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Abstract. While there is agreement that global warming over the 21st century is likely to influence the biological pump,

Earth system models (ESM) display significant divergence in their projections of future new production. This paper quantifies

and interprets the sensitivity of projected changes in new production in an idealized global ocean-biogeochemistry model.

The model includes two tracers that explicitly represent nutrient transport, light- and nutrient-limited nutrient uptake by the

ecosystem (new production), and export via sinking organic particles. Globally, new production declines with warming due to5

reduced surface nutrient availability, as expected. However, the magnitude, seasonality, and underlying dynamics of the nutrient

uptake are sensitive to the light and nutrient dependencies of uptake, which we summarize in terms of a single biological

timescale that is a linear combination of the partial derivatives of production with respect to light and nutrients. Although the

relationships are non-linear, this biological timescale is correlated with several measures of biogeochemical function: shorter

timescales are associated with greater global annual new production and higher nutrient utilization. Shorter timescales are also10

associated with greater declines in global new production in a warmer climate and greater sensitivity to changes in nutrient

than light. Future work is needed to characterize more complex ocean biogeochemical models in terms of similar timescale

generalities to examine their climate change implications.

Copyright statement. TEXT

1 Introduction15

Global warming over the 21st century is projected to alter the supply of nutrients and light to the surface ocean and drive re-

ductions in the “biological pump,” which is the biologically mediated transfer of carbon from surface to depth and an important

control on the ocean’s natural carbon inventory. These nutrient and light supply changes are related to physical shifts, includ-

ing increased ocean surface temperatures, stronger stratification, and reduced sea ice cover. While there is general agreement

that climate is likely to influence the biological pump, Earth system model (ESM) projections, such as those included in the20

Coupled Model Intercomparison Project (CMIP, Séférian et al. (2020)), display significant divergence in projections of future
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net primary productivity and export production (Bopp et al., 2013; Fu et al., 2016). Uncertainty in projections of changes in the

biological pump arise from two general areas. First, structural differences in the models
:
’
::::::::::::
representations

::
of

::::::::
physical

::::::::
processes

produce variation in the simulated ocean physical response to climate changes (e.g. Knutti and Sedláček, 2013). Second, Earth

system models include a variety of differing ocean biogeochemical models that display a range of sensitivities to changes in25

physical climate (discussed in Oschlies, 2015).

Our objective is to consider what essential properties of ocean biogeochemistry models determine the magnitude of their

simulated changes in new production in response to changes in climate. New production, here, is the production in the euphotic

zone that consumes nutrient supplied from depth, which we assume equivalent to export production due to the need for mass

balance in steady state (Eppley and Peterson, 1979). We determine the essential properties
::::::::
approach

:::
our

:::::::
objective

:
by examining30

the sensitivity of 21st-century projected changes in new production to parameter choices in an idealized biogeochemical model.

From our idealized model, we build a conceptual understanding of the variability in the magnitude of projected changes

associated with different biogeochemical models in terms of essential properties of new production
:
in

::::
new

:::::::::
production

::::::
which

:::
can

::
be

::::::
applied

::
to
::::::::
different

:::::::::::::
biogeochemical

::::::
models. While existing work, discussed next, has examined aspects of this question,

we focus specifically on the climate change aspects of this sensitivity with a broad sweep of parameter space.35

The effects of both biogeochemical model structure and physical circulation–biogeochemical model interactions have
::::
often

been examined in isolation, primarily for a present climate where a comparison to observations may be made.
::::::
Several

::::::
works

::::
have

::::::::
examined

:::
the

::::::
impacts

::
of

:::::::
physical

::::::::
processes

:::::::
isolated

::::
from

:::
any

::::::
global

:::::::::
circulation

:::::::::::::::::::::::::::::::::::::
(e.g. Smith et al., 2016; Pasquero et al., 2005)

:
,
:::
but

::
we

:::::
focus

::::
our

:::::::::
discussion

::
on

::::::
global

::::::
studies.

:
The effects of differing physical models on a single biogeochemical model’s

export production was the focus of the OCMIP-2 experiment, documented by Najjar et al. (2007). The effects of moder-40

ate physical differences in the models, especially lateral diapycnal mixing and mixed layer dynamics, created large differ-

ences in export production. In the same vein, Séférian et al. (2013) found that differences in subgrid-scale parameteriza-

tions, summer mixed layer depths, and deep ventilation caused mismatches to observed biochemical tracers. Similar studies,

Glessmer et al. (2008); Sinha et al. (2010), also find
:::::::
Similarly,

:::::::::::::::::::
Glessmer et al. (2008)

::::
finds that differences in mixing that cause

small changes in temperature and salinity or global production and biomass, respectively, create large differences in primary45

and export productionand
:
.
:::::::::::::::
Sinha et al. (2010)

::::
also

:::
find

::::
that

:::::::::
differences

::
in
:::::::
mixing

:::
that

:::::
cause

:::::
small

:::::::
changes

::
in

:::::::::
production

::::
and

:::::::
biomass

:::::
create

::::
large

::::::::::
differences

::
in plankton community structure.

::::::
Several

::::::
studies

::::
have

:::::
built

:::
off

:::
the

::::::::::::
understanding

::
of

:::
the

::::::
effects

::
of

::::::
varied

:::::::
physical

::::::
models

:::
on

::::
one

:::::::::::::
biogeochemical

::::::
model

::
to

:::::::
examine

:::
the

::::::
relative

::::::
effects

::
of

::::
shifts

::
in
:::
the

:::::::::::::
biogeochemical

::::
and

:::::::
physical

::::::
models.

:::::::::::::::::::
Romanou et al. (2014)

:::::::
compare

:::
the

:::::::::
sensitivity

::
of

:::
the

:::::::::
biological

:::::
pump

::::::::
efficiency

:::
to

::::
both

:::::::
differing

:::::::::::::
current-climate

::::::
ocean

:::::::::
circulation

::::
and

:::::::::::::
remineralization

:::::
rate,

::::::
finding

::::
that50

:::::
across

::::
large

:::::::
regions

::
of

:::
the

:::::
oceans

:::
the

::::::::::
sensitivities

:::
are

::::::
similar.

:
Löptien and Dietze (2019) provide a demonstration of the impacts

of the combined uncertainties in biogeochemical and physical models on climate projections, showing that a biogeochemical

model tuned to current tracer distributions yields large differences in 21st-century projected changes in the biological pump for

a circulation model run with two different, but equally-plausible vertical mixing rates.
::::::
Finally,

::::::::::::::::
Kriest et al. (2020)

::::::::
addresses

::
the

::::::::
question

::
of

:::::::::::::
biogeochemical

::::::
model

:::::::::
calibration,

::::::::
showing

:::
that

::
an

::::::::
optimal,

:::::
rather

::::
than

::::::
ad-hoc,

::::::
tuning

::
to

::::::
current

:::::::::::
observations55
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:::
may

:::
be

::::::::
applicable

::::::
across

:::::::
physical

::::::
models

::::
with

::::::
similar

:::::::::
circulation

:::::::
features

::::
and

:::
can

::::::
reduce

:::::::::
uncertainty

::
in

:::
the

::::::
oxygen

:::::::::
inventory.

The sensitivities of model results to both biogeochemical parameter choice or
:::
and model complexity are often examined in

idealized settings, including one-dimensional frameworks (e.g. Llort et al., 2019; Friedrichs et al., 2006; Levy, 2015; Anuger-

ahanti et al., 2020). An exemplar study of several biogeochemical models of different complexities within a global physical60

model was Kriest et al. (2012), where the authors found that models of all complexities had similar sensitivity to changes in

parameters, where sensitivity is measured using the change in the global fit to phosphate observations. A similar study on a hi-

erarchy of models is Yao et al. (2019), which found that models with better representations of iron had improved representation

of net primary production (NPP) and O2 but that these differences across systematically calibrated models were smaller than

the differences between the calibrated and hand-tuned models, again pointing to larger parameter sensitivity than model struc-65

ture sensitivity. Related studies have typically focused on an individual biogeochemical model’s sensitivity to parameters, often

in the context of optimization to observations (e.g. Kwon and Primeau, 2006, 2008; Kriest and Oschlies, 2015; Kriest, 2017;

Prieur et al., 2019). One example of a sensitivity analysis in the context of climate change is Kvale and Meissner (2017), which

finds that both spatial patterns and global rates of NPP are sensitive to light attenuation parameters and that this sensitivity,

moderate in a preindustrial equilibrium, increases for the transient response to 21st-century climate change.70

In order to determine what essential properties of
::::::::
properties

::
of

:::::::::
production

:::
in ocean biogeochemistry models set the mag-

nitude of their simulated changes in new production in response to changes in climate, we perform a sensitivity study of a

minimal biogeochemistry model in conjunction with a pair of physical ocean model states representing conditions in 2000

and 2100. We use our suite of experiments to understand, first, how physical climate change modifies new productivity glob-

ally, seasonally, and regionally, and second, how that climate change response depends on nutrient and light co-limitation of75

nutrient uptake rates. Given prior work showing some parameter sensitivities are similar across models of varying complex-

ity
:::::::::::::::::::::::::::::
(Kriest et al., 2012; Levy, 2015, e.g.), results from our idealized approach may be widely applicable. In the course of our

sensitivity study, we show that the magnitude of the new production response to climate change scales in proportion to a

linear combination of the parameters quantifying the model’s effective “biological timescale.” Our study thus presents a new

diagnostic, useful for studying physical-biological coupling in the context of a dynamic climate. This approach advances a80

conceptual framework via which inter-model differences in export-production changes might be meaningfully deciphered. Our

secondary motivation is to identify a model configuration suitable for studying process questions related to climate change at

very high-resolution. Since computational costs scale in proportion to the number of simulated tracers, this amounts to finding

a model capable of sufficient realism with the minimal number of tracers (Galbraith et al., 2015).

