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Abstract. A radiative transfer model was parameterized and validated using Biogeochemical Argo float data acquired between

2012 and 2017 across the Mediterranean Sea. Fluorescence-derived chlorophyll a concentration, particle backscattering at

700 nm and fluorescence of colored dissolved organic matter were used to parametrize the light absorption and scattering

coefficients of the optically significant water constituents (pure water, non-algal particles, colored dissolved organic matter

and phytoplankton). The model was validated with in-situ downwelling irradiance profiles and irradiance-derived apparent5

optical properties from satellite data, such as the diffuse attenuation coefficients and remote sensing reflectance. To the authors’

knowledge, this is the first time that a three-platform comparison of such kind is performed between model, floats and satellites.

Results showed that by using regional parameterizations that are not only related to chlorophyll concentration and vertical

distribution, the model was able to capture a more accurate spectral response in the examined wavelength range compared

to chlorophyll-related (or Case 1) optical models. When using alternative models that incorporated also measurements of10

colored dissolved organic matter fluorescence or particulate optical backscattering, the model skill increased at all examined

wavelengths. A series of upgrades, such as the inclusion of temperature and salinity data for the modification of the pure

water absorption spectra, a refined pure water absorption model, as well as the correction of regional algorithms that had

overestimated the pure water contribution in the blue, all contributed to improve the model performance. Finally, using a

multi-spectral optical configuration enabled to estimate also the relative contribution of separate water constituents in the15

examined spectral range. Simulations including non-algal particles and colored dissolved organic matter performed up to

60% and 76% better than when considering the optical properties of pure seawater alone. Moreover, a simulation including

phytoplankton absorption resulted in an error reduction of up to 43%, especially at 412 nm and with a more uniform response

at the wavelengths considered. Such studies can therefore also tackle the bio-optically anomalous nature of the Mediterranean

Sea, and show that non-chlorophyll-related constituents (i.e. non-algal particles and colored dissolved organic matter) can20

substantially modulate the underwater light field in the blue.
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1 Introduction

Most ecological models, notwithstanding their increasing spatial resolutions, shorter computational times and improved bio-

logical complexity, still employ an oversimplified methodology for optical calculations, usually to predict photosynthetically

available light without considering its spectral dependency. Biogeochemical models need to improve their prediction capabili-25

ties on marine biogeochemical processes such as chlorophyll concentration, phytoplankton biomass, primary productivity. To

achieve this, the implementation of multi- of hyperspectral optical modelling solutions remains essential, also in order to fol-

low up with the pace of such approaches already adopted in remote sensing and in-situ platforms. A link between radiometric

quantities and biogeochemical variables can be thus established with a more rigorous description of in-water optical properties

through their absorption and scattering fingerprints (Dutkiewicz et al., 2015; Mobley et al., 2015; Gregg and Rousseaux, 2016,30

2017).

The Mediterranean Sea has been defined as a bio-optically anomalous region (Gitelson et al., 1996; Bricaud et al., 2002;

D’Ortenzio et al., 2002; Corsini et al., 2002; Morel et al., 2007a; Lee and Hu, 2006; Morel and Gentili, 2009; Loisel et al.,

2011; Volpe et al., 2007; Organelli et al., 2017b), so that global empirical algorithms, both for satellite remote sensing as well as

in-situ applications, are not accurate. Mediterranean waters were with the adoption of global relationships generally observed35

as "greener" than what would have been expected in terms of the measured, usually low chlorophyll a concentration content

(Claustre et al., 2002; Morel and Gentili, 2009).

Among the possible causes for such phenomena could be:

– phytoplankton community structure (cell size, pigment packaging, pigment composition, photophysiology), which can

affect phytoplankton absorption (aφ) and particle backscattering signal (bbp);40

– excess/deficit of non-algal (biogenic or mineral) particles such as Saharan dust (influencing aNAP and bbp);

– excess/deficit of colored dissolved organic matter (CDOM), influencing aCDOM ;

either separately, or as a combination of several factors.

In the past decade, the development of new technologies for the acquisition and analysis of bio-optical variables has brought

new insights and objects of study, such as CDOM dynamics, size and composition of algal communities, absorption by phy-45

toplankton (aφ) and non-algal particles (aNAP ) and particle backscattering (bbp). Since 2012, a large array of autonomous

Biogeochemical-Argo (BGC-Argo) floats has been deployed, measuring a whole set of bio-optical and biogeochemical vari-

ables (IOCCG, 2011), which could fill the gap between sample acquisitions and remote sensing measurements. With their high

vertical resolution profiles, BGC-Argo floats can serve as an additional tool for tackling the bio-optically anomalous nature of

the Mediterranean Sea, also due to their high spatial coverage (Organelli et al., 2017b).50

For this reason, an analysis was hereby carried out to show the possibility of using a large array of BGC-Argo float measure-

ments both for a radiative transfer model set-up, as well as for validation purposes. More specifically, profiles of bio-optical

and biogeochemical parameters (i.e. fluorescence-derived chlorophyll a concentration (Chl), particle backscattering at 700 nm

(bbp(700)) and CDOM fluorescence (fDOM)) were used for inherent optical properties (IOP) parameterizations, testing several
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regionally adopted algorithms for aφ, aCDOM , aNAP and particle scattering bp. Radiometric measurements were, on the other55

hand, used for model validation.

In Section 2, the methods applied in the study are described. Section 3 highlights results and discusses them according to

the scope of the analysis. In Section 4 conclusions are drawn, along with the possible directions in the future.

2 Methods

2.1 BGC-Argo Data Set60

The BGC-Argo data set used in this work is comprised of 39 floats operating between 2012 and 2017, Fig.1. The total number

of profiles containing Chl measurements reaches 5092, however for the sake of the analysis completeness, a few requirements

needed to be met. Firstly, only profiles containing the whole suite of following variables were considered, i.e. temperature (T),

salinity (S), chlorophyll a (Chl), particle backscattering at 700 mm (bbp(700)), fluorescent component of colored dissolved

organic matter (fDOM) and downward planar irradiance at 380, 412 and 490 nm (Ed(λ)). Profiles lacking at least one of the65

required variables were excluded from further calculations (2112). Then, only profiles acquired between 10.00 and 14:00 local

time were considered in order to obtain radiometric measurements at lower solar zenith angles, thus removing additional 423

profiles. The total number of profiles left for the analysis was 2557.

