dynamies-and OE-debtfor 1975-2010Using-a-seenario-anatysis;-we-; and (3) to provide global as well
as spatially explicit SOC and SOC debt estimates that consider spatially explicit and time-variant agricultural management.
We decompose the contribution of different management activities through a scenario analysis, identifying the most impacting
management decisions for SOC development. Moreover, we compare our model performance against other SOC stock and
SOC emission estimates, to evaluate the suitability of this reduced-complexity approach for integration into IAM modeling.

-(Del Grosso et :
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2 Methods

In Sect. 2.1 we introduce the basic concept of SOC dynamics as applied in this study and explained in more detail within-in the

refinement of the IPCC guidelines vol. 4 (CalveBuendiaetal;2049)Chapter 5 on “Cropland” (Ogle et al., 2019) We addi-

tionally describe how we configured and extended the s

Tier 2 modeling approach (for model code see Karstens and Dietrich, 2020). In Sect. 2.2 we shortly refer to the concept of

stock change factors as outlined in the Tier 1 approach of the IPCC guidelines (Eggleston et al., 2006; Calvo Buendia et al.,

2019). Section 2.3 provides a detailed description of the global, gridded management data used to drive the model, including
crop production levels, residue input rates, manure amendments, and the adoption of irrigation and tillage practices (for model
code see Bodirsky et al., 2020a). In Sect. 2.4 we define the management scenarios used to complement-our-historic-model
resultsanalyze the role of different management aspects in historical cropland SOC dynamics.

2.1 SOC stocks and stock changes following the Tier 2 modeling approach

Following the Tier 2 steady-state-modeling approach of the refinement of the IPCC guidelines vol. 4 (Calvo-Buendia-et-al52619)

Chapter 5 on “Cropland” (Ogle et al., 2019); referred to as steady-state-methodTier 2 modeling approach in the following), we
estimate seil-erganie-earbon{SOC' J-stocks and their change over time for cropland at half-degree resolution from 1975 to

2010. We restrict our analysis to the first 0-30 cm of the soil profile. Moreover, we assume the current SOC state converges to-
wards a steady state, which itself depends on biophysical, climatic and agronomic conditions. Therefore, we take the following
three steps for each year of our simulation period: (1) We calculate annual land-use type-specific steady states and decay rates
for SOC stocks (Sect. 2.1.1); (2) we account for land conversion by transferring SOC' from and to natural vegetation (Sect.
2.1.2), (3) we estimate SOC stocks and changes based on the stocks of the previous time step, the steady state stocks and the

decay rate (Sect. 2.1.3). To initialize the first year of our simulation period we use a spin-up period of 74 years (Sect. 2.1.4).
2.1.1 Steady-state SOC stocks and decay rates

In a simple first order kinetic approach the steady-state soil organic carbon stocks SOC*? are given by
in

(@}
SOC™ — Gtsublu (D

i,t,sub,lu ki,t,sub,lu

with C'" being the carbon inputs to the soil, & denotes the soil organic carbon decay rate. This equation is valid for all grid
cells 7 and all years ¢. We use the steady-state-method-Tier 2 modeling approach for our calculations, which assumes three soil
carbon sub-pools sub (active, slow and passive) and interactions between them, following the approach in the Century model
(Parton et al., 1987). Annual carbon inflow to each sub-pool and annual decay rates of each sub-pool are land-use type lu
specific. We distinguish two land-use types: cropland and uncropped land under potential natural vegetation as representative
for all other land-use types including forestry and pastures (referred to as natural vegetation in the following).

Carbon inputs for cropland are below- and above-ground crop residues left or returned to the field (see Sect. 2.3.2) and

manure inputs (see Sect. 2.3.3); for natural vegetation, litterfall including fine root turnover (Schaphoff et al., 2018b) is the



120 only source of carbon inflow to the soil. Following the IPCC guidelines (C¢ = — Ogle et al., 2019), carbon

inputs are disaggregated into metabolic and structural components depending on their lignin and nitrogen content. For each
component the sum of all carbon input sources is allocated to the respective SOC' sub-pools via transfer coefficients. This

implies that both the amount of carbon and its structural composition determine the effective inflow into the different pools.

Whereas residue and manure default lignin and nitrogen fractions are given by the IPCC guidelines (Ogle et al., 2019), we
types is_given by (Schaphoff et al., 2018b) as well as separation of litter into leaf, fine root and wood litter compartments
excluding litter biomass burnt in wild fires. Leaf litter parameters are given by Brovkin et al. (2012), fine root to leaf litter
leaf to fine roots and leaf to wood litter by von Bloh et al. (2018). Data sources for all considered carbon inputs as well as for

130 lignin and nitrogen eontent-parameterization are listed in Table 1.

Table 1. Fype-type and data sources for carbon inputs and parameterization to different land-use types

land-use types source of carbon inputs data source nitrogen and lignin content

above-ground residues, FAOSTAT (2016), LG:C generic values according to Table 5.5B,
cropland below-ground residues, Schaphoff et al. (2018b), 5.5C from IPCC (Ogle et al., 2019),

manure Weindl et al. (2017) crop-specific N:C from Bodirsky et al. (2012)

annual litterfall Schaphoft et al. (2018b) HPec(CalvoBuendiaetal 2049 and
Natural-natural vege- CENTURY-(NREL: 2000 leaf N and LG
tation

concentration from Brovkin et al. (2012), root to

leaf litter LG ratio Guo et al. (2021), lignin

content of wood litter Rahman et al. (2013) and

nitrogen scaling factors for leaf to root and wood
litter from von Bloh et al. (2018

The sub-pool specific decay rates kg, are influenced by climatic conditions, biophysical and biochemical soil proper-
ties as well as management factors that all vary over space (i )-and-time—<and time ?). Following the steady-state-method
{Catvo-Buendiaetal; 2049 Tier 2 modeling approach (Ogle et al., 2019), we consider temperature {temp); . water
wat);-sand-fraetion—,_sand-fraction s f)-and-tillage—, and tillage till »-effects to account for spatial and temporal variation

135 of decay rates. Thus, k., rates are given by

ki,t,activc,lu = kactivc ' tempi,t ' wati,t,lu ' ti”i,t,lu ' Sfi
ki,t,slow,lu = Kslow : tempi,t : wati,t,lu : ti”i,t,lu . (2)
ki,t,passive,lu = kpassive : tempi,t : wati,t,lu
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For natural vegetation, we assume rainfed and non-tilled conditions, whereas for cropland, we distinguish the effect of
different tillage (see Sect. 2.3.5) and irrigation (see Sect. 2.3.4) practices on decay rates. We ealeulated-area-weighted-calculate
area-weighted means for ¢ill and wat on cropland for each grid cell, using area shares for the different tillage and irrigation
pratieespractices. Data sources as well as used parameters for the different decay drivers for all land-use types are listed in
Table 2; equations are displayed by equation-equations 5.0B—5.0F in Calvo-Buendia-Ogle et al. (2049)(2019).

