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Abstract. While there is agreement that global warming over the 21st century is likely to influence the biological pump,

Earth system models (ESM) display significant divergence in their projections of future new production. This paper quantifies

and interprets the sensitivity of projected changes in new production in an idealized global ocean-biogeochemistry model.

The model includes two tracers that explicitly represent nutrient transport, light- and nutrient-limited nutrient uptake by the

ecosystem (new production), and export via sinking organic particles. Globally, new production declines with warming due to5

reduced surface nutrient availability, as expected. However, the magnitude, seasonality, and underlying dynamics of the nutrient

uptake are sensitive to the light and nutrient dependencies of uptake, which we summarize in terms of a single biological

timescale that is a linear combination of the partial derivatives of production with respect to light and nutrients. Although the

relationships are non-linear, this biological timescale is correlated with several measures of biogeochemical function: shorter

timescales are associated with greater global annual new production and higher nutrient utilization. Shorter timescales are also10

associated with greater declines in global new production in a warmer climate and greater sensitivity to changes in nutrient

than light. Future work is needed to characterize more complex ocean biogeochemical models in terms of similar timescale

generalities to examine their climate change implications.

1 Introduction15

Global warming over the 21st century is projected to alter the supply of nutrients and light to the surface ocean and drive re-

ductions in the “biological pump,” which is the biologically mediated transfer of carbon from surface to depth and an important

control on the ocean’s natural carbon inventory. These nutrient and light supply changes are related to physical shifts, includ-

ing increased ocean surface temperatures, stronger stratification, and reduced sea ice cover. While there is general agreement

that climate is likely to influence the biological pump, Earth system model (ESM) projections, such as those included in the20

Coupled Model Intercomparison Project (CMIP, Séférian et al. (2020)), display significant divergence in projections of future

net primary productivity and export production (Bopp et al., 2013; Fu et al., 2016). Uncertainty in projections of changes in
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the biological pump arise from two general areas. First, structural differences in the models produce variation in the simulated

ocean physical response to climate changes (e.g. Knutti and Sedláček, 2013). Second, Earth system models include a variety

of differing ocean biogeochemical models that display a range of sensitivities to changes in physical climate (discussed in25

Oschlies, 2015).

Our objective is to consider what essential properties of ocean biogeochemistry models determine the magnitude of their

simulated changes in new production in response to changes in climate. New production, here, is the production in the euphotic

zone that consumes nutrient supplied from depth, which we assume equivalent to export production due to the need for mass

balance in steady state (Eppley and Peterson, 1979). We determine the essential properties by examining the sensitivity of 21st-30

century projected changes in new production to parameter choices in an idealized biogeochemical model. From our idealized

model, we build a conceptual understanding of the variability in the magnitude of projected changes associated with different

biogeochemical models in terms of essential properties of new production. While existing work, discussed next, has examined

aspects of this question, we focus specifically on the climate change aspects of this sensitivity with a broad sweep of parameter

space.35

The effects of both biogeochemical model structure and physical circulation–biogeochemical model interactions have been

examined in isolation, primarily for a present climate where a comparison to observations may be made. The effects of dif-

fering physical models on a single biogeochemical model’s export production was the focus of the OCMIP-2 experiment,

documented by Najjar et al. (2007). The effects of moderate physical differences in the models, especially lateral diapycnal

mixing and mixed layer dynamics, created large differences in export production. In the same vein, Séférian et al. (2013) found40

that differences in subgrid-scale parameterizations, summer mixed layer depths, and deep ventilation caused mismatches to

observed biochemical tracers. Similar studies, Glessmer et al. (2008); Sinha et al. (2010), also find that differences in mixing

that cause small changes in temperature and salinity or global production and biomass, respectively, create large differences in

primary and export production and plankton community structure. Löptien and Dietze (2019) provide a demonstration of the

impacts of the combined uncertainties in biogeochemical and physical models on climate projections, showing that a biogeo-45

chemical model tuned to current tracer distributions yields large differences in 21st-century projected changes in the biological

pump for a circulation model run with two different, but equally-plausible vertical mixing rates.

The sensitivities of model results to both biogeochemical parameter choice or model complexity are often examined in ideal-

ized settings, including one-dimensional frameworks (e.g. Llort et al., 2019; Friedrichs et al., 2006; Levy, 2015; Anugerahanti

et al., 2020). An exemplar study of several biogeochemical models of different complexities within a global physical model50

was Kriest et al. (2012), where the authors found that models of all complexities had similar sensitivity to changes in parame-

ters, where sensitivity is measured using the change in the global fit to phosphate observations. A similar study on a hierarchy

of models is Yao et al. (2019), which found that models with better representations of iron had improved representation of

net primary production (NPP) and O2 but that these differences across systematically calibrated models were smaller than the

differences between the calibrated and hand-tuned models, again pointing to larger parameter sensitivity than model structure55

sensitivity. Related studies have typically focused on an individual biogeochemical model’s sensitivity to parameters, often

in the context of optimization to observations (e.g. Kwon and Primeau, 2006, 2008; Kriest and Oschlies, 2015; Kriest, 2017;

2

https://doi.org/10.5194/bg-2020-479
Preprint. Discussion started: 4 January 2021
c© Author(s) 2021. CC BY 4.0 License.



Prieur et al., 2019). One example of a sensitivity analysis in the context of climate change is Kvale and Meissner (2017), which

finds that both spatial patterns and global rates of NPP are sensitive to light attenuation parameters and that this sensitivity,

moderate in a preindustrial equilibrium, increases for the transient response to 21st-century climate change.60

In order to determine what essential properties of ocean biogeochemistry models set the magnitude of their simulated

changes in new production in response to changes in climate, we perform a sensitivity study of a minimal biogeochemistry

model in conjunction with a pair of physical ocean model states representing conditions in 2000 and 2100. We use our suite

of experiments to understand, first, how physical climate change modifies new productivity globally, seasonally, and region-

ally, and second, how that climate change response depends on nutrient and light co-limitation of nutrient uptake rates. Given65

prior work showing some parameter sensitivities are similar across models of varying complexity, results from our idealized

approach may be widely applicable. In the course of our sensitivity study, we show that the magnitude of the new production

response to climate change scales in proportion to a linear combination of the parameters quantifying the model’s effective “bi-

ological timescale.” Our study thus presents a new diagnostic, useful for studying physical-biological coupling in the context

of a dynamic climate. This approach advances a conceptual framework via which inter-model differences in export-production70

changes might be meaningfully deciphered. Our secondary motivation is to identify a model configuration suitable for study-

ing process questions related to climate change at very high-resolution. Since computational costs scale in proportion to the

number of simulated tracers, this amounts to finding a model capable of sufficient realism with the minimal number of tracers

(Galbraith et al., 2015).

We describe our physical system, the development of the idealized model, and our analysis methods in section 3. In section75

4, we describe the global rates, spatial patterns, and seasonal cycles of new production along with its controls and how these

vary across parameter choices. This includes analyses of several regions that exemplify different physical climate perturbations.

Section 5 summarizes these findings and discusses the usefulness of this idealized model and the biological timescale.

