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Abstract. Soil organic carbon (SOC) is one of the largest terrestrial carbon (C) stocks on Earth. The first meter of the Earth’s

soils profile stores three times as much C as the vegetation and twice the amount of C in the atmosphere. SOC has been depleted

by anthropogenic land-cover change and agricultural management. However, the latter has so far not been well represented in

global C stock assessments. While SOC models often simulate detailed biochemical processes that lead to the accumulation

and decay of SOC, the management decisions driving these biophysical processes are still little investigated at the global scale.5

Here we develop a spatially explicit data set for agricultural management on cropland, considering crop production levels,

residue returning rates, manure application, and the adoption of irrigation and tillage practices. We combine it with a reduced-

complexity model based on the IPCC Tier 2 method to create a half-degree resolution data set of SOC stocks and SOC stock

changes for the first 30 cm of mineral soils. We estimate that due to arable farming, soils have lost around 34.6GtC relative to

a counterfactual hypothetical natural state in 1975. Within the period 1975–2010 this SOC debt continued to expand by 5GtC10

(0.14GtC yr−1) to around 39.6 GtC. However, accounting for historical management led to 2.1GtC less (0.06GtC yr−1)

emissions than under the assumption of constant management. We also find that management decisions have influenced the

historical SOC trajectory most strongly by residue returning, indicating that increasing SOC sequestration by biomass retention

may be a promising negative emissions technique. The reduced-complexity SOC model may allow to simulate management-

induced SOC sequestration also within computationally demanding integrated (land-use) assessment modeling.15
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1 Introduction

Soil organic carbon (SOC), the amount of organic carbon stored in the Earth’s soil, constitutes the largest terrestrial organic

carbon pool. It exceeds the carbon in the atmospheric and vegetation pools multiple times (Batjes, 1996). Even small changes

in processes affecting SOC lead therefore to substantial shifts in the terrestrial carbon cycle and influence the amount of CO2

in the atmosphere (Friedlingstein et al., 2020; Minasny et al., 2017). The specific amount of carbon stored in soils globally is20

quantified with estimates ranging from 1500 to 2400 GtC for the first meter of the soil profile (Batjes, 1996; Sanderman et al.,

2017).

Natural properties like climatic, biophysical, and landscape characteristics clearly play the most important roles to determine

SOC variations over space and time. Recent studies have focused on the evaluation of total SOC stocks of the world as well as

on the spatial disaggregation of soil properties such as SOC content (Batjes, 2016; Hengl et al., 2017; FAO, 2018). However,25

these studies often do not include human interventions, like land cover change and agricultural management, in their analysis.

Compared to climatic and geological driving forces, human interventions alter terrestrial carbon pools over much shorter time

scales and are currently one of the most dominant drivers of SOC changes on managed land (Hansis et al., 2015; Bastos et al.,

2021).

The anthropogenic impact can be measured by the SOC debt (also referred to as SOC component of land-use change30

emissions, see Pongratz et al. (2014)), which is the amount of organic carbon soils have lost under cultivation compared to a

hypothetical potential natural vegetation state. Sanderman et al. (2017) identified the anthropogenic SOC debt for the first meter

of the soil profile due to land cover change at around 116 GtC (37 GtC for the first 30 cm), compared to previous estimates of

60–130 GtC for the first meter (Lal, 2001).

Global assessments of the carbon cycle via dynamic global vegetation models (DGVMs), Earth System Models (ESMs) or35

bookkeeping models (BKMs) have analyzed SOC losses as part of a comprehensive evaluation of the global carbon budget and

land-use change (LUC) emissions (Friedlingstein et al., 2020). While providing estimates of the magnitude of SOC losses due

to land-cover change, most models lack a detailed representation of agricultural management. Earlier DGVM- and ESM-based

assessments only considered changes in land cover, but ignored the removal of biomass at harvest (Strassmann et al., 2008;

Betts et al., 2015). BKMs are designed to estimate LUC related emissions but often ignore changes in SOC due to climate40

change, CO2 fertilization and N deposition. Whereas BKM have largely improved in estimating additional emissions from

wood harvest and shifting cultivation, state of the art models do not consider impacts of varying agricultural management

(Friedlingstein et al., 2020; Houghton et al., 2012; Hansis et al., 2015; Bastos et al., 2021).

Managed agricultural systems were introduced in greater detail to DGVMs and ESMs to improve the assessment of the

terrestrial carbon balance (e.g. Bondeau et al., 2007; Lindeskog et al., 2013). Pugh et al. (2015) explicitly consider agricultural45

management in the form of tillage, irrigation and biomass extraction at harvest, but worked with stylized scenarios rather than

with historical management data. They also showed the importance of accounting for the land-use history, as many carbon

emissions from agricultural soils are caused by historical LUC and the slow decline of SOC under cropland before a new

equilibrium is reached.
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In global-scale carbon cycle assessments, management systems are typically represented as spatially explicit patterns that50

are static in time (e.g. growing seasons (Portmann et al., 2010), multiple cropping systems (Waha et al., 2020), irrigation

systems (Jägermeyr et al., 2015)) or as stylized scenarios (e.g. Pugh et al., 2015; Lutz et al., 2019). Herzfeld et al. (2021)

account for historical changes in fertilizer and manure inputs, residue removal rates and tillage systems and report SOC losses

from cropland expansion over the period from 1700–2018 of 215 GtC. Within their stylized future management scenarios they

find that none of the management aspects considered (residue management, no-tillage) can create a net carbon sink on current55

cropland areas under future climate change.

More data sets on spatially explicit agricultural management time series with global coverage are becoming available (e.g. on

tillage systems, see (Porwollik et al., 2019; Prestele et al., 2018)) and modeling approaches are increasingly being developed to

project the dynamics of management systems into the future (e.g. (Iizumi et al., 2019; Minoli et al., 2019)), but have — to our

knowledge — not yet found their way into comprehensive assessments of the terrestrial carbon cycle in DGVMs and BKMs.60

Field-scale models (Del Grosso et al., 2001; Coleman et al., 1997; Smith et al., 2010; Taghizadeh-Toosi et al., 2014) are able

to better account for historical agricultural management if detailed information on crop yield levels, fertilizer inputs and various

other on-farm measures is available for the studied sites. However, due to the lack of comprehensive global management data

as input to these models, scaling up to the global domain remains a complex challenge (Morais et al., 2019).

Managed soils have been increasingly studied not only for their carbon emitting behavior, but also because of their capacity65

to re-store carbon (soil carbon sequestration (SCS) techniques). However, assessing SCS dynamically considering the inter-

dependency with environmental, social and economic sustainability targets has been difficult so far, as integrated assessment

models (IAMs) (Popp et al., 2016; Rogelj et al., 2018; Forster et al., 2018) have not integrated soil management into their

mitigation pathways. More detailed process-based models are typically computationally too demanding to be integrated into

optimization-based IAMs. Better accounting for soil carbon management in IAMs thus requires a light-weight model suitable70

for iterative modeling with detailed options to represent agricultural soil management.

The objectives of our study are (1) to develop a reduced-complexity SOC model able to account for SCS in IAM frameworks;

(2) to create a comprehensive data set of the global gridded management time series, including crop production levels, residue

input rates, manure amendments, and the adoption of irrigation and tillage practices; and (3) to provide global as well as

spatially explicit SOC and SOC debt estimates that consider spatially explicit and time-variant agricultural management. We75

decompose the contribution of different management activities through a scenario analysis, identifying the most impacting

management decisions for SOC development. Moreover, we compare our model performance against other SOC stock and

SOC emission estimates, to evaluate the suitability of this reduced-complexity approach for integration into IAM modeling.
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2 Methods

In Sect. 2.1 we introduce the basic concept of SOC dynamics as applied in this study and explained in more detail in the80

refinement of the IPCC guidelines vol. 4 Chapter 5 on “Cropland” (Ogle et al., 2019). We additionally describe how we

configured and extended the Tier 2 modeling approach (for model code see Karstens and Dietrich, 2020). In Sect. 2.2 we

shortly refer to the concept of stock change factors as outlined in the Tier 1 approach of the IPCC guidelines (Eggleston et al.,

2006; Calvo Buendia et al., 2019). Section 2.3 provides a detailed description of the global, gridded management data used to

drive the model, including crop production levels, residue input rates, manure amendments, and the adoption of irrigation and85

tillage practices (for model code see Bodirsky et al., 2020a). In Sect. 2.4 we define the management scenarios used to analyze

the role of different management aspects in historical cropland SOC dynamics.