Table 2. Fype-type and data sources for carbon inputs to different land-use types

land-use types type of decay driver parameter use to represent driver data source

1 Seilsoil quality Sand-sand fraction of the first 0-30 cm Hengl et al. (2017)
Mireobial-mircobial activity air temperature Harris et al. (2020)
Water-restrietion-soil moisture precipitation & potential evapotranspiration — Harris et al. (2020)

cropland Waterrestrietton®-soil moisture®  irrigation Sect. 2.3.4

(additionally) Seiksoil disturbance tillage Sect. 2:3:42.3.5

2.1.2 SOC transfer between land-use types

We calculate SOC stocks based on the area shares of land-use types {{u )-within our grid cells ). If land is converted from one

land-use type lu = {crop, natveg} into the other llu = {natveg,crop}, arespective share of the SOC is reallocated within our

budget. We do not distinguish between newly converted and existing cropland, but can work with the average carbon content
as the relative decay of SOC' is proportional to the SOC stock (see 1). We account for land conversion at the beginning of

each time step ¢ by calculating a preliminary stock SOC}« via

SOCi,tfl,sub,lu
Az’,t—l,lu

SOCi,tfl,sub,Ilu

SOC; t+ sub,iu = SOC; t—1 sub,iu — 1
i,t—1,1u

“AR; ¢ 10+ “AE; ¢ 1 3)

with A;,, being the land-use type specific areas, A R;,, and-A+--the area reduction resp—and A E}, the area expansion of the

two land-use types. Data sources and methodology on land-use states and changes are described in Sect. 2.3.1.
2.1.3 Total SOC stocks and stock changes

SOC eenverge-converges towards the calculated steady-state stock SOC*? for each grid cell ¢, each annual time step ¢, each

land-use type lu and each sub-pool sub like

SOCi,t,sub,lu = SOCi,t*,sub,lu + (SOCeq

i,t,sub,lu

- SOCi,t*,sub,lu) . ki,t,sub,lu -la. (4)
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Figure 1. Scheme of land-use transition representation. Given an initial land-use pattern (as in this example 2 ha land under natural vegetation

and 1 ha of cropland), there are separate SOC' stocks for natural vegetation and cropland. While in this example we assume SOC' under

expansion (in this example half of the natural vegetation is cleared to be used as cropland), SOC stocks on cropland increase due to a transfer

of land from natural vegetation (b). Explicitly representing newly converted cropland and existing cropland to account for SOC dynamics (c
leads to the same weighted mean value as averaging SOC stocks (d), due to the linearity of Eq. 4 and cropland-age independent decay rates
(see Eg. 2).

Note that the decay rates have to be multiplied by one year (1a) to form a dimensionless factor. Reformulating this equation,

we obtain a mass balance equation as follows

input (using equation (1))

— eq
SOCi,t,subJu = SOCLt*,sub,lu - SOCLt*,sub,lu . ki,t,sub,lu . 1a+SOCi,t,sub,lu . ki,t,sub,lu -la. (5)

outflow 7




The global SOC stock for each time step ¢ can then be calculated via

SOC; ¢,1. — land-use type specific SOC stock within cell

SOC; = E SOC; 4 — total SOC stock within cell E E SOC; ¢ sub,lu 500, —total SOC stock within cell - (6)

lu sub

160 According to the IPCC guidelines SOC changes can be expressed as the difference of two consecutive years {see-Eg—5-0A-in-Calvo-Buen
(see Eq. 5.0A in Ogle et al., 2019). This, however, will also include naturally occurring changes due to climatic variation over
time. For our study, we defined-define the absolute and relative SOE-SOC changes in relation to a potential natural state
SOCP™ under the same climatic conditions in grid cell 4 at time ¢, that is based on the natural vegetation SOC' calculations
as defined above without accounting for land conversion from cropland at any time. The absolute changes ASOC' and relative

165 changes FSCF are thus given by

SOC; ,

socry @

ASOC;; = SOC;, —SOCP™  and  FOF =

Note that the absolute changes ASOC can be also interpreted as the SOC debt (Sanderman et al., 2017) due to human crop-

ping activities; whereas relative changes F'SCF

can be considered stock change factors as defined within the IPCC guidelines of
2006 (Eggleston et al., 2006). Moreover, ASOC' is equivalent to the negated cumulative SOC component of human land-use

170 change emissions (Pugh et al., 2015).

2.1.4 Initialization of SOC pools

Toinitialize-al-SOC The initialization of SOC’ pools is very important and has to include the proper accounting for the land-use
history, as many CO, emissions from agricultural soils are caused by historical land-use change (LUC) and the slow decline of
SOC under crop cultivation, before it reaches a new equilibrium. We initialize our SOC’ sub-pools we-assume-that-eropland
175 andnatural vegetationare ina-using a three-step approach, since input data availability is limited for climate and litter estimates
(starting only in 1901) as well as for agricultural management data (starting only in 1965):
WMMMWW&MM use type-speeific-steadystatefor-the-initialization
n-changes long before the time horizon of
interest, we consider land-use change from 1510 onwards. In 1510, we assume all SOC’ pools to be in natural steady-state,
180  implying that all land-use change prior to that time occurs in 1510. We assume that by 1901, all cropland converted in 1510
has reached its new steady state, so that it is not necessary to explicitly account for even older land conversion. Model inputs
for 19011930 for climate and natural vegetation litterfall are repeated for 1510-1900 to mimic constant climate conditions
for this first initializing period. Similarly, agricultural management data on-residue-and-manure-inputs-are held constant at the
level of 1965 until 1965. Aftera-spin-up-period-of 64-years-(1901-1965)-with This approach follows others studies looking on
185  effects of land-use change and management (e.g. Schaphoff et al., 2018a; Herzfeld et al., 2021).
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Secondly, with the availability of transient climate data after 1901, we account not only for land-use change, but also
for historical climate change and consequently natural litter inputs to the soil from 1901 to 1965 still considering constant
agricultural input data, which are not available prior to 1965.

Thirdly, we run the model for additional-10 years with-historie-input-data-from 1965 to 1975 with historical dynamic data on
agricultural management and start analyzing results from 1975 ards—Jrrigation-areas- - S 5
therefore-dynamie from-onward. This is in line with the IPCC guidelines vol. 4 method suggestion to have a 5-20 year spin-up

eriod (Ogle et al., 2019).
With transient climate considered after 1901on;-whereas-data-, decay rates k., become dynamic in time. As the decay rates

are also affected by irrigation and tillage (see Sect. 2.1.1), we also account for transient changes in irrigated areas after 1901.

Data on no-tillage area-is-practices are only available after 1974--1974 and we assume conventional tillage on all cropland prior
to 1975.

2.2 SOC stocks and stock changes following Tier 1

Additionally to the steady-state-method-(Calvo-Buendiaetal52049)-Tier 2 modeling approach (Ogle et al., 2019) and the de-

tailed analysis of management data coming with it, SOE-SOC' changes can be estimated using the IPCC Tier 1 approach
of IPCC guidelines (Eggleston et al., 2006; Calvo Buendia et al., 2019). Here, stocks are calculated via stock change factors
(FSCF) given by the IPCC for the topsoil (0-30 cm) and based on observational data. Estimates of FSCF are differentiated
by different-crops, management and input systems (here summarized under m) reflecting different dynamics under changed
in- and outflows without explicitly tracking these flows. Moreover, estimates of FSCF vary for different climatic zones (c)

specified by the IPCC (see Fig. A1). The actual SOC stocks are thus calculated based on a given reference stock SOC™f by

SOCiy = Te;-SOCKT - FSOF ®)

with T, ; being the translation matrix for grid cells 7 into corresponding climate zones c. For this analysis, we use the default
FSCF from the Tier 1 method of Eggleston et al. (2006) and Calvo Buendia et al. {Calve Buendia-et-al;2019)(2019) as a

comparison and consistency check for our more detailed Tier 2 steady-state approach.
2.3 Agricultural management data at 0.5 degree resolution

We compile country-specific FAO production and cropland statistics (FAOSTAT, 2016) to a harmonized and consistent data
set. The data is prepared in 5-year time steps from 1965 to 2010, which restricts our analysis to the time span from 1975 to
2010 (after a spin-up phase from +96+-+9741510-1974). For all the following data, if not declared differently, we interpolate

values linearly between the time steps and keep them constant before 1965.