The quality control (QC) procedure of radiometric data follows the steps described in Organelli et al. (2016b), whereas the

Chl and bbp(700) QC protocols are found in Schmechtig et al. (2014) and Schmechtig et al. (2018) respectively. Profiles of all70

variables were uniformly interpolated on a 1 meter grid, starting at 0.5 m. As light is one of the key mechanisms controlling

the deep chlorophyll maximum depth (DCM) (Mignot et al., 2014; Cullen, 2015), the choice of the maximum depth range

corresponds to the maximum DCM values in the Eastern Mediterranean, i.e. up to 120 m (Christaki et al., 2001). Therefore,

additional 374 profiles were discarded that had depths shallower than 150 m. For a successful calculation of the depth derivative

of radiometric profiles, i.e.Kd, with a non-linear fit of an exponential function with the least squares method, further conditions75

needed to be met: the first depth measurement ofEd had to be shallower than 1 m (thus discarding 131 profiles) and the number

of Ed measurements within the first 10 meters had to be at least 5, which discarded another 767 profiles. Moreover, a condition

of less than 30% difference between modelled and computed Ed values was thus added which resulted in 147 profiles less.

After applying all the QC procedures, the final number of useful profiles for this work resulted in 1138, spatially distributed as

in Fig.2.80

In order to remove spikes and negative values, all variables except T and S were further corrected by applying a 5-point

median filter, followed by a 7-point running mean. Negative values were assigned to zero. The fact that this QC procedure in

the case of bbp(700) might remove positive spikes, which could be indicators of larger aggregates (Briggs et al., 2011), goes

beyond the scope of the present study.
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2.2 In-water Radiative Transfer Model85

The irradiance distribution along the water column was parameterized into three streams (Dutkiewicz et al., 2015; Gregg and

Rousseaux, 2016): the direct (Edir) and diffuse (Edif ) downward irradiance components and the upwelling diffuse irradiance

(Eu). The downward planar irradiance is equivalent to the sum of the two downward streams (Ed = Edir +Edif ). The light

spectrum was discretized into 25 nm bands covering the range between 350 and 700 nm. For each band, Edir(λ,z), Edif (λ,z)

and Eu(λ,z) were solved as a system of three equations:90

dEdir(λ,z)
dz

= −Cd(λ,z)Edir(λ,z), (1)

dEdif (λ,z)
dz

= −Cs(λ,z)Edif (λ,z) +Bu(λ,z)Eu(λ,z) +Fd(λ,z)Edir(λ,z), (2)

dEu(λ,z)
dz

= +Cu(λ,z)Eu(λ,z)−Bs(λ,z)Edif (λ,z)−Bd(λ,z)Edir(λ,z), (3)

where z is the depth, C are the attenuation factors, and B and F the backward and forward scattering factors respectively. The

attenuation factors C were calculated as the sum of absorption (a) and scattering (b) coefficients normalized over cosines:95

Cd(λ,z) =
a(λ,z) + b(λ,z)

µd
, (4)

Cs(λ,z) =
a(λ,z) + rsbb(λ,z)

µs
, (5)

Cu(λ,z) =
a(λ,z) + rubb(λ,z)

µu
, (6)

with absorption and scattering coefficients defined as a linear combination of separate water constituents:

a(λ,z) = aw(λ,z) + aNAP (λ,z) + aCDOM (λ,z) + aφ(λ,z), (7)100

b(λ,z) = bw(λ,z) + bp(λ,z) (8)

Different IOP models to determine a and b are further presented in Section 2.3.

In the three-stream approach, the shape factors were considered constant rs = 1.5, ru = 3.0, as well as the average cosines

µs = 0.83 and µu = 0.4 Aas (1987), whilst µd = cos(θwd ) where θwd denotes the solar zenith angle corrected with water refrac-

tion index. Scattering factors were similarly defined:105

Bd(λ,z) =
bb(λ,z)
µd

, (9)

Bs(λ,z) =
rsbb(λ,z)

µs
, (10)

Bu(λ,z) =
rubb(λ,z)

µu
, (11)

Fd(λ,z) =
(1− b′b)b(λ,z)

µd
, (12)

where b′b is the ratio of backscattering (bb) to total scattering (b).110

Solving the in-water radiative transfer model requires three boundary conditions, one for each stream. Edir(λ,0−) and

Edif (λ,0−) were derived from the multi-spectral atmospheric radiative transfer model OASIM (Gregg and Casey, 2009),
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specifically validated with the surface irradiance values from the same BGC-Argo data set in the Mediterranean Sea (in this

special issue; Lazzari et al., 2020). The boundary conditions for the upward component were set as Eu(λ,∞) = 0. The equa-

tions were discretized along depth using the same resolution of the BGC-Argo data and integrated numerically following the115

methodology described in Dutkiewicz et al. (2015).

2.3 IOP models

The in-water radiative transfer analysis comprised of six bigger clusters of IOP simulations, as reported below. The aim of

these tests was to show that the model does accurately take into consideration the spectral response based on the selection of

appropriate IOPs (both absorption and scattering) and thus correctly resolves the radiative transfer equations. In the following120

subsections, separate groups of IOP models are described in more detail, along with the upgrades that were tested.