2.1 SOC stocks and stock changes following the Tier 2 modeling approach

Following the Tier 2 modeling approach of the refinement of the IPCC guidelines vol. 4 Chapter 5 on “Cropland” (Ogle

et al., 2019); referred to as Tier 2 modeling approach in the following), we estimate SOC stocks and their change over time90

for cropland at half-degree resolution from 1975 to 2010. We restrict our analysis to the first 0-30 cm of the soil profile.

Moreover, we assume the current SOC state converges towards a steady state, which itself depends on biophysical, climatic

and agronomic conditions. Therefore, we take the following three steps for each year of our simulation period: (1) We calculate

annual land-use type-specific steady states and decay rates for SOC stocks (Sect. 2.1.1); (2) we account for land conversion by

transferring SOC from and to natural vegetation (Sect. 2.1.2), (3) we estimate SOC stocks and changes based on the stocks95

of the previous time step, the steady state stocks and the decay rate (Sect. 2.1.3). To initialize the first year of our simulation

period we use a spin-up period of 74 years (Sect. 2.1.4).

2.1.1 Steady-state SOC stocks and decay rates

In a simple first order kinetic approach the steady-state soil organic carbon stocks SOCeq are given by

SOCeq
i,t,sub,lu =

C in
i,t,sub,lu

ki,t,sub,lu
(1)100

with C in being the carbon inputs to the soil, k denotes the soil organic carbon decay rate. This equation is valid for all grid cells

i and all years t. We use the Tier 2 modeling approach for our calculations, which assumes three soil carbon sub-pools sub

(active, slow and passive) and interactions between them, following the approach in the Century model (Parton et al., 1987).

Annual carbon inflow to each sub-pool and annual decay rates of each sub-pool are land-use type lu specific. We distinguish

two land-use types: cropland and uncropped land under potential natural vegetation as representative for all other land-use105

types including forestry and pastures (referred to as natural vegetation in the following).

Carbon inputs for cropland are below- and above-ground crop residues left or returned to the field (see Sect. 2.3.2) and

manure inputs (see Sect. 2.3.3); for natural vegetation, litterfall including fine root turnover (Schaphoff et al., 2018b) is the

only source of carbon inflow to the soil. Following the IPCC guidelines (Ogle et al., 2019), carbon inputs are disaggregated
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into metabolic and structural components depending on their lignin and nitrogen content. For each component the sum of all110

carbon input sources is allocated to the respective SOC sub-pools via transfer coefficients. This implies that both the amount

of carbon and its structural composition determine the effective inflow into the different pools.

Whereas residue and manure default lignin and nitrogen fractions are given by the IPCC guidelines (Ogle et al., 2019), we use

plant-functional type and plant-organ specific parameterization for the natural litterfall. Global distribution of plant-functional

types is given by (Schaphoff et al., 2018b) as well as separation of litter into leaf, fine root and wood litter compartments115

excluding litter biomass burnt in wild fires. Leaf litter parameters are given by Brovkin et al. (2012), fine root to leaf litter

lignin ratio by Guo et al. (2021), lignin content of wood litter by Rahman et al. (2013) and nitrogen content scaling factors for

leaf to fine roots and leaf to wood litter by von Bloh et al. (2018). Data sources for all considered carbon inputs as well as for

lignin and nitrogen parameterization are listed in Table 1.

Table 1. type and data sources for carbon inputs and parameterization to different land-use types

land-use types source of carbon inputs data source nitrogen and lignin content

cropland

above-ground residues, FAOSTAT (2016),

Schaphoff et al. (2018b),

Weindl et al. (2017)

LG:C generic values according to Table 5.5B,

5.5C from IPCC (Ogle et al., 2019),

crop-specific N:C from Bodirsky et al. (2012)

below-ground residues,

manure

natural vegetation annual litterfall Schaphoff et al. (2018b) leaf N and LG concentration from Brovkin et al.

(2012), root to leaf litter LG ratio Guo et al.

(2021), lignin content of wood litter Rahman

et al. (2013) and nitrogen scaling factors for leaf

to root and wood litter from von Bloh et al.

(2018)

The sub-pool specific decay rates ksub are influenced by climatic conditions, biophysical and biochemical soil properties as120

well as management factors that all vary over space i and time t. Following the Tier 2 modeling approach (Ogle et al., 2019),

we consider temperature temp, water wat, sand-fraction sf , and tillage till effects to account for spatial and temporal variation

of decay rates. Thus, ksub rates are given by

ki,t,active,lu = kactive · tempi,t · wati,t,lu · tilli,t,lu · sfi

ki,t,slow,lu = kslow · tempi,t · wati,t,lu · tilli,t,lu

ki,t,passive,lu = kpassive · tempi,t · wati,t,lu

. (2)

For natural vegetation, we assume rainfed and non-tilled conditions, whereas for cropland, we distinguish the effect of125

different tillage (see Sect. 2.3.5) and irrigation (see Sect. 2.3.4) practices on decay rates. We calculate area-weighted means for

till and wat on cropland for each grid cell, using area shares for the different tillage and irrigation practices. Data sources as
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well as used parameters for the different decay drivers for all land-use types are listed in Table 2; equations are displayed by

equations 5.0B–5.0F in Ogle et al. (2019).

Table 2. type and data sources for carbon inputs to different land-use types

land-use types type of decay driver parameter use to represent driver data source

all
soil quality sand fraction of the first 0-30 cm Hengl et al. (2017)

mircobial activity air temperature Harris et al. (2020)

soil moisture precipitation & potential evapotranspiration Harris et al. (2020)

cropland

(additionally)

soil moisture* irrigation Sect. 2.3.4

soil disturbance tillage Sect. 2.3.5

2.1.2 SOC transfer between land-use types130

We calculate SOC stocks based on the area shares of land-use types lu within our grid cells i. If land is converted from one

land-use type lu = {crop,natveg} into the other !lu = {natveg,crop}, a respective share of the SOC is reallocated within our

budget. We do not distinguish between newly converted and existing cropland, but can work with the average carbon content

as the relative decay of SOC is proportional to the SOC stock (see 1). We account for land conversion at the beginning of

each time step t by calculating a preliminary stock SOCt∗ via135

SOCi,t∗,sub,lu = SOCi,t−1,sub,lu−
SOCi,t−1,sub,lu

Ai,t−1,lu
·ARi,t,lu +

SOCi,t−1,sub,!lu

Ai,t−1,!lu
·AEi,t,lu (3)

with Alu being the land-use type specific areas, ARlu the area reduction and AElu the area expansion of the two land-use

types. Data sources and methodology on land-use states and changes are described in Sect. 2.3.1.

2.1.3 Total SOC stocks and stock changes

SOC converges towards the calculated steady-state stock SOCeq for each grid cell i, each annual time step t, each land-use140

type lu and each sub-pool sub like

SOCi,t,sub,lu = SOCi,t∗,sub,lu + (SOCeq
i,t,sub,lu−SOCi,t∗,sub,lu) · ki,t,sub,lu · 1a. (4)
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Figure 1. Scheme of land-use transition representation. Given an initial land-use pattern (as in this example 2 ha land under natural vegetation

and 1 ha of cropland), there are separate SOC stocks for natural vegetation and cropland. While in this example we assume SOC under

natural vegetation to be in steady state, the cropland SOC stock approaches its steady state without having reached it yet (a). Upon cropland

expansion (in this example half of the natural vegetation is cleared to be used as cropland), SOC stocks on cropland increase due to a transfer

of land from natural vegetation (b). Explicitly representing newly converted cropland and existing cropland to account for SOC dynamics (c)

leads to the same weighted mean value as averaging SOC stocks (d), due to the linearity of Eq. 4 and cropland-age independent decay rates

(see Eq. 2).