2.3.1 Land use and land-use change

215 Land-use patterns are based on the Land-Use Harmonization 2 (Hurtt et al., 2020) data set (short LUH2), which we sum up from
quarter-degree to half-degree resolution. We disaggregate the physical area (given as total land area in million ha) of the five dif-
ferent cropland subcategories (c3ann; C3 annual crops, c3per: C3 perennial crops, c4ann; C4 annual crops, c4per: C4 perennial
crops, c3nfx; C3 nitrogen-fixing crops) of LUH2 into our 17 crop groups tsee FAOZEUH2ZMAG—¢eroptypes-esv-inBodirskyet-al-2620a)

see Table “FAO2LUH2MAG _croptypes.csv” in Karstens, 2020a), applying the relative shares for each grid cell based on the
220 country- and year-specific area harvested shares of FAOSTAT data (FAOSTAT, 2016). By calculating country-specific multi-

cropping factors M CF using FAOSTAT data, we are able to compute crop-group specific area harvested on grid cell level.
Land-use transitions are calculated as net area differences of the land-use data at half-degree resolution, considering no split

up into crop-group specific areas but only total cropland and natural vegetation areas.
2.3.2 Crop and crop residues production

225 Crop production patterns are compiled crop group specific using half-degree yield data from LPJmL (Schaphoff et al., 2018b)
as well as half-degree cropland patterns (see Sect. 2.3.1). We calibrate cellular yields with a country-level calibration factor
for each crop group to meet hﬁteﬁ&h;\sigggglmFAOSTAT productlon (FAOSTAT, 2016). By-using-physical-cropland-areasin

Crop residue production and management is based on a revised methodology of Bodirsky et al. (2012) and key aspects

230 are explamed hefe@veﬂ%yeeﬁmlrfe}&feiba s they play a central role in soil carbon modeling. Starting from harvested-erep

C Aj, we estimate total above-ground {AG'R )-and below-ground {BG R )residual-biomass-residue biomass (in tonnes) using
crop group {cg y-speeifie-harvestindex—values(H-and-root:sheotratios{F5)-specific ratios for above-ground residues to

—1

harvested biomass 728P™d in (¢t DM ha~Y)(tDM ha ! above-ground residues to harvested area r2&2'* in tDM ha

235 and below-ground residues to above-ground biomass r‘?g in tDM tDM ! as follows

AGR; tcqg=CAitcg (Yipeg 28PN+ MCF; ;- r282%) and
BGthcg - (OAztcg ztcg"’AGthcg)

bg
Teg

Following the IPCC guidelines, we split the

fraction(Eggleston-et-al;2006)above-ground residue calculations into a yield-dependent slope r2&:Prody and a positive intercept

-ag,area) fraction (Hergoualc’h, Kristell et al., 2019). Residues biomass therefore increases under-
240 yields, reflecting a shifting harvest index of higher-yielding breeds. Deviating from Bodirsky et al. (2012) we use harvested
instead of physical crop area (denoted in Eq. (9) by MCF described in Sect. 2.3.1) to account for increased residue biomass due
to multiple cropping (multiple harvests with each lower yields) and decreased residue amounts due to fallow land. We assume
that all BGR are left in the soil, whereas AG R can be burned or harvested for other purposes such as feeding animals (Weindl

roportionally with risin

et al., 2017), fuel or for material use.

10
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A country-specific fixed share of the AGR is assumed to be burned on field depending on the per-capita income of the
country. Following Smil (1999b) we assume a burn share of 25%-25% for low-income countries according to World Bank def-
initions (<—+006-"25-< 10000USD yr " cap~!), 15% for high-income (>+6666-->2-> 10000USDyr~ ' cap_") and lin-

early interpolate shares for all middle-income countries depending on their per-capita income for the periods before 1995. After

1995 we estimate a linear decline of burn shares to 10% for low-income countries and 0% for high-income countries till 2025
to account for recent increases in air pollution regulation. The estimated trends show good agreement with fire-satellite-image
derived estimates by the Global Fire Database (van der Werf et al., 2017). Depending on the crop group, 80-90% of the carbon

in the crop residues burned in the fields is lost within the combustion process (Eggleston et al., 2006).

From our 17 crop groups, we compile four residue groups (straw, high- and low-lignin residues, residues without dual
use), of which the first three are taken away from the field for other purposes (see mappingCrop2Residue.csv in Bodirsky et
al. (2020a)). Residue feed demand for five different livestock groups is based on country-specific feed baskets (see Weindl
et al., 2017), that differentiate between the residue groups and take available AG R biomass as well as livestock productivity
into account. We estimate a material-use share for the straw-residue group of 5% and a fuel-share of 10% for all used residue
groups in low-income countries. For high-income countries, no withdrawal for material or fuel use is assumed, and use shares
of middle-income countries are linearly interpolated based on per-capita income, following the same rationale as for the share
of burnt residues described above. The remaining AGR as well as all BGR are expected to be left on the field. We limit high
residue return rates to at most 10¢C-ha—"-10tCha " in order to correct for outliers.

To transform dry matter estimates into carbon and nitrogen, we compiled crop-group and plant-part specific carbon resp-
and nitrogen to dry matter {e/dm;n/dmyratios (see Table Al).

2.3.3 Livestock distribution and manure excretion

Manure especially from ruminants is often excreted at pastures and rangelands, but due to the intensification of livestock
systems at-the-present-day-a lot of the manure has to be stored and can be applied on eroplandscropland. We assume that
manure tcati i i is applied in close proximity to its excretion, so that the tivestoekdistribution
distribution of livestock is the driving factor ef-for the spatial pattern of manuringmanure application.

To disaggregate country level FAOSTAT livestock production data to half-degree resolution, we use the following rule-based
assumptions, drawing from the approach of Robinson et al. (2014) and applying feed basket assumptions based on a revised
methodology from Weindl et al. (2017). We differentiate between ruminant and monogastric systems, as well as extensive
and intensive systems. Due to great-high feed demand of ruminants, we assume that ruminant livestock is located where
the production of feed occurs to minimize transport of feed. We distinguish between grazed pasture, which is converted into
livestock products in extensive systems, and primary-crop feed stuff, which we consider to be consumed in intensive systems.
For poultry, egg and monogastric meat production we use the per-capita income of the country to distinguish between intensive
and extensive production systems. For low-income countries, we assume only extensive production systems. We locate them
according to the share of built-up areas based on the assumption that these animals are held in subsistence or small-holder

farming systems with a high labor-per-animal ratio. Intensive production associated with high-income countries, is distributed
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within a country using the share of primary-crop production, assuming that feed availability is the most determining factor for
livestock location. For middle-income countries we split the livestock production into extensive and intensive systems based
on the per-capita income.