We describe our physical system, the development of the idealized model, and our analysis methods in section 3. In section85

4
::
2.

::
In

::::::
section

:
3, we describe the global rates, spatial patterns, and seasonal cycles of new production along with its controls and

how these vary across parameter choices. This includes analyses of several regions that exemplify different physical climate

perturbations. Section 5
:
4 summarizes these findings and discusses the usefulness of this idealized model and the biological

timescale.
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2 Methods90

We performed a set of idealized climate-change experiments with the Community Earth System Model (CESM) version 2.1

in an “ocean-sea-ice” configuration forced by atmospheric fields derived from reanalysis.
:::
We

:::::
focus

:::
on

:::
the

:::::
ocean

::::::::::
component,

:::::
which

::
is

::::
POP,

:::
the

:::::::
Parallel

::::::
Ocean

::::::::
Program. In these experiments, the ocean and sea-ice models were integrated at a nominal

1◦ × 1◦ horizontal resolution; the ocean vertical grid included 60 layers, with 10 m resolution at the surface and 250 m at

the ocean bottom of 5500 m. Surface forcing was applied as a prescribed atmospheric state, with a repeated annual cycle,95

based on the Coordinated Ocean-Ice Reference Experiment (CORE) Protocol (Large and Yeager, 2004).We added a pair of

tracers representing idealized nutrient and phytoplankton, where production depends on nutrient and light availability alone,

not existing biomass, and plankton explicitly sink while being advected and mixed. The following subsections describe the

details of the physical model runs (2.1), the development of the idealized biogeochemical tracers (2.2), followed by the method

used for analyzing the causes of changes in production (2.3).100

2.1 Timeslice experiments

To develop a process-oriented means of examining the response of new production to idealized changes in climate, we adopt

a “timeslice" approach. Rather than running a full transient integration, we perturb the model’s initial conditions and the

surface forcing to simulate a period representative of the future climate state. We thus run separate integrations designed to be

representative of early- and late-century climate conditions. For the former, we begin from a state initialized from observations105

and integrate the model with forcing representative of a statistically normal annual cycle, i.e. a normal year (Large and Yeager,

2004); we perform a 20-year
::::::::::
physics-only

:
spin-up, which is sufficient to minimize

:::::
reduce interannual drift in the physical state,

and then use 10 further years,
::::::
which

::::::
include

:::
our

::::::::::::::
biogeochemical

::::::
model, as our early-century timeslice. For our late-century

timeslice, we adjust the initial ocean state and atmospheric forcing variables using anomalies computed from the fully-coupled

CESM1 Large Ensemble (CESM-LE; Kay et al., 2015). The CESM-LE includes 40 members integrated from 1920–2100; we110

use anomalies computed from the ensemble mean, quantifying the difference in ocean state and atmospheric forcing variables

between 2000 and 2100. We then integrate with the normal-year forcing plus monthly ensemble-mean atmospheric anomalies

from the CESM-LE, again using 10 years as our timeslice. The LE has been examined in comparison to both CMIP5 (Alexander

et al., 2018) and observations (Deser et al., 2017), with results showing similarity to future SST and observed climate variability,

respectively. Using the century-scale mean changes from the CESM-LE allows us to represent the forced changes over the115

21st century from the RCP8.5 scenario without the “noise" associated with natural inter-annual variability represented in any

individual ensemble member.

Our resulting model runs have ocean temperature and salinity representative of early and late 21st century very similar

to the LE. Drift in these values within the decadal runs are small compared to either the imposed change between them or

::::
both

:::
the

:::::::
imposed

::::::
climate

:::::::::::
perturbation

:::::::
changes

:::::::
between

::::
them

::::
and

:::
the typical inter-annual variability in a coupled model. The120

atmospheric surface state has the same sub-seasonal variability in each year and both epochs and no inter-annual variability.

Physical fields of interest for the biological impacts of climate change include changes in available light, vertical stratification,
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and ocean currents. We discuss only these fields that can impact our idealized biogeochemical model, leaving out other fields

that do not have direct impacts, such as temperature or pH. The changes in these fields are shown in figure 1, which may

be summarized as follows: the Arctic receives more light (fig. 1a), western boundary currents
:::
and

:::
the

::::::::
Antarctic

:::::::::::
Circumpolar125

::::::
Current

:
speed up (fig 1b), equatorial upwelling spreads meridionally (fig 1c), winter mixing decreases in the Southern Ocean

and shifts position in the North Atlantic (fig 1d), and near-surface stratification increases in most regions
::::::
except

:::
the

::::::
Arctic,

::::
with

:::::
largest

:::::::
changes

::::
near

:::
the

:::::::
equator (fig 1e). With this framework of the physical changes, we can consider their impacts on

biological rates.

2.2 Idealized Tracers130

2.2.1 Model formulation

Our aim in developing a set of idealized tracers to represent new production and export is to have a minimal model which

allows us to explicitly connect responses of these biological rates to the physical climate perturbation described above. This

section describes the assumptions used to design the tracers and their mathematical form, followed by a sensitivity analysis

in the 2000s climate and the choice of a limited set of parameters to analyze further. To explicitly represent the supply of135

inorganic nutrient from depth and new production requires one nutrient tracer (e.g. McGillicuddy Jr et al., 2003); a second

tracer can represent the phytoplankton that is created and follow it to depth. We assume an equivalence between new and

export production due to the need for mass balance in steady state; thus, the annual supply of nutrient from depth, used in new

production, is expected to match the downward flux of plankton and detritus (Eppley and Peterson, 1979).

In designing the nutrient tracer, we make three simplifying assumptions. First, we assume that the deep nutrient pool has140

a fixed concentration, not dependent on explicit remineralization, which decouples the nutrient tracer from the export tracer.

::::
This

:::::::::
assumption

::::
will

:::::
create

:::::::
different

::::::
vertical

:::::::
nutrient

::::::::
gradients

::::
than

::::::
models

::::
with

:::::::::::::
remineralization

::::::::
included. Second, we assume

that new production depends on the availability of this nutrient and light alone, not on the water temperature or on the existing

plankton population that may be sustained by recycling of nutrients; this omits processes thought to be important in bloom-type

events (Behrenfeld and Boss, 2014) but again keeps the nutrient and export tracers decoupled.
:::
One

:::::
may

::::::
reframe

::::
this

::::::
choice145

::
as

:::::::::
subsuming

:::
an

:::::::::
effectively

:::::::
constant

::::
total

:::::::::::::
phytoplankton

:::::::::::
concentration

::::
into

:::
µ0,

::::::
which

:::::
leads

::
to

:::
an

:::::::::::
over-estimate

::
of

:::::::
growth

::::
when

::::
and

:::::
where

::::
total

::::::::::::
concentration

:::::
would

::
be

::::
low

:::
and

:::
an

::::::::::::
under-estimate

::
of

::::::
growth

:::::
when

:::
and

::::::
where

::::
total

:::::::::::
concentration

::::::
would

::
be

::::
high

::
in

::::::::::
comparison

::
to

::
a
:::::::::
production

:::::::
function

:::::::::
including

:::
the

::::::::::::
phytoplankton

::::::::::::
concentration. Finally, we assume that the light

available for new production in the mixed layer is an average
:::
the

:::::
mean of the light levels within the mixed layer (as done in

McGillicuddy Jr et al., 2003); below the mixed layer, productivity depends on the light at only the depth in question. This150

choice increases subsurface growth within the mixed layer
:::
and

::::::::
decreases

:::::::::::
near-surface

::::::
growth, while allowing growth below

the mixed layer depth.
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Figure 1. Climate perturbation. (a) Change in maximum incoming short-wave radiation. (b) Change in annual-mean SSH. (c) Change in

annual-mean vertical velocity at 100m. (d) Change in annual maximum MLD. (e) change in annual-mean stratification at 100m, dσθ/dz

using 155m and 55m potential density. All maps use a cylindrical equal-area projection.
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With these assumptions, the reactions of the nutrient, N , are governed by the following equation:

dN

dt
= −µ0QL+S (1)

Q=N/(kN +N) (2)155

L= 1− e−αI (3)

where µ0 is the maximum growth rate (mmol N/m3 day), Q is the nutrient limitation (nondimensional), L is the light lim-

itation (nondimensional), kN is the half-saturation constant for the nutrient (mmol N/m3), α is the sensitivity for the light

limitation (m2/W), and S is the restoring source at depth. Light, I (W/m2), decays exponentially from the surface value of

the incoming short-wave radiation, but is averaged over the mixed layer depth (defined by maximum buoyancy frequency160

criterion, Large et al. (1997)). Thus, light has a constant value in the mixed layer and an exponentially-decaying value be-

low, which does allow growth below the mixed layer depth. For z ≤−1000m, N is restored
:::::::::
continually

:::::
reset to a value of

20
::::::::::
20mmol/m3; this is our fixed nutrient pool. While the observed deep nitrate values vary on the basin-scale,

::::
from

:::::
about

::::::::::
13mmol/m3

::
in

:::
the

::::::
Arctic

::
to
::::::

about
::::::::::
38mmol/m3

::
in
::::

the
:::::
South

::::::
Pacific

:::::::::::::::::
(Garcia et al., 2013)

:
, this fixed N value at depth de-

creases drift in the solutions as only the upper ocean’s nutrients must spin up.
:::
The

:::::
initial

:::::::::
conditions

:::
for

:::
N,

:::::
which

:::
are

:::::
used165

:
at
:::

the
::::

start
:::

of
::::
both

:::::::
10-year

:::::::::
timeslices,

:::
are

:
a
:::::
linear

:::::::::::
interpolation

:::::::
between

::::::::::
20mmol/m3::

at
:::::::