1. Pure water absorption and scattering (aw, bw)

2. 1. + NAP absorption (aNAP )

3. 1. + CDOM absorption (aCDOM )

4. 1. + PFT absorption (aφ)125

5. 1. + particle scattering (bp)

6. 1. + aNAP + aCDOM + aφ + bp

Most models that link biogeochemical quantities with IOPs are assessed for Case 1 water optical types that can be defined

as water bodies for which the inherent optical properties (of CDOM and NAP) co-vary with phytoplankton and hence with

Chl concentration (Morel and Prieur, 1977). Even though such empirical relationships can be quite useful for parameter esti-130

mations, there exists the tendency to oversimplify the optical response of a generally complex biogeochemical environment,

as thoroughly discussed in Mobley et al. (2004). Hence, one of the scopes of this paper was to try to compare Case 1 water

types with alternative parameterizations that considered additional biogeochemical variables and are described in the following

subsections. The depth variability of adopted IOP models followed the eq.13:

IOP (λ,z) = IOP (λ)
X(z)

max(X(z))
, (13)135

where X(z) denotes the value of the BGC-Argo variable considered at depth z.

Simulation results were verified in two different ways. Firstly, modelled irradiance profiles were matched-up with mea-

sured Ed profiles at all 3 available wavelengths within the upper 150 m of depth. Secondly, diffuse attenuation coefficients of

downward planar irradiances (Kd) for the first optical depths (i.e. the depth range for which the light at a specific wavelength

attenuates e-fold) were calculated for both modelled and measured profiles. Kd as an apparent optical property (AOP) does140

5

https://doi.org/10.5194/bg-2020-473
Preprint. Discussion started: 14 January 2021
c© Author(s) 2021. CC BY 4.0 License.



have the advantage to convey more information on IOPs and to a certain extent remove the impact of the external environ-

ment’s variability (change in sun location, cloud cover, or surface waves, Mobley et al. 2010). This is however present to some

extent, despite the quality-control procedure introduced by Organelli et al. (2016b). Moreover, at 490 nm it is possible to make

a 3-platform comparison including model, float and remote sensing data, which is further elucidated in Section 2.4.

2.3.1 Pure water absorption and scattering145

The original in-water modelling configuration, described in Gregg and Rousseaux (2016), resolves a pure water absorption

spectra based on data from various sources, as reported therein. However, the UV and blue part of the visible spectrum, i.e.

from 250 to 550 nm, was improved also with more recent spectrophotometric measurements by Mason et al. (2016), which

introduced lower values compared to the findings of Smith and Baker (1981); Morel et al. (2007b); Pope and Fry (1997); Lee

et al. (2015). Moreover, pure water absorption was accounted also for the influence on seawater optical properties of T and S150

according to Sullivan et al. (2006). The original values for pure water scattering from Smith and Baker (1981) and Morel et al.

(2007a) were further upgraded by calculating values based on the method described by Zhang et al. (2009), thereby accounting

for the contribution of T and S. The backscattering-to-total scattering ratio for water is kept as 0.5 as in Gregg and Rousseaux

(2016), assuming an isotropic scattering regime.

2.3.2 Non-algal particles (NAP) absorption155

The non-algal particles are defined as a composite of living organic particles, such as bacteria, zooplankton, detrital organic

matter, and suspended inorganic particles (Mobley et al., 2010). The absorption spectrum, despite its heterogeneous biogeo-

chemical composition, follows an exponentially decreasing shape from UV to the red part of the spectrum:

aNAP (λ) = aNAP (λref )e−SNAP (λ−λref ) (14)

The absorption at the reference wavelength, aNAP (λref ), can be estimated in two ways: either as a function of Chl (a Case160

1 optical water type - see eq. 4 in Bricaud et al., 2010), or by considering the range of values measured in the Mediterranean

Sea, i.e. between 0.0087 and 0.8 m−1 (Babin et al., 2003), with the higher values corresponding to highly turbid waters. The

slope SNAP varies from 0.0178 and 0.0104 nm−1, with a mean value of 0.0129 nm−1, Babin et al. (2003). It should be noted

however that the data collected in the work were from coastal regions, therefore the minimum values could also overestimate

the contribution of aNAP compared to the open ocean. To better reproduce the vertical distribution of NAP, different profile165

shapes are considered when estimating model IOPs: Case 1 optical types assume a co-variability with Chl, and additional tests

were performed by considering bbp(700) as a better proxy for non-algal particle vertical distribution, as shown in eq.13.

bbp(700) can be used as a proxy for POC concentration, as well as for the total suspended matter or phytoplankton carbon

(see Organelli et al., 2017a and references therein). However, the separation of organic and inorganic fractions is presently not

possible and also beyond the scope of the work. A hypothesis was thus placed to quantify the model’s skill when considering170

bbp(700) as a better parameter from the BGC-Argo set of measurements in terms of NAP depth variability.
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2.3.3 CDOM absorption

Similarly to aNAP , the spectral response of aCDOM is also expressed as a decreasing exponential function:

aCDOM (λ) = aCDOM (λref )e−SCDOM (λ−λref ) (15)

aCDOM (λref ) can be also estimated as a function of Chl from a regional Case 1 model presented in Morel and Gentili175

(2009) and based on spectral coefficients of pure water as measured by Pope and Fry (1997). However, given the substantial

modification of the aw absorption spectra in the UV/blue range when following Mason et al. (2016) compared to originally

adopted values from Pope and Fry (1997), a set of simulations was tested by subtracting the former aORIG(λ) with the updated

one, aw, as shown in eq.16. With previous values, aORIG(λ) amounted to a higher water absorption, which would have lead

to a significant underestimation of aCDOM .180

acorrCDOM (λ) = aCDOM (λ) + aORIGw (λ)− aw(λ) (16)

The remaining parameter to estimate was the slope SCDOM , which can be taken from Babin et al. (2003) and Organelli

et al. (2014), i.e. ranging between 0.015 and 0.02 nm−1, with a mean value of 0.017 nm−1.

As with NAP, the Case 1 model for aCDOM was upgraded by considering the fDOM profile shape instead of Chl.