2 Methods

We performed a set of idealized climate-change experiments with the Community Earth System Model (CESM) version 2.180

in an “ocean-sea-ice” configuration forced by atmospheric fields derived from reanalysis. In these experiments, the ocean and

sea-ice models were integrated at a nominal 1◦×1◦ horizontal resolution; the ocean vertical grid included 60 layers, with 10 m

resolution at the surface and 250 m at the ocean bottom of 5500 m. Surface forcing was applied as a prescribed atmospheric

state, with a repeated annual cycle, based on the Coordinated Ocean-Ice Reference Experiment (CORE) Protocol (Large and

Yeager, 2004).We added a pair of tracers representing idealized nutrient and phytoplankton, where production depends on85

nutrient and light availability alone, not existing biomass, and plankton explicitly sink while being advected and mixed. The

following subsections describe the details of the physical model runs (2.1), the development of the idealized biogeochemical

tracers (2.2), followed by the method used for analyzing the causes of changes in production (2.3).

3

https://doi.org/10.5194/bg-2020-479
Preprint. Discussion started: 4 January 2021
c© Author(s) 2021. CC BY 4.0 License.



2.1 Timeslice experiments

To develop a process-oriented means of examining the response of new production to idealized changes in climate, we adopt90

a “timeslice" approach. Rather than running a full transient integration, we perturb the model’s initial conditions and the

surface forcing to simulate a period representative of the future climate state. We thus run separate integrations designed to be

representative of early- and late-century climate conditions. For the former, we begin from a state initialized from observations

and integrate the model with forcing representative of a statistically normal annual cycle, i.e. a normal year (Large and Yeager,

2004); we perform a 20-year spin-up, which is sufficient to minimize interannual drift in the physical state, and then use 1095

further years as our early-century timeslice. For our late-century timeslice, we adjust the initial ocean state and atmospheric

forcing variables using anomalies computed from the fully-coupled CESM1 Large Ensemble (CESM-LE; Kay et al., 2015).

The CESM-LE includes 40 members integrated from 1920–2100; we use anomalies computed from the ensemble mean,

quantifying the difference in ocean state and atmospheric forcing variables between 2000 and 2100. We then integrate with

the normal-year forcing plus monthly ensemble-mean atmospheric anomalies from the CESM-LE, again using 10 years as our100

timeslice. The LE has been examined in comparison to both CMIP5 (Alexander et al., 2018) and observations (Deser et al.,

2017), with results showing similarity to future SST and observed climate variability, respectively. Using the century-scale

mean changes from the CESM-LE allows us to represent the forced changes over the 21st century from the RCP8.5 scenario

without the “noise" associated with natural inter-annual variability represented in any individual ensemble member.

Our resulting model runs have ocean temperature and salinity representative of early and late 21st century very similar to105

the LE. Drift in these values within the decadal runs are small compared to either the imposed change between them or typical

inter-annual variability in a coupled model. The atmospheric surface state has the same sub-seasonal variability in each year

and both epochs and no inter-annual variability. Physical fields of interest for the biological impacts of climate change include

changes in available light, vertical stratification, and ocean currents. We discuss only these fields that can impact our idealized

biogeochemical model, leaving out other fields that do not have direct impacts, such as temperature or pH. The changes in these110

fields are shown in figure 1, which may be summarized as follows: the Arctic receives more light (fig. 1a), western boundary

currents speed up (fig 1b), equatorial upwelling spreads meridionally (fig 1c), winter mixing decreases in the Southern Ocean

and shifts position in the North Atlantic (fig 1d), and near-surface stratification increases in most regions (fig 1e). With this

framework of the physical changes, we can consider their impacts on biological rates.

2.2 Idealized Tracers115

2.2.1 Model formulation

Our aim in developing a set of idealized tracers to represent new production and export is to have a minimal model which

allows us to explicitly connect responses of these biological rates to the physical climate perturbation described above. This

section describes the assumptions used to design the tracers and their mathematical form, followed by a sensitivity analysis

in the 2000s climate and the choice of a limited set of parameters to analyze further. To explicitly represent the supply of120

inorganic nutrient from depth and new production requires one nutrient tracer (e.g. McGillicuddy Jr et al., 2003); a second
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Figure 1. Climate perturbation. (a) Change in maximum incoming short-wave radiation. (b) Change in annual-mean SSH. (c) Change in

annual-mean vertical velocity at 100m. (d) Change in annual maximum MLD. (e) change in annual-mean stratification at 100m, dσθ/dz

using 155m and 55m potential density. All maps use a cylindrical equal-area projection.
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tracer can represent the phytoplankton that is created and follow it to depth. We assume an equivalence between new and

export production due to the need for mass balance in steady state; thus, the annual supply of nutrient from depth, used in new

production, is expected to match the downward flux of plankton and detritus (Eppley and Peterson, 1979).

In designing the nutrient tracer, we make three simplifying assumptions. First, we assume that the deep nutrient pool has125

a fixed concentration, not dependent on explicit remineralization, which decouples the nutrient tracer from the export tracer.

Second, we assume that new production depends on the availability of this nutrient and light alone, not on the water temperature

or on the existing plankton population that may be sustained by recycling of nutrients; this omits processes thought to be

important in bloom-type events (Behrenfeld and Boss, 2014) but again keeps the nutrient and export tracers decoupled. Finally,

we assume that the light available for new production in the mixed layer is an average of the light levels within the mixed130

layer (as done in McGillicuddy Jr et al., 2003); below the mixed layer, productivity depends on the light at only the depth in

question. This choice increases subsurface growth within the mixed layer, while allowing growth below the mixed layer depth.

With these assumptions, the reactions of the nutrient, N , are governed by the following equation:

dN

dt
=−µ0QL+S (1)

Q=N/(kN +N) (2)135

L= 1− e−αI (3)

where µ0 is the maximum growth rate (mmol N/m3 day),Q is the nutrient limitation (nondimensional), L is the light limitation

(nondimensional), kN is the half-saturation constant for the nutrient (mmol N/m3), α is the sensitivity for the light limitation