1000m
:::
and

:::::::::
1mmol/m3::

in
:::
the

:::::::
surface

:::::::
gridcell. There is no flux through the air-sea or sea-land interfaces. The physical transport and mixing are done by the same

mechanics as existing passive tracers in POP
::::::::::
CESM-POP,

::::
with

::
a
::::::::::
third-order

::::::
upwind

:::::::
scheme

::::
for

::::::::
advection

::::
and

::::::::
diffusive

::::::
mixing

:::
that

::
is
::::::::
spatially

:::::::
variable

:::
due

:::
to

::::::::::::::
parameterizations

:::
of

:::::::::::
mixed-layer,

::::::::::::
submesoscale,

:::
and

:::::::::
mesoscale

::::::::
isopycnal

:::::::::
processes

:::::::::::::::::::::::::::::::::::::::::::::
(see Section 2.2 of Danabasoglu et al., 2020, for details).170

In designing the second tracer, we aim to explicitly represent the export from the surface to the deep ocean. This export is a

combination of plankton and detritus, but should be the same total mass, on average, as the supply of nutrient upward. We do

not differentiate between different types of sinking organic matter, and refer to them as a whole as particles. We assume that

there is a constant sinking rate relative to the surrounding water and a small loss rate, which represents both remineralization

into the recycled nutrient pool and removal through higher trophic levels. Particles, P , have their reactions governed according175

to the following equation:

dP

dt
= µ0QL−σP +ws

∂P

∂z
, (4)

where σ is the specific mortality
:::::
decay

:
rate of particles (1/days) and ws (m/day) is the vertical sinking rate of particles. There

is no flux through the air-sea or sea-land interfaces. Again, advection and mixing are applied by the existing CESM-POP

mechanics for passive tracers.180

2.2.2 2000s Sensitivity

Our idealized tracers have five parameters: µ0, kN , α, σ, and ws. In order to identify reasonable values, we perform a sen-

sitivity analysis of the first three under the early-century climate. The specific mortality
::::
decay

:
rate and sinking rate of P
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are held fixed at ws = 0and σ = 1/60days
:::::
m/day

::::
and

::::::::::::
σ = 1/60days in this analysis, as they do not affect N or the produc-

tion rate, and only modestly affect the horizontal spatial patterns of P : faster mortality
:::::
decay reduces global-mean P , while185

faster sinking moves P deeper in the water column, with neither changing the basin-scale or latitudinal structure of annual-

mean surface P . The values of the parameters used are a factor of four increase and decrease from µ0 = 0.5, kN = 1, and

α= 0.05
:::::::::::::::::::::
µ0 = 0.5mmolN/m3day,

::::::::::::::
kN = 1mmolN ,

::::
and

::::::::::::::
α= 0.05m2/W , giving three values for each. We ran ten-year sim-

ulations under 2000 conditions for each of the 27 cases created by combining the options and examined the zonal and annual

mean fields the final year; while this system is not in complete equilibrium after only 10 years, most drift occurs in years 1-2and190

we .
::::

We do not see substantial differences in our climate change results when comparing
::::
using

:
year 5 or year 10 across our

two timeslices
::
of

:::
the

::::::::
timeslices

::
in

:::
our

::::::::::::
computations.

To examine sensitivity to parameters and choose reasonable cases for the climate-change experiments, N is compared to

near-surface World Ocean Atlas nitrate distributions (WOA NO3, Garcia et al. (2013)). P is compared to output from the

CESM biogeochemistry model, BEC (Moore et al., 2013) run with the same model physics. Specifically, we compare near-195

surface P to total plankton, the sum of its three phytoplankton classes in carbon units, converted to nitrogen units using a stoi-

chiometric ratio of 16/117
:::::::
16mmol

::::::::::
N/117mmol

::
C. Although our particles represent both living matter and detritus, near the sur-

face this P is most like newly-produced plankton which we expect to have the same spatial patterns as total phytoplankton. We

choose this comparison to take advantage of the work done to fit BEC to observations for the same physics (see Fig. 4 of Moore

et al., 2013); a comparison to observations can conflate physical and biogeochemical model differences, which are difficult to200

untangle,
::::
and

:::
due

::
to

:::
the

:::::::::
sparseness

::
of

::::::::::::
phytoplankton

::::::::::::
concentration

::::::::::
observations

:::::::::::::::::::::::::::::::::::
(e.g. chl-a data used in Boyce et al., 2010).

Overall, integrations with varied parameters for N mainly change its global mean surface concentration, not the meridional

structure (see figure 2a). This meridional structure matches that of surface global nitrate values qualitatively: high values in

the subpolar regions, moderate near the equator, and low in the subtropics. However, the northern hemisphere peak is shifted

north and the Southern Ocean values are low compared to observations, with the latter due mainly to our choice of a constant205

deep N concentration below that typical in the Southern Ocean.
::
We

::::
will

:::
not

:::
be

::::::::
analysing

:::
the

:::::::
Southern

::::::
Ocean

::
in

::::::
detail,

::
as

:::
we

::::
have

:::
not

:::::::
included

::::
iron

:::::::::
limitation

::
in

:::
our

::::::
model,

::::
and

:::
this

::::::
would

:::
be

::::::
critical

:::
for

:::
the

::::::::
dynamics

:::
of

:::::::::
production

:::::
there.

::::
The

::::::
annual

:::
and

:::::
zonal

:::::
mean

:::::
nitrate

:::::
from

:::
the

::::
BEC

::::::
model

:::
are

:::::
shown

:::
for

::::::::
reference

:::::::
(dashed

::::
line

::
in

:::::
figure

:::
2a);

::::
this

:::::
more

::::::
detailed

::::::
model

::::
also

:::::
misses

:::
the

:::::::
location

:::
of

:::
the

:::::::
northern

::::::::::
hemisphere

:::::
peak,

:::::::::
suggesting

:::
this

::::
may

:::
be

:::
due

::
to

:::
the

::::::
model

:::::::::
circulation,

:::
but

::
is
:::::
much

::::::
closer

::
to

::::::::::
observations

::
in

:::
the

::::::::
Southern

::::::
Ocean.

:
Correlations between annual and zonal mean N and WOA NO3 are between 0.81 and210

0.88 for the full active depth of 1km, and 0.65 and 0.93 for just the surface. Changes in parameters affect the mean surface

concentration of N in a predictable way: increasing kN increases the mean surface concentration, while increasing µ0 and α

decrease it. Changing µ0 causes the largest change in magnitude and kN the least.

This relationship between parameters and near-surface N is the result of a balance between physical supply of N from depth

and its consumption by production at a rate set by the parameters. If production is slower than supply, N will accumulate,215

increasing the production rate and decreasing the vertical N gradient and therefore the supply rate until a near-equilibrium is

reached. Thus, we can predict this relationship between parameter choice and near-surface N using the production function,

µ0Q(N)L(I). The total production’s dependence on N and I can be understood through the initial slopes of the production-
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nutrient and production-light curves, which are µ0/kN and µ0α: these describe how quickly production increases for an initial

injection of each limitation; steeper initial slopes and faster initial production mean less accumulation ofN before equilibration.220

Thus nutrient will be higher for higher kN/µ0 and 1/(µ0α); these functions describe a two-dimensional space where increases

along either axis decrease productivity and increase near-surface nutrient concentration.

We define a biological timescale as a single term to summarize these two axes. First, we recognize that kN/µ0 has units of

days, so we normalize α, which has units W/m2, by dividing by

α0 = 1(m2/W ) · (mmolN/m3) = 1mmolN/Wm225

α0 = 1(m2/W ) · (mmolN/m3) = 1mmolN/Wm
:::::::::::::::::::::::::::::::::::::::::

(5)

to reach the same units as 1/kN ,m3/mmolN, so that 1/(µ0α/α0) also has units of days. We then add the results. The choice of

this normalization factor is specific to this model, where the currency is nitrogen. Then
:::
we

::
are

:::::::
forming

:::
an

::::::::::
equivalence

:::::::
between

:
a
::::::::::
nitrate-type

:::::::
nutrient

:::
and

:::::
light.

::::
Our

:::
α0::

is
::
an

::::::::::
expression

::
of

::::
how

:::
we

::::::
stretch

:::
the

:::::
light

:::::::::
coordinate

::
so

::::
that

:::
the

:::::
initial

:::::
slope

:::
of230

:::::::::
production

::::
with

::::::
respect

::
to

:
I
::
is

::
in

:::
the

:::::
same

::::
units

::
as

:::
the

:::::
initial

:::::
slope

::
of

:::::::::
production

::::
with

:::::::
respect

::
to

::
N,

:::::::::
suggesting

:::
α0::

as
:
a
:::::
ratio

::
of

:::
N/I.

:::::
Given

:::
the

:::::::
relative

:::::
values

:::
of

:
I
:::
and

:::
N,

:::::::::::::::::
α0 ≤ 1mmolN/Wm

::
is
:::::
likely

::
to

:::
be

:::
the

::::
most

:::::::
fruitful.

::::
Now we see that we have a biological timescale for new production based on the parameters chosen; we call this biological

timescale τbio:

τbio =
1

µ0
· (kN +α0/α). (6)235

The format of this timescale reinforces the qualitative relationship between surface N and changes in µ0, α, and kN . We can

use τbio as a metric of how quickly production might consume a new supply of nutrient; if we compared it to a physical

timescale for nutrient supply rate, τp, places where τbio is shorter are likely to be nutrient-depleted and places where τp is

shorter are likely to be nutrient-replete. Across our 27 parameter cases, τbio ranges from about 2 days to 2 years. In fig 2(b),

τbio is compared to global-mean surface N for the 27 cases and correlates well, r=0.96. This correlation is best for this and240

similar values of α0, e.g. 0.1 or 2 mmol N/WM, but is lower for e.g. 0.01 or 100 mmol N/Wm.
::::
This

::
is

::::::::
consistent

::::
with

::::
our

:::::::::::
understanding

::
of
:::
α0::

as
::
a
::::
ratio

::
of

::::
N/I.