Following Organelli and Claustre (2019), aCDOM (380) was computed from the BGC-Argo irradiance profile at 380 nm,185

from which the diffuse attenuation coefficient Kd(380) was derived, both for the mixed layer as for the first optical depth. The

former was obtained from a potential density threshold value criterion (de Boyer Montégut et al., 2004), whereas the latter

corresponds to the e-folding depth at the specific wavelength. Kd(380) was then estimated from a non-linear fit with the least

squares minimization of an exponential function for both depth ranges, and can be separated into pure water and biogenic

components (Morel and Maritorena, 2001):190

Kd(λ) =Kw(λ) +Kbio(λ), (17)

where:

Kw(λ) = aw(λ) + 0.5bw(λ) (18)

After having subtracted the pure water contribution Kw(380) as estimated in Morel and Maritorena (2001) (i.e. 0.0151

m−1), the remaining item, Kbio(380), serves as a proxy for aCDOM (380). Given the fact that the IOP models used for pure195

water absorption presented also an upgrade by considering Mason et al. (2016), as well as by introducing a T-S correction for

pure water IOPs (Sullivan et al., 2006; Zhang et al., 2009), different tests were tried in order to calculateKw(380) as a function

of aw(380) and bw(380) rather than adopting a constant value. The entire aCDOM spectrum is then estimated with the slope

range of values as described above, with the depth variability analogous to the fDOM shape.
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2.3.4 Phytoplankton absorption200

For phytoplankton Chl-specific absorption spectra, data for seven different algal species of varying size were used (Organelli

et al., 2017c). Absorption spectra were obtained for species cultured at the light regime of 100 µmolphotonsm−2 s−1.

The total phytoplankton absorption is computed as the sum of separate phytoplankton functional types (PFT) spectra aiφ(λ)

as shown in eq.19:

aφ(λ,z) =
6∑

i=1

aiφ(λ)f iφChl(z), (19)205

The relative contribution of each PFT to the total Chl concentration, i.e. f iφ(z), followed the regional empirical algorithm

introduced by Di Cicco et al. (2017), Table 4. For that purpose, 7 algal species were merged into 6 PFTs: Diatoms, Dinoflagel-

lates, Cryptophytes, Green Algae and Prochlorococcus, Prochlorococcus and Synechococcus, Coccolithophores. The relative

contribution of Prochlorococcus was divided into 0.5 for the 2 PFTs containing the same species.

Original spectra with a 1 nm frequency were converted to 25 nm bins, corresponding to the model spectral resolution.210

The regional algorithm of Di Cicco et al. (2017) was validated with an in-situ data for first 50 m, with the majority of

samples in the Western Mediterranean. Apart from the spatio-temporal bias inherent to ship-borne measurements with which

the relationship was obtained, it is suitable for Chl values in the range between 0.02 and 5.52 mgm−3. Therefore, Chl values

higher than 5.52 mgm−3 or lower than 0.02 mgm−3 have been limited to Chl = 5.52 and 0.02 mgm−3 respectively.

2.3.5 Particle scattering215

Unlike the model set-up in Gregg and Rousseaux (2016), the particle scattering bp is resolved as a total sum, and not partitioned

into the relative scattering contributions of separate PFTs. Following eq. 14 in Morel et al. (2002), bp is expressed as a function

of Chl:

bp(λ,z) = 0.416[Chl(z)]0.766
λ

550

ν

, (20)

where ν = 0.5[log10(Chl)− 0.3] if 0.02 < Chl < 2 mgm−3 and ν = 0 if Chl > 2 mgm−3. ν values are between -1 and220

0. Commonly used in earlier models, the value of ν =−1 is derived from Mie theory and is known to be valid only for non-

absorbing particles with a Junge particle size distribution slope of -4 (Mobley et al., 2010). Similarly to the PFT regional

algorithm modification, ν is calculated as if Chl were equal to 0.02 mgm−3 for values lower than the minimum concentration.

Both Chl and bbp(700) shapes were taken into consideration to account for the depth variability. Alternatively, bbp(700) from

BGC-Argo floats can be also used to estimate bp. A spectrum of bbp(λ) can be obtained from eq.21:225

bbp(λ) = bbp(λo)
(
λ

λo

)η
, (21)

8

https://doi.org/10.5194/bg-2020-473
Preprint. Discussion started: 14 January 2021
c© Author(s) 2021. CC BY 4.0 License.



where η is a proxy for the slope of the particle size distribution, assuming that the particles are non-absorbing. Lower slope

values (around 0 to 1) indicate the presence of larger particles and vice-versa. The range of tested values was between 0 to 4,

where the highest slope value agrees with measurements at the BOUSSOLE buoy (Antoine et al., 2011). A mean value of 2

was used according to Organelli et al. (2016a). The relative contribution of back- to total particle scattering can be quantified230

with a known backscattering ratio b̃bp(λ):

b̃bp(λ) =
bbp(λ)
bp(λ)

, (22)

in the present set of simulations ranging between 0.2 and 1.5% (Antoine et al., 2011). The depth variability follows bbp(700)

profiles (see eq.13).

2.4 Remote Sensing Data235

Both AOPs, i.e. remote sensing reflectance andKd, can be described as functions of absorption and (back)scattering coefficients

(Morel and Gentili, 1993; Gordon, 1989).

In order to compare model data with satellite measurements, the calculation of in-water remote sensing reflectance R−rs(λ)

was carried out by following:

R−rs(θo,λ,Chl) =
Eu(λ)
Ed(λ)

1
Q(θo,λ,Chl)

, (23)240

where the calculation of Q, a function of wavelength λ, Chl, and solar zenith angle θo, follows the procedure introduced by

Morel et al. (2002):

Q(θo,λ,Chl) =Qo(θo,λ,Chl) +SQn(λ,Chl)[1− cos(θo)] (24)

Values of Qo(0,λ,Chl) and SQn(0,λ,Chl) are interpolated from the look-up Table 2 in Morel et al. (2002). Surface

Chl values were taken from float measurements at the shallowest depth. In case of Chl concentrations below 0.03 mgm−3,245

Qo(0,λ,Chl) and SQn(0,λ,Chl) were taken from the minimum value.