(m2/W), and S is the restoring source at depth. Light, I (W/m2), decays exponentially from the surface value of the incoming

short-wave radiation, but is averaged over the mixed layer depth (defined by maximum buoyancy frequency criterion, Large140

et al. (1997)). Thus, light has a constant value in the mixed layer and an exponentially-decaying value below, which does allow

growth below the mixed layer depth. For z ≤−1000m, N is restored to a value of 20; this is our fixed nutrient pool. While

the observed deep nitrate values vary on the basin-scale, this fixed N value at depth decreases drift in the solutions as only the

upper ocean’s nutrients must spin up. There is no flux through the air-sea or sea-land interfaces. The physical transport and

mixing are done by the same mechanics as existing passive tracers in POP.145

In designing the second tracer, we aim to explicitly represent the export from the surface to the deep ocean. This export is a

combination of plankton and detritus, but should be the same total mass, on average, as the supply of nutrient upward. We do

not differentiate between different types of sinking organic matter, and refer to them as a whole as particles. We assume that

there is a constant sinking rate relative to the surrounding water and a small loss rate, which represents both remineralization

into the recycled nutrient pool and removal through higher trophic levels. Particles, P , have their reactions governed according150

to the following equation:

dP

dt
= µ0QL−σP +ws

∂P

∂z
, (4)
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where σ is the specific mortality rate of particles (1/days) and ws (m/day) is the vertical sinking rate of particles. There is no

flux through the air-sea or sea-land interfaces. Again, advection and mixing are applied by the existing CESM-POP mechanics

for passive tracers.155

2.2.2 2000s Sensitivity

Our idealized tracers have five parameters: µ0, kN , α, σ, andws. In order to identify reasonable values, we perform a sensitivity

analysis of the first three under the early-century climate. The specific mortality rate and sinking rate of P are held fixed

at ws = 0 and σ = 1/60days in this analysis, as they do not affect N or the production rate, and only modestly affect the

horizontal spatial patterns of P : faster mortality reduces global-mean P , while faster sinking moves P deeper in the water160

column, with neither changing the basin-scale or latitudinal structure of annual-mean surface P . The values of the parameters

used are a factor of four increase and decrease from µ0 = 0.5, kN = 1, and α= 0.05, giving three values for each. We ran

ten-year simulations under 2000 conditions for each of the 27 cases created by combining the options and examined the zonal

and annual mean fields the final year; while this system is not in complete equilibrium after only 10 years, most drift occurs in

years 1-2 and we do not see substantial differences in our climate change results when comparing year 5 or year 10 across our165

two timeslices.

To examine sensitivity to parameters and choose reasonable cases for the climate-change experiments, N is compared to

near-surface World Ocean Atlas nitrate distributions (WOA NO3, Garcia et al. (2013)). P is compared to output from the

CESM biogeochemistry model, BEC (Moore et al., 2013) run with the same model physics. Specifically, we compare near-

surface P to total plankton, the sum of its three phytoplankton classes in carbon units, converted to nitrogen units using a170

stoichiometric ratio of 16/117. Although our particles represent both living matter and detritus, near the surface this P is

most like newly-produced plankton which we expect to have the same spatial patterns as total phytoplankton. We choose

this comparison to take advantage of the work done to fit BEC to observations for the same physics (see Fig. 4 of Moore

et al., 2013); a comparison to observations can conflate physical and biogeochemical model differences, which are difficult to

untangle.175

Overall, integrations with varied parameters for N mainly change its global mean surface concentration, not the meridional

structure (see figure 2a). This meridional structure matches that of surface global nitrate values qualitatively: high values in

the subpolar regions, moderate near the equator, and low in the subtropics. However, the northern hemisphere peak is shifted

north and the Southern Ocean values are low compared to observations, with the latter due mainly to our choice of a constant

deep N concentration below that typical in the Southern Ocean. Correlations between annual and zonal mean N and WOA180

NO3 are between 0.81 and 0.88 for the full active depth of 1km, and 0.65 and 0.93 for just the surface. Changes in parameters

affect the mean surface concentration ofN in a predictable way: increasing kN increases the mean surface concentration, while

increasing µ0 and α decrease it. Changing µ0 causes the largest change in magnitude and kN the least.

This relationship between parameters and near-surface N is the result of a balance between physical supply of N from depth

and its consumption by production at a rate set by the parameters. If production is slower than supply, N will accumulate,185

increasing the production rate and decreasing the vertical N gradient and therefore the supply rate until a near-equilibrium is
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reached. Thus, we can predict this relationship between parameter choice and near-surface N using the production function,

µ0Q(N)L(I). The total production’s dependence on N and I can be understood through the initial slopes of the production-

nutrient and production-light curves, which are µ0/kN and µ0α: these describe how quickly production increases for an initial

injection of each limitation; steeper initial slopes and faster initial production mean less accumulation ofN before equilibration.190

Thus nutrient will be higher for higher kN/µ0 and 1/(µ0α); these functions describe a two-dimensional space where increases

along either axis decrease productivity and increase near-surface nutrient concentration.

We define a biological timescale as a single term to summarize these two axes. First, we recognize that kN/µ0 has units of

days, so we normalize α, which has units W/m2, by dividing by

α0 = 1(m2/W ) · (mmolN/m3) = 1mmolN/Wm195

to reach the same units as 1/kN , m3/mmolN, so that 1/(µ0α/α0) also has units of days. We then add the results. The choice

of this normalization factor is specific to this model, where the currency is nitrogen. Then we see that we have a biological

timescale for new production based on the parameters chosen; we call this biological timescale τbio:

τbio =
1
µ0
· (kN +α0/α). (5)

The format of this timescale reinforces the qualitative relationship between surface N and changes in µ0, α, and kN . We can200

use τbio as a metric of how quickly production might consume a new supply of nutrient; if we compared it to a physical

timescale for nutrient supply rate, τp, places where τbio is shorter are likely to be nutrient-depleted and places where τp is

shorter are likely to be nutrient-replete. Across our 27 parameter cases, τbio ranges from about 2 days to 2 years. In fig 2(b),

τbio is compared to global-mean surface N for the 27 cases and correlates well, r=0.96. This correlation is best for this and

similar values of α0, e.g. 0.1 or 2 mmol N/WM, but is lower for e.g. 0.01 or 100 mmol N/Wm.205

Meridional structures of P for these same integrations show more variation than N , which is clear in the more frequent

intersections of the surface value curves and the variation in the latitudes of the maxima (figure 2c). The structure of the

surface BEC phytoplankton has peaks near 60◦N, the equator, 45◦S, and along the Antarctic coast. The three cases with

(α,µ0) = (0.0125,0.125) lack these peaks entirely, with a much smoother structure that we consider a poor match for observed

behavior and will not be considered further. To determine the best of the remaining options, we measured the correlation210

coefficient between the annual meridional structure of P and BEC phytoplankton, which ranged between 0.18 and 0.68 at the

surface. The top half of these cases, 12 of the remaining 24 (see Table 1), were examined by eye for a good qualitative match at

the surface, and will be used for further analysis. These cases have the correct general latitudinal structure of P and also have

reasonable new (export) production rates between 5.5 and 7.6PgC/yr (figure 3a), which is within the 5-11PgC/yr rate in most

literature (e.g. Cabre et al. 2015).215

We will not be examining the explicit sinking of our particles. For those interested, consider sinking rates, ws, consistent

with estimates for detritus: single cells sink at about 0.1m/day and aggregates can reach over 100m/day (Jackson and Burd,

1998). For decay rates, we suggest fixing these after choosing ws and adjusting them to have most production sink below the

depth threshold of choice. For instance, with ws of 5m/day, σ =1/yr has 95% of annual production sink below 100m.
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Figure 2. Annual and zonal mean of surface N (a) and P (c) for 27 parameter choice cases from the 10th year of simulation. Values for 2

chosen cases in blue and orange. Annual and zonal mean references in the thick black lines: nitrate from the World Ocean Atlas observations,

total plankton mass from BEC model in same physics. (b) Case timescale values vs global annual-mean N (black circles), 2 chosen cases

marked with blue and orange stars.

