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Abstract. The 4 per 1000 initiative aims to maintain and increase soil organic carbon (SOC) stocks for soil 30 
fertility, food security and climate change adaptation and mitigation. One way to enhance SOC stocks is to 31 
increase carbon (C) inputs to the soil.  32 
In this study, we assessed the amount of organic C inputs that are necessary to reach a target of SOC stocks 33 
increase by 4‰ per year on average, for 30 years, in 14 long-term agricultural sites in Europe. We used the 34 
Century model to simulate SOC stocks and assessed the required level of additional C inputs to reach the 4 35 
per 1000 target at these sites. Then, we analyzed how this would change under future scenarios of 36 
temperature increase. Initial stocks were simulated assuming steady state. We compared modelled C inputs 37 
to different treatments of additional C used on the experimental sites (exogenous organic matter addition 38 
and one treatment with different crop rotations). The model was calibrated to fit the control plots, i.e. 39 
conventional management without additional C inputs from exogenous organic matter or changes in crop 40 
rotations, and was able to reproduce the SOC stocks dynamics.  41 
We found that, on average among the selected experimental sites, annual C inputs will have to increase by 42 
43.15 ±	5.05 %, which is 0.66 ±	0.23 MgC ha-1 per year (mean ± standard error), with respect to the initial 43 
C inputs in the control treatment. The simulated amount of C inputs required to reach the 4‰ SOC increase 44 
was lower or similar to the amount of C inputs actually used in the majority of the additional C input 45 
treatments of the long-term experiments. However, Century might be overestimating the effect of 46 
additional C inputs on SOC stocks. In the experimental sites, we found that treatments with additional C 47 
inputs were increasing by 0.25% on average. This means that the C inputs required to reach the 4 per 1000 48 
target might actually be much higher. Furthermore, we estimated that annual C inputs will have to increase 49 
even more due to climate warming, that is 54% more and 120% more, for a 1°C and 5°C warming, 50 
respectively. We showed that modelled C inputs required to reach the target depended linearly on the initial 51 
SOC stocks, raising concern on the feasibility of the 4 per 1000 objective in soils with a higher potential 52 
contribution on C sequestration, that is soils with high SOC stocks. Our work highlights the challenge of 53 
increasing SOC stocks at large scale and in a future with warmer climate. 54 

1 Introduction 55 

Increasing organic carbon (C) stocks in agricultural soils is beneficial for soil fertility and crop production 56 
and for climate change adaptation and mitigation. This consideration was at the basis of the 4 per 1000 57 
(4p1000) initiative, proposed by the French Government during the 21st Conference of the Parties (COP21) 58 
on climate change. The 4p1000 initiative aims to promote agricultural practices that enable the 59 
conservation of organic carbon in the soil (www.4p1000.org). Because soil organic carbon (SOC) stocks 60 
are two to three times higher than those in the atmosphere, even a small increase of the SOC pool can 61 
translate into significant changes in the atmospheric pool (Minasny et al., 2017). To demonstrate the 62 
importance of SOC, the initiative took as an example the fact that increasing global SOC stocks up to 0.4 m 63 
depth by 4p1000 (0.4%) per year of their initial value could offset the net annual carbon dioxide (CO2) 64 
anthropogenic emissions to the atmosphere (Soussana, 2017). While increasing SOC stocks by 4p1000 65 
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annually is not a normative target of the initiative, this value can be taken as a reference to which current 66 
situations and alternative strategies are compared (e.g. Pellerin et al., 2017). 67 
Strategies of conservation and expansion of existing SOC pools may be necessary but are not sufficient to 68 
mitigate climate change (Paustian et al., 2016). In this sense, increasing SOC stocks cannot be regarded as a 69 
dispensation to continue business as usual, but rather as a wedge of negative greenhouse gases (GHG) 70 
emissions (Wollenberg et al., 2016), as well as a strategy for improving most soils’ resilience to changes in 71 
the climate.  72 
The potential to increase SOC stocks is particularly relevant in cropped soils, where the depletion of 73 
organic matter with respect to the original non-cultivated situation has been demonstrated (Clivot et al., 74 
2019; Goidts and van Wesemael, 2007; Meersmans et al., 2011; Saffih-Hdadi and Mary, 2008; Sanderman 75 
et al., 2017; Zinn et al., 2005) and where straightforward management practices can be implemented to 76 
promote the conservation or increment of SOC (Chenu et al., 2019; Guenet et al., 2020; Paustian et al., 77 
2016). Moreover, increasing the organic C content in agricultural soils is known to improve their fertility 78 
and water retention capacity (Lal 2008), indirectly enhancing agricultural productivity and food security. 79 
SOC stocks are a function of C inputs and C outputs. To increase SOC stocks one can either increase C 80 
inputs to the soil (i.e. adding plant material or organic fertilizers) or reduce C outputs resulting from 81 
mineralization and, in some cases, soil erosion. Increasing SOC stocks can be achieved via agricultural 82 
practices such as retention of crop residues and organic amendments to the soil, cover cropping, diversified 83 
rotations and agroforestry systems (Chenu et al., 2019; Powlson et al., 2011). However, some of these 84 
practices only lead to local carbon storage at field scale, rather than a net carbon sequestration from the 85 
atmosphere at larger scales (Chenu et al., 2019).  86 
Assessing the evolution of SOC stocks over time is important to estimate correctly the potential of SOC 87 
storage in agricultural soils and evaluate management practices in terms of both SOC stocks increase and 88 
sequestration potential. The dynamics of SOC stocks can be either measured in agricultural soils through 89 
long-term experiments (LTEs) and soil monitoring networks or estimated via biogeochemical models 90 
(Campbell and Paustian, 2015; Manzoni and Porporato, 2009). Combining measurements of SOC with 91 
models provides a wider applicability of the information collected in field trials, as it allows SOC stocks 92 
and their future trends to be estimated. However, validity of models in the studied areas has to be assessed 93 
and models need to be initialized. This means that the initial status of SOC has to be set, either for lack of 94 
data on total initial stocks, or to determine the allocation of C among model’s compartments that cannot be 95 
measured. This is commonly accomplished by assuming that SOC is at equilibrium at the beginning of the 96 
experiment (Luo et al., 2017; Xia et al., 2012).  97 
The feasibility and applicability of a 4‰ increase target depend on biotechnical and socio-economic 98 
factors. As we mentioned earlier, a number of practices are known to increase SOC stocks in agricultural 99 
systems. However, it is still debated whether they will be sufficient to reach the 4p1000 objective. Minasny 100 
et al. (2017) described opportunities and limitations of a 4‰ SOC increase in 20 regions across the world. 101 
Several authors (e.g. Baveye et al., 2018; van Groenigen et al., 2017; VandenBygaart, 2018) argued that 102 
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some of the examples described in Minasny et al. (2017) were not representative of wide-scale agriculture 103 
and suggested that a 4‰ rate is not attainable in many practical situations (Poulton et al., 2018). 104 
Implementing new agricultural practices that allow the maintenance and increase of SOC stocks might 105 
require structural land management changes that not all farmers will be willing to adopt. Incentivizing and 106 
sustaining virtuous practices to increase SOC stocks should be a strategy for policymakers to overcome 107 
socio-economic barriers (e.g. Lal, 2018; Soussana, 2017) and in order to do that, they need to be correctly 108 
informed. Recent works have assessed the biotechnical limitations of a SOC increase, studying the required 109 
and available biomass to reach a 4p1000 target in European soils (Wiesmeier et al., 2016; Martin et al., 110 
2021; Riggers et al., 2021).  111 
Our work was set up in this context with the objectives to: 1) estimate the amount of C inputs needed to 112 
increase SOC stocks by 4‰ per year; 2) investigate if this amount is attainable with currently implemented 113 
soil practices (i.e. organic amendments and different crop rotations) and 3) study how the required C inputs 114 
are going to evolve in a future driven by climate change. We used the biogeochemistry SOC model 115 
Century, which is one of the most widely used and validated models (Smith et al., 1997), to simulate SOC 116 
stocks in 14 different agricultural LTEs around Europe. We set the target of SOC stocks increase to 4‰ per 117 
year for 30 years, relative to the initial stocks in the reference treatments. With an inverse modeling 118 
approach, we estimated the amount of additional C inputs required to reach a 4p1000 target at these sites. 119 
Finally, we evaluated the dependency of the required additional C inputs to different scenarios of increased 120 
temperature.   121 