Note that the decay rates have to be multiplied by one year (1a) to form a dimensionless factor. Reformulating this equation,

we obtain a mass balance equation as follows

SOCi,t,sub,lu = SOCi,t∗,sub,lu−SOCi,t∗,sub,lu · ki,t,sub,lu · 1a︸ ︷︷ ︸
outflow

+

input (using equation (1))︷ ︸︸ ︷
SOCeq

i,t,sub,lu · ki,t,sub,lu · 1a . (5)145
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The global SOC stock for each time step t can then be calculated via

SOCt =
∑
i

∑
lu

SOCi,t,lu – land-use type specific SOC stock within cell︷ ︸︸ ︷∑
sub

SOCi,t,sub,lu︸ ︷︷ ︸
SOCi,t – total SOC stock within cell

. (6)

According to the IPCC guidelines SOC changes can be expressed as the difference of two consecutive years (see Eq. 5.0A

in Ogle et al., 2019). This, however, will also include naturally occurring changes due to climatic variation over time. For our

study, we define the absolute and relative SOC changes in relation to a potential natural state SOCpnv under the same climatic150

conditions in grid cell i at time t, that is based on the natural vegetation SOC calculations as defined above without accounting

for land conversion from cropland at any time. The absolute changes ∆SOC and relative changes F SCF are thus given by

∆SOCi,t = SOCi,t−SOCpnv
i,t and F SCF

i,t =
SOCi,t

SOCpnv
i,t

. (7)

Note that the absolute changes ∆SOC can be also interpreted as the SOC debt (Sanderman et al., 2017) due to human crop-

ping activities; whereas relative changes F SCF can be considered stock change factors as defined within the IPCC guidelines of155

2006 (Eggleston et al., 2006). Moreover, ∆SOC is equivalent to the negated cumulative SOC component of human land-use

change emissions (Pugh et al., 2015).

2.1.4 Initialization of SOC pools

The initialization of SOC pools is very important and has to include the proper accounting for the land-use history, as many

CO2 emissions from agricultural soils are caused by historical land-use change (LUC) and the slow decline of SOC under160

crop cultivation, before it reaches a new equilibrium. We initialize our SOC sub-pools using a three-step approach, since input

data availability is limited for climate and litter estimates (starting only in 1901) as well as for agricultural management data

(starting only in 1965):

Firstly, in order to account for the impacts of legacy fluxes from land-use changes long before the time horizon of interest,

we consider land-use change from 1510 onwards. In 1510, we assume all SOC pools to be in natural steady-state, implying165

that all land-use change prior to that time occurs in 1510. We assume that by 1901, all cropland converted in 1510 has reached

its new steady state, so that it is not necessary to explicitly account for even older land conversion. Model inputs for 1901–

1930 for climate and natural vegetation litterfall are repeated for 1510–1900 to mimic constant climate conditions for this first

initializing period. Similarly, agricultural management data are held constant at the level of 1965 until 1965. This approach

follows others studies looking on effects of land-use change and management (e.g. Schaphoff et al., 2018a; Herzfeld et al.,170

2021).

Secondly, with the availability of transient climate data after 1901, we account not only for land-use change, but also

for historical climate change and consequently natural litter inputs to the soil from 1901 to 1965 still considering constant

agricultural input data, which are not available prior to 1965.
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Thirdly, we run the model for 10 years from 1965 to 1975 with historical dynamic data on agricultural management and start175

analyzing results from 1975 onward. This is in line with the IPCC guidelines vol. 4 method suggestion to have a 5-20 year

spin-up period (Ogle et al., 2019).

With transient climate considered after 1901, decay rates ksub become dynamic in time. As the decay rates are also affected

by irrigation and tillage (see Sect. 2.1.1), we also account for transient changes in irrigated areas after 1901. Data on no-tillage

practices are only available after 1974 and we assume conventional tillage on all cropland prior to 1975.180

2.2 SOC stocks and stock changes following Tier 1

Additionally to the Tier 2 modeling approach (Ogle et al., 2019) and the detailed analysis of management data coming with

it, SOC changes can be estimated using the IPCC Tier 1 approach of IPCC guidelines (Eggleston et al., 2006; Calvo Buendia

et al., 2019). Here, stocks are calculated via stock change factors (F SCF) given by the IPCC for the topsoil (0-30 cm) and based

on observational data. Estimates of F SCF are differentiated by crops, management and input systems (here summarized under185

m) reflecting different dynamics under changed in- and outflows without explicitly tracking these flows. Moreover, estimates

of F SCF vary for different climatic zones (c) specified by the IPCC (see Fig. A1). The actual SOC stocks are thus calculated

based on a given reference stock SOCref by

SOCi,t =
∑
c,m

Tc,i ·SOCref
i,t ·F SCF

c,m (8)

with Tc,i being the translation matrix for grid cells i into corresponding climate zones c. For this analysis, we use the default190

F SCF from the Tier 1 method of Eggleston et al. (2006) and Calvo Buendia et al. (2019) as a comparison and consistency

check for our more detailed Tier 2 steady-state approach.

2.3 Agricultural management data at 0.5 degree resolution

We compile country-specific FAO production and cropland statistics (FAOSTAT, 2016) to a harmonized and consistent data

set. The data is prepared in 5-year time steps from 1965 to 2010, which restricts our analysis to the time span from 1975 to 2010195

(after a spin-up phase from 1510–1974). For all the following data, if not declared differently, we interpolate values linearly

between the time steps and keep them constant before 1965.

2.3.1 Land use and land-use change

Land-use patterns are based on the Land-Use Harmonization 2 (Hurtt et al., 2020) data set (short LUH2), which we sum up from

quarter-degree to half-degree resolution. We disaggregate the physical area (given as total land area in million ha) of the five200

different cropland subcategories (c3ann: C3 annual crops, c3per: C3 perennial crops, c4ann: C4 annual crops, c4per: C4 peren-

nial crops, c3nfx: C3 nitrogen-fixing crops) of LUH2 into our 17 crop groups (see Table “FAO2LUH2MAG_croptypes.csv” in

Karstens, 2020a), applying the relative shares for each grid cell based on the country- and year-specific area harvested shares of

9



FAOSTAT data (FAOSTAT, 2016). By calculating country-specific multicropping factors MCF using FAOSTAT data, we are

able to compute crop-group specific area harvested on grid cell level. Land-use transitions are calculated as net area differences205

of the land-use data at half-degree resolution, considering no split up into crop-group specific areas but only total cropland and

natural vegetation areas.

2.3.2 Crop and crop residues production

Crop production patterns are compiled crop group specific using half-degree yield data from LPJmL (Schaphoff et al., 2018b)

as well as half-degree cropland patterns (see Sect. 2.3.1). We calibrate cellular yields with a country-level calibration factor for210

each crop group to meet historical FAOSTAT production (FAOSTAT, 2016). Note

Crop residue production and management is based on a revised methodology of Bodirsky et al. (2012) and key aspects are

explained as they play a central role in soil carbon modeling. Starting from crop yield estimates Y and respective physical

crop area CA, we estimate total above-ground AGR and below-ground BGR residue biomass (in tonnes) using crop group cg

specific ratios for above-ground residues to harvested biomass rag,prodcg in (tDM ha−1)(tDM ha−1)−1 above-ground residues215

to harvested area rag,areacg in tDM ha−1 and below-ground residues to above-ground biomass rbgcg in tDM tDM−1 as follows

AGRi,t,cg = CAi,t,cg ·
(
Yi,t,cg · rag,prodcg +MCFi,t · rag,areacg

)
and

BGRi,t,cg = (CAi,t,cg ·Yi,t,cg +AGRi,t,cg) · rbgcg .
(9)

Following the IPCC guidelines, we split the above-ground residue calculations into a yield-dependent slope (rag,prod)

and a positive intercept (rag,area) fraction (Hergoualc’h, Kristell et al., 2019). Residues biomass therefore increases under-

proportionally with rising yields, reflecting a shifting harvest index of higher-yielding breeds. Deviating from Bodirsky et220

al. (2012) we use harvested instead of physical crop area (denoted in Eq. (9) by MCF described in Sect. 2.3.1) to account for

increased residue biomass due to multiple cropping (multiple harvests with each lower yields) and decreased residue amounts

due to fallow land. We assume that all BGR are left in the soil, whereas AGR can be burned or harvested for other purposes

such as feeding animals (Weindl et al., 2017), fuel or for material use.