The conversion from in-water to above-water remote sensing reflectance R+
rs (hereafter Rrs ) follows the relationship from

Lee et al. (2002):

Rrs =
0.53R−rs

1− 1.7R−rs
(25)

Satellite data were obtained from Copernicus Marine Environment Monitoring Service, i.e. the Ocean Colour Level 3 prod-250

ucts, comprising of Rrs(λ) data at 6 wavelengths: 412, 443, 490, 510, 555, 670 nm, as well as of the diffuse attenuation of

downwelling irradiance at 490 nm, Kd(490).
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Locations of floats were matched-up with daily satellite data of a 1 km space resolution. 445 points were left for the period

corresponding to the simulations considered. Due to a reduced number of matched-up quantities, the values of Rrs(λ) and

Kd(490) were spatially aggregated to Western and Eastern Mediterranean basins, and temporally in the form of monthly255

climatological values.

3 Results and Discussion

3.1 IOP model validation

In order to verify the improvement of various modelling configurations, simulations were clustered into groups of separate

IOPs, each with its own selection of tests and modifications. The model skill was quantified with three statistical parameters260

(root mean square error or RMSE, bias and Pearson correlation coefficient r), as shown in the Appendix A, resulting from a

point-by-point match-up of modelled and measured downwelling irradiance values for the first 150 meters at 3 wavelengths.

Starting with a pure water IOP model, the updated absorption spectrum in the UV/blue range (Mason et al., 2016) reveals

a skill deterioration due to a much lower water absorption in the tested range of the spectrum. Most noticeably at shorter

wavelengths, RMSE increases by 0.13, 0.08 and 0.01 Wm−2nm−1 (29% , 16% and 5%) at 380, 412 and 490 nm respectively265

compared to the "reference" simulation (i.e. with the pure water absorption spectrum used in Gregg and Rousseaux, 2016).

Similarly, bias increases by 0.12, 0.04 and 0.01 Wm−2nm−1 (29%, 18% and 6%) compared to the reference configuration.

The correlation coefficient r decreases by 0.25, 0.10 and 0.001 (39%, 15% and less than 1%) respectively, Fig.3. The choice

of the updated absorption values from Mason et al. (2016) is nonetheless preferred by the methodology improvement, which

enabled more accurate measurements of the pure water absorption.270

The inclusion of T and S data both for absorption (Sullivan et al., 2006) and scattering spectra (Zhang et al., 2009) displays

a smaller, however notable improvement in the model’s skill. Compared to the simulation with absorption values from Mason

et al. (2016), RMSE decreases by 0.03, 0.04 and 0.01 Wm−2nm−1 (7%, 8% and 1%) and the bias by 0.02, 0.04 and 0.01

Wm−2nm−1 (5%, 9% and 6%). The last configuration, i.e. with the modification from Mason et al. (2016) and T-S corrected

models of aw and bw was therefore chosen for subsequent tests.275

A series of tests were performed for aNAP parameterizations, Fig.4. Starting with a Case 1 model that follows the Chl

profile shape, the consecutive improvements incorporated the inclusion of bbp(700) depth variability. Moreover, the range of

aNAP (443) and SNAP values from Babin et al. (2003) were tested with both Chl and bbp(700) shapes. Among the tests

with a varying range of values (SNAP between 0.0104 and 0.0178, and aNAP (443) between 0.0087 and 0.08 m−1, the latter

corresponding to highly turbid waters), the minimum value for aNAP (443) was chosen, assuming that floats are located in280

open waters with a low or negligible contribution of sediments. The slope SNAP is selected from a mean value of 0.0129 from

Babin et al., 2003.

Considering bbp(700) shape instead of Chl in the Case 1 configuration from Bricaud et al. (2010) significantly increases the

skill, especially towards the UV, i.e. RMSE decreases by 0.04, 0.04 and 0.001Wm−2nm−1 (12.5%, 11.5% and less than 1%).

The bias on the other hand decreases by 0.03, 0.03 and 0.01 Wm−2nm−1 (11%, 10% and 7%). Shifting towards non-Case-1285
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representations, i.e. with the inclusion of the range of values observed in in-situ measurements, gives an overall better match-up

statistics, which especially improves when considering the bbp(700) shape, Fig.4. Comparing the bbp(700)-shaped model with

values from Babin et al. (2003) and the analogous Case 1 model, RMSE decreases by 0.14, 0.11, 0.01 Wm−2nm−1 (50%,

36% and 5%), the bias by 0.13, 0.12, 0.01Wm−2nm−1 (55%, 46% and 7%) for the three measured wavelengths respectively.

r increases by 0.15 (21%), 0.08 (10%) and at 490 decreases by 0.01 (7%). Therefore, according to the present data, the highest290

skill is achieved using the bbp(700) shape with the aNAP model suggested by Babin et al. (2003).

Similarly to NAP simulations, CDOM absorption models were also compared considering three aspects: the Case 1 versus

alternative parameterizations, Chl versus fDOM IOP depth variability, and additional spectral corrections due to modifications

in the pure water spectrum shown in eq.16. As in aNAP , considering shapes alternative to Chl, such as profiles of fDOM,

reveals an improvement in the match-up statistics. fDOM-shaped Case 1 model from Morel and Gentili (2009) introduces a295

RMSE decrease 0.05, 0.05 and 0.001 Wm−2nm−1 (20%, 19% and less than 1%) and a reduction of bias amounting to 0.03,