2 Materials and methods 122 

2.1. Experimental sites 123 

We compiled data from 14 LTEs in arable cropping systems across Europe (Fig. 1), where a total of 46 124 
treatments with increased C inputs to the soil were performed and one control plot in each experiment was 125 
implemented (Table 1). The experiments lasted between 11 and 53 years (median value of 16 years) in the 126 
period from 1956 to 2018. Most of the experiments had at least 3 replicates, except for the Italian site 127 
Foggia, the French site Champ Noël 3 and the British site Broadbalk, where no replicates were available. 128 
We selected experiments where dry matter (DM) yields and SOC had been measured at several dates. C 129 
inputs in all sites, except for control plots and all plots in Foggia, included exogenous organic matter 130 
(EOM) addition, e.g. animal manure, household waste, sewage sludge or compost additions. In Foggia, 131 
different rotations without organic matter addition were studied and compared to a wheat-only treatment, 132 
considered as the control plot. The annual C inputs to the soil were substantially higher in the rotations 133 
compared to the control. More information on crop rotations and C inputs for each treatment can be found 134 
in Table 1.  135 
Cropping systems in the 60 treatments (14 control plots and 46 additional C input treatments) were mainly 136 
cereal-dominated rotations (wheat, maize, barley and oat). In particular, four were cereal monocultures 137 
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(silage maize in Champ Noël 3, Le Rheu 1 and Le Rheu 2 and winter wheat in Broadbalk) and four sites 138 
had rotations of different cereals (winter wheat and silage or grain maize in Crécom 3 PRO, Feucherolles, 139 
La Jaillière 2 PRO and Avrillé). The other sites rotated cereal crops with legumes (chickpea, pea) and/or 140 
root crops (fodder beet, fodder rape and Swedish turnip), oilseed crops (sunflower and oilseed rape), cover 141 
crops (mustard and rapeseed) and one rotation included tomatoes. Straw residues were systematically 142 
exported except in French sites, where residues were sometimes incorporated into the soil as accounted for 143 
in the C input calculations. All LTEs were under conventional tillage, which was performed with a tractor, 144 
except in the case of Ultuna, where it was performed manually. All experiments were rainfed, except for 145 
Foggia, where tomatoes were irrigated in summer. The French sites Champ Noël 3, Crécom 3 PRO, La 146 
Jaillière 2 PRO, Le Rheu 1 and Trévarez received optimal amounts of mineral fertilizers both in the control 147 
plot and in the different organic matter treatments. All other experiments did not receive any mineral 148 
fertilization. All control plots, apart from Arazuri, had decreasing SOC stock trends (SOC approximated 149 
with a linear regression: 𝑆𝑂𝐶	 = 	𝑚 ∙ 𝑡 + 𝑆𝑂𝐶!, with average relative change: "

#$%!
∙ 100	= -0.76 %, R2 = 150 

0.58). Over the 46 treatments of additional C input, 18 exhibited increasing SOC stocks at a higher rate 151 
than 4‰ per year on average over the experiment length (Table 1). Six treatments had increasing SOC 152 
stocks, but at a lower ratio than 4p1000. The other 22 treatments with additional C inputs had decreasing 153 
SOC stocks (MgC ha-1). However, the decreasing trend was, in these cases, lower than the decreasing trend 154 
in the respective control plot, on the majority of the treatments.  155 

Table 1: Summary of the agricultural experiments included in the study: crop rotations grown at site, amount of 156 
carbon inputs (MgC  ha-1 per year) estimated from crop yields as in (Bolinder et al., 2007), type of treatments, 157 
amount of additional organic carbon from organic treatments (MgC ha-1 per year) and mean annual SOC stocks 158 
variation (%). 159 

Site ID Treatment Rotations* Carbon inputs 

from crop 

rotations 

Treatment 

type 

Additional 

carbon inputs 

from organic 

treatments 

SOC	

annual	

variation	

      MgC ha-1 

year-1 

  MgC ha-1 

year-1 

%	

Champ Noël 3 Min** sM 1.29 Reference+N*

* 

0 -0.92	

(CHNO3) LP Silage maize 1.49 Pig manure 0.79 -0.89	

Colmar T0 wW/Mg/sB/S 2.79 Reference 0 -0.78	

(COL) BIO1 wW/Mg/sB/S 3.93 Biowaste 1.01 0.15	
 

BOUE1 wW/Mg/sB/S 3.96 Sewage 

sludge 

0.49 -0.61	

 
CFB1 wW/Mg/sB/S 4.04 Cow manure 1.07 -0.01	

 
DVB1 wW/Mg/sB/S 4.00 Green 

manure+Sewa

ge sludge 

1.08 0.18	

  FB1 wW/Mg/sB/S 3.93 Cow manure 1.36 -0.01	
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Crécom 3 

PRO 

Min wW/sM 1.84 Reference+N 0 -0.06	

(CREC3) FB2 wW/sM 1.92 Cow manure 1.82 0.49	

  FV wW/sM 1.96 Poultry 

manure 

0.47 -1.46	

Feucherolles T0 wW/ Mg  2.22 Reference 0 -0.66	

(FEU) BIO1 wW/Mg 3.44 Biowaste 2.21 3.60	
 

DVB1 wW/Mg 3.45 Green 

manure+Sewa

ge sludge 

2.45 3.69	

 
FB1 wW/Mg 3.55 Cow manure 2.28 1.36	

  OMR1 wW/Mg 3.45 Household 

waste 

2.11 1.72	

Jeu-les-Bois M0 wB/R/wW 2.99 Reference 0 -1.33	

(JEU) CFB1 wB/R/wW 2.89 Cow manure 1.1 1.61	
 

CFB2 wB/R/wW 3.06 Poultry 

manure 

1.94 1.52	

  FB2 wB/R/wW 3.11 Cow manure 2.43 0.99	

La Jaillière 2 

PRO 

Min sM/wW 1.59 Reference+N 0 -1.43	

(LAJA2) CFB sM/wW 1.25 Cow manure 1.14 -0.88	
 

CFP sM/wW 1.21 Pig manure 1 -1.09	
 

CFV sM/wW 1.31 Poultry 

manure 

0.94 -1.60	

 
FB sM/wW 1.29 Cow manure 1.44 -0.64	

 
FP sM/wW 1.27 Pig manure 1.07 -1.03	

  FV sM/wW 1.40 Poultry 

manure 

0.93 -1.59	

Le Rheu 1 Min sM 1.31 Reference+N 0 -1.51	

(RHEU1) CFB1 sM 1.31 Cow manure 1.06 -1.21	

Le Rheu 2 T0 sM 1.03 Reference 0 -1.72	

(RHEU2) CFP1 sM 1.20 Pig manure 0.78 -1.28	

  FP sM 1.30 Pig manure 1.62 -0.74	

Arazuri DO_N0 B/P/W/Sf/O 0.98 Reference 0 1.00	

(ARAZ) D1_F1 B/P/W/Sf/O 1.40 Sewage 

sludge 

2.82 0.40	

 
D1_F2 B/P/W/Sf/O 1.41 Sewage 

sludge 

1.4 1.22	

 
D1_F3 B/P/W/Sf/O 1.44 Sewage 

sludge 

0.78 1.22	

 
D2_F1 B/P/W/Sf/O 1.30 Sewage 

sludge 

5.64 0.22	

 
D2_F2 B/P/W/Sf/O 1.40 Sewage 2.8 2.32	
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sludge 

  D2_F3 B/P/W/Sf/O 1.49 Sewage 

sludge 

1.56 0.93	

Ultuna P0_B O/sT/Mu/sB/FB/OsR/W/F

R/M 

1.03 Reference 0 -0.52	

(ULTU) S_F O/sT/Mu/sB/FB/OsR/W/F

R/M 

1.10 Straw 1.77 -0.09	

 
GM_H O/sT/Mu/sB/FB/OsR/W/F

R/M 

1.82 Green manure 1.76 0.11	

 
PEAT_I O/sT/Mu/sB/FB/OsR/W/F

R/M 

1.14 Peat 1.97 2.17	

 
FYM_J O/sT/Mu/sB/FB/OsR/W/F

R/M 

1.76 Farmyard 

Manure 

1.91 0.69	

 
SD_L O/sT/Mu/sB/FB/OsR/W/F

R/M 

0.82 Sawdust 1.84 0.56	

  SS_O O/sT/Mu/sB/FB/OsR/W/F

R/M 

2.59 Sewage 

sludge 

1.84 1.36	

Broadbalk 3_Nill wW 0.36 Reference 0 -0.09	

(BROAD) 19_Cast wW 0.65 Castor meal 0.43 0.42	

  22_FYM wW 2.07 Farmyard 

Manure 

3 0.38	

Foggia*** T0 W 1.56 Reference 0 -0.86	
 

Dw-Dw-Fall W/W/F 2.13 Rotation 0.57 0.01	
 

Dw-Fall W/F 1.95 Rotation 0.39 -0.33	
 

Dw-Oa-Fall W/O/F 2.20 Rotation 0.64 -0.33	
 

Dw-Dw-Cp W/W/C 2.53 Rotation 0.97 -0.15	

  Dw-Dw-To W/W/T 2.57 Rotation 1.01 -0.59	

Trévarez Min RG/Mg/wW/sM 1.94 Reference+N 0 -0.66	

(TREV) FB RG/Mg/wW/sM 2.04 Cow manure 1.52 -0.39	

  FP RG/Mg/wW/sM 2.02 Pig manure 1.18 -0.18	

Avrillé T12TR wW/sM 2.25 Reference 0 -1.18	

(AVRI) T2TR wW/sM 2.36 Cow manure 1.68 -0.76	

*Crops: sM = silage Maize, Mg= Maize grain, wW = winter Wheat, W = Wheat, 

sB = spring Barley, wB = winter Barley, B = barley, S = sugarbeet, 

   