Manure production and management is based on a revised methodology of Bodirsky et al. (2012) and is presented here due
to its central role in soil carbon modeling. Based on the gridded livestock distribution we calculate spatially explicit excretion
by estimating the nitrogen balance of the livestock systems on the basis of comprehensive livestock feed baskets (Weindl et al.,
2017), assuming that all nitrogen in protein feed intake, minus the nitrogen in the slaughter mass, is excreted. Carbon in excreted
manure is estimated by applying fixed C:N ratios, which range from 10 for poultry up to 19 for beef cattle (for full detail see
Calvo Buendia et al. 26049)(2019). Depending on the feed system we assume manure to be handled in four different ways: All
manure originated from pasture feed intake is excreted directly on pastures and rangelands (pasture grazing), deducting manure
collected as fuel. Whereas for low-income countries, we adopt a share of 25% of crop residues in feed intake directly consumed
and excreted on crop fields (stubble grazing), we do not consider any stubble grazing in high-income countries; middle-income
countries see linearly interpolated shares depending on their per-capita income. For all other feed items, we assume the manure
to be stored in animal waste management systems associated with livestock housing. To estimate the carbon actually returned
to the soil, we account for carbon losses during storage, where return shares depend on different animal waste management and
grazing systems. Whereas we assume no losses for pasture and stubble grazing, we consider that the manure collected as fuel
is not returned to the fields. For manure stored in different animal waste management systems we compiled carbon loss rates
(see calcClossConfinement.R in Bodirsky et al. (2020a) for more details) depending on the different systems and the associated

nitrogen loss rates as specified in Bodirsky et al. (2012). We limit high application shares at %G%Ghailw()vtvcvlvl&ito correct
for outliers, that can occur due to inconsistencies between FAO production and 0.5 degree land-use data.

2.3.4 Irrigation

The LUH2v2 (Hurtt et al., 2020) data set provides irrigated fractions for their-its cropland subcategories. We sum up irrigation
area shares for all crop groups within a grid cell, and calculate the water effect coefficient wat on decay rates using these
shares to compute the weighted mean between rainfed and irrigated wat factors. As a result wat is the same for all crop
groups within a grid cell. Furthermore, we suppose the irrigation effect to be present for all 12 months of a yearin-a-grid-cell
ineladingirrigated-areas, since we do not have consistent crop group specific growing periods available. This will lead to an
overestimation of the irrigation effect. We expect, however, water limitations to be a minor problem during the off-season in
temperature limited cropping regions, causing our assumption to not dramatically overestimate the moisture effects. In tropical,

water-limited cropping areas, irrigated growing periods might even span over the whole year.
2.3.5 Tillage

In order to derive a spatial distribution of the three different tillage types specified by the IPCC — full tillage, reduced tillage
and no tillage —, we assume that all natural land and pastures are not tilled, whereas annual crops are under full and perennials

under reduced tillage per default. Furthermore, we assume no tillage in cropland cells specified as no tillage cell based on the
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historie-historical global gridded tillage data set from Porwollik et al. 2019). This data set is extended to the period
of 1975-2010 by combining country-level data on areas under conservation agriculture from FAO (2016) and half-degree

resolution physical crop areas from Hurtt et al. (2020), applying the methodology of Prowollik et al. 2019) to identify

potential no-tillage grid cells.

2.4 Management scenario definitions

To single out the impact of tillage practices, residue and manure inputs, we defined scenario with constant values for these
three drivers: In the constTillage scenario the adoption of no-tillage practices are neglected (adoption starts in 1974 according
to the available data set). The constResidues and the constManure scenario assume constant input rates from residues resp.
manure (in tha™!) at the level of 1975 onwardsonward. Within the constResidue scenario at different effects overlay each
other: yields and with them residue biomass increase due to productivity gains; rates of residue left or returned to fields are
raising; and shifts of cropping pattern change the amount of residue biomass due to crop-group specific harvest index values.

The constManagement combines all three scenarios constTillage, constResidues and constManure.
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3 Results

Detailed results for the spatially explicit global SOC budget including intermediate results on input data as well as SOC stock
results for all scenario runs can be found in Karstens (2020a). In the following, the most important results {see-Karstens; 2020b)-

for-pest-processing-seript-(see Karstens, 2020b, for post-processing script) are summarized.

3.1 SOC distribution and depletion

provide-the-first), This corresponds to an average loss rate of 0.14 GtC yr_" in comparison to a hypothetical potential natural
towards the end of the modeling period.
In Fig. 2(b) we provide a world map of SOC stocks estimates for the first 30-em-on-croplands-considering historic- management

data-at-the-global-seale-30 cm on cropland considering historical management data for the year 2010. Values ranging-between
wel-over+00tha—'range between over 100t ha~! in northern temperate eroptands-cropland to less than 5tha—-5tha "

for arid and semiarid ereptandscropland. Our spatially explicit results show hotspots of SOC losses and gains compared to
SOC under potential-natural-vegetation PNV in two complementary ways: 1. Absolute SOC changes ASOC (see-Fig. 2(bc))
indicate areas with high importance for the global SOCHesses—They-might-SOC loss. They can be driven by large relative
changes (e.g. in Central Africa) or by a high natural stock, from which even small relative deviations could lead to substantial
absolute losses (e.g. North-East Asia). Is
North-aceording to-ourresults—2. Relative SOC changes measured as stock changes factors F¥CF (see Fig. 2(ed)) are a helpful

metric to analyze the impact of human cropping activities. They indicate areas with large differences in carbon inflows or

SOC decay compared to natural vegetation, that may hold potential to be overcome éte-to-by improved agricultural practices.

Large parts of tropical eroplands-cropland seem to suffer from lew-stoek-changesfactors;-meaning-highrelative-SOClosses
and-maybe-strongly reduced relative stocks, indicating SOC degradation. Conversely, not-only-temperate-croplands-of-Central

urope,-Japan-and-western-areas of the USA-have high sto hange-factorsbut-irrigated-eroplands-irrigated cropland at the
border to dry, unsuitable areas worldwide as-welshows a strong relative increase in SOC stocks.

ohs OC_deht hac decraaced_hv—abe 0 inthe ne hatwean—10 2010

The spatial distribution of the total ASOC summed over all land-use types (Fig. 3(a)) and its change from 1975 to 2010
Fi . Brazil, Southeast Asia

Canada) continue to lose SOC, whereas regions with cropland reduction (and thus SOC restoration) or with accumulatin
cropland SOC can be found e.g. in highly productive areas of Europe and Central USA.

. 3(b)) reveals areas of SOC debt decline and increase. Regions with large cropland expansion (e.
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Figure 2. Global SOC stocks and SOC stock changes on cropland for the first 30 cm of the soil profile considering historical management

data, Panel (a) +BDistribution-shows global ASOC' between historical land use and potential natural vegetation (PNV). The distribution of

total global SOC stocks for the first 30 cm on cropland -Carbon-stecks-are-targe-for the year 2010 is depcited in hi teldi s—panel
(b)+te)-—. Absolute (bc) and relative (ed) SOC stocks changes for the year 2010 are compared to a potentlal natural state identify different

hotspots of SOC dynami ative-losses F5 T are oftenlarger
Hrtropical-meistareasH(d)y-ASOCbetween-SOC-under-historie tand-use-and potential-natural-vegetationis-deereasing-over-time-meaning
net-SOC-gainsen-global-eroplands-ever-the-the-period1975-2010.

3.2 Carbon flows in the agricultural system

C is sequestered from the atmosphere via plant growth and allocated to three-different plant partstharvest, which we aggregate
to three pools (harvested organ, above- and below-ground residues). Whereas harvested organs as well as above ground-
residues are taken (partially) from the field to be used for other purposes, below-ground residues (785-MtC-729 MtC in 2010)

15



385

ASOC change from 1975 to 2010 in million tons of carbon

I . I .
<-1.2 -0.9 -06 -0.3 0 03 06 09 12>1.2

Figure 3. Global total ASOC and ASOC change for the first 30 cm of the soil profile. Panel (a) shows global ASOC as the difference

between SOC under historical land use and SOC under potential natural vegetation (PNV) in the year 2010 summed over all land-use types.