0.03, 0.01 Wm−2nm−1 (17%, 16% and 8%). r increases by 0.10, 0.05 and 0.01 (13%, 6% and 1%), Fig.5. As in Fig.4, the

largest impact on the lowering of bias and RMSE values was noticed due to a deviation from Case 1 models. This was achieved

by adopting the approach presented in Organelli and Claustre (2019), described in Section 2.3.3, with the difference that the first

optical depth range was rather considered as it resulted in a better performance compared to the MLD (not shown). Relative300

to the fDOM-shaped Case 1 model, the RMSE decreases by 0.06, 0.05 and 0.02 Wm−2nm−1 (30%, 23% and 11%), and

the bias lowers by 0.06, 0.06 and 0.02 Wm−2nm−1 (40%, 37% and 17%) at 380, 412 and 490 nm respectively. Subsequent

simulations result in an upgrade in the calculation ofKw: from the original value of 0.0151m−1 (Morel and Maritorena, 2001),

Kw was calculated by taking into consideration the T-S corrections for both absorption and scattering values. Moreover, the

aCDOM was modified for the spectral correction of aw. Compared to the constant Kw value simulation, the final configuration305

resulted in a decrease in RMSE by 0.04, 0.04 and 0.02 Wm−2nm−1 (29%, 24% and 13%) and in a bias decrease by 0.03,

0.03 and 0.02 Wm−2nm−1 (34%, 30% and 20%) for 380, 412 and 490 nm. r increases by 0.05, 0.04 and 0.001 (5%, 4% and

less than 1%).

The contribution of remaining IOPs, phytoplankton absorption aφ and scattering by particles bp, are shown alongside the

skill of the chosen models for separate IOP groups described above, Fig.6. The PFT modelling configuration described in310

Section 2.3.4 resulted in a RMSE decrease by 0.14, 0.20 and 0.07 Wm−2nm−1 (33%, 44% and 32%) and in a bias decrease

by 0.15, 0.20 and 0.07 Wm−2nm−1 (37%, 49% and 41%). The correlation increased by 0.23, 0.17 and 0.04 (34%, 22% and

4%). Based on the phytoplankton absorption curves adopted in the model, the highest decrease in RMSE and bias at 412 nm

can be explained by the proximity to the chlorophyll a absorption peak in the blue, which can also explain a more uniform

spectral change of skill. Moreover, the absorption values of most PFTs (except Cryptophytes and Synechococcus) are similar315

at 380 and 490 nm, with slightly higher values at 380 nm.

Even though several bp configurations were tested, their impact on the Ed match-up was negligible, leading to small dif-

ferences between simulation results. Given the fact that no upwelling component of irradiance measurements Eu is available

from BGC-Argo floats, a more in-depth study of most appropriate scattering regimes is left for similar tests with data from

multi-spectral platforms as ProVal (Leymarie et al., 2018). The most adequate scattering model was a non-Case 1 type, i.e.320
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derived from bbp(700) measurements following equations 21 and 22, with a maximum backscattering ratio b̃bp(λ) of 0.015 and

a spectral slope η of 3.

The final modelling configuration results in a RMSE ranging from 0.05 to 0.09 Wm−2nm−1, a negative bias of -0.004

Wm−2nm−1 at 412 nm and positive values of 0.01 and 0.02 Wm−2nm−1 at 380 and 490 nm, while r amounts to 0.94 at

380 nm and 0.95 at 412 and 490 nm, Fig.7. The slope is closest to 1 at 490 nm, with the highest value observed at 380 nm325

(1.07), signifying a model overestimation, and lowest slope at 412 nm (0.81), with model values lower than float measurements.

3.2 Comparison with in-situ and remote sensing apparent optical properties

Results were further assessed also in terms of diffuse attenuation coefficients for downwelling irradiance Kd(λ) and remote

sensing reflectance Rrs(λ). Both AOPs were calculated following methods described in Sections 2.3 and 2.4.

Additionally, for the wavelength 490 nm, a three-platform comparison was possible, i.e. model- and float-derived Kd(490)330

versus satellite data, as shown in Fig.8. The match-up of satellite and float observations amounted to 445 co-located mea-

surements which were spatio-temporally aggregated into climatological months and grouped according to western and eastern

basins. Therefore, this data can provide further insight on the IOP selection in a more qualitative way.

ModelledKd(λ) coefficients replicated the monthly dynamics conveyed in float-derived values, Fig.8. At 380 nm, maximum

discrepancy is seen in winter and spring months for western basins, with a largest difference in the month of April, i.e. mean335

values of 0.13 and 0.10 m−1 for model and data respectively (top figure in Fig.8). Modelled values are higher for the reference

configuration than float-derived ones in both regions, which might stem from an overestimation of IOPs. At longer wavelengths

the difference diminishes, with good consistency achieved also between the three comparing platforms at 490 nm. However,

satellites do not seem to capture highest values in spring for the Western Mediterranean, which is shown from BGC-Argo floats

and model results. Overall, Kd(λ) values are larger for western than eastern basins, as shown in Terzić et al. (2019). Modelling340

IOPs as functions of available biogeochemical and bio-optical measurements, then, provides a significant reproduction of the

zonal gradients. The similar magnitude of error bars from all platforms demonstrates also that the model and data variabilities

are close.

A separate set of tests was dedicated to assess the relative contribution of individual IOP groups to the final model per-

formance. In order to investigate the sources of largest differences at 380 nm shown in Fig.8, a configuration without aNAP345

was tested in order to qualitatively assess the relative importance of NAP, Fig.9. The choice of the latter simulation display

is justified by the fact that the CDOM model selected for the reference configuration follows the derivation of aCDOM from

Kbio(380) as shown in Section 2.3.3. In this case, the total absorption in the UV/blue part of the spectrum could be overes-

timated since the contributions of CDOM and NAP to Kd(380) are both comprised. NAP is therefore considered twice, even

though the chosen model accounts for the minimal contribution based on Babin et al. (2003). Separate models however follow350

different depth shapes (from bbp(700) and fDOM respectively), which could also result in having an impact in the final model

skill. Nonetheless, with the lack of additional measurements at present, there are no means of separating relative contributions

of CDOM and NAP from the Kbio(380) term.
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With a diminishing contribution towards longer wavelengths due to an exponentially decreasing spectrum, values ofKd(380)

display a most notable discrepancy from the reference configuration. Modelled values match measurements also during winter355

and spring months in the west, Fig.9 (top). Both at 380 and 412 nm the trend reverses, with an underestimation of modelled

values from the month of May to December at 380 and February at 412 nm. Lower model values at west can be seen also

at 490 nm, with the largest difference in April. At east, modelled values are closer to measurements at 380 nm with slightly

lower values from models in summer and autumn months. At 412 and 490 nm, modelled values are overall lower than data-

derived ones with a good agreement at 490 nm in April, unlike in the west, where satellite values are still much lower than360

the modelled ones, Fig.9 (bottom). It could be argued that in the first optical depth range the IOP depth variability plays a

smaller role compared to the resulting point-by-point match-up of the entire profiles of 150 m depth. Hence the removal of

NAP resulted in a higher consistency of Kd values, especially at shorter wavelengths.