R = Rapeseed, Sf = Sunflower, O = Oats, P = Pea, sT = Swedish Turlip, Mu = 

Mustard, DF = Fodder Beet, OsR = Oilseed Rape, FR = fodder Rape, 

   

F = green Fallow, C = Chickpeas, T = Tomato, RG = Ray Grass 
	   

**Optimal amounts of mineral fertilizers added to the control plot and to all other treatments in the experiment 

*** In Foggia, additional carbon inputs from organic treatments were calculated for each rotation as the difference between C 

inputs in the rotation and the reference wheat-only rotation.  
 160 
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 161 
Figure 1: Location of the 60 field trials distributed among the 14 cropland experiments around Europe. 162 

2.1.1. Climate forcing 163 

Mean temperature of the sites ranged from a minimum of 5.7 ˚C to a maximum of 15.5 ˚C, while mean soil 164 
humidity to approximately 20 cm depth ranged between 20.2 and 24.6 kgH2O m-2soil in the dataset (Table 2). 165 
When available, observed daily air temperature was used as an approximation of soil temperature. 166 
Otherwise, land-atmosphere model ORCHIDEE was used to simulate soil surface temperature and soil 167 
humidity at site-scale (Krinner et al., 2005). ORCHIDEE simulations were run over each site using a 3-168 
hourly global climate dataset at 0.5˚ (GSWP3 http://hydro.iis.u-tokyo.ac.jp/GSWP3/). Plant cover was set 169 
to C3 plant functional type (PFT) for agriculture. 170 

Table 2: Information about experimental sites, including: mean annual values of temperature (C˚) and soil 171 
humidity to approximately 20 cm depth (kgH2O m-2

soil) simulated with the ORCHIDEE model at each 172 
experimental site, measured pH, bulk density (g cm-3), clay (%) and initial SOC stocks in the control plots (MgC 173 
ha-1) at the experimental sites. Reference papers for each site are indicated. 1For Arazuri, data were directly 174 
provided by the Spanish Mancomunidad de la Comarca de Pamplona. 175 

Sites 
Reference 

paper 

Coordinate

s 
Years 

Mean 

annual 

Temperatur

e 

Mean annual 

soil humidity 
pH 

Bulk 

density 
Clay 

Initial 

SOC 

stocks 

    ˚C kg H2O m2
soil  g cm-3 % MgC ha-1 

Champ Noël 

3* 

(Clivot et 

al., 2019) 

48.09˚ N, 

1.78 ˚ W 
1990 - 2008 12.1 21.6 6.3 1.35 15.1 40.57 

Colmar (Levavasseu 48.11 ˚ N, 2000 - 2013 9.6 24.6 8.3 1.3 23.1 54.33 
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r et al., 

2020) 

7.38 ˚ E 3 

Crécom 3 

PRO 

(Clivot et 

al., 2019) 

48.32 ˚ N, 

3.16 ˚ W 
1986 - 2008 11.8 22.9 

6.1

5 
1.36 14.6 62 

Feucherolles 

(Levavasseu

r et al., 

2020) 

48.88˚ N, 

1.96˚ E 
1998 - 2013 11.9 21.2 

6.7

3 
1.32 15.6 39.78 

Jeu-les-Bois 
(Clivot et 

al., 2019) 

46.68˚ N, 

1.79˚ E 
1998 - 2008 12.2 22.1 

6.2

7 
1.52 10 48.53 

La Jaillière 2 

PRO 

(Levavasseu

r et al., 

2020) 

47.44˚ N, 

0.98˚ W 
1995 - 2009 12.7 20.5 6.8 1.37 20.8 32.42 

Le Rheu 1* 
(Clivot et 

al., 2019) 

48.09˚ N, 

1.78˚ W 
1994 - 2009 12.2 21.8 

5.8

5 
1.27 16.4 36.23 

Le Rheu 2* 
(Clivot et 

al., 2019) 

48.09 N, 

1.78 W 
1994 - 2009 12.2 21.8 

6.0

5 
1.28 13.9 36.53 

Arazuri1 - 
42.81˚ N, 

1.72˚ W 
1993 - 2018 12.7 20.4 8.6 1.67 27.9 55.39 

Ultuna 
(Kätterer et 

al., 2011) 

59.82˚ N, 

17.65˚ E 
1956 - 2008 5.7 22.6 

6.2

3 
1.4 36.5 41.72 

Broadbalk 
(Powlson et 

al. 2012) 

51.81˚ N, 

0.37˚ W 
1968 - 2015 10.2 21.5 7.8 1.25 25 24.84 

Foggia 
(Farina et 

al., 2017) 

41.49˚ N, 

15.48˚ E 
1992 - 2008 15.5 22.4 8.1 1.32 41 63.22 

Trévarez 
(Clivot et 

al., 2019) 

48.15˚ N, 

3.76˚ W 
1986 - 2008 11.8 23.4 

6.0

1 
1.48 19.2 115.33 

Avrillé* 
(Clivot et 

al., 2019) 

47.50˚ N, 

0.60˚ W 
1983 - 1991 12.0 20.2 

6.5

9 
1.4 17.6 54.46 

*These experiments were part of the initial French database (AIAL) described in Clivot et al. (2019), but they were not selected for the 

final modelling work of this latter study. For more information, see also Bouthier et al. (2014). 

2.1.2. Soil characteristics 176 

The sampling depth of the experiments varied between 20 and 30 cm. SOC stocks were measured in 3 – 4 177 
replicates, apart from Foggia and Champ Noël 3 experiments, where no replicates were available, and 178 
Broadbalk. In this experiment, SOC was measured in each plot using a semi-cylindrical auger where 10-20 179 
cores were taken from across the plot and bulked together (more details can be found on the e-RA 180 
website1). The clay content ranged from 10% (Jeu-les-Bois) to 41% (Foggia). Soil pH varied from a 181 
minimum of 5.85 in Le Rheu 1 to a maximum of 8.33 in Colmar. The average bulk density (BD) in the 182 
control plots was 1.38 g cm-3. SOC stocks (MgC ha-1) were calculated at each site using the following 183 
equation: 184 

 
1 www.era.rothamsted.ac.uk 
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𝑆𝑂𝐶	(𝑀𝑔𝐶	ℎ𝑎&') = SOC(%) ∙ 𝐵𝐷(𝑔	𝑐𝑚&() ∙ 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔	𝑑𝑒𝑝𝑡ℎ	(𝑐𝑚),    (1) 185 

where SOC (%) is the concentration of organic C in the soil, BD is the average bulk density of the 186 
experimental plot. It should be noted that the application of EOMs might induce differences in BD with 187 
time, which in turn affects the calculations of SOC stocks. No adjustment was made in this sense, since 188 
data on the evolution of BD was available only for a few sites. This might explain differences between the 189 
SOC stocks calculated for Broadbalk in this paper and those found by Powlson et al. (2012) in the same 190 
site, by adjusting soil weights to observed decreases in top soil BD due to accumulating farmyard manure 191 
(FYM). Initial SOC stocks values in the control plot and mean climate variables for each site are reported 192 
in Table 2. 193 

2.1.3. Carbon inputs 194 

The allocation of C in the aboveground and belowground parts of the plant was estimated with the 195 
approach first described by Bolinder et al. (2007) for Canadian experiments and then adapted by Clivot et 196 
al. (2019) to the same French sites we use in this study. This methodology allows splitting C inputs from 197 
crop residues after harvest into aboveground and belowground C inputs, using measured dry matter yields 198 
and estimations of the shoot-to-root ratio (S:R) and harvest indexes (HI) of the crops (see Fig. 2). The 199 
aboveground plant material is estimated as the harvested part of the plant (CP), which is exported from the 200 
soil, plus the straw and stubble that are left in the soil after harvest (CS). The harvested part consists of the 201 
measurements of DM yields (YP), while the straw and stubble are estimated using the HI coefficient of the 202 
different crops in the rotation (Bolinder et al., 2007). We assumed that the values used in Clivot et al. 203 
(2019) for the HI compiled from French experimental sites were applicable to all the sites in our dataset, 204 
which mainly include temperate sites over Europe. When these values were not available for some crops, 205 
they have been directly derived from Bolinder et al. (2007) or other sources in the literature (S:R ratio for 206 
fallow from Mekonnen, Buresh, and Jama (1997) and tomato from Lovelli et al. (2012)). When straw was 207 
exported from the field, we considered that only a fraction of CS was left on the soil. This fraction was set 208 
to 0.4 for all sites and to 0.2 in Ultuna, where almost no stubble was left on the soil, since plots were 209 
harvested by hand and crops were cut at the soil surface. We considered a C content of 0.44 gC gDM-1 in 210 
the aboveground plant material (Redin et al., 2014) and 0.4 gC gDM-1 in the belowground part material 211 
(Bolinder et al., 2007). We used the asymptotic equation of Gale and Grigal (1987) to determine the 212 
cumulative BG input fraction from the soil surface to a considered depth: 213 