Meridional structures of P for these same integrations show more variation than N , which is clear in the more frequent

intersections of the surface value curves and the variation in the latitudes of the maxima (figure 2c). The structure of the

surface BEC phytoplankton has peaks near 60◦N, the equator, 45◦S, and along the Antarctic coast. The three cases with245

(α,µ0) = (0.0125,0.125) lack these peaks entirely, with a much smoother structure that we consider a poor match for observed

behavior and will not be considered further. To determine the best of the remaining options, we measured the correlation

coefficient between the annual meridional structure of P and BEC phytoplankton, which ranged between 0.18 and 0.68 at the

surface. The top half of these cases, 12 of the remaining 24 (see Table 1), were examined by eye for a good qualitative match at

the surface, and will be used for further analysis. These cases have the correct general latitudinal structure of P and also have250
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Figure 2. Annual and zonal mean of surface N (a) and P (c) for 27 parameter choice cases from the 10th year of simulation. Values for 2

chosen cases in blue and orange. Annual and zonal mean references in the thick black lines: nitrate from the World Ocean Atlas observations

:::
and

::::
from

::::
BEC

:::::
model

::
in

::::
same

::::::
physics

::::::
(dashed), total plankton mass from BEC modelin same physics. (b) Case timescale values vs global

annual-mean N (black circles), 2 chosen cases marked with blue and orange stars.

reasonable new (export) production rates between 5.5 and 7.6PgC/yr (figure 3a), which is within the 5-11PgC/yr rate in most

literature (e.g. Cabre et al. 2015).

We will not be examining the explicit sinking of our particles. For those interested, consider sinking rates, ws, consistent

with estimates for detritus: single cells sink at about 0.1m/day and aggregates can reach over 100m/day (Jackson and Burd,

1998). For decay rates, we suggest fixing these after choosing ws and adjusting them to have most production sink below the255

depth threshold of choice. For instance, with ws of 5m/day, σ =1/yr has 95% of annual production sink below 100m.

We choose two cases for detailed analysis which have P structures capturing different aspects of the BEC surface phyto-

plankton concentrations and quite different parameter and mean surface N values. The first case has surface P maxima near

45N and S and the equator, nicely matching those at the equator and 45S in BEC, but missing the 60N and Antartcic-coast

peaks. This case has a small maximum growth rate (µ= 0.125mmol N/m3day), a moderate light sensitivity (α= 0.05), and a260

low nutrient threshold for growth (kN = 0.25). We consider this analogous to a small phytoplankton type or a phytoplankton

community that has adapted to oligotrophic conditions, with plenty of light but low available nutrients. This case has a τbio
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Parameter Case 1-3 Case 4-6 Case 7-9 Case 10-12

α 0.0125 0.05 0.2 0.2

µ0 0.5 0.125 0.125 2

τbio 160.5-168 162-192 42-72 2.625-4.5
Table 1. Set of parameter values for twelve cases that compare best to WOA nitrate and CESM total phytoplankton. Each column represents

three cases with kN ∈ (0.25,1,4). The range of τbio covers those for all three kN .

of 162 days, corresponding to moderate mean surface N , slightly lower than WOA nitrate at the surface (see Appendix A for

more details). We call this the ‘slow’ case.

The second case has surface P maxima near 60N, the equator, and the Antarctic coast, similar to those at 60N and the265

equator in BEC and capturing the increase toward the Antarctic coast, but missing the 45S maximum. In contrast to the first,

this case has a fast maximum growth rate (µ= 2mmolN/m3day), a low light sensitivity (α= 0.2), and a moderate nutrient

threshold for growth (kN = 1). We consider this analogous to a large phytoplankton type or a phytoplankton community that

has adapted to higher latitude conditions, with large seasonal cycles of light and nutrient availability. This case has a τbio of 3

days, corresponding to a very low mean surface N , noticeably below observed nitrate concentrations. We choose this case for270

large contrast with the first and call it the ‘fast’ case. In the results section, we will focus on the changes in production under

global warming for these two parameter cases of our idealized biogeochemical model and use the larger set of twelve cases for

context.

2.3 Light and Nutrient Controls on Production

Under global warming, changes in light and nutrient availability will vary both spatially and temporally. This section describes275

our method to untangle the effects of these two components on changes in new production. The form of production,R= µ0QL,

allows for a decomposition and attribution of changes in productivity to changes in nutrient and/or light. As µ0, the maximum

growth rate, is held constant
::::
does

:::
not

::::
vary

::
in

:::::
space

::
or

::::
time, we can examine simply the nutrient availability, Q, and the light

availability, L, both of which are nondimensional and have values between zero and one
:
,
::
as

::::
does

:::::
their

::::::
product. Using model

output of the monthly-mean N and R, we compute the monthly-mean Q=N/(kN +N) for each grid cell and the monthly-280

mean L=R/µ0Q. The change in
:::::
reason

:::
for

:::::::::
computing

::
L
:::

in
:::
this

::::
way

::
is

:::
that

::::
the

:::::
mixed

:::::
layer

:::::
depth,

::::
and

::::
thus

::
L,

:::
can

:::::::
change

::::::
rapidly.

:::::::::
Production

:::::
rate,

::
R,

::::
and

:::::::
nutrient,

:::
N ,

:::
are

::::::::
averaged

::::::
on-line

::
in

::::
our

::::::
model,

:::
and

::::
thus

:::::::::
computing

::
L
:::::

from
:::::
them

:::::
allows

:::
us

::
to

::::
have

::
a

::::::::::::
time-averaged

::
L

:::
that

::::::
would

:::
not

:::
be

:::::::
possible

::
to

::::::::
compute

::::
from

:::
the

::::::::::::
time-averaged

::::::
mixed

:::::
layer

:::::
depth

:::
and

:::::::::
incoming

::::::::
radiation.

:::
The

::::::
change

::
in
:
QL can be decomposed as

∆QL=Q∆L+L∆Q+ ∆Q∆L=Q2000(L2100 −L2000) +L2000(Q2100 −Q2000) + (Q2100 −Q2000)(L2100 −L2000)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

. (7)285

where ∆ indicates the change between the warmer, perturbed climate (2100) monthly values and those in the 2000s climate,

and
::
as

::::::
written

:::
out

:::::
using

::::::::
subscripts

::
of

:::::
2100

:::
and

:::::
2000,

:::
and

:
all terms can be averaged in space or time as needed. These difference

terms are also nondimensional and have values between negative one and one. Due to the way we compute L from R and Q,
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Figure 3. (a) Global annual new production integrated over the top 100m for 12 cases for 2000 (black circles) and 2100 (red diamonds), vs

τbio (nonlinear axis for readability). (b) Percent change from (a), black stars; fast and slow cases circled in orange and blue, respectively. (c)

Global mean N in the top 100m vs τbio. (d) Absolute change from (c).

there is no residual term– the above equation holds to numerical precision. We will use this decomposition to analyze both

the spatial patterns of annual-mean production and seasonal cycles of production. When one of the three right-hand terms is290

most similar in size to ∆QL and highly correlated in space or time, we will consider that term the main driver of changes in

production.

:::
For

:::::
spatial

:::::::::::
correlations,

::
or

::::::
pattern

:::::::::::
correlations,

:::
we

::::::
assume

:
a
:::::::::::
decorrelation

::::::::::
lengthscale

::
of

:::
10

::::::::
gridcells,

:::::
which

::
is

:::
6-9

:::::::
degrees

::::::
latitude

::
or

:::::::::
longitude,

:::::::::
depending

::
on

::::::::
location.

:::::
From

:::::::::
examining

:::
the

::::::::::::
autocorrelation

:::
of

::::::
several

:::::
terms

::
in

:::::::
equation

:::
7,

::
we

::::
find

::::
that

:::
this

::
is

:::::
slight

:::::::::::
over-estimate

::
of

:::
the

:::::::::::
decorrelation

::::::::::
lengthscale

::
in

::::
some

::::::
cases.

:::
The

:::::::
degrees

::
of

:::::::
freedom

::
in

::
a

::::::
pattern

:::::::::
correlation

::::
over295

::
the

::::::
global

:::::
ocean

::
is

::::
then

::::
825,

:::
and

::::::
pattern

:::::::::
correlation

::::::::::
coefficients

:::::
larger

::::
than

::::::::
r = 0.09

:::
are

:::::::::
significant.

3 Results

3.1 Global statistics and dominant spatial patterns

For our twelve cases, global annual new production in the top 100m is 5.3-7.5 PgC in the early-century scenario and decreases

to 4.8-6.2 PgC in the late-century scenario; production is higher for shorter τbio in both epochs (fig 3ab). These patterns hold for300

our two exemplar cases, with the slow case having lower new production and a smaller decrease than the fast case. Our 12-case

range of decreases in production, 9.5-19.5%, is similar to the 7-18% range of export decreases in CMIP5 (Fu et al., 2016) but

larger decreases than most net primary production changes in CMIP5, -2 to -16% (Fu et al., 2016), or CMIP6, +6 to -12%

(Kwiatkowski et al., 2020).
::
A

::::
large

::::::
portion

::
of
::::
this

:::::::::
variability

::
in

:::::
global

::::
new

:::::::::
production

::
is

::::::
related

::
to

:::
the

:::::::
Southern

::::::
Ocean,

::::::
which

12



:
is
:::
the

:::::
basin

::::
with

::::::
largest

:::::::::
production

::::
and

:::::
which

:::
our

::::::
model

::::
does

:::
not

::::::::
represent

::::
well.