A country-specific fixed share of the AGR is assumed to be burned on field depending on the per-capita income of the225

country. Following Smil (1999b) we assume a burn share of 25% for low-income countries according to World Bank definitions

(< 10000USDyr−1 cap−1), 15% for high-income (> 10000USDyr−1 cap−1) and linearly interpolate shares for all middle-

income countries depending on their per-capita income for the periods before 1995. After 1995 we estimate a linear decline of

burn shares to 10% for low-income countries and 0% for high-income countries till 2025 to account for recent increases in air

pollution regulation. The estimated trends show good agreement with fire-satellite-image derived estimates by the Global Fire230

Database (van der Werf et al., 2017). Depending on the crop group, 80–90% of the carbon in the crop residues burned in the

fields is lost within the combustion process (Eggleston et al., 2006).

From our 17 crop groups, we compile four residue groups (straw, high- and low-lignin residues, residues without dual

use), of which the first three are taken away from the field for other purposes (see mappingCrop2Residue.csv in Bodirsky et
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al. (2020a)). Residue feed demand for five different livestock groups is based on country-specific feed baskets (see Weindl235

et al., 2017), that differentiate between the residue groups and take available AGR biomass as well as livestock productivity

into account. We estimate a material-use share for the straw-residue group of 5% and a fuel-share of 10% for all used residue

groups in low-income countries. For high-income countries, no withdrawal for material or fuel use is assumed, and use shares

of middle-income countries are linearly interpolated based on per-capita income, following the same rationale as for the share

of burnt residues described above. The remaining AGR as well as all BGR are expected to be left on the field. We limit high240

residue return rates to at most 10tC ha−1 in order to correct for outliers.

To transform dry matter estimates into carbon and nitrogen, we compiled crop-group and plant-part specific carbon and

nitrogen to dry matter ratios (see Table A1).

2.3.3 Livestock distribution and manure excretion

Manure especially from ruminants is often excreted at pastures and rangelands, but due to the intensification of livestock245

systems a lot of the manure has to be stored and can be applied on cropland. We assume that manure is applied in close

proximity to its excretion, so that the distribution of livestock is the driving factor for the spatial pattern of manure application.

To disaggregate country level FAOSTAT livestock production data to half-degree resolution, we use the following rule-based

assumptions, drawing from the approach of Robinson et al. (2014) and applying feed basket assumptions based on a revised

methodology from Weindl et al. (2017). We differentiate between ruminant and monogastric systems, as well as extensive and250

intensive systems. Due to high feed demand of ruminants, we assume that ruminant livestock is located where the production

of feed occurs to minimize transport of feed. We distinguish between grazed pasture, which is converted into livestock products

in extensive systems, and primary-crop feed stuff, which we consider to be consumed in intensive systems. For poultry, egg

and monogastric meat production we use the per-capita income of the country to distinguish between intensive and extensive

production systems. For low-income countries, we assume only extensive production systems. We locate them according to the255

share of built-up areas based on the assumption that these animals are held in subsistence or small-holder farming systems with

a high labor-per-animal ratio. Intensive production associated with high-income countries, is distributed within a country using

the share of primary-crop production, assuming that feed availability is the most determining factor for livestock location. For

middle-income countries we split the livestock production into extensive and intensive systems based on the per-capita income.

Manure production and management is based on a revised methodology of Bodirsky et al. (2012) and is presented here due260

to its central role in soil carbon modeling. Based on the gridded livestock distribution we calculate spatially explicit excretion

by estimating the nitrogen balance of the livestock systems on the basis of comprehensive livestock feed baskets (Weindl

et al., 2017), assuming that all nitrogen in protein feed intake, minus the nitrogen in the slaughter mass, is excreted. Carbon in

excreted manure is estimated by applying fixed C:N ratios, which range from 10 for poultry up to 19 for beef cattle (for full

detail see Calvo Buendia et al. (2019). Depending on the feed system we assume manure to be handled in four different ways:265

All manure originated from pasture feed intake is excreted directly on pastures and rangelands (pasture grazing), deducting

manure collected as fuel. Whereas for low-income countries, we adopt a share of 25% of crop residues in feed intake directly

consumed and excreted on crop fields (stubble grazing), we do not consider any stubble grazing in high-income countries;
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middle-income countries see linearly interpolated shares depending on their per-capita income. For all other feed items, we

assume the manure to be stored in animal waste management systems associated with livestock housing. To estimate the carbon270

actually returned to the soil, we account for carbon losses during storage, where return shares depend on different animal waste

management and grazing systems. Whereas we assume no losses for pasture and stubble grazing, we consider that the manure

collected as fuel is not returned to the fields. For manure stored in different animal waste management systems we compiled

carbon loss rates (see calcClossConfinement.R in Bodirsky et al. (2020a) for more details) depending on the different systems

and the associated nitrogen loss rates as specified in Bodirsky et al. (2012). We limit high application shares at 10tC ha−1 to275

correct for outliers, that can occur due to inconsistencies between FAO production and 0.5 degree land-use data.

2.3.4 Irrigation

The LUH2v2 (Hurtt et al., 2020) data set provides irrigated fractions for its cropland subcategories. We sum up irrigation area

shares for all crop groups within a grid cell, and calculate the water effect coefficient wat on decay rates using these shares to

compute the weighted mean between rainfed and irrigated wat factors. As a result wat is the same for all crop groups within a280

grid cell. Furthermore, we suppose the irrigation effect to be present for all 12 months of a year, since we do not have consistent

crop group specific growing periods available. This will lead to an overestimation of the irrigation effect. We expect, however,

water limitations to be a minor problem during the off-season in temperature limited cropping regions, causing our assumption

to not dramatically overestimate the moisture effects. In tropical, water-limited cropping areas, irrigated growing periods might

even span over the whole year.285

2.3.5 Tillage

In order to derive a spatial distribution of the three different tillage types specified by the IPCC — full tillage, reduced tillage

and no tillage —, we assume that all natural land and pastures are not tilled, whereas annual crops are under full and perennials

under reduced tillage per default. Furthermore, we assume no tillage in cropland cells specified as no tillage cell based on the

historical global gridded tillage data set from Porwollik et al. (2019). This data set is extended to the period of 1975–2010 by290

combining country-level data on areas under conservation agriculture from FAO (2016) and half-degree resolution physical

crop areas from Hurtt et al. (2020), applying the methodology of Prowollik et al. (2019) to identify potential no-tillage grid

cells.

2.4 Management scenario definitions

To single out the impact of tillage practices, residue and manure inputs, we defined scenario with constant values for these three295

drivers: In the constTillage scenario the adoption of no-tillage practices are neglected (adoption starts in 1974 according to the

available data set). The constResidues and the constManure scenario assume constant input rates from residues resp. manure

(in tha−1) at the level of 1975 onward. Within the constResidue scenario at different effects overlay each other: yields and

with them residue biomass increase due to productivity gains; rates of residue left or returned to fields are raising; and shifts of
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cropping pattern change the amount of residue biomass due to crop-group specific harvest index values. The constManagement300

combines all three scenarios constTillage, constResidues and constManure.
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3 Results

Detailed results for the spatially explicit global SOC budget including intermediate results on input data as well as SOC stock

results for all scenario runs can be found in Karstens (2020a). In the following, the most important results (see Karstens, 2020b,

for post-processing script) are summarized.305

3.1 SOC distribution and depletion

Figure 2. Global SOC stocks and SOC stock changes on cropland for the first 30 cm of the soil profile considering historical management

data. Panel (a) shows global ∆SOC between historical land use and potential natural vegetation (PNV). The distribution of total global SOC

stocks for the first 30 cm on cropland for the year 2010 is depcited in panel (b). Absolute (c) and relative (d) SOC stocks changes for the year

2010 are compared to a potential natural state identify different hotspots of SOC losses and gains.
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The global SOC debt has increased by about 14% in the period between 1975 and 2010 from 34.6 to 39.6GtC (Fig. 2(a)).