𝐵𝐺)	+,-./ = 1 − 	𝛽+,-./,         (2) 214 

where 𝛽  is a crop-specific parameter determined using the root distributions for temperate agricultural 215 
crops, reported in Fan et al. (2016) and Clivot et al. (2019). The depth was set to 30 cm, since it was the 216 
depth at which soil samples were taken in the majority of the sites. For more details on the C inputs 217 
allocation method and the allometric functions involved, see Bolinder et al. (2007) and Clivot et al. (2019).  218 
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 219 
Figure 2: Adapted from (Bolinder et al., 2007). Representation of the distribution of carbon in the different 220 
parts of the plant: CP represents the carbon in the harvested product (grain, forage, tuber); CS is the carbon in 221 
the aboveground residues (straw, stover, chaff); CR is the carbon present in roots and CE represents all the 222 
extra-root carbon (including all root-derived materials not usually recovered in the root fraction). 223 

2.2. Century model 224 

2.2.1. Model description 225 

For this study, we selected the Century model, which has proved to be well suited to simulate accurately 226 
the soil C dynamics in a range of pedoclimatic areas and cropping systems (Bortolon et al., 2011; Cong et 227 
al., 2014; Parton et al., 1993), and because we had the full command of the model for fine tuning of 228 
parameters. Soil C dynamics in a soil organic matter (SOM) model with first-order kinetics can be 229 
mathematically described by the following first-order differential matrix equation: 230 

	0𝑺𝑶𝑪(5)
05

= 𝑰 + 𝐀 ∙ 𝛏𝐓𝐖𝐋𝐂𝐥(t) ∙ 𝐊 ∙ 𝑺𝑶𝑪(t),       (3) 231 

where 𝑰 is the vector of the external C inputs to the soil system, with four nonzero elements (Fig. 3). The 232 
second term 𝐀 ∙ 𝛏𝐓𝐖𝐋𝐂𝐥(t) ∙ 𝐊 ∙ 𝑺𝑶𝑪(t)  of the equation represents organic matter decomposition rates 233 
(diagonal matrix K), losses through respiration (𝛏𝐓𝐖𝐋𝐂𝐥(t)), transfers of C among different SOC pools (𝐀) 234 
and SOC evolution with time (𝑺𝑶𝑪(t)) (see Appendix A). We used the daily time-step version of the SOM 235 
model Century (Parton et al., 1988) to simulate the amount of C inputs required to reach a 4‰ annual 236 
increase of SOC storage over 30 years. In the version used, only SOC is modelled and plant growth is 237 
directly accounted as variations of C inputs. The original version of Century simulates the fluxes of SOC 238 
depending on soil relative humidity, temperature and texture (as a percentage of clay). As shown in Fig. 3, 239 
the model is discretized into 7 compartments that exchange C with each other: 4 pools of litter 240 
(aboveground metabolic, belowground metabolic, aboveground structural and belowground structural) and 241 
3 pools of SOC (active, slow and passive). The litter C is partially released to the atmosphere as respired 242 

CP

CS

CR

CE
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CO2 and partially converted to SOM in the active, slow and passive pools (see Table S1 in the supporting 243 
information for default Century parameters). The decomposition rate of C in the ith pool depends on 244 
climatic conditions, litter and soil characteristics and is calculated using environmental response functions, 245 
as follows: 246 
𝜉<=>%?(𝑡)@ ∙ 𝐾@ = 𝑘@ ∙ 𝑓<(𝑡) ∙ 𝑓=(𝑡) ∙ 𝑓>	@ ∙ 𝑓%?AB	@,       (4) 247 
where 𝑖 = 1,… ,7 is one of the aboveground (AG) and belowground (BG) metabolic and structural litter 248 
pools, and the active, slow and passive SOC pools; 𝐾@ is the (𝐾)@@ element of the diagonal matrix K in Eq. 249 
(3); 𝑘@ is the specific mineralization rate of pool 𝑖, fC(t) is a function of daily soil temperature, fD(t) is a 250 
function used as a proxy to describe the effects of soil moisture, fE	F is a reduction rate parameter acting on 251 
the AG and BG structural pools only, depending on the lignin concentration in the litter and fGHIJ	F is a 252 
reduction rate function of clay on SOC mineralization in the active pool. The temperature function fC(t) 253 
describes the exponential dependence of soil decomposition on surface temperature, through the Q10 254 
relationship that was first presented by M. J. H. van’t Hoff in 1884: 255 

fC(t) = 𝑄'!
(#($)&#'())

*! ,         (5) 256 
where Q10 is the temperature coefficient, usually set to 2 and Tref is the reference temperature of 30 ˚C. The 257 
Q10 factor is a measure of the soil respiration change rate as a consequence of increasing temperature by 258 
10˚. The other environmental response functions are described in Appendix A. 259 

 260 

Figure 3: Representation of litter and soil organic carbon (SOC) pools in Century. The model takes as inputs 261 
litter carbon from plants (aboveground metabolic (I1), belowground metabolic (I2), aboveground structural (I3) 262 
and belowground structural (I4)). A certain fraction of carbon can be transferred from one pool to another and 263 
each time a transfer occurs, part of this carbon is respired and leaves the system to the atmosphere as CO2. The 264 
SOC active pool receives carbon from each litter pool, while only the structural material is transferred to the 265 
SOC slow pool. Litter material never goes directly to the SOC passive pool while the three SOC pools exchange 266 
C within each other. 267 
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2.2.2. Model initialization 268 

The initialization of the model consists of specifying the sizes of the SOC pools at the beginning of the 269 
experiment. Here, we assumed initial pools are in equilibrium with C inputs before the experiments begin, 270 
in absence of knowledge about past land use and climate making initial pools different from steady state 271 
(Sanderman et al., 2017). Then, initialization can be done either by running the model iteratively for 272 
thousands of years to approximate the steady state solution (numerical spin-up), or semi-analytically by 273 
solving the set of differential equations that describes the C transfers within model compartments (Xia et 274 
al., 2012). We solved the matrix equation by inverse calculations for determining pools sizes at steady 275 
state, as in Xia et al. (2012) and Huang et al. (2018). These authors demonstrated that the matrix inversion 276 
approach exactly reproduces the steady state and SOC dynamics of the model. By speeding up the 277 
performance of the simulations, this technique allowed us to perform the optimization of model parameters, 278 
the sensitivity analysis of SOC to climatic variables and the quantification of model outputs uncertainties 279 
through Monte-Carlo (MC) iterative procedures. We solved the matrix equation by using its semi-analytical 280 
solution and the following algorithm: 1) calculating annual averages of matrix items obtained by Century 281 
simulations, driven by 30 years of climatic forcing; 2) setting Eq. (3) to zero to solve the state vector SOC. 282 
For each agricultural site, the 30 years of climate forcing were set as the 30 years preceding the beginning 283 
of the experiment, and the litter input estimated from observed vegetation was set to be the average litter 284 
input in the control plot over the experiment duration. 285 

2.2.3. Model calibration: optimization of the metabolic:structural fractions of the litter 286 
inputs 287 

In the Century model, AG and BG carbon inputs are further separated into metabolic and structural 288 
fractions, according to the lignin to nitrogen (L:N) ratio. Because the L:N ratio was not available for all the 289 
crops in the database, we fitted model simulations to observed SOC dynamics for the control plot of each 290 
site, i.e. the reference plot without additional C inputs, in order to get the metabolic:structural (M:S) 291 
fraction of the AG and BG carbon inputs. We used the sequential least-squares quadratic programming 292 
function in Python (SciPy v1.5.1, scipy.optimize package with method=‘SLSQP’), a nonlinear constrained, 293 
gradient-based optimization algorithm (Fu et al., 2019). We successfully performed the optimization on 13 294 
sites, where at least three measures of SOC stocks were available. For Jeu-les-Bois, which includes two 295 
SOC measurements only, we decided to use the same optimized values as for Feucherolles, which has 296 
similar pedoclimatic conditions and crop rotations. The optimization consisted in minimizing the following 297 
function: 298 

𝐽K@. = ∑
L#$%+

,-.(/&#$%+
-01M

2

N2+
345-01

O
@P' ,        (6) 299 

where i=1,…,n is the year of the experiment, 𝑆𝑂𝐶@"Q+,? 	(MgC ha-1) is the SOC simulated with Century for 300 

year i, 𝑆𝑂𝐶@QRS	(MgC ha-1) is the observed SOC for year i in the control plot and 𝜎T@
#$%-01 is the variance of 301 
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the 𝑆𝑂𝐶@QRS estimated from the different replicates. When replicates were not available, we recalculated 302 

𝜎T#$%-01 as the variance amongst 𝑆𝑂𝐶QRS samples of the whole experiment. The optimized M:S values are 303 
reported in Table 3 and represent the average quality of litter C in the rotating crops along the duration of 304 
the experiments that match control SOC data at each site. 305 

Table 3: Optimized values of the aboveground metabolic (AM), aboveground structural (AS), belowground 306 
metabolic (BM) and belowground structural (BS) fractions of the litter inputs and the Q10 and reference 307 
temperature (˚C) parameters. 308 