Computing the difference between the ASOC estimate for 2010 and for 1975 (b) depicts areas of soil depletion (SOC debt increase, red

and net-sequestration (SOC debt decline, blue).

are directly returned to the field. We split-up-usagefor-crop-biomass-divide crop biomass usage into feed usage and aggregate

all other usage types (e.g. }ike-food, bioenergy and material) into a human demand category. Livestock feed demand for crop
organ harvest and above-ground residues of H4+-MtC-is-almest-1136 MtC is roughly equal to the human demand of ++44
Mt€1129 MtC. Whereas large parts of feed intake are reeyeled-returned to the soils via manure (C input from manure at 384
Mt€384 MtC), we assume the carbon demanded from humans (ending up as e.g. compost, night soil and sewage) is not reeyeled
returned to soils. Besides manure C and below-ground residues, above-ground residues form the largest C input to the soil with
+200-Mt€-1350 MtC returned to the field-in-fields in the year 2010. However, around 60% of this organic C decomposes
before its-it is integrated into soilsat-the-the-litter-soib-barrier. Due to the different C-eompesition—propertional-composition
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Figure 4. Global carbon flows within the agricultural system for the year 2010 (in Mt€MtCO):—. Carbon is first phetesynthesise
photosynthesised by crop plants and than-then used depending-on-the ptant-part-byhumans—for feed-of-livestock feed and various other

usages subsumed under human demand. After accounting for losses within the agricultural system, there are three major C inputs are-applied
to eroptandscropland SOC: manure, above- and below-ground residues. Large parts of C, however, get-are mineralized on the field before
entering the soil. Additionally, C is transferred to and from the global agricultural seils-soil stock via land-use change to-between cropland

and fremrnatural vegetation. Finally, SOC gets-is mineralized and flows back inte-to the atmosphere.

of organic C, proportionally more C enters the slow pool from manure eompared-to-than from crop residue. According to our
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390 model results, land-use change dynamics led to a C transfer from eropland-to-natural-vegetation-of 58-MtCnatural vegetation
to cropland of 257 MtC in 2010. 4764-MtC-sequestered-The agricultural system receives 4585 MtC assimilated by crop plants

face-3897-MtCreleased-withinthe-agrieultural-systemand releases 3554 MtC mostly through respiration. Accounting for SOC
transfer ;-SOC-inerease-under-and decomposition, the net SOC decrease of global cropland is around 869-Mt€-33 MtC for the

ear 2010.

395 3.3 Agricultural management effects on SOC debt
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Figure 5. (a) Global ASOC in 6t€-GtC for different management scenarios:-. The stylized scenarios devate-deviate from historie-historical
argicultural management patterns (histManagement) by holding effects of carbon inflows from residues (constResidues) ;-or manure (const-
Manure) constant at the 1975 level, or neglecting adoption of no-tillage practices over time (constTillage). ConstManagementThe scenario
constManagement combines all three modifications. Note that ASOC' is defined as the difference of SOC under land-use compared to a

hypothetical natural vegetation state. Figtre-Panel (b) shows the carbon inflows from crop residue and manure;-underlining-the-strongimpact
of residuesfor-SOC-stock-and-SOC-stoek-changes.

We analyze the relative impact of individual-management-aspeets—different management practices by comparing the ac-

tual historie-historical management scenario with counterfactual scenarios, where individual management aspeets-practices

residues in constResidues, manure in constManure, tillage practices in constTillage, all three in constManagement) are kept

static at the 1975 values (Figure 5(a)).
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400 inereasingatarate-of - 1G+Cyr—L—As shown by the eonstResidue-seenario-difference between the constResidues scenario

and the other counterfactuals, changes in residue return rates dominate the management effects. Without the historic-inerease

inresidue-returninghistorical increase in C inputs from residues to agricultural soils, the global ASOC would stil-inerease
decrease t0 41.7GtC at arate of 8:06G+Cy+=10.20 GtC yr | —a 35% increase compared t0 0.14 GtC yr™" for the histManagement
estimates. Both the constManure and constTillage scenarios show only small deviations from the historie-values{(sequestration

405  rate-of B-09GHCyr—forbothhistorical argicultural management values with 0.15 GtC yr~!. The effect of no-tillage has-been
partictarly-strong-sinee-the 1990s—The-strong-impact-of-almost-doubling-C-inputsfrom-ecropresidue-biomass
discernible from 2000 onwards. The large contribution of residues relative to manure also becomes visible when considering
the annual C inputs of residues and manure to soils over a period of 35 years en-agricultural-SOCstoeks-is-shownin-(Fig. 5(b)).

410

415

3.4 Model evaluation

To evaluate our model results against reference data in five steps: (1) we compare our stock change factors (see Sect. 2.2) to

IPCC default assumptions (Lasco et al., 2006; Ogle et al., 2019); (2) we compare our global (and climate-zone specific) total
SOC stocks to other literature estimates; (3) we compare our results to point measurements. To evaluate the representation

420 of our natural SOC stocks (4) we correlated LPImL4 SOC stocks for PNV with our natural state SOC results on grid level;
and (5) we do a similar correlation analysis for our modeled actual SOC stocks in comparison to the results of SoilGrids 2.0
(Poggio et al,, 2021), which accounts for actual land use too.

3.4.1 Stock change factors compared to IPCC assumptions

To evaluate our modeled SOC stocks and stock changes under agricultural management, we compare our results to the default
425  IPCC stock change factors F°CT of 2006 (Lasco et al., 2006) and their refinements in 2019 (Ogle et al., 2019). Both estimates.
are based on measurement data for cropland (see Table 3). To allow for comparison, we aggregate our stock change factors
weighted by grid-level 7"°" cropland area to derive average factors for the four IPCC climate zones (Fig. Al). _
Stock change factors for temperate climate zones of this study are lower than the default values of the IPCC. For the
tropical regions the IPCC factors changed notably from the guidelines in 2006 (Lasco et al., 2006) to the update in 2019
430 (Ogle et al., 2019). Our results are in good agreement with the 2006 IPCC factors. Modeled F°7" have increased or stayed
constant for all climate zones over time (1975-2010).

19



435

Table 3. F°CF in comparison to IPCC Tier 1 default factors from the guidelines in 2006 (Lasco et al., 2006) and the update in 2019
Ogle et al., 2019).

Source,  Imput  Year tropical moist  tropicaldry  temperate dry ~ temperate moist

3.4.2 Global SOC stocks comparison

We compare our global SOC stocks with a wide range of global SOC stock estimates for the first 30 cm of the soil profile

using data from WISE (Batjes, 2016), SoilGrids (Hengl et al., 2017), GSOC (FAO, 2018), LPJmL4 (Schaphoff et al., 2018a)
SoilGrids 2.0 (Poggio et al., 2021), and SOCDebtPaper (Sanderman et al., 2017) in Fig. 6.

6(I)0 8(I)0 10l00 12IOO
SOC (0-30cm) in GtC

@ This Study Vv LPJmL4 < SoilGrids ¥ SoilGrids 2.0
This Study (PNV) 4 WISE GSOC D SOCDebtPaper

Figure 6. Modeled as well as observation-based estimates for global SOC stock in GtC for the first 30 cm of soil aggregated over all land
area. The comparison against observation-based data (SoilGrids, SoilGrids 2.0, GSOC and WISE) is su

LPJmL4 (Schaphoff et al., 2018a) and estimates from (Sanderman et al., 2017). We show values of this study for the year 2010 accountin
for the historical land-use dynamics as well as for an hypothetical PNV.

lemented by modeled data from

The global estimates of the total SOC stock of the upper 30 cm from this study are in the middle of the wide range of other

modeled or observation-based estimates. SoilGrids (Hengl et al., 2017) especially stands out with its high estimate, whereas
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SoilGrids ig. A2) show that our estimates are well within the

range of other estimates for most regions, but at the lower end for tropical moist and tropical wet areas

io et al., 2021) marks the lower end. Regional results

440 3.4.3 Point-based evaluation

We correlate our SOC results for natural vegetation and cropland in 2010 with literature values from point measurements (for
data base see appendix of (Sanderman et al., 2017)).
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Figure 7. Correlation between modeled and measured SOC' stocks. Given the wide span between minimun and maximum measured SOC'
stocks within in a given cell, we correlated median values with our modeled results. Both cropland and areas with natural vegetation tend to
be lower in our results than in the point measurements.