This corresponds to an average loss rate of 0.14GtC yr−1 in comparison to a hypothetical potential natural vegetation (PNV)

state. Considering our estimate of the global SOC stock of around 705GtC in the upper 30cm in 1975, global SOC decreased

by 0.2 per 1000 per year for the period between 1975–2010. The speed of this SOC loss has decreased towards the end of the310

modeling period.

In Fig. 2(b) we provide a world map of SOC stocks estimates for the first 30cm on cropland considering historical manage-

ment data for the year 2010. Values range between over 100t ha−1 in northern temperate cropland to less than 5t ha−1 for

arid and semiarid cropland. Our spatially explicit results show hotspots of SOC losses and gains compared to SOC under PNV

in two complementary ways: 1. Absolute SOC changes ∆SOC (Fig. 2(c)) indicate areas with high importance for the global315

SOC loss. They can be driven by large relative changes (e.g. in Central Africa) or by a high natural stock, from which even

small relative deviations could lead to substantial absolute losses (e.g. North-East Asia). 2. Relative SOC changes measured as

stock changes factors FSCF (Fig. 2(d)) are a helpful metric to analyze the impact of human cropping activities. They indicate

areas with large differences in carbon inflows or SOC decay compared to natural vegetation, that may hold potential to be

overcome by improved agricultural practices. Large parts of tropical cropland seem to suffer from strongly reduced relative320

stocks, indicating SOC degradation. Conversely, irrigated cropland at the border to dry, unsuitable areas worldwide shows a

strong relative increase in SOC stocks.

The spatial distribution of the total ∆SOC summed over all land-use types (Fig. 3(a)) and its change from 1975 to 2010

(Fig. 3(b)) reveals areas of SOC debt decline and increase. Regions with large cropland expansion (e.g. Brazil, Southeast Asia,

Canada) continue to lose SOC, whereas regions with cropland reduction (and thus SOC restoration) or with accumulating325

cropland SOC can be found e.g. in highly productive areas of Europe and Central USA.

3.2 Carbon flows in the agricultural system

C is sequestered from the atmosphere via plant growth and allocated to different plant parts, which we aggregate to three pools

(harvested organ, above- and below-ground residues). Whereas harvested organs as well as above ground-residues are taken

(partially) from the field to be used for other purposes, below-ground residues (729MtC in 2010) are directly returned to the330

field. We divide crop biomass usage into feed usage and aggregate all other usage types (e.g. food, bioenergy and material) into

a human demand category. Livestock feed demand for crop organ harvest and above-ground residues of 1136MtC is roughly

equal to the human demand of 1129MtC. Whereas large parts of feed intake are returned to the soils via manure (C input

from manure at 384MtC), we assume the carbon demanded from humans (ending up as e.g. compost, night soil and sewage)

is not returned to soils. Besides manure C and below-ground residues, above-ground residues form the largest C input to the335

soil with 1350MtC returned to the fields in the year 2010. However, around 60% of this organic C decomposes before it is

integrated into soils. Due to the different composition of organic C, proportionally more C enters the slow pool from manure

than from crop residue. According to our model results, land-use change dynamics led to a C transfer from natural vegetation

to cropland of 257MtC in 2010. The agricultural system receives 4585MtC assimilated by crop plants and releases 3554MtC
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Figure 3. Global total ∆SOC and ∆SOC change for the first 30 cm of the soil profile. Panel (a) shows global ∆SOC as the difference

between SOC under historical land use and SOC under potential natural vegetation (PNV) in the year 2010 summed over all land-use types.

Computing the difference between the ∆SOC estimate for 2010 and for 1975 (b) depicts areas of soil depletion (SOC debt increase, red)

and net-sequestration (SOC debt decline, blue).

mostly through respiration. Accounting for SOC transfer and decomposition, the net SOC decrease of global cropland is around340

33MtC for the year 2010.

3.3 Agricultural management effects on SOC debt

We analyze the relative impact of different management practices by comparing the actual historical management scenario

with counterfactual scenarios, where individual management practices (residues in constResidues, manure in constManure,

tillage practices in constTillage, all three in constManagement) are kept static at the 1975 values (Figure 5(a)). As shown345

by the difference between the constResidues scenario and the other counterfactuals, changes in residue return rates dominate
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Figure 4. Global carbon flows within the agricultural system for the year 2010 (in MtC). Carbon is first photosynthesised by crop plants and

then used for livestock feed and various other usages subsumed under human demand. After accounting for losses within the agricultural

system, there are three major C inputs to cropland SOC: manure, above- and below-ground residues. Large parts of C, however, are miner-

alized on the field before entering the soil. Additionally, C is transferred to and from the global agricultural soil stock via land-use change

between cropland and natural vegetation. Finally, SOC is mineralized and flows back to the atmosphere.

the management effects. Without the historical increase in C inputs from residues to agricultural soils, the global ∆SOC

would decrease to 41.7GtC at a rate of 0.20GtC yr−1 — a 35% increase compared to 0.14GtC yr−1 for the histManage-
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Figure 5. (a) Global ∆SOC in GtC for different management scenarios. The stylized scenarios deviate from historical agricultural man-

agement patterns (histManagement) by holding effects of carbon inflows from residues (constResidues) or manure (constManure) constant

at the 1975 level, or neglecting adoption of no-tillage practices over time (constTillage). The scenario constManagement combines all three

modifications. Note that ∆SOC is defined as the difference of SOC under land-use compared to a hypothetical natural vegetation state.

Panel (b) shows the carbon inflows from crop residue and manure.

ment estimates. Both the constManure and constTillage scenarios show only small deviations from the historical agricultural

management values with 0.15GtC yr−1. The effect of no-tillage only becomes discernible from 2000 onwards. The large con-350

tribution of residues relative to manure also becomes visible when considering the annual C inputs of residues and manure to

soils over a period of 35 years (Fig. 5(b)).

3.4 Model evaluation

To evaluate our model results against reference data in five steps: (1) we compare our stock change factors (see Sect. 2.2) to

IPCC default assumptions (Lasco et al., 2006; Ogle et al., 2019); (2) we compare our global (and climate-zone specific) total355

SOC stocks to other literature estimates; (3) we compare our results to point measurements. To evaluate the representation of

our natural SOC stocks (4) we correlated LPJmL4 SOC stocks for PNV with our natural state SOC results on grid level; and (5)

we do a similar correlation analysis for our modeled actual SOC stocks in comparison to the results of SoilGrids 2.0 (Poggio

et al., 2021), which accounts for actual land use too.
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3.4.1 Stock change factors compared to IPCC assumptions360

To evaluate our modeled SOC stocks and stock changes under agricultural management, we compare our results to the default

IPCC stock change factors F SCF of 2006 (Lasco et al., 2006) and their refinements in 2019 (Ogle et al., 2019). Both estimates

are based on measurement data for cropland (see Table 3). To allow for comparison, we aggregate our stock change factors

weighted by grid-level F SCF cropland area to derive average factors for the four IPCC climate zones (Fig. A1).

Table 3. F SCF in comparison to IPCC Tier 1 default factors from the guidelines in 2006 (Lasco et al., 2006) and the update in 2019 (Ogle

et al., 2019).