Site AM AS BM BS Q10 Reference temperature 

      
˚C 

CHNO3 0.85 0.15 0.26 0.74 5.0 21.2 

COL 0.85 0.15 0.57 0.43 2.0 30.0 

CREC3 0.15 0.85 0.29 0.71 2.0 30.0 

FEU 0.85 0.15 0.52 0.48 5.0 21.6 

JEU* 0.85 0.15 0.52 0.48 5.0 21.6 

LAJA2 0.85 0.15 0.72 0.28 5.0 21.5 

RHEU1 0.85 0.15 0.49 0.51 5.0 21.3 

RHEU2 0.85 0.15 0.32 0.68 5.0 21.3 

ARAZ 0.53 0.47 0.53 0.47 3.0 30.0 

ULTU 0.85 0.15 0.85 0.15 2.2 30.0 

BROAD 0.42 0.58 0.15 0.85 2.9 30.0 

FOGGIA 0.15 0.85 0.15 0.85 5.0 27.1 

TREV1 0.15 0.85 0.15 0.85 5.0 23.0 

AVRI 0.85 0.15 0.76 0.24 2.0 30.0 

2.2.4. Model calibration: optimization of temperature dependency parameters 309 

We optimized the Q10 and daily soil reference temperature parameters, which affect SOC decomposition. 310 
The Q10 factor is fixed to 2 in Century. However, many authors have shown that Q10 measurements vary 311 
with pedoclimatic conditions and vegetation activity (Craine et al., 2010; Lefèvre et al., 2014; Meyer et al., 312 
2018; Wang et al., 2010). For this reason, and to reproduce correctly interregional variations among the 313 
sites in the dataset, we optimized both the Q10 and reference temperature parameters to better fit the SOC 314 
dynamics (MgC ha-1) of each agricultural site at control plot. We decided to bind the Q10 between 1 and 5, 315 
following the variation of Q10 found by Wang et al. (2010) over 384 samples collected in the Northern 316 
Hemisphere. The reference temperature ranged between 10 and 30˚C. We used the SLSQP optimization 317 
algorithm and the cost function of Eq. (6) to perform the optimization, which was successful in 13 sites and 318 
we assigned the values obtained from the optimization of Feucherolles to Jeu-les-Bois, where SOC 319 
measurements were too sparse to perform a two-dimensional optimization. Optimized values of Q10 and 320 
reference temperature are reported in Table 3. 321 
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Model performance in the control plot was evaluated using two residual-based metrics. The first one is the 322 
Mean Squared Deviation (MSD), decomposed into its three components to help locating the source of error 323 
of model simulations: the Squared Bias (SB), the Non-Unity slope (NU) and the Lack of Correlation (LC). 324 
The second metrics used is the Normalized Root Mean Squared Deviation (NRMSD) (see Appendix B). 325 

2.3. 4p1000 analysis 326 

2.3.1. Optimization of C inputs to reach the 4p1000 target 327 

After the spin-up to steady state, the model was set to calculate the SOC stocks dynamics of the control plot 328 
and the C inputs for virtual treatments, assuming an average increase of SOC stocks by 4‰ per year over 329 
30 years. 30 years is considered as a period of time over which the variation of SOC can be detected 330 
correctly. During this period length, we supposed the soil was fed with constant amounts of C inputs from 331 
plant material. For the control, we derived C inputs from measurements of DM yields and calculated the 332 
annual mean over the whole experiment length. For the virtual treatments, we used an optimization 333 
algorithm to calculate the required amount of C inputs to reach a linear increase of SOC storage by 4‰ per 334 
year above the SOC stock at the start of the simulation. Mathematically, we minimized the following 335 
function: 336 

𝐽U-'!!! =X	𝑆𝑂𝐶! ∙ (1 + 0.004 ∙ 30) − 𝑆𝑂𝐶(!"Q+,?(𝑰)X,     (7) 337 

where 𝑰 is the 1x4 vector of C inputs to minimize over, 𝑆𝑂𝐶! is the initial SOC stock and 𝑆𝑂𝐶(!"Q+,?(𝑰)	is 338 
the SOC stock after 30 years of simulation. During the optimization, the M:S fractions were allowed to 339 
vary to estimate the quality of the optimal C inputs. Instead, we kept the aboveground:belowground ratio of 340 
the C inputs fixed to its initial value, to bind the model in order to represent agronomically plausible C 341 
inputs. In fact, if not bound, the model tends to increase the belowground C fraction to unrealistic values 342 
(assuming the same crop rotations persisted on site). On the other hand, keeping the 343 
aboveground:belowground ratio fixed implies that the simulated additional C inputs will be spread equally 344 
on surface and belowground. As for the previous optimizations, we used the Python function SLSQP to 345 
solve the minimization problem. The outcome of the optimization is a 4x1 vector (𝑰Q-.) representing the 346 
amount of C in the four litter input pools that matches the 4p1000 rate target. 347 

2.3.2. Uncertainties quantification 348 

Uncertainties of model outcomes were quantified using a Monte-Carlo approach. We initially calculated 349 
the standard error (SE) of the mean C inputs derived from yield measurements for each experimental site: 350 

𝑆𝐸 =	]N26
S

,          (8) 351 

where 𝜎TV is the variance of the estimated C input from yield measurements and s is the length of the 352 
experiment. If not available, we calculated 𝜎TV  as the average relative variance of C inputs among the 353 
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control plots. We therefore randomly generated N vectors of C inputs (𝑰) around the calculated standard 354 
error and performed the 4p1000 optimization N times, each time using one of the generated vectors I as a 355 
prior for the optimization.  To correctly assess the uncertainty over the required C inputs we set N to 50 356 
(Anderson, 1976). The standard error of model outputs was calculated with Eq. (8), where the variance was 357 
set as the variance of the modelled carbon outputs and the experiment size (s) to 50. 358 

2.3.3. Sensitivity analysis to temperature 359 

We tested the sensitivity of model outputs to temperature, running two simulations with increased 360 
temperatures. We considered two representative concentration pathways (RCPs) of global average surface 361 
temperature change projections (IPCC, 2015). The first scenario (RCP2.6) is the one that contemplates 362 
stringent mitigation policies and predicts that average global land temperature will increase by 1˚C during 363 
the period 2081-2100, compared to the mean temperature of 1986-2005. The second scenario (RCP8.5) 364 
estimates an average temperature increase of +4.8˚C, compared to the same period of time. We ran two 365 
simulations of increasing temperature scenarios with Century. We considered the same initial conditions as 366 
the standard simulations, hence running the spin-up with the average soil temperature and relative humidity 367 
of the 30 years preceding the experiments. Then, we increased daily temperature by 1˚C (AS1) and 5˚C 368 
(AS5) for the entire simulation length, to assess the sensitivity of modelled C inputs to increasing 369 
temperatures. Nevertheless, it must be noted that our simulations are running over a 30 years period, not the 370 
entire 21st Century. Thus, the temperature sensitivity analysis should not be considered as a test of climatic 371 
scenarios but as a classical sensitivity analysis where the boundaries were defined following RCP2.6 and 372 
RCP8.5 predictions of increased temperatures. 373 

3 Results 374 

3.1.  Fit of calibrated model to control SOC values  375 

Modelled and measured SOC stocks in the control plot were compared to evaluate the capability of the 376 
calibrated version of Century to reproduce the dynamics of SOC stocks in the selected sites (Fig. 4.c). As 377 
shown in Fig. 4.b, the NRMSD of the control plot SOC stocks is lower than 15% for all the treatments, 378 
indicating that overall model simulations fitted the observed SOC stocks well (observed SOC stocks 379 
variance was 16.3% on average in the control plots). The correlation coefficient between modelled and 380 
observed SOC stocks in the control plots was 0.96 (Fig. 4.c). Figure 4.a provides the values of the three 381 
components of the MSD indicator for each site. It can be noticed that the LC and NU components are the 382 
highest contributors to MSD. This means that the major sources of error are the representation of the data 383 
shape and magnitude of fluctuation among the measurements. The highest NRMSD can be found in Le 384 
Rheu 1 and Le Rheu 2 (around 12% and 14% respectively). In these sites the model seems to better capture 385 
the shape of the data (low LC compared to the other sites), but it misses the representation of mean SOC 386 
stock (high SB) and data scattering (high NU) of the experimental profiles. We tested the capability of 387 
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Century to reproduce SOC stocks increase in the additional C input treatments (Fig. 5). Figure 5 shows the 388 
correlation between additional C inputs and SOC stock increase in the C input treatments (R2 = 0.23). In the 389 
same graph, we can appreciate additional C inputs simulated by Century to reach the 4p1000 target being 390 
0.66 ±	0.23 MgC ha-1 per year (mean ± standard deviation from the mean). This shows that Century is 391 
generally overestimating the effect of additional C inputs on SOC stocks increase. However, the effect of 392 
additional C inputs on observed SOC stock increase varies largely across different treatments. 393 
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 394 
Figure 4: a) Decomposed mean squared deviation (MgC ha-1)2 in control plots for all sites. LC = Lack of 395 
Correlation, NU = Non-Unity slope and SB = Squared Bias. b) Normalized root squared deviation (%) in control 396 
plots for all sites c) Fit of predicted versus observed SOC stocks (MgC ha-1) in control plots for all sites (R2 = 397 
0.96). 398 
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 399 
Figure 5: Correlation between additional carbon inputs (MgC ha-1 per year) and annual SOC stock increase (%) 400 
in the carbon inputs treatments and mean ± standard deviation of the additional carbon inputs to reach the 401 
0.4% target in Century. 402 