We choose two cases for detailed analysis which have P structures capturing different aspects of the BEC surface phyto-220

plankton concentrations and quite different parameter and mean surface N values. The first case has surface P maxima near

45N and S and the equator, nicely matching those at the equator and 45S in BEC, but missing the 60N and Antartcic-coast

peaks. This case has a small maximum growth rate (µ= 0.125mmol N/m3day), a moderate light sensitivity (α= 0.05), and a

low nutrient threshold for growth (kN = 0.25). We consider this analogous to a small phytoplankton type or a phytoplankton

community that has adapted to oligotrophic conditions, with plenty of light but low available nutrients. This case has a τbio225

of 162 days, corresponding to moderate mean surface N , slightly lower than WOA nitrate at the surface (see Appendix A for

more details). We call this the ‘slow’ case.

The second case has surface P maxima near 60N, the equator, and the Antarctic coast, similar to those at 60N and the

equator in BEC and capturing the increase toward the Antarctic coast, but missing the 45S maximum. In contrast to the first,

this case has a fast maximum growth rate (µ= 2mmolN/m3day), a low light sensitivity (α= 0.2), and a moderate nutrient230

threshold for growth (kN = 1). We consider this analogous to a large phytoplankton type or a phytoplankton community that

has adapted to higher latitude conditions, with large seasonal cycles of light and nutrient availability. This case has a τbio of 3
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Parameter Case 1-3 Case 4-6 Case 7-9 Case 10-12

α 0.0125 0.05 0.2 0.2

µ0 0.5 0.125 0.125 2

τbio 160.5-168 162-192 42-72 2.625-4.5
Table 1. Set of parameter values for twelve cases that compare best to WOA nitrate and CESM total phytoplankton. Each column represents

three cases with kN ∈ (0.25,1,4). The range of τbio covers those for all three kN .

days, corresponding to a very low mean surface N , noticeably below observed nitrate concentrations. We choose this case for

large contrast with the first and call it the ‘fast’ case. In the results section, we will focus on the changes in production under

global warming for these two parameter cases of our idealized biogeochemical model and use the larger set of twelve cases for235

context.

2.3 Light and Nutrient Controls on Production

Under global warming, changes in light and nutrient availability will vary both spatially and temporally. This section describes

our method to untangle the effects of these two components on changes in new production. The form of production,R= µ0QL,

allows for a decomposition and attribution of changes in productivity to changes in nutrient and/or light. As µ0, the maximum240

growth rate, is held constant, we can examine simply the nutrient availability, Q, and the light availability, L, both of which are

nondimensional and have values between zero and one. Using model output of the monthly-mean N and R, we compute the

monthly-meanQ=N/(kN +N) for each grid cell and the monthly-mean L=R/µ0Q. The change inQL can be decomposed

as

∆QL=Q∆L+L∆Q+ ∆Q∆L. (6)245

where ∆ indicates the change between the warmer, perturbed climate (2100) monthly values and those in the 2000s climate,

and all terms can be averaged in space or time as needed. These difference terms are also nondimensional and have values

between negative one and one. Due to the way we compute L from R and Q, there is no residual term– the above equation

holds to numerical precision. We will use this decomposition to analyze both the spatial patterns of annual-mean production

and seasonal cycles of production. When one of the three right-hand terms is most similar in size to ∆QL and highly correlated250

in space or time, we will consider that term the main driver of changes in production.

3 Results

3.1 Global statistics and dominant spatial patterns

For our twelve cases, global annual new production in the top 100m is 5.3-7.5 PgC in the early-century scenario and decreases

to 4.8-6.2 PgC in the late-century scenario; production is higher for shorter τbio in both epochs (fig 3ab). These patterns hold255
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Figure 3. (a) Global annual new production integrated over the top 100m for 12 cases for 2000 (black circles) and 2100 (red diamonds), vs

τbio (nonlinear axis for readability). (b) Percent change from (a), black stars; fast and slow cases circled in orange and blue, respectively. (c)

Global mean N in the top 100m vs τbio. (d) Absolute change from (c).

for our two exemplar cases, with the slow case having lower new production and a smaller decrease than the fast case. Our

12-case range of decreases in production, 9.5-19.5%, is similar to the 7-18% range of export decreases in CMIP5 (Fu et al.,

2016) but larger decreases than most net primary production changes in CMIP5, -2 to -16% (Fu et al., 2016), or CMIP6, +6 to

-12% (Kwiatkowski et al., 2020).

Decreases in new production are partially determined by decreases in near-surface nutrient concentration. In all 12 cases,260

global average N concentration in the top 100 m decreases by 15-22% in the late-century conditions (Fig. 3cd). Both initial

concentrations and absolute reductions are smaller for shorter τbio, but the reduction percentages highlight that the changes

are somewhat insensitive to the varied light- and nutrient-limitation choices. These absolute reductions are 0.04-0.66, which

is slightly smaller than the reductions of 0.66± 0.49 for CMIP5 RCP8.5 and 1.06± 0.45 for CMIP6 SSP5-8.5 (Kwiatkowski

et al., 2020). Despite the small absolute reductions in near-surface N concentration, the decrease in global new production265

is larger for fast cases with shorter case timescale (Fig. 3b); these shorter τbio cases have lower near-surface nutrient in the

early-century conditions and higher slopes in their production-nutrient curve, making them more sensitive to changes.

The spatial patterns of annual production under early 21st century conditions demonstrate one effect of τbio (fig 4a-b). The

slow case has lower maximal values, as expected given its lower maximal growth rate, and smoother variations in space. The

fast case has higher maximal values of new production, again set by its maximal growth rate, and sharper variations in space,270

due to its greater need for nutrients in order to grow: production is more limited to locations with a fast physical nutrient supply.

Despite these differences, both cases match the general meridional patterns of observed phytoplankton (see e.g. Dasgupta et al.
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(2009) for observations), with higher values in the subpolar and equatorial regions and lower values in tropical-subtropical

regions.

The spatial patterns of change in production under the warmer climate are qualitatively similar for both cases, with broad275

moderate reductions over most of the oceans, including the Indian ocean, the South Pacific, and the North Atlantic (fig 4c-d, the

pattern correlation is r=0.26). Both cases also contain common areas with increased production in the 2100s, including most

notably the edges of the equatorial Pacific, where upwelling has spread latitudinally, and the southern edge of the subtropical

North Pacific gyre. Despite broad similarity in the productivity response between the fast and slow cases, however, there are

many small regions where the sign of the climate-change response differs, perhaps most notably the Arctic, central equatorial280

Pacific, and the Bay of Bengal. These are regions with qualitative as well as quantitative sensitivity of the climate perturbation

reaction to the light and nutrient functions of uptake.

While we do not discuss spatial patterns in detail for the larger set of parameter cases, we do compute production by basin

(supplement, Fig. B1). For every basin but the Arctic, production decreases for a warmer climate in all twelve cases, indicating

that the qualitative results in most basins are not sensitive to the specifics of light and nutrient limitations. In the Arctic, which285

has the least total production, the four cases with lowest τbio have decreases in new production, while the remaining eight have

increases. We will discuss this sensitive region further in Section 3.5.