Source Input Year tropical moist tropical dry temperate dry temperate moist

1 IPCC2006 low invariant 0.44 0.55–0.61 0.74 0.66

2 IPCC2006 medium invariant 0.48 0.58–0.64 0.80 0.69

3 IPCC2006 high invariant 0.53 0.60–0.67 0.83 0.77

4 IPCC2019 low invariant 0.76 0.87 0.70–0.71 0.66–0.67

5 IPCC2019 medium invariant 0.83 0.92 0.76–0.77 0.69–0.70

6 IPCC2019 high invariant 0.92 0.96 0.79–0.80 0.77–0.78

7 This Study hist 1975 0.48 0.59 0.64 0.59

8 This Study hist 2010 0.5 0.64 0.64 0.59

Stock change factors for temperate climate zones of this study are lower than the default values of the IPCC. For the tropical365

regions the IPCC factors changed notably from the guidelines in 2006 (Lasco et al., 2006) to the update in 2019 (Ogle et al.,

2019). Our results are in good agreement with the 2006 IPCC factors. Modeled FSCF have increased or stayed constant for

all climate zones over time (1975-2010).

3.4.2 Global SOC stocks comparison

We compare our global SOC stocks with a wide range of global SOC stock estimates for the first 30 cm of the soil profile,370

using data from WISE (Batjes, 2016), SoilGrids (Hengl et al., 2017), GSOC (FAO, 2018), LPJmL4 (Schaphoff et al., 2018a),

SoilGrids 2.0 (Poggio et al., 2021), and SOCDebtPaper (Sanderman et al., 2017) in Fig. 6.

The global estimates of the total SOC stock of the upper 30 cm from this study are in the middle of the wide range of other

modeled or observation-based estimates. SoilGrids (Hengl et al., 2017) especially stands out with its high estimate, whereas

SoilGrids 2.0 (Poggio et al., 2021) marks the lower end. Regional results (Fig. A2) show that our estimates are well within the375

range of other estimates for most regions, but at the lower end for tropical moist and tropical wet areas.

3.4.3 Point-based evaluation

We correlate our SOC results for natural vegetation and cropland in 2010 with literature values from point measurements (for

data base see appendix of (Sanderman et al., 2017)).
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Figure 6. Modeled as well as observation-based estimates for global SOC stock in GtC for the first 30 cm of soil aggregated over all land

area. The comparison against observation-based data (SoilGrids, SoilGrids 2.0, GSOC and WISE) is supplemented by modeled data from

LPJmL4 (Schaphoff et al., 2018a) and estimates from (Sanderman et al., 2017). We show values of this study for the year 2010 accounting

for the historical land-use dynamics as well as for an hypothetical PNV.

3.4.4 Natural SOC stock comparison with LPJmL4380

Estimates of SOC stocks under natural vegetation influence our modeled results for cropland, which has been converted from

natural vegetation at some point in time. We therefore also compare our modeled results for SOC under natural vegetation

(derived using litterfall of LPJmL4) against estimates of SOC by LPJmL4 for a PNV simulation. Both models are driven by the

same climate conditions and the same natural litterfall and just differ in the representation of SOC and litter dynamics. With

our focus on cropland SOC dynamics, we compare only cells with more than 1000ha of cropland (capturing 99.9% of global385

cropland area).

Spatial correlations of PNV SOC stock values are high (global R2 = 0.81), especially for dry climate zones (Fig. 8). For

temperate and tropical moist areas estimates of this study tend to be a bit lower compared to LPJmL4 results.

3.4.5 Actual SOC stock comparison with SoilGrids 2.0

SoilGrids 2.0 (Poggio et al., 2021) is a digital soil mapping approach that uses over 240 000 soil profile observations to produce390

high resolution soil maps including SOC stocks and estimates of their uncertainties. To evaluate the performance of our model

at the global scale, we correlate SoilGrids 2.0 SOC stock values, which were aggregated to 0.5 degree resolution, to our

estimates for the year 2010 in Fig. 9. To focus our comparison on cropland areas, we mask out grid cells with less than 1000ha

of cropland. Spatial correlation is moderate for tropical climate zones, whereas it is low for temperate moist areas. In tropical

dry and temperate dry areas, we simulate also very low SOC values (below 10tC ha−1), which is not found in SoilGrids395

2.0 whereas our modeled SOC stocks can be substantially higher in temperate moist areas than reported by SoilGrids 2.0.

Additionally, we use the uncertainty estimates from SoilGrids 2.0 in Fig. 10 to identify areas, where our modeled SOC stocks
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Figure 7. Correlation between modeled and measured SOC stocks. Given the wide span between minimun and maximum measured SOC

stocks within in a given cell, we correlated median values with our modeled results. Both cropland and areas with natural vegetation tend to

be lower in our results than in the point measurements.

that are below the 5th or above the 95th percentile of the SoilGrids 2.0 data. For the vast majority of grid cells our model

results are between the 5th and 95th percentile of SoilGrids 2.0 estimates. We underestimate SOC stocks especially in dry

areas (e.g. close to the Sahara). Overestimated stocks are often situated in mountainous regions.400
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Figure 8. Correlation between modeled SOC stocks of LPJmL4 and this study for an hypothetical potential natural state (PNV) for the year

2010. The grey lines indicate the 1:1 line.

4 Discussion

We have (1) developed a reduced-complexity model and (2) compiled a spatially explicit time series data set of agricultural

management data in order to (3) analyze the role of agricultural management in historical cropland SOC dynamics. Our study

shows that information on agricultural management alters estimates of the SOC debt and slows down loss of SOC compared

to the often used constant management assumptions.405

It is important to evaluate the validity of our results as modeling management effects on SOC dynamics at the global

scale comes with large uncertainties. The model includes a large number of parameters, and for most of these the uncertainty

distributions have not been quantified so far. Moreover, we think that beyond parameter uncertainty, the structural uncertainty
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Figure 9. Correlation between modeled SOC stocks of this study and projected values from SoilGrids 2.0.

from the model design is high. The management data itself is prone to uncertainties as well, as most of it is only indirectly

calculated from reported data.410

In the following, we give a qualitative assessment of the uncertainties and limitations of this study as well as discuss our

three study objectives and results against existing literature.

4.1 Comprehensive historical agricultural management data set

Our spatially explicit time series data set of agricultural management is based on country-specific FAO production and cropland

statistics (FAOSTAT, 2016) as well as 0.5 degree land-use data from LUH2 (Hurtt et al., 2020). Starting from these two sources,415

we derive a harmonized and consistent data set for the major C flows within the agricultural system (4) using a mass balance
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Figure 10. Global map on SOC results compared to uncertainty estimates from SoilGrids 2.0.

approach from the IPCC guidelines Vol. 4 (Eggleston et al., 2006; Calvo Buendia et al., 2019) and other auxiliary data sets

(e.g. Porwollik et al., 2019).

For some of the aspects covered in our data set, for example livestock distribution (Robinson et al., 2014) or manure pro-

duction and application (Zhang et al., 2017), well-compiled data sets in high resolution exist that capture real world conditions420

much better than our estimates. However, they often come with the caveats of either being static in time, demanding large sets

of auxiliary data or being inconsistent with each other.

For most of the parameters used in our management estimates no uncertainty estimates exist. This is why, in our view, most

of the uncertainty with respect to the impacts of SOC management is included in the management data itself, and especially

in the residue and manure production and application numbers, as these are only indirectly derived from crop and livestock425

production, feed and area data (FAOSTAT, 2016; Weindl et al., 2017). The uncertainty of recycling shares adds on top of the

uncertain total numbers of manure and residue biomass. Previous modeling studies of SOC carbon on cropland often only

used stylized scenarios of management practices (Pugh et al., 2015; Lutz et al., 2019), rather than trying to estimate real

management.

While our data set, by including crop residues and manure, likely the largest carbon inputs to soils, it does not account for430

a list of minor carbon inputs from cover crops, agroforestry, green manure, weed biomass as well as application of human

excreta, sewage sludge, processing wastes, forestry residues or biochar. Including these sources would correct our estimates
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upwards and bring our estimates closer to the IPCC stock change factors (see Sect. 3.4.1). Unfortunately, data on the quantity

of these inputs is very scarce and does not exist with global coverage.