3.2. Estimates of additional carbon inputs and SOC changes 403 

3.2.1. Virtual C inputs to reach the 4p1000 404 

Figure 6 represents the average percentage change of C inputs required to reach the 4‰ annual increase of 405 
SOC stocks, among the whole sites. The increase of C inputs is given for each litter pool. On average, a 406 
43.15 ±	5.05 % (mean ±	SE across sites) increase of total annual C inputs compared to the current situation 407 
in the control plot, is required to meet the 4p1000 target. In terms of absolute values, this represents an 408 
additional 0.66 ±	0.23 MgC ha-1 inputs per year, i.e. 2.35 ±	0.21 MgC ha-1 total inputs per year (equivalent 409 
approximately to 4.05 ±	0.36 MgDM ha-1 per year). What stands out in the graph is that, on average among 410 
the studied sites, the AG structural litter pool should be more than doubled, while the other pools need only 411 
to increase by about half of their initial value. In terms of absolute values, the structural AG biomass 412 
(which was initially 0.29 MgC ha-1 per year on average in the control treatments) would need an additional 413 
0.18 MgC ha-1 per year to reach the 4p1000; the metabolic AG (initially 0.70 MgC ha-1 per year on 414 
average) needs an additional 0.14 MgC ha-1 per year; structural and metabolic BG biomass (initially 0.65 415 
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and 0.52 MgC ha-1 per year) require an additional C input corresponding to 0.21 and 0.13 MgC ha-1 per 416 
year respectively. 417 
Analysis of the SOC pools evolution in the runs with optimized C inputs to match the 4p1000 increase rate, 418 
indicates that the active and slow pools increased by 0.58% and 0.61% per year respectively, while the 419 
passive pool increased annually by 0.01% (Fig. 7). In absolute values, the slow compartment contributed 420 
the most to the increase of SOC during the 30 years runs, as it increased by 2.7 MgC ha-1 on average among 421 
the sites (against an increase of 0.1 and 0.06 MgC ha-1 in the active and passive compartments 422 
respectively). This corresponds to a storage efficiency for the 30 years of simulation of approximately 13.7 423 
% in the slow pool, compared to a storage efficiency of 0.5% and 0.34% in the active and in the passive 424 
pools respectively. 425 
We found a high linear correlation (R2=0.80) between observed initial SOC stocks and optimized C inputs 426 
(Fig. 8). It is logical and expected that for low initial SOC stocks in steady state, a small increase of C 427 
inputs is sufficient to reach the 4p1000 target. Conversely, when SOC is high at the beginning of the 428 
experiment (e.g. Trévarez) much higher C inputs must be employed since our target increase rate is a 429 
relative target. The regression line that emerges from the cross sites’ relationship can be written as: 430 
IU-'!!! 	= 	0.013	 ∙ 	𝑆𝑂𝐶!QRS 	+ 	0.001,       (9) 431 
where IU-'!!!  are the simulated C inputs needed to reach the 4p1000 target (𝑀𝑔𝐶	ℎ𝑎&'	per year) and 432 
𝑆𝑂𝐶!QRS	(𝑀𝑔𝐶	ℎ𝑎&') is the observed initial SOC stock.  433 

 434 
Figure 6: Sites average percentage change of carbon inputs needed to reach the 4p1000 (TOT), separated into 435 
the four litter input pools. AM = aboveground metabolic, BM = belowground metabolic, AS = aboveground 436 
structural, BS = belowground structural and TOT = total litter inputs. Error bars indicate the standard error. 437 
N.B: Total change of carbon inputs (TOT) was calculated as the percentage change between the total amount of 438 
carbon inputs before and after the 4p1000 optimization, averaged across all sites. 439 
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 440 
Figure 7: Sites average soil organic carbon pools (ACT = active, SLOW = slow and PASS= passive) evolution 441 
(MgC ha-1) over the 30 years of simulation to reach the 4p1000 target. In the graph the mean percentage 442 
increase is given for each SOC pool. 443 

 444 
Figure 8: Correlation between initial observed SOC stocks (MgC ha-1) and modelled carbon inputs needed to 445 
reach the 4p1000 target (MgC ha-1 year-1). The correlation coefficient (R2) is 0.80 and the regression line is y = 446 
0.013∙x+0.001. 447 
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3.2.2. Virtual versus actual C inputs in the experimental carbon treatments  448 

In Fig. 9 we compare the C inputs required to reach the 4p1000 target to the actual inputs used across the 449 
46 treatments of additional C. The additional C (MgC ha-1 per year) shown in the graph for all experimental 450 
treatments refers to exogenous organic amendments, plus additional C due to increased crop yields, 451 
relatively to the control plot. The most striking result emerging from the data is that modelled additional C 452 
inputs are systematically lower or similar to at least one treatment of additional C in all sites, except for 453 
Foggia. In Foggia experiment, different crop rotations were compared and no additional EOM was 454 
incorporated to the soil. Here, none of the rotations had sufficient additional C content (compared to the 455 
control wheat-only treatment), to meet the required C input level predicted by Century for a 4p1000 456 
increase rate. Overall, 86.91% of the experimental treatments used higher amounts of C inputs compared to 457 
the modelled need of additional C inputs in the same site. For the other treatments, the difference between 458 
simulated and observed additional C input was not significant. In the experimental treatments were applied 459 
1.52 MgC ha-1 per year on average and SOC stocks were found to be increasing by 0.25% per year relative 460 
to initial stocks. Modelled additional C input to reach a 0.4% increase was 0.66 MgC ha-1 per year, on 461 
average among the sites. 462 
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 463 
Figure 9: Additional modelled carbon inputs (MgC ha-1 year-1) to reach the 4p1000 (grey bars) compared to 464 
additional carbon input treatments (colored bars) on each experimental site. Additional carbon inputs for field 465 
trials are calculated as the sum of organic fertilizers and the delta carbon inputs from crop yields (compared to 466 
the control plot). Additional carbon treatments are separated into different categories: BIO waste = biowaste 467 
compost, green manure, green manure + sewage sludge and household waste, Cow Manure = cow manure and 468 
farmyard manure (in Broadbalk and Ultuna), Pig Manure, Poultry Manure,  Sewage Sludge, Rotations = 469 
different crop rotations, Other organic amendments (OA) = straw, sawdust and peat (in Ultuna) and Castor 470 
Meal (in Broadbalk). The error bars shown are the standard errors computed with the Monte Carlo method. 471 
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3.3. Carbon input requirements with temperature increase 472 

The temperature sensitivity analysis of the Century model for the 4p1000 target framework is plotted in 473 
Fig. 10. The required amount of C inputs to reach the 4p1000 target is likely to increase with increasing 474 
temperature scenarios. In particular, C inputs will have to increase on average by 54% in the AS1 scenario 475 
of +1˚C and 120% in the AS5 scenario of +5˚C temperature change, relative to current C inputs in the 476 
control plots. This represents an additional C inputs increase of 11% and 77% respectively, compared to the 477 
business as usual scenario with current temperature setup (CURR). What can be clearly seen in the graph is 478 
the increased amount of C inputs required in Trévarez, where C inputs should more than quadruplicate to 479 
reach the 4p1000 objective. 480 

 481 
Figure 10: Temperature sensitivity analysis of carbon inputs increase (%) to reach the 4p1000 objective. 482 
CURR=business as usual simulation, AS1=RCP2.6 scenario of +1˚C temperature increase, AS5=RCP8.5 483 
scenario of +5˚C temperature change. 484 

4 Discussion 485 

4.1. Reliability of the Century model 486 

The Century model has been widely used to simulate SOC stocks dynamics in arable cropping systems 487 
(Bortolon et al., 2011; Cong et al., 2014; Kelly et al., 1997; Xu et al., 2011). Optimizing the 488 