As global reductions in production were matched by reduced nutrient concentrations, so too can spatial patterns in pro-

duction be linked to nutrient concentrations and the vertical nutrient flux. Although the nutrient flux and new production do

not necessarily align in space and time, we empirically find pattern correlations between the annual mean production and the290

nutrient flux at 100 m as well as the average nutrient in the top 100 m (Fig. 5). The vertical flux is somewhat more noisy, hence

the correlations of the absolute changes between present and future are only r=0.51, r=0.14 for the fast and slow cases, respec-

tively. The average nutrient concentration in the top 100m reflects the integrated effects of the flux and productivity, hence the

correlations are somewhat stronger. In the present-day, the pattern correlations between annual nutrient concentration in the

top 100 m and production integrated to 100 m are r=0.56 and r=0.26 for the fast and slow biogeochemistry; for the future they295

are r=0.58 and r=0.33, and for the percent changes r=0.88 and r=0.48, respectively. Across our 12 cases, the lower τbio cases,

which are more nutrient-limited, have stronger correlations between nutrient concentration in the top 100m and productivity.

These correlations are always stronger in the warmer climate, when all cases are more nutrient-limited.

While we have connected the production and its changes to nutrient concentrations, light effects are also important. Pro-

ductivity is a product of functions representing the sensitivity of productivity to light L(I) and to nutrient Q(N) availability. As300

described in the methods, this allows a decomposition of the changes in production into those caused by changes in nutrient

availability, L∆Q, those caused by changes in light availability, Q∆L, and the covariance of the two, ∆Q∆L. Examining the

spatial patterns of QL, its change, ∆(QL), and the components of that change (Fig. 6) provides more details on the controls

of reduced production beyond the vertical nutrient supply and surface concentration. From the spatial fields, QL and ∆(QL)

show the same spatial patterns as production and its changes (by definition, r = 1), although the latter is somewhat different305

from the percent changes. From the components of the change, it is clear that L∆Q is the main control on production, r = 0.74

and r = 0.64 for fast and slow, which is consistent with our discussion of nutrient supply and concentration (Fig. 6bcgh). The
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Figure 4. (a,b) 2000s annual production. (c,d) percent change with climate perturbation. (a,c) slow case; (b,d) fast case. Magenta contour

indicates the subtropical South Pacific, cyan the Porcupine Abyssal Plain, black line the southern edge of the Arctic.

change in light availability is a smaller contributor, r = 0.19 and r = 0.43 for fast and slow (Fig. 6di). Finally, the covariance

is anticorrelated to the total change, r =−0.054 and r =−0.025 for fast and slow (Fig. 6ej). This component is largest near

the equator, where it offsets increases in nutrient due to broader upwelling in the warmer climate.310

From these analyses, we see that qualitatively, the spatial patterns of the response to the climate perturbation are similar

across the biogeochemical cases under consideration, likely pointing to strong controls by the underlying physics via the

nutrient supply. Quantitative differences exist; the spatial differences point to locations where results are sensitive to model

parameters, while the global differences are consistent with the chosen parameters in that the faster cases, which have a higher

nutrient utilization, have new production more correlated with the reductions of near-surface nutrient and its vertical supply.315
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Figure 5. Annual and 100m mean nutrient concentration. Top row, 2000s, bottom row, percent change.

3.2 Global Seasonal Cycle

Over much of the ocean, the seasonal cycle is the dominant mode of productivity variability due to seasonal variations in light

and nutrients. We are interested in how the seasonal cycle will respond to our climate perturbation and whether this is sensitive

to the case pararmeters.

We define the global seasonal cycle as monthly global spatial averages with a six-month offset between the northern and320

southern hemispheres so that the Boreal and Austral seasonal cycles are in phase. Differences in the seasonal cycle of new

production between the fast and slow cases are large and are a reflection of the different τbio of the cases (Fig. 7b). Seasonal

changes in nutrient and light availability have physical timescales of weeks to months, which are between the τbio of 3 days

for the fast case and 162 days for the slow case. Both cases have high upward nutrient flux in the winter and early spring

in conjunction with deep and dense winter mixed layers. However, the strong nutrient flux occurs over a shorter period of325

time in the slow case as the physical supply overwhelms the slow ecosystem’s ability to consume and thereby reduces the
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Figure 6. Annual 100-m average of QL for 2000s climate (a,f), its change (b,g), and its components, all normalized by the maximum of QL

in the 2000s. (c,h) L∆Q, (d,i) Q∆L, (e,j) ∆Q∆L. (a-e) slow case, normalized by 0.055 (f-j) fast case, normalized by 0.14.
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flux. Productivity in the fast case quickly consumes the nutrients as they are supplied in the late winter and spring, whereas

productivity in the slow case spreads out the nutrient consumption, achieving its maximum in mid-summer when the light is

most plentiful (fig 7b).

Despite the qualitative differences between the present-day seasonal cycles, climate change has a qualitatively similar impact330

on both the fast and slow cases (Fig 7a-c). The peak wintertime nutrient flux at 100 m (fig 7a) is reduced by 22% and 21% in the

fast and slow cases, respectively. This reduction is consistent with, but may not be entirely caused by, reduced winter mixed-

layer depths restricting the entrainment of nutrient-rich water from the thermocline (Fig 7f). Production is reduced during all

months, but particularly in the latter half of the respective growing seasons. Thus, the growing seasons during the 2100s are

modestly shorter with earlier peaks in both cases. It is true across all 12 cases that the largest reductions in new production are335

after the peak new production. Thus, we can conclude that while the seasonal cycle can be very different across cases, for this

model the global reduced production in a warmer climate follows a consistent pattern of a shortened growing season.

The causes of reduced production can be identified through the seasonal cycles of the components of ∆QL, all of which

are small fractions of the maximum early-century QL values. In both slow and fast cases, winter and spring increases in light

availability due to shallower MLD are offset by reductions in the nutrient availability and light-nutrient covariance, leading340

to reduced production (Fig 7de). The minima of ∆QL are in the second half of the growing season in both cases, driving

the shortened season. The slow case has negative values of all components at this time, with a largest reduction in nutrient

availability (Fig 7d). By contrast, the fast case’s minimum of ∆QL occurs while Q∆L is positive and is driven by reduced

nutrient availability and especially the light-nutrient covariance (Fig 7e). This large effect of ∆Q∆L during the growing season

is obscured in the annual mean (fig. 6), where this factor is small over most of the ocean and spatially anticorrelated to the total345

change, indicating the importance of considering the seasonal cycle for the mechanism of changes in production. In both our

cases, reduced nutrient availability contributes to the shortened growing season, a consistent effect of the climate perturbation.