Considering another AOP, however, a different result is obtained. Rrs is related to IOPs in such way that is directly propor-

tional to backscattering and inversely proportional to the sum of absorption and backscattering (Morel and Prieur, 1977; Morel365

and Gentili, 1993).

Looking at model and satellite Rrs values as well, the removal of aNAP resulted in an overestimation of modelled Rrs
values, especially at 412 nm (up to 60% - figure not shown). Including a whole set of IOPs, on the other hand, amounted to

a smaller difference between modelled and measured Rrs, with differences decreasing with increasing wavelength, resulting

in an overall best agreement between model and satellites, Fig.10. Satellite Rrs values are generally higher for eastern basins,370

especially during summer and autumn, whereas at west the reference configuration shows higher model values compared to

satellites at 412 nm and all months at 443 nm except from January to March. The range of variability from model data is

also larger than from satellites, especially for the Western Mediterranean, Fig.10. Given the lack of upwelling radiometric

in-situ measurements, Rrs was the only indicator that allowed the assessment of the most adequate scattering model. Using

Case 1 from eq. 20 leads to an underestimation of modelled Rrs for both west and east, resulting in up to a 60% discrepancy375

with satellite values, even when using the bbp(700) shape, and especially during summer months (not shown). The chosen

configuration with a slope of 3 is consistent with the range of values from Antoine et al. (2011), reaching best agreement for

the Eastern Mediterranean, Fig.10. Exceptions are seen during summer months, when the most adequate slope amounts to 4,

and for the west, where modelled and observed values align better with a slope of 2, as in Organelli et al. (2016a) (figure

not shown). This result suggests that there are different scattering regimes in play in the two basins, most likely stemming380

from a different particle size distribution (Antoine et al., 2011), which can provide information on the dominant PFTs (Vidussi

et al., 2001; Kostadinov et al., 2009). Lower slope values imply larger particles, which is consistent with the results in the

west during usual spring bloom events with larger, microphytoplankton assemblages (20 to 200 µm). On the other hand,

higher slope values could suggest smaller particles, consistent with the pico- or nanophytoplankton (0.2 to 2 and 2 to 20 µm

respectively) assemblages usually predominant at the basin level, with the former prevailing especially during spring/summer385

and the latter during winter. Such conclusions are in line with the previously detected patterns of phytoplankton distribution in

Siokou-Frangou et al. (2010) and Uitz et al. (2012), which were confirmed also in Sammartino et al. (2015), Di Cicco et al.

(2017) and Navarro et al. (2017).
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Additional checks were performed by switching off absorption spectra of separate components, which conveyed that the

contribution of each IOP results in a complete spectral picture: the exclusion of aCDOM showed a largest impact, amounting390

to up to 300% and 200% difference between modelled and measured Rrs at 412 and 443 nm respectively. On the other hand,

the exclusion of bbp and aφ resulted in lower model Rrs values, especially for the Western Mediterranean during winter and

spring months, amounting to up to 20% and 45% respectively (not shown).

4 Conclusions

BGC-Argo floats prove to be an essential observing system to further explore the possibility of integrating data in numerical395

modelling of physical, as well as biogeochemical and optical properties. Due to the high number of profiles with synoptic

measurements of physical and bio-optical parameters, it is possible to use the almost complete suite of measured variables (i.e.

T, S, Chl, fDOM, bbp(700) and Ed(λ)) to test various state-of-the art parameterizations of absorption and scattering properties

of sea water constituents. The current wavelength selection of Ed(λ) measurements constitutes an ideal tool to explore the

part of the spectrum that is least understood, mostly for the contributions from CDOM and NAP. This is particularly true400

in the Mediterranean Sea, where the blue-to-green reflectance ratio-based algorithms are known to have low performances

(Morel and Gentili, 2009) because of the higher-than-expected contribution of CDOM for a given Chl concentration. The

major findings of this work can be summarized as follows: the inclusion of T and S data is advisory to consider for the small,

but significant spectral modulation of seawater compared to pure water, which also improves the model skill. Furthermore,

the tests performed on Case 1 IOP models reveal that the inclusion of additional biogeochemical measurements in the IOP405

parameterizations results in enhanced match-up statistics, both when comparing with irradiance profiles, as well as with in-situ

and remote-sensing derived AOPs. The shape of bbp(700) for aNAP variability increases the skill compared to Chl-shaped

models by 27 % in the case of RMSE. Moreover, it was demonstrated that the use of fDOM shape and the estimation of

aCDOM (380) for CDOM absorption, as well as the spectral correction of the updated aw spectrum, all contribute to an upgrade

in CDOM modelling. Partitioning the contributions of NAP and CDOM to the total absorption with additional experiments410

would be also advantageous, as well as the assessment of relative contributions of different constituents to the total bbp(700)

signal, thus separating the organic and inorganic parts. Observations of other biogeochemical parameters, such as oxygen,

nitrate and pH, can be possibly integrated with a coupled biogeochemical model. All of these variables are already available on

the BGC-Argo float standard configuration (Claustre et al., 2020). This could offer the opportunity, with an existing validation

data set, to consider also the phytoplankton ecology and dynamics of separate functional groups. Such work demonstrates415

the advantages of combining data with numerical models, which can pave way to a better understanding of biogeochemical

processes in the examined regions.