:::::::
Without

:::
the

::::::::
Southern

::::::
Ocean

:::
the

:::::::::
reductions305

::
in

:::::
global

::::::
annual

:::::::::
production

:::
are

::::::::
8.5-11%,

::::::
which

:
is
:::::::

smaller
::::
than

:::
the

:::::
range

::
of

::::::
export

::::::::
decreases

::
in

:::::::
CMIP5

:::
and

::::::
within

:::
the

:::::
range

::
of

:::
net

::::::
primary

::::::::::
production

:::::::
changes

::
in

::::
both

::::::
CMIP5

:::
and

:::::::
CMIP6.

:

Decreases in new production are partially determined by decreases in near-surface nutrient concentration. In all 12 cases,

global average
:::::
mean N concentration in the top 100 m decreases by 15-22% in the late-century conditions (Fig. 3cd). Both

initial concentrations and absolute reductions are smaller for shorter τbio, but the reduction percentages
::::
small

:::::
range

::
of

::::::::
reduction310

:::::::::
percentages

:::::::::
(15-22%) highlight that the changes are somewhat insensitive to the varied light- and nutrient-limitation choices.

These absolute reductions are 0.04-0.66, which is slightly smaller than the reductions of 0.66± 0.49 for CMIP5 RCP8.5

and 1.06± 0.45 for CMIP6 SSP5-8.5 (Kwiatkowski et al., 2020). Despite the small absolute reductions in near-surface N

concentration, the decrease in global new production is larger for fast cases with shorter case timescale (Fig. 3b); these shorter

τbio cases have lower near-surface nutrient in the early-century conditions and higher slopes in their production-nutrient curve,315

making them more sensitive to changes.

The spatial patterns of annual production under early 21st century conditions demonstrate one effect of τbio (fig 4a-b). The

slow case has lower maximal values, as expected given its lower maximal growth rate, and smoother variations in space. The

fast case has higher maximal values of new production, again set by its maximal growth rate, and sharper variations in space,

due to its greater need for nutrients in order to grow: production is more limited to locations with a fast physical nutrient supply.320

Despite these differences, both cases match the general meridional patterns of observed phytoplankton (see e.g. Dasgupta et al.

(2009) for observations), with higher values in the subpolar and equatorial regions and lower values in tropical-subtropical

regions.

The spatial patterns of change in production under the warmer climate are qualitatively similar for both cases, with broad

moderate reductions over most of the oceans, including the Indian ocean, the South Pacific, and the North Atlantic (fig 4c-d,325

the pattern correlation is r=0.26
:
,
:::
see

:::::
Table

:
2
:::
for

::
all

::::::
pattern

::::::::::
correlations). Both cases also contain common areas with increased

production in the 2100s, including most notably the edges of the equatorial Pacific, where upwelling has spread latitudinally,

and the southern edge of the subtropical North Pacific gyre. Despite broad similarity in the productivity response between the

fast and slow cases, however, there are many small regions where the sign of the climate-change response differs, perhaps most

notably the Arctic, central equatorial Pacific, and the Bay of Bengal. These are regions with qualitative as well as quantitative330

sensitivity of the climate perturbation reaction to the light and nutrient functions of uptake.

While we do not discuss spatial patterns in detail for the larger set of parameter cases, we do compute production by basin

(supplement, Fig. B1). For every basin but the Arctic, production decreases for a warmer climate in all twelve cases, indicating

that the qualitative results in most basins are not sensitive to the specifics of light and nutrient limitations. In the Arctic, which

has the least total production, the four cases with lowest τbio have decreases in new production, while the remaining eight have335

increases. We will discuss this sensitive region further in Section 3.5.

As global reductions in production were matched by reduced nutrient concentrations, so too can spatial patterns in pro-

duction be linked to nutrient concentrations and the vertical nutrient flux. Although the nutrient flux and new production do

not necessarily align in space and time, we empirically find pattern correlations between the annual mean production and the
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nutrient flux at 100 m as well as the average
:::::
mean nutrient in the top 100 m (Fig. 5). The vertical flux is somewhat more noisy,340

hence the correlations of the absolute changes between present and future are only r=0.51, r=0.14 for the fast and slow cases,

respectively . The average
:::
(see

:::::
Table

:
2
:::
for

:::
all

::::::
pattern

:::::::::::
correlations).

::::
The

:::::
mean nutrient concentration in the top 100m reflects

the integrated effects of the flux,
:::
the

::::::::
stronger

::::::
vertical

::::::
mixing

:::
in

:::
the

:::::
mixed

:::::
layer,

:
and productivity, hence the correlations are

somewhat stronger.
:::
We

::::
note

:::
that

:::
the

:::::::::
variations

::
in

::::::
nutrient

:::::::::::::
concentrations

:::::
within

:::
the

::::::
mixed

::::
layer

:::
are

::::::::
typically

:::::
small,

::::
less

::::
than

:::
half

:::
the

:::::
mean

::::::::::::
concentration

:::
and

:::::
much

::::
less

::::
than

::::
kN ;

:::::
these

::::::::
variations

::::
lead

::
to
:::::::

slightly
:::::
lower

::::::::::
production

::::
rates

::::
than

:::::
those

::::
that345

:::::
would

:::::
occur

::
if

:::
the

:::::::
nutrient

::::::::::::
concentrations

:::::
were

:::::::
constant

:::::
from

:::
the

::::::
surface

:::
to

:::
the

:::::
mixed

:::::
layer

::::::
depth. In the present-day, the

pattern correlations between annual nutrient concentration in the top 100 m and production integrated to 100 m are r=0.56 and

r=0.26 for the fast and slow biogeochemistry; for the future they are r=0.58 and r=0.33, and for the percent changes r=0.88

and r=0.48, respectively. Across our 12 cases, the lower τbio cases, which are more nutrient-limited, have stronger correlations

between nutrient concentration in the top 100m and productivity. These correlations are always stronger in the warmer climate,350

when all cases are more nutrient-limited.

While we have connected the production and its changes to nutrient concentrations, light effects are also important. Pro-

ductivity is a product of functions representing the sensitivity of productivity to light L(I) and to nutrient Q(N) availability. As

described in the methods, this allows a decomposition of the changes in production into those caused by changes in nutrient

availability, L∆Q, those caused by changes in light availability, Q∆L, and the covariance of the two, ∆Q∆L. Examining the355

spatial patterns of QL, its change, ∆(QL), and the components of that change (Fig. 6) provides more details on the controls

of reduced production beyond the vertical nutrient supply and surface concentration. From the spatial fields
::
of

:::::
these

:::::
terms,

:::
all

:::::
annual

::::::
means

::::::::
averaged

::::
over

:::
the

:::
top

:::::
100m, QL and ∆(QL) show the same spatial patterns as production and its changes(by

definition, r = 1), although the latter is
:
,
::::::::::
respectively,

:::
as

:::::::
expected

:::
by

:::::::::
definition.

::::::::
However,

:::::::
∆(QL)

:::::
looks somewhat different

from the percent changes .
::
in

:::::::::
production

::::::
shown

:::::
before

:::::
(Fig.

:::
4). From the components of the change, it is clear that L∆Q is360

the main control on production, r = 0.74 and r = 0.64 for fast and slow, which is consistent with our discussion of nutrient

supply and concentration (Fig. 6bcgh). The change in light availability is a smaller contributor, r = 0.19 and r = 0.43 for fast

and slow (Fig. 6di). Finally, the covariance is anticorrelated to the total change, r = −0.054 and r = −0.025 for fast and slow

(Fig. 6ej)
:
;
:::::
these

:::::::::
correlation

:::::::::
coefficients

:::
are

:::::::::::
insignificant. This component is largest near the equator, where it offsets increases

in nutrient due to broader upwelling in the warmer climate.
::::
These

:::::::
pattern

::::::::::
correlations

:::
are

:::::::::::
qualitatively

::::::
similar

:::::::
without

:::
the365

:::::::
Southern

::::::
Ocean,

::::::
which

:::
we

::
do

:::
not

::::::::
represent

::::
well

::::
with

:::
this

::::::
model.

:

From these analyses, we see that qualitatively, the spatial patterns of the response to the climate perturbation are similar

across the biogeochemical cases under consideration, likely pointing to strong controls by the underlying physics via the

nutrient supply. Quantitative differences exist; the spatial differences point to locations where results are sensitive to model

parameters, while the global differences are consistent with the chosen parameters in that the faster cases, which have a higher370

nutrient utilization
:::::
higher

:::::::::
production

:::
and

:::::
lower

:::::::::::
near-surface

::::::
nutrient, have new production more correlated with the reductions

of near-surface nutrient and its vertical supply.
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Figure 4. (a,b) 2000s annual production
:::::::

integrated
:::
over

:::
the

:::
top

::::
100m. (c,d) percent change with climate perturbation. (a,c) slow case; (b,d)

fast case. Magenta contour indicates the subtropical South Pacific, cyan the Porcupine Abyssal Plain, black line the southern edge of the

Arctic.

3.2 Global Seasonal Cycle

Over much of the ocean, the seasonal cycle is the dominant mode of productivity variability due to seasonal variations in light

and nutrients. We are interested in how the seasonal cycle will respond to our climate perturbation and whether this is sensitive375

to the case pararmeters.