3.3 Regional Case Studies

We next examine three regions in detail: the downwelling South Pacific, the Arctic, and the Porcupine Abyssal Plain in the

North Atlantic. These three regions exemplify the spatially-varied processes driving the climate response and the sensitivity of350

that climate response across our model cases (figs 4,6). We emphasize that none of the model cases closely match observations

in any particular region (see Appendix A for a comparison of N and observed nitrate), and that these examples are chosen

for their qualitative differences. To contextualize these regions, we note their physical biomes; biome analysis has been used

previously to identify ocean regions with similar biogeochemically-relevant physical characteristics across basins (Sarmiento

et al., 2004; Cabré et al., 2015). A further discussion of biome analysis across the broader 12 parameter cases is available in355

the appendix.

he downwelling South Pacific (red outline in fig 4), part of the permanently-stratified subtropical biome, is a region with

small seasonal cycles, small climate-induced changes in physics, and broad losses in production across model cases. These

losses of production are driven by the same processes in the fast and slow cases, suggesting an insensitivity to parameter

choices. By contrast, the Arctic (north of 66.5◦N, the black line in fig 4), in the ice and marginal ice biomes, has large climate-360
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Figure 7. Globally-integrated supply of nutrients (a), production of particulates (b) for top 100m. Both cases shown for both 2000s and

2100s; seasonal cycle is the mean of simulation years 8-10. Production controls for slow case (c) normalized by global max QL(2000) of

0.055 and fast case (d) normalized by global max QL(2000) of 0.14. (e) Mean mixed-layer depths.

induced physical changes, mainly in ice coverage. As noted earlier, the climate response in the Arctic is sensitive to parameter

choice; this region is the most sensitive of those we discuss, with changes in annual new production having opposite signs

in our two cases. The Porcupine Abyssal Plain (blue outline in fig 4), in the seasonally-stratified subtropical biome, has deep

winter mixing in the present climate and large decreases in mixed-layer depths with the climate perturbation. This region is

an example where the main driver (light or nutrients) of the climate-change induced reductions to productivity changes across365

parameter space. These three regions provide illustrative examples demonstrating how physical climate changes create a range

of possible responses in new production, as mediated by the parameters that modify the sensitivity of productivity to light and

nutrient availability, and thus how sensitivity of projected changes in new production vary across the world oceans.
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3.4 South Pacific

The downwelling South Pacific is defined by annual-mean downward vertical velocity at 100m depth in the South Pacific370

between 10 and 35◦S. Maximum winter mixed layer depths reach only 120m, putting this region mainly in the permanently-

stratified subtropical biome. Here, all biogeochemical parameter cases are qualitatively similar in both their current-climate

seasonal behavior and their response to the climate perturbation, which we show is driven by reduced vertical nutrient supply.

Here, the seasonal cycles in both early- and late-century climates have high values of both upward nutrient flux and new

production in the winter and spring (fig 8ab). Peak upward nutrient flux is in August in both cases in the early- and late-century375

conditions. In the fast case, peak new production is in the same month, indicating a fast response to the supply of nutrients.

In the slow case, there is a one-month delay, indicating a slower response. These peak times do not change between early-

and late-century conditions; only the overall magnitude of rates decreases: in the slow case, annual production decreases by

25% from 0.11 to 0.086PgC/yr, while in the fast case, annual production decreases by 39% from 0.045 to 0.027PgC/yr. This

is consistent with the global production being more reduced in the fast than slow case. This pattern holds across the 12 cases,380

with all having peak production in August through October, no change in the peak timing with climate, and larger decreases in

production for shorter τbio.

The decrease in new production is due to the reduced availability of nutrients. The total change in production, ∆(QL), is

nearly identical to the changes due to nutrient availability, L∆Q, with rms differences of 4 ·10−5 and 2 ·10−4 for fast and slow

(fig 8c); this near match holds across all 12 parameter cases. This is consistent with Cabré et al. (2015), who saw decreases385

in production in low latitude nutrient-limited biomes across models. Our addition to that analysis is the direct quantitative

connection to reduced nutrient availability that is not straightforward to compute for more complex biogeochemical models.

The reduced nutrient availability is due to reduced upward fluxes of nutrients, which we can exactly identify (fig 9ab). These

fluxes are comprised of downward advective fluxes, upward fluxes from vertical mixing from KPP (Large et al., 1997), and

upward fluxes from vertical effects of along-isopycnal mixing (Redi and GM). Both forms of parameterized mixing show390

reduced annual fluxes in the warmer climate at 100m. Neither mixed layer depths nor effective vertical diffusivities change

substantially, less than 10% for all MLD and less than 10% across 2/3 of the grid points in this region for diffusivity. Thus,

reduced dN/dz is the driver of the decreased upward nutrient flux.

The changes in spatial-mean nutrient profiles (fig 9c) show a consistent pattern across the fast and slow cases: increased

nutrient at 350-650m depth but decreases from 350m to the surface, including decreases near 100m. These mid-depth nutrient395

changes are due to physical changes in circulation and/or mixing in the main thermocline. For diffusive transport, the decreases

in N concentration above 350m mean that the vertical gradient of N near 100m, where we measure the fluxes, decreases. Thus,

the decreased production in the downwelling South Pacific is being driven by decreased nutrients below the deepest winter

mixed layers (about 120m), through decreased dN/dz causing decreased diffusive fluxes, decreased near-surface nutrient,

and thereby decreased nutrient availability, Q. From these two examples it seems likely that the causes of reduced nutrient400

availability in the warmer climate, which drives reduced production, are consistent across parameter cases.
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Figure 8. Subtropical South Pacific nutrient supply (a), production of particles (b), and production controls (c) normalized by maxQL2000

in the region, 0.032 for slow and 0.013 for fast.

3.5 Arctic

The Arctic region is defined by being within the Arctic circle (north of 66.5◦N), or having at least one day per year with

no incoming solar radiation. This region has the largest sensitivity of changes in new production to model light and nutrient

limitation, with the range across 12 parameter cases being a decrease of 17% up to an increase of 52%. Here, our two example405

biogeochemistry cases have notably different responses to climate change, with the slow case having a 46% increase in annual

production and the fast case having a 16% decrease.

Early-century seasonal cycles are similar for fast and slow cases. In this region, that is an upward flux of nutrients year-

round and high new production rates in the summer, with a peak in May for the fast case and September for the slow case

(fig 10ab). Under late-century conditions, the peak production of the fast case is in the same month, with a slight increase in410
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Profiles of change in annual-mean subtropical South Pacific nutrient.

production earlier in the year and reductions later in the year which lead to a total decrease; in contrast, the peak production of

the slow case is much higher and is earlier, now in July. These regional-mean production shifts are consistent with the different

responses seen in the annual production maps (Fig 4), where the slow case has large increases while the fast case has moderate

changes of both signs.