SOC inputs from above-ground residues had the strongest management effect on SOC debt dynamics on cropland (see Fig.435

5). As pointed out by Keel et al. (2017) and Smith et al. (2020), carbon input calculations are highly sensitive to the choice of

allometric functions determining below- and above-ground residue estimates from harvested quantities (see A1 for coefficients

used in this study). Keel et al. (2017) question whether below-ground residues might increase with a fixed root:shoot ratio

rather than being independent of productivity gains. Moreover, the study pointed out that plant breeding shifts allometries,

which might not be reflected in outdated data sources. While our study considers a dynamic harvest index with rising yields440

for several crops, we may still overestimate residue biomass, in particular for below-ground biomass.

4.2 Reduced complexity SOC model

Our reduced-complexity SOC model is based on a Tier 2 modeling approach. This reduces the computational and data demand

of the model in comparison to DGVMs, while still allowing for the explicit representation of agricultural management practices.

Along with the effects of various C inputs, the impacts of water supply from rainfall and irrigation as well as tillage systems445

can also be accounted for in the computation of SOC decay rates. As such, the model can reflect the spatial and temporal

heterogeneity in both management and biophysical conditions.

The substantial impact of changing management practices through time is indicated by the development of our estimated

stock change factors (see Table 3) as well as by the time trend of the SOC debt (see Fig. 2(a)). Residue management has

changed over the last decades, especially with the phasing out of residue burning practices in several regions and increased450

general productivity, showing a clear impact on SOC dynamics — underlining the importance to account for these effects in

soil carbon modeling.

The Tier 2 approach (Ogle et al., 2019) used here is explicitly designed for agricultural soils, whereas we apply it also to soils

under PNV. This is necessary in order to represent SOC losses under land-use change in a dynamic way, as this is an important

driver of SOC dynamics. The comparison of simulated PNV data with LPJmL4 shows the model’s substantial capability in455

reproducing PNV SOC stocks (Fig. 8).

Using litterfall estimates from LPJmL4, we have been able to estimate the total SOC stocks of the world, which is dominated

by SOC under natural vegetation. However, as the world’s SOC stock is highly uncertain, which is seen in the wide range of

global SOC stock estimates for the first 30 cm of the soil profile (Batjes, 2016; Hengl et al., 2017; FAO, 2018; Schaphoff et al.,

2018a; Poggio et al., 2021; Sanderman et al., 2017) in Fig. 6, the only conclusion we can draw from this is that our result is460

within a plausible range. To avoid a strong impact of natural land representation and its uncertainties on our results, we focus on

SOC changes on cropland. Pristine natural vegetated areas (like permafrost and rain forests) without human land management

drop out in our calculation of SOC debt and stock change factors. Natural SOC estimates only influence results when natural

land is converted to cropland.

Comparing the geographic SOC patterns to Soil Grids 2.0 (Poggio et al., 2021) (see Fig. 10), we find that our model estimates465

values of SOC stocks greater than the estimated confidence intervals in Soil Grid 2.0 for some mountainous regions across the
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globe. This could indicate that we are not capable in capturing specific processes that would reduce the vegetation’s productivity

(such as erosion on steep slopes or shallow soils (Borrelli et al., 2017)). A large swathe of eastern North America was heavily

affected by the dust bowl event, with wind erosion removing large parts of the topsoils, a process not considered in our model.

Similarly, we likely overestimate SOC stocks for the loess soils in northern China and the Altiplano in Latin America; in both470

cases erosion is a likely reason. In contrast, we estimate lower SOC stocks at the edges of the Sahara, where uncertain local

water availability and artifical irrigation may dominate spatial SOC patterns.

In our model, erosion should however only affect the spatial pattern but not the aggregate SOC pool. As pointed out by

Doetterl et al. (2016), the final fate of leached or eroded carbon is uncertain and might even offset LUC emissions (Wang et al.,

2017). Whereas for soil quality analysis SOC displacement might play an important role, in this budget approach focused475

especially on the SOC debt, displaced but not emitted SOC can be treated as SOC that remains on the cropland. Erosion and

degradation impacts on yields and therefore on soil C inputs are captured by our method as we base them on FAO statistics

of actual production. Yet the distribution of production below the country level - which we allocate proportional to LPJmL

production potentials that do not reflect erosion feedback to yields - will overestimate yields and therefore biomass inputs to

eroded soils.480

In comparison with default stock change factors of the IPCC guidelines, our model estimates a stronger decline of SOC

stocks (Table 3) for almost all regions. Tropical soils might suffer from low C input rates due to large yield gaps (Global

Yield Gap and Water Productivity Atlas. Available URL: www.yieldgap.org (accessed on: 03/01/2022)) and high shares of

residue removal and burning in lower-income countries (Smil, 1999a; Williams et al., 1997; Jain et al., 2014). Yet, even when

comparing our etimates to the low-input stock change factors of the IPCC, our SOC loss is roughly twice as large as the485

revised 2019 IPCC default values, while it shows very good agreement with the older default values from IPCC (2006). Don

et al. (2011) estimated SOC losses for tropical soils of around 25% on average corresponding to a stock change factor of 0.75,

but also reported a wide range of measured SOC changes from -80% to +58%. Fujisaki et al. (2015) however found much

lower loss rates of around 9%, attributing the difference to the different time period length since the conversion to cropland.

As our results do not specifically account for cropland age and most of the cropland is older than 20 years (as assumed for the490

default IPCC Tier 1 stock change factors) our stock change factors have to be lower by definition following the steady-state

assumption that cropland will continue to approach a new equilibrium. For the same reason, our estimates for temperate regions

might be lower than both IPCC (2006) and IPCC (2019) default values. With the production-increasing impact of irrigation and

fertilization on carbon-poor dryland soils, SOC under cropland can also be higher than under PNV with stock change factors

above 1 (see Fig. 2(d)), but these areas are much smaller than where the stock change factors are well below unity.495

Generally, limiting the analysis to the first 30 cm of the soil profile follows the IPCC guidelines (Eggleston et al., 2006;

Calvo Buendia et al., 2019) and assumes that most of the SOC dynamics happen in the topsoil. In this regard several aspects

are strongly simplified within our approach. Firstly, distribution of carbon inputs into different soil layers are neglected and all

carbon inputs are allocated to the topsoil. This particularly overestimates SOC stocks in the first 30 cm of soil below deeper

rooting vegetation, which is certainly the case for most of the woody natural vegetated areas. Second, changes to the subsoil500

due to tillage are neglected. As Powlson et al. (2014) have shown, the subsoil can be make a large difference in evaluating
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total SOC losses or gains for no-tillage systems. No-tillage effects may seem larger than they actually are if only topsoil is

considered. SOC transfers to deeper soil layers under tillage might enhance subsoil SOC compared to no-till practices. Finally,

organic soils (like peat- and wetlands) and drained cropland areas are not explicitly considered and emissions from these

cropland areas are thus likely substantially underestimated.505

4.3 SOC debt and SOC drivers

The analysis of SOC stock gains and losses is complex and has several dimensions as climatic and anthropogenic effects

overlap. There is broad consensus that land conversion to cropland has caused substantial C emissions over the historical

period (e.g. Friedlingstein et al., 2020). There is uncertainty with respect to the overall size of these emissions from different

methods and reference points and with respect to the contribution of cropland and agricultural management to these emissions.510

In order to mitigate greenhouse gas emissions, it is essential to stop the decline of SOC stocks or even transform cropland

management to sequester atmospheric C in cropland soils (Minasny et al., 2017). Defining the SOC debt of 1975 as the

baseline, and measuring land-use emissions on cropland as the difference between a potential natural state and the state under

human interventions (see Pugh et al., 2015), we find that global cropland has acted as a emissions source since 1975. Annual C

loss rates of 0.2 per 1000 C still have the opposite trend as the promoted 4 per 1000 C sequestration rate target (Minasny et al.,515

2017). Dedicated efforts to increase cropland SOC are thus necessary, as management improvements at historical rates are

not enough to counteract ongoing SOC degradation on cropland. Yet our study also shows the substantial impact of changing

management on the development of SOC debt (Fig. 5).