3.4.4 Natural SOC stock comparison with LPJmL4

Estimates of SOC stocks under natural vegetation influence our modeled results for cropland, which has been converted from
445 natural vegetation at some point in time. We therefore also compare our modeled results for SOC under natural vegetation
(derived using litterfall of LPJmL4) against estimates of SOC by LPImL4 for a PNV simulation. Both models are driven by the
same climate conditions and the same natural litterfall and just differ in the representation of SOC and litter dynamics. With
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our focus on cropland SOC dynamics, we compare only cells with more than 1000 ha of cropland (capturing 99.9% of global
cropland area).
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Figure 8. Correlation between modeled SOC stocks of LPJmL4 and this study for an hypothetical potential natural state (PNV) for the year
2010. The grey lines indicate the 1:1 line.

450 Spatial correlations of PNV SOC stock values are high (global R2 = 0.81), especially for dry climate zones (Fig. 8). For
temperate and tropical moist areas estimates of this study tend to be a bit lower compared to LPJmL4 results.

3.4.5 Actual SOC stock comparison with SoilGrids 2.0

SoilGrids 2.0 (Poggio et al., 2021) is a digital soil mapping approach that uses over 240 000 soil profile observations to produce

high resolution soil maps including SOC stocks and estimates of their uncertainties. To evaluate the performance of our model
455 at the global scale, we correlate SoilGrids 2.0 SOC stock values, which were aggregated to 0.5 degree resolution, to our
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estimates for the year 2010 in Fig. 9. To focus our comparison on cropland areas, we mask out grid cells with less than 1000 ha
of cropland. Spatial correlation is moderate for tropical climate zones, whereas it is low for temperate moist areas. In tropical
dry and temperate dry areas, we simulate also very low SOC values (below 10tCha”), which is not found in SoilGrids
2.0 whereas our modeled SOC stocks can be substantially higher in temperate moist areas than reported by SoilGrids 2.0.

460  Additionally, we use the uncertainty estimates from SoilGrids 2.0 in Fig. 10 to identify areas, where our modeled SOC stocks
that are below the Sth or above the 95th percentile of the SoilGrids 2.0 data. For the vast majority of grid cells our model
results are between the Sth and 95th percentile of SoilGrids 2.0 estimates. We underestimate SOC stocks especially in dry
areas (e.g. close to the Sahara). Overestimated stocks are often situated in mountainous regions.
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Figure 9. Correlation between modeled SOC stocks of this study and projected values from SoilGrids 2.0.
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Modeled SOC stock in relation to uncertainty range of SoilGrids 2.0

| |
lower than Q0.05 inside [Q0.05, Q0.95] higher than Q0.95 No Cropland

Figure 10. Global map on SOC results compared to uncertainty estimates from SoilGrids 2.0.

4 Discussion
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We have (1) developed a reduced-complexity model and (2) compiled a spatially explicit time series data set of agricultural
management data in order to (3) analyze the role of agricultural management in historical cropland SOC dynamics. Our study.
shows that information on agricultural management alters estimates of the SOC debt and slows down loss of SOC compared
to the often used constant management assumptions.

It is important to evaluate the validity of our results as modeling management effects on SOC dynamics at the global scale

‘Fhis suggests that our results-are-within-a-plausible range-comes with large uncertainties. The model includes a large number
of parameters. and for most of these the uncertainty distributions have not been quantified so far. Moreover, we think that
beyond parameter uncertainty, the structural uncertainty from the model design is high. The management data itself is prone to
uncertainties as well, as most of it is only indirectly calculated from reported data.

In the following, we give a qualitative
assessment of the uncertainties and limitations of this study as well as discuss our three study objectives and results against
existing literature.

s—Our spatially explicit time series data set of agricultural
management is based on country-specific FAO production and cropland statistics (FAOSTAT, 2016) as well as 0.5 degree
land-use data from LUH2 (Hurtt et al., 2020). Starting from these two sources, we derive a harmonized and consistent data
set for the major C flows within the agricultural system (4) using a mass balance approach from the IPCC guidelines Vol. 4
(Eggleston et al., 2006; Calvo Buendia et al., 2019) and other auxiliary data sets (e.g. Porwollik et al., 2019).

For some of the aspects covered in our data set, for example livestock distribution (Robinson et al., 2014) or manure production
and application (Zhang et al., 2017), well-compiled data sets in high resolution exist that capture real world conditions much
better than our estimates. However, they often come with the caveats of either being static in time, demanding large sets of
auxiliary data or being inconsistent with each other.
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515 s-For most of the parameters used in our management estimates no

uncertainty estimates exist. This is why, in our view, most of the uncertainty with respect to the impacts of SOC management is
included in the management data itself, and especially in the residue and manure production and application numbers, as these
are only indirectly derived from crop and livestock production, feed and area data (FAOSTAT, 2016; Weindl et al., 2017). The
uncertainty of recycling shares adds on top of the uncertain total numbers of manure and residue biomass. Previous modeling
520  studies of SOC carbon on cropland often only used stylized scenarios of management practices (Pugh et al., 2015; Lutz et al., 2019)
While our data set, by including crop residues and manure, likely the largest carbon inputs to soils, it does not account for
a list of minor carbon inputs from cover crops. agroforestry, green manure, weed biomass as well as application of human
excreta, sewage sludge, processing wastes, forestry residues or biochar. Including these sources would correct our estimates
525 upwards and bring our estimates closer to the IPCC stock change factors (see Sect. 3.4.1). Unfortunately, data on the quantity
of these inputs is very scarce and does not exist with global coverage.

SOC inputs from above-ground residues had the strongest management effect on SOC debt dynamics on cropland (see Fig.
5). As pointed out by Keel et al. (2017) and Smith et al. (2020), carbon input calculations are highly sensitive to the choice of

allometric functions determining below- and above-ground residue estimates from harvested quantities (see A1l for coefficients
530 used in this study). Keel et al. (2017) question whether belew—greund-below-ground residues might increase with a fixed
root:shoot ratio rather than being independent of productivity gains. Moreover, the study pointed out that plant breeding shifts
allometries, which might not be reflected in outdated data sources. While our study considers a dynamic harvest index with

rising yields for several crops, we may still overestimate residue biomass, in particular for below-ground biomass. Hewever;

535 4.2 Reduced complexity SOC model

Our reduced-complexity SOC model is based on a Tier 2 modeling approach. This reduces the computational and data demand

of the model in comparison to DGVMs, while still allowing for the explicit representation of agricultural management practices.

Along with the effects of various C inputs, the impacts of water supply from rainfall and irrigation as well as tillage systems

can also be accounted for in the computation of SOC decay rates. As such, the model can reflect the spatial and temporal
540  heterogeneity in both management and biophysical conditions.