In the Arctic, increases in incoming light, with the seasonal maximum of the regional mean more than doubling (91 to 202415

W/m2), are due to reduced sea-ice (fig 1a) and have a large impact on changes in production. The mean increase in light

availability in summer, quantified by Q∆L, its effect on changes in production, is nearly as large as the maximum QL in the

2000s for both cases (Fig 10cd). In the slow case, this increase in light allows for a large increase in production in the first

half of the growing season, until nutrients are slightly depleted by that production, reducing production through lower nutrient

availability in the second half (negative L∆Q and ∆Q∆L). This pattern is qualitatively consistent across slow cases with long420

τbio. In contrast, the increase in light availability in the fast case is offset by an associated reduction in nutrient availability, such

that ∆Q∆L≈−Q∆L. Increased light in the spring leads to immediate increases in production (April), which uses enough

nutrient to cause a dip in nutrient availability (May) before peak light availability (July), leading to decreased production in the

summer and fall. This pattern is consistent across the four cases with shortest τbio, which have decreased annual production in

the warmer climate (Fig B1). Thus, in the Arctic, the increases in light availability consistently increase production in spring,425
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Figure 10. Arctic nutrient supply (a), production (b). Production controls on slow (c) and fast (d) cases, normalized by max of arctic

QL(2000), 0.021 for slow and 0.028 for fast.

leading at some point to a biologically-driven decrease in near-surface nutrient. The resultant changes in production may take

either sign and depend on the speed at which nutrients are removed, consistent with our τbio.

The Arctic is a region where changes in new production under global warming is highly sensitive to the formulation of model

production, both for our model and more complex ones. Vancoppenolle et al. (2013) found that CMIP5 projections of Arctic

NPP were dependent on whether the Arctic reached a nutrient-limited state post sea-ice loss, with those models that reach a430

nutrient-limited state having reduced production and others having increased production in the warmer climate. Our analysis

provides a mechanistic hypothesis for these differences: shorter τbio models have lower near-surface nutrients in early-century

conditions, and therefore increases in production with increased light will more quickly lead to a nutrient-limited state.

3.6 North Atlantic

The Porcupine Abyssal Plain in the northeast North Atlantic is defined here to be 40-52N and 27-11W (cyan box in fig 4);435

this includes the location of the Porcupine Abyssal Plain Sustained Observatory. This region is characterized by deep winter

mixed layers and net downwelling. Under a warmer climate, the winter mixed layer depths are reduced; the spatial mean of

the maximum decreases from 280 to 229m and the absolute maximum MLD is reduced from 669 to 590m (fig 11d). All 12

cases have decreased new production in the future, 9.55 to 26.75%, which is a smaller range than our other two regions but

still larger than the global ocean; our two example cases have a decrease of 12% for slow and 21% for fast. In this region, as440

for the Arctic, the mechanisms driving the changes vary.
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Here, our two model cases show qualitatively different seasonal cycles with production mainly in the early spring for the

fast case and spread over the summer for the slow case (fig 11b) similar to their respective global cycles. Both cases have little

qualitative change between the early- and late-21st century. Most of the nutrient supply is in the winter for both cases (fig 11a),

mainly due to wintertime entrainment associated with the mixed layer.445

In the warmer climate, changes in production, ∆QL, depend on the relative impacts of increased light availability, Q∆L,

in March and April and decreased nutrient availability, L∆Q, in all months; the signs of these drivers are consistent across

cases, but the signs of the change in production are not. In the slow case, the changes in production with climate are an

increase in spring and a decrease in summer and fall for a total decrease, closely following changes in light availability,

∆(QL)≈Q∆L (fig 11c). The increased light in March and April corresponds to shallower mean and maximum mixed-layer450

depths, respectively. Light availability decreases in the summer, due to increased mixed-layer depths in May and June. In the

summer and fall, a higher portion of the reduction in production is due to reduced nutrient availability from both the lower

winter peak in nutrient supply and the increased use during the spring production.

In the fast case, the same physical changes of the climate perturbation result in production decreases due to reduced nutrient

availability in all months, ∆(QL)≈ L∆Q (fig 11c). The winter increase in light availability has no noticeable impact, with455

substantially lower winter-spring production co-occurring with the lower nutrient flux (fig 11a) and shallower monthly-mean

mixed layer depth (fig 11d). This region’s changes in new production are sensitive to parameter choices. Although total new

production is reduced in both cases, reduced winter mixed layer depths can act to either increase or decrease spring production,

depending on whether that production is more sensitive to light, as in the slower cases with longer τbio, or nutrient availability,

as in the faster cases with shorter τbio. These differences highlight the usefulness of this idealized model, which allows us to460

diagnose these drivers.

4 Conclusions

In order to study the sensitivity of the climate response of new production, we designed an idealized, two-tracer biogeochemical

model that explicitly represents nutrient supply to the photic zone, new production, and the export of organic particles. The

chosen simplifications for the production function allow for detailed analysis of the causes of changes in production but465

eliminate or exaggerate other processes. First, dynamic phytoplankton concentration is omitted from the model; productivity

is generally thought to scale with this concentration, so our seasonal results may be inaccurate in regions with strong blooms.

Second, the formulation of light limitation, using an average light concentration within the surface mixed layer, does not allow

self-shading and enhances production near the bottom of the mixed layer. Finally, the simulations are not constrained to be

realistic; the results provide information about the key parameter sensitivities.470

From model integrations under early- and late-21st century climate scenarios with 12 different parameter sets, we found that

global production, near-surface nutrient concentrations, and projected changes in production were all connected to τbio, derived

from the initial slopes of the production-nutrient and production-light curves, which are the partial derivatives of production

with respect to nutrient and light at the origin. A short τbio indicates faster production and higher nutrient utilization, leading to
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Figure 11. Porcupine Abyssal Plain nutrient supply (a), production of particles (b). Production controls (c), normalized by 2000s maxQL,

0.022 for slow and 0.015 for fast. Discrepancy for slow is mainly due to L∆Q. Range and mean of monthly-maximum MLD (d).
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lower near-surface nutrient concentrations and faster nutrient supply; these then indicate larger reductions in global production475

in a warmer climate. These reductions were linked to reduced near-surface nutrient availability and a shortening of the growing

season in all cases. The percentage decreases in global new production were different by about a factor of two between the

highest and lowest τbio, a range similar to CMIP5. But, we find that the sign of the response (a reduction in productivity with

warming) is the same for all of the light and nutrient limitation parameters that we considered.

We examined two exemplar cases, focusing on the similarities and differences in the seasonal, spatial, and regional responses480

to climate change. Spatial patterns of changes in annual new production are similar between these two cases (pattern correlation

r=0.26), with both being correlated to the changes in annual-mean nutrient availability (L∆Q), near-surface nutrient concen-

trations, and upward nutrient flux. Correlations were stronger for the fast case, which is more nutrient-limited. The ability to

quantify the component of the reduction due to nutrient availability is unique to simple models like ours.

For more details on the drivers of the climate response and its sensitivity, we examined three regions. The South Pacific485

region demonstrated the most consistent response to the climate perturbation. Here, changes in light and MLD are negligible.

Decreased nutrients in the upper thermocline drive lower vertical supply, lower nutrient availability, and lower production in

all months for both exemplar cases. While there are still larger decreases for shorter τbio, the mechanism is not sensitive to

biogeochemical parameters.