 25 

metabolic:structural ratio in the reference plots allowed us to initialize the C inputs compartments, since no 489 
measurement of the L:N ratio was available. This allowed us to: 1) take into account the average C quality 490 
of the litter pools in the different crops rotations and 2) estimate correctly the initial values of SOC stocks 491 
on the majority of the sites. On the other hand, this could have influenced the predicted redistribution of C 492 
in the additional C inputs required to reach the 4p1000 (Fig. 6). We suggest that taking into account the 493 
historical site-specific land use could help initialize SOC stocks without requiring any assumption 494 
regarding the M:S ratio (e.g. with historically based equilibrium scenarios as in Lugato et al. (2014)). To 495 
further improve SOC stock simulations, we optimized the Q10 and reference temperature parameters on the 496 
control plots, to account for the different pedo-climatic conditions of the experimental sites and enhance 497 
model predictions of SOC stocks dynamics (Craine et al., 2010; Lefèvre et al., 2014; Meyer et al., 2018; 498 
Wang et al., 2010). Although the dispersion of SOC stocks over time is not perfectly captured in the 499 
majority of the control plots (see the high LC component of the MSD in Fig. 4), the simulations of SOC 500 
dynamics were improved by the optimization of temperature related parameters and the NRMSD was 501 
found to be lower than 15% on all sites. Figure C2 shows that the optimization of temperature sensitive 502 
parameters did not affect significantly the required C input estimation for the current temperature scenario. 503 
This means that, although parameters optimization improved the simulation of SOC stocks in the control 504 
plots, the final results are not affected by it. The capability of Century to simulate SOC stocks in the 505 
simulations of additional C treatments might be a major shortcoming of modeling results. In fact, although 506 
SOC stocks were found to be increasing on average in the additional C treatments (0.25% per year with 507 
1.52 MgC ha-1 yearly additional C inputs), this increase rate is lower than the 0.4% increase of SOC stocks 508 
predicted by Century with lower amounts of virtual C inputs (0.66 MgC ha-1 per year). This is pointed out 509 
in Fig. 5, where we can see that predicted additional C inputs to reach the 4‰ are lower than the correlation 510 
line between additional C inputs and SOC stocks increase in field treatments. The overestimation of the C 511 
input effect on SOC stocks in Century might be related to the assumption that SOC stocks are in 512 
equilibrium with C inputs at the onset of the experiment and on the high sensitivity of the model to C 513 
inputs. 514 

4.2. Increasing annual SOC stocks by 4p1000 515 

4.2.1. Modelled carbon inputs to reach the 4p1000 516 

Century simulations estimated that annual C inputs should increase by 43±5% (SE) on average to reach the 517 
4p1000 target on the selected experimental sites, under the condition that the additional C inputs are 518 
equally distributed among the surface and belowground, in order to maintain the same 519 
aboveground:belowground ratio as at the beginning of the experiment. Martin et al. (2021) found similar 520 
values of required additional C inputs to reach a 4p1000 target in France croplands (i.e. 42%, that is 0.88 521 
MgC ha-1 per year). This is higher than the values found by Chenu et al. (2019) using default RothC 26.3 522 
parameters, who estimated a relative increase of C inputs in temperate sandy soils by 24% and in temperate 523 
clayey soils by 29%. Riggers et al. (2021) found that in 2095, a minimum increase of C inputs by 45% will 524 
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be required to maintain SOC stocks of German croplands at the level of 2014. However, they found that to 525 
increase SOC stocks by 4‰ per year, a much higher effort will be required. That is, C inputs in 2095 will 526 
have to increase by 213% relative to current levels.  527 
In our study, not only the quantity of C but also the quality will need to change according to Century 528 
predictions. In fact, the predicted aboveground structural litter change was threefold higher than all other 529 
pools on average, representing an additional 0.18 MgC ha-1 each year. A way for the farmer to increase the 530 
structural fraction of the C inputs is to compost the organic amendments that will be spread on soil surface. 531 
Increasing EOM in large quantities may not be possible everywhere. First of all, the amount of organic 532 
fertilizers is limited at regional scale. If farmers source additional EOMs elsewhere, only those EOMs that 533 
otherwise would be mineralized (e.g. burnt) and not applied to land account as sequestration. Second, 534 
farmers may be prevented from applying high amounts of EOM because of the risk of nitrate and phosphate 535 
pollution (Li et al., 2017; Piovesan et al., 2009). Moreover, producing additional animal manure implies 536 
larger GHG emissions through animal digestion and manure decomposition. Consequently, even if more 537 
manure is returned to the soil, it will not necessarily result in climate change mitigation. 538 

4.2.2. Stability of the additional carbon stored 539 

Another important aspect to take into consideration is the stability of the additional C. In fact, the duration 540 
and persistence of C in the soil might be very different depending on whether or not the proportion of stable 541 
C is important. In the Century model, this translates into questioning whether the fractions of the long 542 
turnover rate pools (the slow and passive SOC pools) have increased. In our simulations, a general pattern 543 
can be detected (Fig. 6) where both passive and slow pools increased, but at very different rates (0.1‰ and 544 
6.1‰ per year respectively). The active pool increased by 5.8‰ annually, with benefits for soil fertility and 545 
hence food security. The additional C is mainly stored in the slow pool (2.7 MgC ha-1 in 30 years of 546 
simulations), meaning that it will be stored in the soil for around 20 to 30 years. The increase in C inputs 547 
must be sustained to increase SOC stocks at the desired rate, until a new equilibrium will be reached. To 548 
further increase SOC stocks after the new equilibrium, new strategies of additional C could be implemented 549 
later on. For instance, this could be achieved through the implementation of complementary management 550 
options to those considered in the long-term experiments described here, such as residue management, 551 
cover crops, conservation agriculture and agroforestry systems (Chenu et al., 2019; Lal, 1997; Smith et al., 552 
1997).  553 

4.2.3. Simulated carbon inputs and experimental carbon addition treatments 554 

Different types of organic C treatments were considered in this study and compared to Century simulations 555 
of C inputs required to reach the 4p1000. In all experimental sites with additional EOM inputs, at least one 556 
treatment employed higher amounts of C inputs compared to the simulated C inputs required for a 4‰ 557 
annual target. In Foggia, C inputs from different crop rotations were studied, but none employed sufficient 558 
amounts of additional C to reach the 4p1000, as predicted by Century. Model results in Foggia had a high 559 
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standard error, mainly due to the fact that the variability of crop yields for this site was not available. Thus, 560 
for this site, we calculated model uncertainty using the average relative variability across the whole dataset, 561 
which could have increased the uncertainty of model outputs. 562 
It is important to note that the amount of C inputs simulated by Century was constrained to have the same 563 
AG:BG ratio as at the beginning of the experiment. This means that the additional C inputs should be 564 
distributed equally on soil surface and belowground, not to change the initial allocation of C in the litter 565 
pools. Since all field treatments were performed under conventional tillage, the comparison between 566 
modelled and observed additional C inputs under this constraint holds well.  567 
The annual SOC stocks variation (0.25%) estimated in the experimental C treatments across the 14 sites, 568 
indicates that Century might be overestimating the effect of additional C inputs on SOC stocks. In 569 
particular, only 18 out of 46 field treatments (with average additional C inputs of 1.93 MgC ha-1 per year) 570 
were found to be actually increasing SOC stocks at a higher rate than 4‰ per year, relatively to their initial 571 
SOC stocks. This is similar to the values found by Poulton et al. (2018), who estimated that adding similar 572 
high amounts of C inputs increased SOC stocks at an annual rate higher than 4‰ in 16 long-term 573 
agricultural experiments. Thus, Century seems to be over-predicting the effect of adding C inputs in the 574 
virtual simulations. The overestimation of the Century model might be due to several factors. First of all, 575 
the C inputs prescribed to model simulations were constant through time, while C inputs from plant 576 
material actually vary annually and over the years because of agronomical and climatic factors. Historical 577 
land use and management practices such as tillage were not taken into account, although they affect SOC 578 
stocks (Pellerin et al. 2017). Another factor that the model is not taking into account is N and other 579 
nutrients availability, which might affect the SOC stocks dynamics. This is especially true for treatments 580 
with different frequencies of application (e.g. Arazuri), where nutrients depletion is likely to be more 581 
evident when the application is sparser. The method used to estimate C inputs (i.e. the allometric functions 582 
from Bolinder et al. (2007) in our case) also influences the simulation of SOC stocks (Clivot et al., 2019). 583 
However, estimating the increase of C inputs relative to their initial value has likely cancelled out 584 
uncertainties related to the C inputs estimation method in our analysis. 585 