The substantial impact of changing management practices through time is indicated by the development of our estimated
stock change factors a i 4 i tH-misst
%mmﬁ%mwwmmww@gm
Fig. 2(a)). Residue management has changed over the last decades, especially with the phasing out of residue burning practices

545 in several regions and increased general productivity, showing a clear impact on SOC dynamics — underlining the importance
to account for these effects in soil carbon modeling.
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The Tier 2 approach (Ogle et al., 2019) used here is explicitly designed for agricultural soils, whereas we apply it also to soils
under PNYV; This is necessary in order to represent SOC losses under land-use change in a dynamic way, as this is an important
driver of SOC dynamics. The comparison of simulated PNV data with LPJmL4 shows the model’s substantial capability in

550  reproducing PNV SOC stocks (Fig. 8).

Using litterfall estimates from LPJmL4, we
WM which is assumed-to-be-in-steady-state-considering-the-land-use
r-dominated by SOC under natural vegetation. However.

as the world’s SOC stock is highly uncertain, which is seen in the wide range of global SOC stock estimates for the first 30 cm of
the soil profile (Batjes, 2016; Hengl et al., 2017; FAO, 2018; Schaphoff et al., 2018a; Poggio et al., 2021; Sanderman et al., 2017)

5565

3

-0, the only.
conclusion we can draw from this is that our result is within a plausible range. To avoid a strong impact of natural land
representation and its uncertainties on our results, we focus on SOC changes on cropland, Pristine natural vegetated areas (like

560 permafrost and rain forests) without human land management drop out in our calculation of SOC debt and stock change factors.
Natural SOC estimates only influence results when natural land is converted to cropland.

Comparing the geographic SOC patterns to Soil Grids 2.0 (Poggio et al., 2021) (see Fig. 10), we find that our model
estimates values of SOC stocks greater than the estimated confidence intervals in Soil Grid 2.0 for some mountainous regions
across the globe. This could indicate that we are not capable in capturing specific processes that would reduce the vegetation’s

565  productivity (such as erosion on steep slopes or shallow soils (Borrelli et al., 2017)). A large swathe of eastern North America
was heavily affected by the dust bowl event, with wind erosion removing large parts of the topsoils, a process not considered
in_our model. Similarly, we likely overestimate SOC stocks for the loess soils in northern China and the Altiplano in Latin
America; in both cases erosion is a likely reason. In contrast, we estimate lower SOC stocks at the edges of the Sahara, where
uncertain local water availability and artifical irrigation may dominate spatial SOC patterns.

570 In our model, erosion should however only affect the spatial pattern but not the aggregate SOC pool. As pointed out
by Doetterl et al . . - . o

575 memmmmmm
even offset LUC emissions (Wang et al., 2017). Whereas for soil quality analysis SOC displacement might play an important
role. in this budget approach focused especially on the SOC debt, displaced but not emitted SOC can be treated as SOC that
remains on the cropland. Erosion and degradation impacts on yields and therefore on soil € inputs are captured by our method
as we base them on FAQ statistics of actual production. Yet the distribution of production below the country level - which we

580  allocate proportional to LPJmL, production potentials that do not reflect erosion feedback to yields - will overestimate yields
and therefore biomass inputs to eroded soils.
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In comparison with default stock change factors of the IPCC guidelines, our model estimates a stronger decline of SOC
stocks (Table 3) for almost all regions. Tropical soils might suffer from low C input rates due to large yield gaps (Global
Yield Gap and Water Productivity Atlas. Available URL: www.yieldgap.org (accessed on: 03/01/2022)) and high shares of
residue removal and burning in lower-income countries (Smil, 1999a; Williams et al., 1997; Jain et al., 2014). Yet, even when
comparing our etimates to the low-input stock change factors of the IPCC, our SOC loss is roughly twice as large as the
revised 2019 IPCC default values, while it shows very good agreement with the older default values from IPCC (2006). Don
etal. (2011) estimated SOC losses for tropical soils of around 25% on average corresponding to a stock change factor of 0.75,
but also reported a wide range of measured SOC changes from -80% to +58%. Fujisaki et al. (2015) however found much
lower loss rates of around 9%, attributing the difference to the different time period length since the conversion to cropland.
As our results do not specifically account for cropland age and most of the cropland is older than 20 years (as assumed for the
default IPCC Tier 1 stock change factors) our stock change factors have to be lower by definition following the steady-state
assumption that cropland will continue to approach a new equilibrium. For the same reason, our estimates for temperate regions
might be lower than both IPCC (2006) and IPCC (2019) default values. With the production-increasing impact of irrigation and
fertilization on carbon-poor dryland soils, SOC under cropland can also be higher than under PNV with stock change factors

above 1 (see Fig. 2(d)), but these areas are much smaller than where the stock change factors are well below unity.
Generally, the-limitlimiting the analysis to the first 30 cm of the soil profile follows the IPCC guidelines (Eggleston et al.,

2006; Calvo Buendia et al., 2019) and assumes that most of the SOC dynamie-happens-dynamics happen in the topsoil. In
this regard several aspects are strongly simplified within our approach. Firstly, distribution of carbon inputs into different soil
layers are neglected and all carbon inputs are allocated to the topsoil. This particularly overestimates SOC stocks in the first 30
cm of soil below deeper rooting vegetation, which is certainly the case for most of the woody natural vegetated areas. Secondly
Second, changes to the subsoil due to tillage are neglected. As Powlson et al. (2014) have shown, the subsoil can be a-game

changer-make a large difference in evaluating total SOC losses or gains for no-tillage systems. No-tillage effects may seem

larger than the-aetaally-areif-onlyfocusing-on-the-topsoil —-SOCtransfer-they actually are if only topsoil is considered. SOC
transfers to deeper soil layers under tillage - might enhance subsoil SOC compared to no-till practices. ThirdbyFinally, organic

soils (like peat- and wetlands) and drained cropland areas are not explicitly considered and emissions from these cropland areas

are thus likely substantially underestimated.
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climatic and anthropogenic effects overlap. There is broad consensus that land conversion to cropland has caused substantial

. Friedlingstein et al., 2020). There is uncertainty with respect to the overall size of

C emissions over the historical period (e.

these emissions from different methods and reference points and with respect to the contribution of cropland and agricultural
management to these emissions. In order to mitigate greenhouse gas emissions, it is essential to stop the decline of SOC stocks
or even transform cropland management to sequester atmospheric C in cropland soils (Minasny et al., 2017). Defining the SOC
debt of 1975 as the baseline, and measuring land-use emissions on cropland as the difference between a potential natural state
and the state under human interventions (see Pugh et al.. 2015), we find that global cropland has acted as a emissions source
since 1975. Annual C loss rates of 0.2 per 1000 C still have the opposite trend as the promoted 4 IPEE2019How-invariant 0:76

0 R7 N 700 O-66—0-6 D 010 med M 1 nt () K 002 N 760 060070 61P 010 hich-in 1ant ) Q AMOTA
O UTTUTOs U-00—9u O v/ Ssge vaitd 0D Us U7 O—Us -0 U790 v, 4 vatrta v 70

,2017). Dedicated efforts to

Frgatrot—ana atrorofr€a Oh-poor-aryrana—So 5

With-regard-to-the-time-trend;—our—stady-per 1000 C sequestr

increase cropland SOC are thus necessary, as management improvements at historical rates are not enough to counteract
ongoing SOC degradation on cropland. Yet our study also shows the substantial impact of changing management faeters-on

SOC debt (Fig. 5).

ation rate target (Minasny et al.

the development of sto hange-tactors-as-also-indicated-by-the-time-trend-ot-the-SOCdeb
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According to Sanderman et al. (2017), the SOC debt since the beginning of human cropping activities has been at around 37

GtC for the first 30 cm of the soil p

655

660

665

670

with half of it attributed to SOC depletion on grasslands. Our estimate of 39.6 GtC in 2010 for cropland debt is thus twice as

high as their estimate. However, there are large uncertainties in modeling SOC at the global scale, and Sanderman et al. (2017)