From our detailed analysis of two higher-latitude regions, we found that compensation between changes in light and nutrient490

availability have very different impacts for our runs with different production parameters. In the Porcupine Abyssal Plain,

a reduced depth of the winter mixed layer acts to either increase or decrease spring production, depending on whether that

production is more sensitive to light, as in the longer τbio cases, or nutrient availability, as in the shorter τbio cases. In the

Arctic, larger increases in light availability due to sea-ice losses drive the largest sensitivity of new production’s response to

the climate perturbation, with different cases having opposite-signed annual-mean responses. Here, for fast cases (short τbio)495

light-driven increased spring production reduces nutrient availability and thereby production later in the growing season to such

an extent that annual totals are reduced. In contrast, slow cases can produce more throughout the growing season with little

impact on nutrient availability. This analysis suggests a mechanism for the variation of projected Arctic production in CMIP5,

where reduced production was associated with nutrient limitation (Vancoppenolle et al., 2013): if τbio were diagnosed for those

models, it may be that short τbio cases have higher nutrient uptake, driving the nutrient limitation and reduced production.500

Biological rates like τbio are useful for explaining CMIP results more broadly. In those more-complex models, the effective

τbio varies in space because of changes in the phytoplankton community composition. It would be possible to quantify τbio for

these models empirically in a vertical column ocean through the individual injection of each nutrient at several concentrations

to find the slope of the production-nutrient curve. Alternately, the new production rates from many locations in a global ocean

configuration could be used to fit a production curve over all nutrients, with τbio formed from the derivatives. Variations505

between model results might then be related to their different τbio, along with a comparison to the different physical rates.

We suggest that this reduced-complexity model and timeslice method may be suitable for high-resolution climate change

process studies where computational cost is a limiting factor. Having only two tracers, this model is as inexpensive as possible

while explicitly representing the supply of inorganic nutrient, new production, and sinking export. Given the range of produc-
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tion parameters that provide reasonable global results, one can choose the ones most suitable for the question of interest, such510

as approximately matching an ecosystem in a particular region or biome. While not considered here, the formulation of P

allows for changes in export efficiencies under a warming climate to be studied through changing ws and σ.

Appendix A: Additional N-NO3 comparison

In our work, we were aiming to understand the sensitivity of the climate response and thus a wide range of possible model

behaviors. To that end, our validation or comparison to observations and another, fitted, model, was quite simple. For further515

context on how our two exemplar cases do (not) match observed behaviors, we show here the seasonal cycle of the 100m-

averaged N concentration compared to WOA nitrate concentrations. Figure A1 provides the mean of monthly 100m-averaged

WOA nitrate concentrations globally and for each of the three regions further examined in the text, along with the monthly

100-m averaged mean N concentrations. In all cases, our fast model concentrations are quite low. For the slow case, values

are often in the 90% range of WOA concentrations (not shown), but below the mean. The exception is the Porcupine Abyssal520

Plain region, where the slow case has N similar to nitrate but with a shift in the seasonal cycle. If future process work were to

concentrate on an individual region, an analysis like this would allow for fitting of parameters.

Appendix B: Production in 12 cases

This appendix provides additional context of how our simple biogeochemical model’s new production changes for different

parameter values under the same physical climate perturbation. We provide a simple analysis of production changes across525

ocean basins and biomes for the 12 parameter cases lightly considered in the main text. The fast case in the main text is here

labeled by case timescale 3, the slow case by case timescale 162 (it is the rightmost 162 in figures). Global production rates

and their changes in the warming climate were in figure 2.

First, we shown ocean basin averages of new production and its changes (fig B1). These basins should be self-explanatory,

but note that the Southern Ocean begins at 35◦S and the Arctic at 66.5◦N. For all 12 cases, the Southern Ocean is most530

productive, likely related to our lack of iron limitation, and all basins except the Arctic show reduced new production in the

warmer climate for all parameter cases. The largest percent losses are in the southern hemisphere basins, and parameter cases

with shorter τbio show larger reductions than slower.

Second, we show ocean biome averages of new production and its changes. Biome delineations are based on latitude, sea ice

fraction, annual-mean vertical velocity at 100m, and maximum annual mixed layer depth. In the +/-5◦ latitude band we have535

upwelling and downwelling regions, noted Eq U and Eq D. Outside the equatorial band, downwelling regions are subtropical,

ST, either seasonally stratified (max mixed layer depths > 150m), ST SS, or permanently stratified (the opposite case), ST PS.

Upwelling regions in 5-30◦N 5-35◦S are the low latitude upwelling biome (LLU); above that, they are subpolar (SP) unless

their ice fraction goes above 0.1 some month. Ice biomes are split for the northern and southern hemispheres, noted NI and SI

respectively.540
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Figure A1. Mean of monthly 100m-averaged WOA nitrate concentrations and the monthly 100-m averaged mean N concentrations for both

fast and slow cases in 2000s and 2100s conditions. (a) Global ocean, with 6-month offset for southern hemisphere, (b) subtropical South

Pacific, (c) Arctic, (d) Porcupine Abyssal Plain. Note the y-axis is a log scale.

Most production occurs in the ST SS, ST PS, and SP regions, with SP generally larger total than either ST region alone

but smaller than their combination. All biomes’ total production decreases in the warmer climate, by 3-60%. Production

rates per area are larger in the Eq-U, ST-SS, SP, and SI regions than the Eq-D, ST-PS, LLU, and NI regions. Most biomes’

production rate is lower in a warmer climate except Eq-D which increases for some parameter choices. From the changes in both

production rate and annual production of each biome, it appears that the equatorial and ice regions’ changes are most sensitive545

to biogeochemical parameter choices, while the permanently stratified subtropics appear least sensitive. These sensitivities do

not always follow the pattern from basin or regional analyses of faster timescale cases having larger reductions in production;

an explanation is outside the scope of this analysis.

Biomes also shift in extent: Eq-U expands, decreasing the Eq-D area; ice, subpolar, and LLU contract (ice by over 20%,

others < 10%), causing expansion of ST-SS and ST-PS (< 10%). Thus, global reductions in new production are partially due550

to the expansion of downwelling regions and largely due to lower mean production rates across the largest biomes (ST and

SP). The signs of the changes in biome area are largely consistent with the model-mean changes in both Cabre et al. (2014)
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Figure B1. (a) Map of the 7 basins; colors consistent through all panels. (b) Annual new production in the top 100m in each basin for the

early 21st century climate. (b) As in (b) but for the late 21st century climate. (d) Percent change between (a) and (b). case timescale is

kN/µ+ 1/µα. Fast case is 2nd from left, case timescale 3. Slow case is 4th from right, case timescale 162.

and Sarmiento et al. (2004) for all but the ST-SS biome, which contracted in Sarmiento and expanded in Cabre– it expanded

slightly in our model.
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Figure B2. (a) Biomes 2000 (b) biomes 2100 (c) biome areas 2000 (d) % change in biome area, early-late 21st century (e) production rate,

annual gC/m2 for each biome (color) and each biogeochemical model parameter (x-axis, case timescale). (f) % change in production rate

(g) total annual production for each biome and biogeochemical model parameter, which is c · e (h) % change in total annual production
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Code and data availability. Data to reproduce the figures available as Brett (2020a). Code to reproduce the figures and to run these idealized555

tracers in CESM available as Brett (2020b).
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