We define the global seasonal cycle as monthly global spatial averages with a six-month offset between the northern and

southern hemispheres so that the Boreal and Austral seasonal cycles are in phase. Differences in the seasonal cycle of new

production between the fast and slow cases are large and are a reflection of the different τbio of the cases (Fig. 7b). Seasonal

changes in nutrient and light availability have physical timescales of weeks to months, which are between the τbio of 3 days380

for the fast case and 162 days for the slow case. Both cases have high upward nutrient flux in the winter and early spring

in conjunction with deep and dense winter mixed layers. However, the strong nutrient flux occurs over a shorter period of

time in the slow case as the physical supply overwhelms the slow ecosystem’s ability to consume and thereby reduces the
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Figure 5. Annual
:::
(a,b)

:::::::
Nutrient

::::::::::
concentration,

:::::::::
mmolN/m3,

:::::::
averaged

::::
over

:
a
::::
year and

::
the

:::
top 100mmean nutrient concentration. Top row

::
(c,

::
d)

:::::
Percent

::::::
change

::
of

:::
this

::::
field

::::
from 2000s

:
to

:::::
2100s

::::::
climate.

::
(a,bottom row

:
c)

::::
slow

:::
case, percent change

::::
(b,d)

:::
fast

:::
case.

flux. Productivity in the fast case quickly consumes the nutrients as they are supplied in the late winter and spring, whereas

productivity in the slow case spreads out the nutrient consumption, achieving its maximum in mid-summer when the light is385

most plentiful (fig 7b).

Despite the qualitative differences between the present-day seasonal cycles, climate change has a qualitatively similar impact

on both the fast and slow cases (Fig 7a-c). The peak wintertime nutrient flux at 100 m (fig 7a) is reduced by 22% and 21% in the

fast and slow cases, respectively. This reduction is consistent with, but may not be entirely caused by, reduced winter mixed-

layer depths restricting the entrainment of nutrient-rich water from the thermocline (Fig 7f). Production is reduced during all390

months, but particularly in the latter half of the respective growing seasons. Thus, the growing seasons during the 2100s are

modestly shorter with earlier peaks in both cases. It is true across all 12 cases that the largest reductions in new production are

after the peak new production. Thus, we can conclude that while the seasonal cycle can be very different across cases, for this

model the global reduced production in a warmer climate follows a consistent pattern of a shortened growing season.
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Figure 6. Annual 100-m average of QL for 2000s climate (a,f), its change (b,g), and its components, all
::::::
averaged

::::
over

::
1
::::
year

:::
and

:::
the

::
top

:::::
100m,

::::
then

:
normalized by the maximum of QL

:::::::::::::
(nondimensional) in the 2000s. (c,h) L∆Q, (d,i) Q∆L, (e,j) ∆Q∆L. (a-e) slow case,

normalized by 0.055 (f-j) fast case, normalized by 0.14.
:::::

Minima
:::
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:::::::
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::
for

::::
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:::
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:::
are
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::
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::::
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:::::
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Table 2.
:::::
Pattern

:::::::::
correlations

:::
for

::::::::::
annual-mean

::::
fields.

::::::
Bolded

:::::
values

::::::
indicate

:::::::::
significance.

:::
All

:::::::::
production,

::::::::
production

:::::::::
component,

:::
and

::::::
nutrient

::::::::::
concentration

:::
(N )

::::
fields

:::
are

:::
the

::::
mean

::::
over

::
the

:::
top

:::::
100m,

:::
and

::
all

:::::
fluxes

:::
are

::
at

::::
100m

:::::
depth.

The causes of reduced production can be identified through the seasonal cycles of the components of ∆QL, all of which395

are small fractions of the maximum early-century QL values. In both slow and fast cases, winter and spring increases in

light availability due to shallower MLD are offset by reductions in the nutrient availability and light-nutrient covariance,

leading to reduced production (Fig 7de). The minima of ∆QL are in the second half of the growing season in both cases,

driving the shortened season. The slow case has negative values of all components at this time, with a largest reduction in

nutrient availability
::::::
nutrient

::::::::::
availability

::::
being

:::
the

:::::
most

:::::::
negative (Fig 7d). By contrast, the fast case’s minimum of ∆QL occurs400

while Q∆L is positive and
::::::
reduced

::::::::::
production is driven by

::::
both reduced nutrient availability and especially the light-nutrient

covariance (Fig 7e). This large effect of ∆Q∆L
:
in

:::
the

::::
fast

:::
case

:
during the growing season is obscured in the annual mean (fig.

6), where this factor is small over most of the ocean and spatially anticorrelated
:::::::::::
insignificantly

:::::::::
correlated to the total change,

indicating the importance of considering the seasonal cycle for the mechanism of changes in production. In both our cases,

reduced nutrient availability contributes
:
is
::
a
:::::
major

:::::::::
contributor

:
to the shortened growing season, a consistent effect of

::::::::
indicating405

:
a
::::::::
consistent

::::::::::
mechanism

:::
for

:::::::
reduced

::::
total

:::::::::
production

::
in

:::::::
response

::
to
:
the climate perturbation.

3.3 Regional Case Studies

We next examine three regions in detail: the downwelling South Pacific, the Arctic, and the Porcupine Abyssal Plain in the

North Atlantic. These three regions exemplify the spatially-varied processes driving the climate response and the sensitivity of
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Figure 7. Globally-integrated supply of nutrients (a), production of particulates (b) for top 100m. Both cases shown for both 2000s and

2100s; seasonal cycle is the mean of simulation years 8-10. Production controls
:::::::::::::
(nondimensional) for slow case (c) normalized by global

max QL(2000) of 0.055 and fast case (d) normalized by global max QL(2000) of 0.14. (e) Mean mixed-layer depths.

that climate response across our model cases (figs 4,6). We emphasize that none of the model cases closely match observations410

in any particular region (see Appendix A for a comparison of N and observed nitrate), and that these examples are chosen

for their qualitative differences. To contextualize these regions, we note their physical biomes; biome analysis has been used

previously to identify ocean regions with similar biogeochemically-relevant physical characteristics across basins (Sarmiento

et al., 2004; Cabré et al., 2015). A further discussion of biome analysis across the broader 12 parameter cases is available in

the appendix.415

he
:::
The downwelling South Pacific (red outline in fig 4), part of the permanently-stratified subtropical biome, is a region

with small seasonal cycles, small climate-induced changes in physics, and broad losses in production across model cases.

These losses of production are driven by the same processes in the fast and slow cases, suggesting an insensitivity to parameter

choices. By contrast, the Arctic (north of 66.5◦N, the black line in fig 4), in the ice and marginal ice biomes, has large climate-

induced physical changes, mainly in ice coverage. As noted earlier, the climate response in the Arctic is sensitive to parameter420
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choice; this region is the most sensitive of those we discuss, with changes in annual new production having opposite signs

in our two cases. The Porcupine Abyssal Plain (blue outline in fig 4), in the seasonally-stratified subtropical biome, has deep

winter mixing in the present climate and large decreases in mixed-layer depths with the climate perturbation. This region is

an example where the main driver (light or nutrients) of the climate-change induced reductions to productivity changes across

parameter space. These three regions provide illustrative examples demonstrating how physical climate changes create a range425

of possible responses in new production, as mediated by the parameters that modify the sensitivity of productivity to light and

nutrient availability, and thus how sensitivity of projected changes in new production vary across the world oceans.

3.4 South Pacific

The downwelling South Pacific is defined by annual-mean downward vertical velocity at 100m depth in the South Pacific

between 10 and 35◦S. Maximum winter mixed layer depths reach only 120m, putting this region mainly in the permanently-430

stratified subtropical biome. Here, all biogeochemical parameter cases are qualitatively similar in both their current-climate

seasonal behavior and their response to the climate perturbation, which we show is driven by reduced vertical nutrient supply.

Here, the
:::
The seasonal cycles in

:::
this

:::::
region

::
in

:
both early- and late-century climates have high values of both upward nutrient

flux and new production in the
:::::
austral

:
winter and spring (fig 8ab). Peak upward nutrient flux is in August in both cases in

the early- and late-century conditions. In the fast case, peak new production is in the same month, indicating a fast response435

to the supply of nutrients. In the slow case, there is a one-month delay, indicating a slower response. These peak times do

not change between early- and late-century conditions; only the overall magnitude of rates decreases: in the slow case, annual

production decreases by 25% from 0.11 to 0.086PgC/yr, while in the fast case, annual production decreases by 39% from 0.045

to 0.027PgC/yr. This is consistent with the global production being more reduced in the fast than slow case. This pattern holds

across the 12 cases, with all having peak production in August through October, no change in the peak timing with climate,440

and larger decreases in production for shorter τbio.

The decrease in new production is due to the reduced availability of nutrients. The total change in production, ∆(QL), is

nearly identical to the changes due to nutrient availability, L∆Q, with rms differences of 4 ·10−5 and 2 ·10−4 for fast and slow

(fig 8c); this near match holds across all 12 parameter cases. This is consistent with Cabré et al. (2015), who saw decreases

in production in low latitude nutrient-limited biomes across models. Our addition to that analysis is the direct quantitative445

connection to reduced nutrient availability that is not straightforward to compute for more complex biogeochemical models.

The reduced nutrient availability is due to reduced upward fluxes of nutrients, which we can exactly identify (fig 9ab). These

fluxes are comprised of downward advective fluxes, upward fluxes from vertical mixing from KPP
:::::::::::
parameterized

:::::::
vertical

::::::
mixing (Large et al., 1997), and upward fluxes from vertical effects of

::::::::::::
parameterized along-isopycnal mixing (Redi and

GM). Both forms
::::::::::::::::::::::::
(Redi, 1982; Gent et al., 1995)

:
.
::::
Both

:::::::::::
components of parameterized mixing show reduced annual fluxes in450

the warmer climate at 100m. Neither mixed layer depths nor effective vertical diffusivities change substantially, less than 10%

for all MLD and less than 10% across 2/3 of the grid points in this region for diffusivity. Thus, reduced dN/dz is the driver of

the decreased upward nutrient flux.
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Figure 8. Subtropical South Pacific nutrient supply (a), production of particles (b), and production controls (c) normalized by maxQL2000

in the region, 0.032 for slow and 0.013 for fast.