According to Sanderman et al. (2017), the SOC debt since the beginning of human cropping activities has been at around 37

GtC for the first 30 cm of the soil with half of it attributed to SOC depletion on grasslands. Our estimate of 39.6 GtC in 2010520

for cropland debt is thus twice as high as their estimate. However, there are large uncertainties in modeling SOC at the global

scale, and Sanderman et al. (2017) pointed out that their results might be conservatively low compared to experimental results.

Furthermore, Sanderman et al. (2017) modeled historical trends based on agricultural land expansion without considering

SOC variations due to time-variant agricultural management. Pugh et al. (2015) considered management effects like tillage and

incorporation of residues in stylized and static scenarios only, so that they could not account for historical management effects525

on SOC dynamics. Their study moreover concludes that yield gains (by 18% in their simulations) do not lead to a substantial

decline in SOC debt (less than 1% change). Historical yield increases, however, are often estimated to be well above 50%

(Pellegrini and Fernández, 2018; Ray et al., 2012; Rudel et al., 2009). While we find substantially larger effects of productivity

gains than the 1% reported by Pugh et al. (2015), this is not sufficient to compensate SOC losses from moderate global cropland

expansion of around 11% between 1974 and 2010.530

The effects of agricultural productivity on cropland SOC dynamics, including historical yield trends and associated increases

in residue inputs, can be directly accounted for in our modeling approach. In contrast, process-based studies (Pugh et al., 2015;

Herzfeld et al., 2021) often lack data on relevant management aspects that drive production increases. Herzfeld et al. (2021)

also consider historical management trends for fertilizer and manure inputs as well as on residue removal rates and tillage

systems, but cannot reproduce the substantial increase in agricultural productivity over the last decades. Still, they find that535
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compared to no-tillage systems, residue management has much larger potential to affect the strength of their projected future

global cropland SOC decline. This is consistent with our finding that increasing SOC inputs from above-ground residues had

the strongest effect on the slowing-down of the SOC debt increase (Fig. 5).

Elliott et al. (2018) show that yield trends in the USA can be reproduced by models, but require information on inputs that

are not available at the global scale, such as annual data on sowing dates, planting densities, and genetic traits such as kernel540

number and radiation use efficiency. As such, it will remain challenging for process-based DGVMs to capture the trend of

agricultural productivity on cropland SOC dynamics.

Our study emphasizes again that the expansion of cropland is still a major source of CO2 emissions — not only through

the removal of vegetation, but also by a slow depletion of C stocks in soils. Our estimates indicate a SOC debt of 39.6 GtC

in 2010, and every additional deforestated hectare adds to this debt. Avoided deforestation and other environmental regulation545

leads to intensification on existing cropland (Humpenöder et al., 2018) and our results show that such intensification could

lead to increased cropland SOC, if residues are returned to the soil — amplifying the C sequestration potential of avoided

deforestation.

There is also ample potential for further improved SOC management. As shown in Fig. 4, approximately one fifth of total

annual C sequestration by crops is lost through soils (0.8 GtC per year). However, even larger losses occur at the end of the food550

supply chain (1.2 GtC year), at the soil surface (1.4 GtC), during residue burning (0.3 Gt C) and with manure management (0.2).

Improved management could include, firstly, a circular flow from the food supply chain back to soils. Waste composting or

excreta recycling could represent a major additional C input to cropland soils (Brenzinger et al., 2018). Secondly, soil carbon

sequestration techniques (Smith, 2016), deep ploughing (Alcántara et al., 2016) or the transformation of C inputs to more

recalcitrant biochar (Woolf et al., 2010) may transfer larger parts of the biomass at the litter soil barrier into permanent soil555

pools. Thirdly, reducing the share of residue burning and improved manure recycling could further increase C inputs. Finally,

other carbon-accumulating practices, such as the cultivation of cover crops (Poeplau and Don, 2015; Porwollik et al., 2022)

and agroforestry (Lorenz and Lal, 2014) could increase total C sequestration on cropland.
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5 Conclusions

We have compiled a spatially explicit and time-variant data set on agricultural management aspects relevant for cropland560

SOC dynamics. We have also developed a reduced-complexity SOC model that is able to be applied in optimization-based

IAM frameworks, for which detailed process-based models are computationally too expensive. Making use of these data and

model, we are able to estimate spatially explicit SOC stocks, SOC debts, and stock change factors considering agricultural

management. It is — to our knowledge — the first study that analyzes the role of time-variant and spatially explicit historical

agricultural management for global SOC dynamics.565

Our results demonstrate that historical changes in agricultural management have shaped the SOC debt on cropland. It is

thus necessary to explicitly consider agricultural management in a dynamic manner in global carbon assessments and models,

especially when exploring climate mitigation pathways with so-called land-based solutions (e.g. Popp et al., 2016). That also

implies that we need better monitoring of agricultural practices to create this data, but also better accessibility of existing data.

Our open-source model (Karstens and Dietrich, 2020), published data-set (Karstens, 2020a) and the flexible data processing570

with the MADRaT package (Dietrich et al., 2020) constitute a starting point for building comprehensive data sets on agricultural

management aspects.

With the reduced-complexity SOC model we are able to account for agricultural management effects on cropland SOC

dynamics within optimization-based IAM frameworks. Reduced input data requirements such as accounting for changes in

productivity rather than reproducing the processes that lead to such changes in productivity (Elliott et al., 2018) will help to575

explore the role of agricultural management in sustainable development pathway analyses (Sörgel et al., 2021). However, we

clearly see that increases in agricultural productivity are not sufficient to create positive net SOC sequestration in cropland soils.

More management options that explicitly target the sequestration of C in cropland soils need to be considered. Our open-source

model can be expanded to account for additional management options for carbon farming, such as cover crops, agroforestry,

or biochar applications.580

Code and data availability. We compile calculations as open-source R packages available at github.com/pik-piam/mrcommons (Bodirsky

et al., 2020a) for the management related functions, github.com/pik-piam/mrsoil (Karstens and Dietrich, 2020) for soil dynamic related func-

tions and github.com/pik-piam/mrvalidation (Bodirsky et al., 2020b) for validation data. All libraries are based on the MADRaT package at

github.com/pik-piam/madrat (Dietrich et al., 2020), a framework which aims to improve reproducibility and transparency in data processing.

Model results including C input data are accessable under https://doi.org/10.5281/zenodo.4320663 (Karstens, 2020a). Software code for585

paper and result prepartion can be found under www.github.com/k4rst3ns/historicalsocmanegement.
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Figure A1. Climate zone map adpated from IPCC: The climate zone classification is based on the classification scheme of the IPCC guide-

lines (Eggleston et al., 2006) and has been reimplented by Carre et al. (2010), which is the source of this data. Note that the reduced set, used

for the comparison of stock change factors is included in the color code with temperate moist in light blue, temperate dry in dark violett,

tropical moist in red and tropical dry in orange.

31



Appendix A: Figures and tables in appendices

A1 Methods

A2 Results

Figure A2. Modelled as well as data based estimation for climate zone specific SOC stock in GtC for the first 30 cm of soil aggregated over

all land area: SoilGrids, GSOC and WISE do not consider changes over time and rely on soil profile data gather over a long period of time,

which makes it hard to pinpoint a specific year to these SOC estimations. In this context they will be compared to modelled data (LPJmL4,

this study) for the year 2010. PNV denotes the potential natural vegetation state without considering human cropping activities, calculated

as reference stock within our model. We use the climate zone specification of the IPCC (Eggleston et al., 2006).

Author contributions. KK, BLB and AP designed the study and the model idea. KK wrote the code build on work of BLB, IW. JPD revised590

and improved the model code. CM, JH and SR provided the LPJmL simulation data. KK wrote the paper with important contributions of

BLB and CM. MK, JS, SR and IW provided extensive feedback to outline of the study. All authors discussed the results and commented on

the manuscript.
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