The focus of this study is also more on the absorption models rather than scattering due to the lack of Eu measurements,

which will be possible to account for with the integration of multi-spectral data from platforms like ProVal (Leymarie et al.,

2018). This will enable also the calculation of in-situ R and remote-sensing reflectance estimations Rrs, thus surpassing420
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the current limitation of quantifying the skill between Rrs satellite data with model values due to the scarcity of satellite

observations spatio-temporally co-located with BGC-Argo float profiles, supporting further the three-platform comparisons.

To conclude, the key point raised in this study is that the inclusion of multi-spectral measurements is essential to tackle

the proper biogeochemical response, surpassing the most-commonly PAR-related parameterizations of phytoplankton growth.

With the advancement of satellite sensors and their algorithms it would be necessary to make a comparison of radiative transfer425

models of different degrees of complexity, and perform similar tests with hyperspectral models which are able to solve a full

radiative transfer equation resulting in a complete radiance distribution (Mobley and Sundman, 2008).

Appendix A: Statistical Indicators

The model skill assessment was evaluated with three statistical parameters: bias, root mean square error (RMSE) and the

Pearson correlation coefficient (r), that were calculated following equations A1 to A3:430

BIAS =
1
n

Σni=1

(
xi− yi

)
(A1)

RMSE =

√
1
n

Σni=1

(
xi− yi

)2

(A2)

r =
cov(x,y)
σxσy

(A3)

where

cov(x,y) =
∑n
i=1(xi− x̄)(yi− ȳ)

n− 1
(A4)435

x equals Ed(λ) from the model output and y denotes Ed(λ) from BGC-Argo floats; σ represents the standard deviation of

the model/data values.
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Terzić, E., Lazzari, P., Organelli, E., Solidoro, C., Salon, S., D’Ortenzio, F., and Conan, P.: Merging bio-optical data from Biogeochemical-

Argo floats and models in marine biogeochemistry, Biogeosciences, 16, 2527–2542, 2019.

Uitz, J., Stramski, D., Gentili, B., D’Ortenzio, F., and Claustre, H.: Estimates of phytoplankton class-specific and total primary production in575

the Mediterranean Sea from satellite ocean color observations, Global Biogeochemical Cycles, 26, 2012.

Vidussi, F., Claustre, H., Manca, B. B., Luchetta, A., and Marty, J.-C.: Phytoplankton pigment distribution in relation to upper thermocline

circulation in the eastern Mediterranean Sea during winter, Journal of Geophysical Research: Oceans, 106, 19 939–19 956, 2001.

Volpe, G., Santoleri, R., Vellucci, V., d’Alcalà, M. R., Marullo, S., and d’Ortenzio, F.: The colour of the Mediterranean Sea: Global versus

regional bio-optical algorithms evaluation and implication for satellite chlorophyll estimates, Remote Sensing of Environment, 107, 625–580

638, 2007.

Zhang, X., Hu, L., and He, M.-X.: Scattering by pure seawater: effect of salinity, Optics Express, 17, 5698–5710, 2009.

20

https://doi.org/10.5194/bg-2020-473
Preprint. Discussion started: 14 January 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 1. Spatial distribution of the complete data set, prior to additional criteria applied to remove profiles which do not meet computation

requirements.
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Figure 2. BGC-Argo spatial distribution of removed floats (top figure) and the ones left for the analysis (bottom).
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Figure 3. Skill of simulations using only pure water IOPs. The three figures (from left to right) show bias, root mean square error and Pearson

correlation coefficient respectively. Each simulation type has three bar plots, representing different wavelengths (purple 380 nm, cyan 412

nm and dark blue 490 nm). The three types of simulations are: awGregg from the original OASIM configuration described in Gregg and

Rousseaux (2016), awMason with updated absorption spectra from Mason et al. (2016) and awMasonTS with values corrected for T and

S of seawater.
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Figure 4. Skill of simulations using pure water IOPs and aNAP . The structure of the figure follows the one in Fig.3. The four types of

simulations are: two Case 1 simulations with coefficients from Bricaud et al. (2010) and two with the range of values reported in Babin et al.

(2003), both alternating Chl and bbp(700) shapes.
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Figure 5. Skill of simulations using pure water IOPs and aCDOM . The structure of the figure follows the one in Fig.3. The five types of

simulations are: twe first two from the left are Case 1 simulations with coefficients from Morel and Gentili (2009), both alternating Chl and

fDOM shapes. The other three follow the calculation of aCDOM (380) from Kbio(380) as in Organelli and Claustre (2019) and differ in the

estimation of the pure water termKw: as a constant from Morel and Maritorena (2001) and with values of aw from Mason et al. (2016), with

and without the correction due to T and S values.
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Figure 6. Skill of simulations using pure water IOPs and separate IOPs: aNAP , aCDOM , aφ and , bp. The structure of the figure follows the

one in Fig.3.

26

https://doi.org/10.5194/bg-2020-473
Preprint. Discussion started: 14 January 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 7. Match-up Ed(λ) with the final modelling configuration including all IOPs in the first 150 meters, displaying the root mean square

error (RMSE), bias, Pearson correlation coefficient (r), slope, intercept (Y-int) and number of points (N) for each of the three wavelengths

considered.
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Figure 8. Match-up Kd(λ) from the reference configuration. The top two figures display model (darker points) and float (lighter points)

values for western (blue) and eastern (purple) basins. At 490 nm, additional brown scatter points from satellite data are included (bottom

figure).
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Figure 9. Match-up Kd(λ) - without aNAP . The structure of the figure follows the one in Fig.8.
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Figure 10. Match-upRrs(λ) - reference configuration. All three figures display model (darker points) and satellite (lighter points) values for

western (blue) and eastern (purple) basins at 412, 443 and 490 nm respectively.
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