The changes in spatial-mean nutrient profiles (fig 9c) show a consistent pattern across the fast and slow cases: increased

nutrient at 350-650m depth but decreases from 350m to the surface, including decreases near 100m. These mid-depth nutrient455

changes are due to physical changes in circulation and/or mixing in the main thermocline. For diffusive transport, the decreases

in N concentration above 350m mean that the vertical gradient of N near 100m, where we measure the fluxes, decreases. Thus,

the decreased production in the downwelling South Pacific is being driven by decreased nutrients below the deepest winter

mixed layers (about 120m), through decreased dN/dz causing decreased diffusive fluxes, decreased near-surface nutrient,

and thereby decreased nutrient availability, Q. From these two examples it seems likely that the causes of reduced nutrient460

availability in the warmer climate, which drives reduced production, are consistent across parameter cases.

21



slow

Vert Mix Iso Mix Adv

(a)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

gC
/m

2  y
r

fast

Vert Mix Iso Mix Adv

(b)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
2000
2100

-0.5 0 0.5
 N

(c)

-1000

-800

-600

-400

-200

0

de
pt

h 
(m

)

slow
fast

Figure 9. (a-b) Annual mean upward N flux components, gC/m2yr,
:

at
:::::
100m

:::::
depth, averaged over the subtropical South Pacific, for the

2000s and 2100s climate and their difference. KPP diffusion
:::::::::::
Parameterized

::::::
vertical

:::::
mixing

:::::
(‘vert

:::::
mix’), Redi and GM diffusion

::::::
vertical

::::::::
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::
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:::::::::::
parameterized

:::::::
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mixing
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:
from model diagnostics. (a) slow case, (b) fast case. (c)

Profiles of change
:::::::::
(2100-2000)

:
in annual-mean subtropical South Pacific nutrient.

3.5 Arctic

The Arctic region is defined by being within the Arctic circle (north of 66.5◦N), or
::::::::::
equivalently

:
having at least one day per

year with no incoming solar radiation. This region has the largest sensitivity of changes in new production to model light and

nutrient limitation, with the range across 12 parameter cases being a decrease of 17% up to an increase of 52%. Here, our two465

example biogeochemistry cases have notably different responses to climate change, with the slow case having a 46% increase

in annual production and the fast case having a 16% decrease.

Early-century seasonal cycles
:::::::
Seasonal

::::::
cycles

::
in

:::
the

::::::
2000s are similar for fast and slow cases. In this region, that is an

upward flux of nutrients year-round and high new production rates in the summer, with a peak in May for the fast case and

September for the slow case (fig 10ab). Under late-century conditions, the peak production of the fast case is in the same470

month, with a slight increase in production earlier in the year and reductions later in the year which lead to a total decrease; in

contrast, the peak production of the slow case is much higher and is earlier, now in July. These regional-mean production shifts

are consistent with the different responses seen in the annual production maps (Fig 4), where the slow case has large increases

while the fast case has moderate changes of both signs.

In the Arctic, increases in incoming light, with the seasonal maximum of the regional mean more than doubling (91 to 202475

W/m2), are due to reduced sea-ice (fig 1a) and have a large impact on changes in production. The mean increase in light
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Figure 10. Arctic nutrient supply (a), production (b). Production controls on slow (c) and fast (d) cases, normalized by max of arctic

QL(2000), 0.021 for slow and 0.028 for fast.

availability in summer, quantified by Q∆L, its effect on changes in production, is nearly as large as the maximum QL in the

2000s for both cases (Fig 10cd). In the slow case, this increase in light allows for a large increase in production in the first

half of the growing season, until nutrients are slightly depleted by that production, reducing production through lower nutrient

availability in the second half (negative L∆Q and ∆Q∆L). This pattern is qualitatively consistent across slow cases with long480

τbio. In contrast, the increase in light availability in the fast case is offset by an associated reduction in nutrient availability, such

that ∆Q∆L≈−Q∆L. Increased light in the spring leads to immediate increases in production (April), which uses enough

nutrient to cause a dip in nutrient availability (May) before peak light availability (July), leading to decreased production in the

summer and fall. This pattern is consistent across the four cases with shortest τbio, which have decreased annual production in

the warmer climate (Fig B1). Thus, in the Arctic, the increases in light availability consistently increase production in spring,485

leading at some point to a biologically-driven decrease in near-surface nutrient. The resultant changes in production may take

either sign and depend on the speed at which nutrients are removed, consistent with our τbio.

The Arctic is a region where changes in new production under global warming is highly sensitive to the formulation of model

production, both for our model and more complex ones. Vancoppenolle et al. (2013) found that CMIP5 projections of Arctic

NPP were dependent on whether the Arctic reached a nutrient-limited state post sea-ice loss, with those models that reach a490

nutrient-limited state having reduced production and others having increased production in the warmer climate. Our analysis

provides a mechanistic hypothesis for these differences: shorter τbio models have lower near-surface nutrients in early-century

conditions, and therefore increases in production with increased light will more quickly lead to a nutrient-limited state.
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3.6 North Atlantic

The Porcupine Abyssal Plain in the northeast North Atlantic is defined here to be 40-52N and 27-11W (cyan box in fig 4);495

this includes the location of the Porcupine Abyssal Plain Sustained Observatory. This region is characterized by deep winter

mixed layers and net downwelling. Under a warmer climate, the winter mixed layer depths are reduced; the spatial mean of

the maximum decreases from 280 to 229m and the absolute maximum MLD is reduced from 669 to 590m (fig 11d). All 12

cases have decreased new production in the future, 9.55 to 26.75%, which is a smaller range than our other two regions but

still larger than the global ocean; our two example cases have a decrease of 12% for slow and 21% for fast. In this region, as500

for the Arctic, the mechanisms driving the changes vary.

Here
::
In

:::
this

::::::
region, our two model cases show qualitatively different seasonal cycles with production mainly in the early

spring for the fast case and spread over the summer for the slow case (fig 11b) similar to their respective global cycles. Both

cases have little qualitative change between the early- and late-21st century. Most of the nutrient supply is in the winter for

both cases (fig 11a), mainly due to wintertime entrainment associated with the mixed layer.505

In the warmer climate, changes in production, ∆QL, depend on the relative impacts of increased light availability, Q∆L,

in March and April and decreased nutrient availability, L∆Q, in all months; the signs of these drivers are consistent across

cases, but the signs of the change in production are not. In the slow case, the changes in production with climate are an

increase in spring and a decrease in summer and fall for a total decrease, closely following changes in light availability,

∆(QL) ≈Q∆L (fig 11c). The increased light in March and April corresponds to shallower mean and maximum mixed-layer510

depths, respectively. Light availability decreases in the summer, due to increased mixed-layer depths in May and June. In the

summer and fall, a higher portion of the reduction in production is due to reduced nutrient availability from both the lower

winter peak in nutrient supply and the increased use during the spring production.

In the fast case, the same physical changes of the climate perturbation result in production decreases due to reduced nutrient

availability in all months, ∆(QL) ≈ L∆Q (fig 11c). The winter increase in light availability has no noticeable impact, with515

substantially lower winter-spring production co-occurring with the lower nutrient flux (fig 11a) and shallower monthly-mean

mixed layer depth (fig 11d). This region’s changes in new production are sensitive to parameter choices. Although total new

production is reduced in both cases, reduced winter mixed layer depths can act to either increase or decrease spring production,

depending on whether that production is more sensitive to light, as in the slower cases with longer τbio, or nutrient availability,

as in the faster cases with shorter τbio. These differences highlight the usefulness of this idealized model, which allows us to520

diagnose these drivers.

4 Conclusions

In order to study the sensitivity of the climate response of new production, we designed an idealized, two-tracer biogeochemical

model that explicitly represents nutrient supply to the photic zone, new production, and the export of organic particles. The

chosen simplifications for the production function allow for detailed analysis of the causes of changes in production but525

eliminate or exaggerate other processes
::::::
certain

::::::
aspects. First, dynamic phytoplankton concentration is omitted from the model;
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Figure 11. Porcupine Abyssal Plain nutrient supply (a), production of particles (b). Production controls (c), normalized by 2000s maxQL,

0.022 for slow and 0.015 for fast. Discrepancy for slow is mainly due to L∆Q. Range and mean of monthly-maximum MLD (d).
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productivity is generally thought to scale with this concentration, so our seasonal results may be inaccurate in regions with

strong blooms. Second, the
:::
lack

::
of

:::::::
nutrient

::::::::::::::
remineralization

:::::::::::
contributions

::
to
:::

the
:::::::

nutrient
:::::
field

:::
and

:::
the

:::::::
constant

:::::
value

:::
of

:::
the

::::
deep

::::::
nutrient

:::::
pool

::::::
remove

:
a
::::::::::
mechanism

::
of

:::::::::
production

::::::::
feedback

:::::
which

::::
can

:::::
affect

::
its

::::::
climate

:::::::::
sensitivity.

::::::
Third,

:::
the formulation

of light limitation, using an average light concentration within the surface mixed layer, does not allow self-shading and enhances530

production near the bottom
::
in

:::
the

:::::
lower

:::::::
portions of the mixed layer. Finally, the simulations are not constrained to be realistic;

the results provide information about the key parameter sensitivities.