675 pointed out that their results might be conservatively low compared to experimental results.

et al. (2017) modeled historical trends based on agricultural land expansion without considering SOC variations due to time-
ati ieithistorieagri at-ma : sagricultural management. Pugh etal. (2015)

680 considered management effects like tillage and incorporation of residues in stylized and static scenarios only, so that they could
not account for historical management effects on SOC dynamics. Their study moreover concludes that yield gains (by 18% in
their simulations) do not lead to a substantial decline in SOC debt (less than 1% change). Historical yield increases, however,
are often estimated to be well above 50% (Pellegrini and Ferndndez, 2018; Ray et al., 2012; Rudel et al., 2009). While we find

variant an
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substantially larger effects of productivity gains than the 1% reported by Pugh et al. (2015), this is not sufficient to compensate
685 SOC losses from moderate global cropland expansion of around 11% between 1974 and 2010,
The effects of agricultural productivity on cropland SOC dynamics, including historical yield trends and associated increases
in residue inputs, can be directly accounted for in our modeling approach. In contrast, process-based studies (Pugh et al., 2015; Herzfeld et :
often lack data on relevant management aspects that drive production increases. Herzfeld et al. (2021) also consider historical
management trends for fertilizer and manure inputs as well as on residue removal rates and tillage systems, but cannot reproduce
690 the substantial increase in agricultural productivity over the last decades. Still, they find that compared to no-tillage systems,
residue management has much larger potential to affect the strength of their projected future global cropland SOC decline.
This is consistent with our finding that increasing SOC inputs from above-ground residues had the strongest effect on the
slowing-down of the SOC debt increase (Fig. 3).

695

can be reproduced by models. but require information on inputs that are not available at the global scale, such as annual data on
sowing dates, planting densities, and genetic traits such as kernel number and radiation use efficiency. As such, it will remain
Our study again-highlights-emphasizes again that the expansion of eroplands—cropland is still a major source of CO, emis-

sions — not only by-through the removal of vegetation, but also by a slow depletion of C stocks in soils. Our estimates indicate

a SOC debt of 22-39.6 GtC in 2010, and every additional deferestation-deforestated hectare adds to this debt.

~d-manacementhave ledtoinereacad—SO

705

710

and other environmental regulation leads to intensification on existing cropland (Humpendder et al., 2018) and our results show
715 that such intensification could lead to increased cropland SOC, if residues are returned to the soil — and-therebyusually-farther
reduece-the-SOC-debt-on-—<croplands-
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by-the-4-per-1000-initiativeamplifying the C sequestration potential of avoided deforestation.
Yet-there-is-There is also ample potential for further improved SOC management. As shown in Fig. 4, approximately one

fifth of total annual C sequestration by crops is lost through soils (0.8 GtC per year). Large-dosses-infact-However, even larger
losses occur at the end of the food supply chain (1.2 GtC year), and-at-the-litter-sotl-barrier-at_the soil surface (1.4 GtC),

during residue burning (0.3 Gt C) and with manure management (0.2). Improved management could include, firstly, a circular

flow from the food supply chain back to soils. Waste composting or excreta recycling could represent a major additional N-C

input to cropland soils (Brenzinger et al., 2018). Secondly, soil carbon sequestration techniques (Smith, 2016), deep ploughing
(Alcéntara et al., 2016) or the transformation of ¢-C inputs to more recalcitrant biochar (Woolf et al., 2010) may transfer
larger parts of the biomass at the litter soil barrier into permanent soil pools. Thirdly, reducing the share of residue burning
and improved manure recycling could further increase C inputs. Finally, other carbon-accumulating practices, such as the

cultivation of cover crops Peeplav-andDoen;2045)-(Poeplau and Don, 2015; Porwollik et al., 2022) and agroforestry (Lorenz
and Lal, 2014) could increase total C sequestration on ereplandscropland.
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5 Conclusions

We have compiled a spatially explicit and time-variant data set on agricultural management aspects relevant for cropland
SOC dynamics. We have also developed a reduced-complexity SOC model that is able to be applied in optimization-based
IAM frameworks, for which detailed process-based models are computationally too expensive. Making use of these data and
model, we are able to estimate spatially explicit SOC stocks, SOC debts, and stock change factors considering agricultural
management. It is — to our knowledge — the first study that analyzes the role of time-variant and spatially explicit historical
agricultural management for global SOC dynamics.

Qur results demonstrate that historical changes in _agricultural management have shaped the SOC debt on cropland. It

is thus necessary to explicitly consider agricultural management in a dynamic manner in global carbon assessments and

models, especially when exploring climate mitigation pathways with so-called land-based solutions (e.g. Popp et al., 2016

- That also implies that we need better monitoring of agricultural practices to create this data, but also better accessibility of
existing data. Our open-source model (Karstens and Dietrich, 2020), published data-set (Karstens, 2020a) and the flexible data
processing with the MADRaT package (Dietrich et al., 2020) constitute a starting point for building comprehensive data sets
on agricultural management aspects.

With the reduced-complexity SOC model we are able to account for agricultural management effects on cropland SOC
dynamics within optimization-based IAM frameworks. Reduced input data requirements such as accounting for changes in
productivity rather than reproducing the processes that lead to such changes in productivity (Elliott et al., 2018) will help to
explore the role of agricultural management in sustainable development pathway analyses (Sorgel et al., 2021). However, we
clearly see that increases in agricultural productivity are not sufficient to create positive net SOC sequestration in cropland soils.
More management options that explicitly target the sequestration of C in cropland soils need to be considered. Our open-source
model can be expanded to account for additional management options for carbon farming, such as cover crops, agroforestry,
or biochar applications.

Code and data availability. We compile calculations as open-source R packages available at github.com/pik-piam/mrcommons (Bodirsky
et al., 2020a) for the management related functions, github.com/pik-piam/mrsoil (Karstens and Dietrich, 2020) for soil dynamic related func-
tions and github.com/pik-piam/mrvalidation (Bodirsky et al., 2020b) for validation data. All libraries are based on the MADRaT package at
github.com/pik-piam/madrat (Dietrich et al., 2020), a framework which aims to improve reproducibility and transparency in data processing.
Model results including C input data are accessable under https://doi.org/10.5281/zenodo.4320663 (Karstens, 2020a). Software code for

paper and result prepartion can be found under www.github.com/k4rst3ns/historicalsocmanegement.
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Polar Moist C-Temp Moist . Polar Dry . C-Temp Dry . Tropical Montane . Tropical Wet
Boreal Moist . W-Temp Moist . Boreal Dry . W-Temp Dry . Tropical Moist Tropical Dry

Figure A1l. Climate zone map adpated from IPCC: The climate zone classification is based on the classification scheme of the IPCC guide-
lines (Eggleston et al., 2006) and has been reimplented by Carre et al. (2010), which is the source of this data. Note that the reduced set, used

for the comparison of stock change factors is included in the color code with temperate moist in light blue, temperate dry in dark violett,
tropical moist in red and tropical dry in orange.
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Appendix A: Figures and tables in appendices
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Figure A2. Modelled as well as data based estimation for climate zone specific SOC stock in GtC for the first 30 cm of soil aggregated over
all land area: SoilGrids, GSOC and WISE do not consider changes over time and rely on soil profile data gather over a long period of time,
which makes it hard to pinpoint a specific year to these SOC estimations. In this context they will be compared to modelled data (LPJmL4,

this study) for the year 2010. PNV denotes the potential natural vegetation state without considering human cropping activities, calculated

as reference stock within our model. We use the climate zone specification of the IPCC (Eggleston et al., 2006).
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