From model integrations under early- and late-21st century climate scenarios with 12 different parameter sets, we found that

global production, near-surface nutrient concentrations, and projected changes in production were all connected to τbio, derived

from the initial slopes of the production-nutrient and production-light curves, which are the partial derivatives of production535

with respect to nutrient and light at the origin. A short τbio indicates faster production and higher nutrient utilization, leading to

lower near-surface nutrient concentrations and faster nutrient supply; these then indicate larger reductions in global production

in a warmer climate. These reductions were linked to reduced near-surface nutrient availability and a shortening of the growing

season in all cases. The percentage decreases in global new production were different by about a factor of two between the

highest and lowest τbio, a range similar to CMIP5. But, we find that the sign of the response (a reduction in productivity with540

warming) is the same for all of the light and nutrient limitation parameters that we considered.

We examined two exemplar cases, focusing on the similarities and differences in the seasonal, spatial, and regional responses

to climate change. Spatial patterns of changes in annual new production are similar between these two cases (pattern correlation

r=0.26), with both being correlated to the changes in annual-mean nutrient availability (L∆Q), near-surface nutrient concen-

trations, and upward nutrient flux. Correlations were stronger for the fast case, which is more nutrient-limited. The ability to545

quantify the component of the reduction due to nutrient availability is unique to simple models like ours.

For more details on the drivers of the climate response and its sensitivity, we examined three regions. The South Pacific

region demonstrated the most consistent response to the climate perturbation. Here, changes in light and MLD are negligible.

Decreased nutrients in the upper thermocline drive lower vertical supply, lower nutrient availability, and lower production in

all months for both exemplar cases. While there are still larger decreases for shorter τbio, the mechanism is not sensitive to550

biogeochemical parameters.

From our detailed analysis of two higher-latitude regions, we found that compensation between changes in light and nutrient

availability have very different impacts for our runs with different production parameters. In the Porcupine Abyssal Plain,

a reduced depth of the winter mixed layer acts to either increase or decrease spring production, depending on whether that

production is more sensitive to light, as in the longer τbio cases, or nutrient availability, as in the shorter τbio cases. In the555

Arctic, larger increases in light availability due to sea-ice losses drive the largest sensitivity of new production’s response to

the climate perturbation, with different cases having opposite-signed annual-mean responses. Here, for fast cases (short τbio)

light-driven increased spring production reduces nutrient availability and thereby production later in the growing season to such

an extent that annual totals are reduced. In contrast, slow cases can produce more throughout the growing season with little

impact on nutrient availability. This analysis suggests a mechanism for the variation of projected Arctic production in CMIP5,560
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where reduced production was associated with nutrient limitation (Vancoppenolle et al., 2013): if τbio were diagnosed for those

models, it may be that short τbio cases have higher nutrient uptake, driving the nutrient limitation and reduced production.

Biological rates like τbio are useful for explaining CMIP results more broadly. In those more-complex models, the effective

τbio varies
::::
may

::::
vary

:
in space because of changes in the phytoplankton community composition. It would be possible to

quantify τbio for these models empirically in a vertical column ocean through the individual injection of each nutrient at565

several concentrations to find the slope of the production-nutrient curve. Alternately, the new production rates from many

locations in a global ocean configuration could be used to fit a production curve over all nutrients, with τbio formed from the

derivatives.
:::::
While

:::::::::
computing

::
an

::::::::
effective

:::
τbio::

is
:::::::
outside

:::
the

:::::
scope

::
of

::::
this

:::::
work,

:::
we

::::::
believe

:::::::::
developing

::
a
:::::::
reusable

:::::::::
procedure

::
for

:::::
these

::::::::::::::::::::
intermediate-complexity

:::::::
models

::
to

::
be

::
a

:::::
useful

::::
next

::::
step

::::::
toward

::::::::::
interpreting

::::::
climate

:::::::
change

:::::::::
production

::::::::::
projections.

Variations between model results might then be related to their different τbio, along with a comparison to the different physical570

rates.

We suggest that this reduced-complexity model and timeslice method may be suitable for high-resolution climate change

process studies where computational cost is a limiting factor. Having only two tracers, this model is as inexpensive as possible

while explicitly representing the supply of inorganic nutrient, new production, and sinking export. Given the range of pro-

duction parameters that provide reasonable global results, one can choose the ones most suitable for the question of interest,575

such as approximately matching an ecosystem in a particular region or biome. While not considered here
::
in

:::
this

:::::
work, the

formulation of P allows for changes in export efficiencies under a warming climate to be studied through changing ws and σ.

Appendix A: Additional N-NO3 comparison

In our work, we were aiming to understand the sensitivity of the climate response and thus a wide range of possible model

behaviors. To that end, our validation or comparison to observations and another, fitted, model, was quite simple. For further580

context on how our two exemplar cases do (not) match observed behaviors, we show here the seasonal cycle of the 100m-

averaged N concentration compared to WOA nitrate concentrations. Figure A1 provides the mean of monthly 100m-averaged

WOA nitrate concentrations globally and for each of the three regions further examined in the text, along with the monthly

100-m averaged mean N concentrations. In all cases, our fast model concentrations are quite low. For the slow case, values

are often in the 90% range of WOA concentrations (not shown), but below the mean. The exception is the Porcupine Abyssal585

Plain region, where the slow case has N similar to nitrate but with a shift in the seasonal cycle. If future process work were to

concentrate on an individual region, an analysis like this would allow for fitting of parameters.

Appendix B: Production in 12 cases

This appendix provides additional context of how our simple biogeochemical model’s new production changes for different

parameter values under the same physical climate perturbation. We provide a simple analysis of production changes across590

ocean basins and biomes for the 12 parameter cases lightly considered in the main text. The fast case in the main text is here
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Figure A1. Mean of monthly 100m-averaged WOA nitrate concentrations and the monthly 100-m averaged mean N concentrations for both

fast and slow cases in 2000s and 2100s conditions. (a) Global ocean, with 6-month offset for southern hemisphere, (b) subtropical South

Pacific, (c) Arctic, (d) Porcupine Abyssal Plain. Note the y-axis is a log scale.

labeled by case timescale 3, the slow case by case timescale 162 (it is the rightmost 162 in figures). Global production rates

and their changes in the warming climate were in figure 2.

First, we shown ocean basin averages of new production and its changes (fig B1). These basins should be self-explanatory,

but note that the Southern Ocean begins at 35◦S and the Arctic at 66.5◦N. For all 12 cases, the Southern Ocean is most595

productive, likely related to our lack of iron limitation, and all basins except the Arctic show reduced new production in the

warmer climate for all parameter cases. The largest percent losses are in the southern hemisphere basins, and parameter cases

with shorter τbio show larger reductions than slower.

Second, we show ocean biome averages of new production and its changes. Biome delineations are based on latitude, sea ice

fraction, annual-mean vertical velocity at 100m, and maximum annual mixed layer depth. In the +/-5◦ latitude band we have600

upwelling and downwelling regions, noted Eq U and Eq D. Outside the equatorial band, downwelling regions are subtropical,

ST, either seasonally stratified (max mixed layer depths > 150m), ST SS, or permanently stratified (the opposite case), ST PS.

Upwelling regions in 5-30◦N 5-35◦S are the low latitude upwelling biome (LLU); above that, they are subpolar (SP) unless
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their ice fraction goes above 0.1 some month. Ice biomes are split for the northern and southern hemispheres, noted NI and SI

respectively.605

Most production occurs in the ST SS, ST PS, and SP regions, with SP generally larger total than either ST region alone

but smaller than their combination. All biomes’ total production decreases in the warmer climate, by 3-60%. Production

rates per area are larger in the Eq-U, ST-SS, SP, and SI regions than the Eq-D, ST-PS, LLU, and NI regions. Most biomes’

production rate is lower in a warmer climate except Eq-D which increases for some parameter choices. From the changes in both

production rate and annual production of each biome, it appears that the equatorial and ice regions’ changes are most sensitive610

to biogeochemical parameter choices, while the permanently stratified subtropics appear least sensitive. These sensitivities do

not always follow the pattern from basin or regional analyses of faster timescale cases having larger reductions in production;

an explanation is outside the scope of this analysis.

Biomes also shift in extent: Eq-U expands, decreasing the Eq-D area; ice, subpolar, and LLU contract (ice by over 20%,

others < 10%), causing expansion of ST-SS and ST-PS (< 10%). Thus, global reductions in new production are partially due615

to the expansion of downwelling regions and largely due to lower mean production rates across the largest biomes (ST and

SP). The signs of the changes in biome area are largely consistent with the model-mean changes in both Cabre et al. (2014)

and Sarmiento et al. (2004) for all but the ST-SS biome, which contracted in Sarmiento and expanded in Cabre– it expanded

slightly in our model.
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Figure B1. (a) Map of the 7 basins; colors consistent through all panels. (b) Annual new production in the top 100m in each basin for the

early 21st century climate. (b) As in (b) but for the late 21st century climate. (d) Percent change between (a) and (b). case timescale is

kN/µ+ 1/µα. Fast case is 2nd from left, case timescale 3. Slow case is 4th from right, case timescale 162.
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Figure B2. (a) Biomes 2000 (b) biomes 2100 (c) biome areas 2000 (d) % change in biome area, early-late 21st century (e) production rate,

annual gC/m2 for each biome (color) and each biogeochemical model parameter (x-axis, case timescale). (f) % change in production rate

(g) total annual production for each biome and biogeochemical model parameter, which is c · e (h) % change in total annual production
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Code and data availability. Data to reproduce the figures available as Brett (2020a). Code to reproduce the figures and to run these idealized620

tracers in CESM available as Brett (2020b).
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