4.2.4. Organic carbon inputs use in Europe 586 

Zhang et al. (2017) estimated that the amount of N inputs from livestock manure applied to European 587 
croplands was 3.9 Tg N in 2014, for a cropland area of 127 Mha in 2015 (Goldewijk et al. 2017). Cattle 588 
manure, which represents the highest proportion of manure produced and applied to croplands, has average 589 
C:N ratio ranging between 10 and 30 (multiple sources from Fuchs et al. (2014) and Pellerin et al. (2017)). 590 
With these data, we can roughly estimate the application of C manure from livestock in European 591 
agricultural soils as ranging between 0.30 and 0.92 MgC ha-1 each year. Most of the experiments used in 592 
this study used higher amounts of C input (1.52 MgC ha-1 per year on average). However, the C inputs 593 
requirement predicted by Century, which ranged between 0.24±0.02 and 1.20±1.00 MgC ha-1 per year, 594 
plus one site with 1.45±0.16 MgC ha-1 per year, is in line with the average use of livestock manure in 595 
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Europe. In terms of C sequestration, organic fertilizers coming from animal manure are usually being 596 
applied to the soil at some location, hence they cannot account for additional climate mitigation potential 597 
(Poulton et al., 2018). Rather, they are considered as a business as usual situation that can unlikely be 598 
significantly expanded. However, according to Zhang et al. (2017) estimation, there is room for 599 
improvement since the fraction of livestock manure applied to cropland in the 2010s was approximately 600 
26% of total livestock production in Europe. The estimates from Zhang et al. (2017) refer to livestock 601 
manure only. In our study, we also considered treatments with other types of EOM addition, such as 602 
sewage sludge and household waste. In many countries, a significant proportion of food and urban waste is 603 
currently left on disposal areas, where C is lost to the atmosphere as CO2 or methane (CH4) emissions 604 
(Bijaya et al. 2006). Pellegrini et al. (2016) reported the amounts of sewage sludge disposed on landfill in 605 
Europe (EU26) from Eurostat (2014b). In 2010, this was 0.914 TgDM. Using the Van Bemmelen factor 606 
(1.724) to convert OM to OC (McBratney and Minasny, 2010; Rovira et al., 2015), we estimated that the 607 
sewage sludge disposed on landfill in Europe was around 0.004 MgC ha-1 per year in 2010. If applied to 608 
cropland, this could potentially increase C inputs to the soil and decrease GHG emissions associated to 609 
landfilled waste. However, in some countries social acceptability of spreading EOM such as sewage sludge 610 
is very low, limiting its actual potential. In Europe, landfilled municipal waste was 0.3 MgC ha-1 in 2019 611 
(estimated from Eurostat (2020) considering a C content in household waste of 71% (Larsen et al., 2013)). 612 
This is higher than the amount of municipal waste currently composted in Europe (i.e. 0.22 MgC ha-1 in 613 
2019, according to Eurostat (2020)), showing that additional efforts to improve the reutilization of 614 
municipal waste could help to increase C inputs in agriculture. A contribution to the sequestration of C 615 
from the atmosphere could also come from changing the treatment methods which affect the quality of C in 616 
crop residues and manure, so that their turnover time decreases, e.g. through fermentation or biochar. 617 
However, a full C cycle assessment should be considered to make sure that GHG emissions associated to 618 
such treatments do not exceed additional C storage (Guenet et al., 2020). In general, improving the use 619 
efficiency of EOM to the soil by managing it differently could contribute to some extent to climate change 620 
mitigation, increase soil quality, and reduce mineral fertilizers use (Chadwick et al. 2015). In this study, we 621 
did not include other potentially beneficial management practices, such as cover crops, reduced tillage, 622 
biochar application, improved soil pH, landscape differentiation and mineral amendments. Further research 623 
should investigate if long-term experiments with these management practices would be able to increase 624 
SOC stocks by 4p1000, following Century predictions. 625 

4.2.5. Reaching a 4p1000 target: only a matter of initial SOC stocks? 626 

As we expected, the estimated amount of C inputs to reach the 4p1000 target was linearly correlated to the 627 
initial observed level of SOC stocks (Fig. 7). This result means that site differences in Q10 and 628 
decomposition rates are less influential than initial SOC in determining the optimal input increase to reach 629 
the 4‰ per year target. The linearity between C inputs and initial SOC stocks is primarily due to the linear 630 
structure of the Century model. In fact, if we consider the stationary solution for which Eq. (2) is equal to 0, 631 
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SOC depends linearly on the carbon inputs. Therefore, the opposite is also true (i.e. carbon inputs are 632 
linearly dependent to the initial amount of SOC stocks). Moreover, the 4p1000 target itself is defined as the 633 
increase of SOC by 0.4% per year, relatively to its initial value (Minasny et al., 2017). Hence, it implies a 634 
proportional contribution that depends on the initial SOC stocks. Wiesmeier et al. (2016) also observed a 635 
linear relationship between SOC increase and C inputs. This linear relationship means that soils with high 636 
SOC stocks will have to increase their carbon stocks more in absolute terms to meet this quantitative target. 637 
On the other side, smaller amounts of C will have to be employed in sites with low levels of SOC stocks, to 638 
reach a 4p1000 target. However, increasing C inputs where SOC stocks are low might require substantial 639 
changes in the agricultural systems and such quantity of additional OM might not be available at a large 640 
scale. A counterpoint is also that the largest contribution of C sequestration will come from soils with 641 
medium or high SOC stocks (i.e. higher than 50 MgC ha-1, such as grasslands and forests). In these soils, 642 
the required additional C inputs will have to be higher according to Century, raising concern on a 643 
compensation of CO2 emissions through improved SOC stocks at a global scale. This result depends on the 644 
quality of the simulated carbon inputs (i.e. the predicted metabolic:structural ratio) and does not take into 645 
account any notion of soil saturation.  Before applying this trend to calculate the required C inputs from 646 
current SOC stocks, we should extend the database to cover different pedo-climatic regions and different 647 
ecosystems of the world. Moreover, inaccuracies in simulations outcomes, such as those found in this 648 
study, need to be reduced. As discussed in subsection 4.2.3, a better representation of C inputs dynamics 649 
and management practices could improve the simulation of SOC stocks.  650 
We suggest to consider multi-model analysis for this type of work in the future (Farina et al., 2021), to 651 
acknowledge different representations of SOC and reduce the effect of single models’ uncertainties. 652 
Furthermore, the likely increase of SOC mineralization due to future climate change (Wiesmeier et al., 653 
2016) needs to be taken into account.  654 

4.3. Sensitivity analysis 655 

The predicted need of additional C inputs to reach the 4p1000 target is likely to be higher with future global 656 
warming, as a consequence of modified SOC decomposition rates. Considering the crucial role of soil as a 657 
land-use based option for mitigating climate change, recent studies have shown a growing interest in 658 
temperature sensitivity of SOC stocks decomposition (Dash et al., 2019; Koven et al., 2011; Parihar et al., 659 
2019; Wiesmeier et al., 2016). We know that the decomposition rate of SOM is affected – generally 660 
increased – with increasing temperatures. However, the magnitude of expected feedbacks is still 661 
surrounded by controversy. In particular, this is mainly due to the diversity of organic compounds in the 662 
soil that are known to have inherent sensitivities to temperature (Davidson and Janssens, 2006). In fact, a 663 
diversity of responses of decomposition rates to future climates can be expected, including increases due to 664 
higher temperature as well as decreases due to water limitation. In this context, the study of the Century 665 
model response to predicted scenarios of temperature increase is of primary importance. We mimicked the 666 
most optimistic (+1˚C) and pessimistic (+5˚C) RCPs scenarios of the 5th IPCC assessment report. 667 
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Although these scenarios are calculated over ~100 years, we used these values over a 30 years simulation to 668 
assess the sensitivity of Century to temperature increase. What is striking from our results is that with 669 
increasing temperatures all sites will have to provide considerably higher amounts of C inputs to reach the 670 
4p1000 target (Fig. 9). In particular, the C inputs change needs to more than double in all sites, according to 671 
the worst-case scenario of +5˚C. It is important to point out that the optimization of the Q10 and reference 672 
temperature parameters are likely to influence the outcomes of the simulated SOC stocks and therefore the 673 
C inputs need. Nevertheless, comparing the carbon input change simulated with the optimized version of 674 
Century (Fig. 9) to that simulated with the default parameters setting (Fig. C1), shows that the predicted C 675 
inputs change follows the same pattern, even though the intensity of the increase is considerably higher in 676 
the optimized version. These results can be understood in two ways. Either the optimized version of 677 
Century is overestimating the effect of temperature on SOC stocks decomposition, or SOC stocks 678 
decomposition patterns are likely to increase even more intensively when considering the entire range of 679 
possible Q10 values. In either case, further research is needed to reduce the uncertainty around the impact of 680 
climate change on SOC decomposition. Studies should also examine moisture change, which we did not 681 
take into account here. This is likely to be impacted as a consequence of modified precipitations and 682 
temperature (IPCC, 2015), with consequences on root respiration and microbial decomposition (Davidson 683 
and Janssens, 2006). Additionally, increased temperature and CO2 concentration in the atmosphere, as well 684 
as changes in precipitations are likely to influence net primary production and therefore C inputs to the soil. 685 
All these feedbacks are important and must be taken into account for a comprehensive evaluation of C 686 
cycle effects on climate change. 687 

5 Conclusion 688 

The Century model predicted an average increase of annual C inputs by 43±5% to reach a 4p1000 target 689 
over a range of 14 agricultural sites across Europe, with diverse soil types, climates, crop rotations and 690 
practices. The required simulated amount of additional C inputs was found to be systematically lower or 691 
similar to the 46 treatments of C inputs carried out in these sites. However, Century might have 692 
overestimated the predicted effect of additional C inputs on the SOC stocks variation rate, as the only field 693 
treatments that were found increasing SOC stocks by at least 4‰ annually were those using very high 694 
amounts of C inputs (~1.93 MgC ha-1 per year). The predicted amount of additional C inputs depended 695 
linearly on the initial amount of observed SOC stocks in the control experiments, indicating that lower 696 
amounts of C inputs might be sufficient to reach the 4p1000 target where SOC stocks are low. However, 697 
increasing C inputs might require substantial changes in the agricultural systems and high quantities of 698 
additional organic matter might not be available at a large scale. Furthermore, the required amount of 699 
additional C inputs was found to increase substantially with future scenarios of changes in temperature, 700 
raising concern about the feasibility of a 4p1000 target under climate change and beyond that, the 701 
feasibility of SOC stock preservation. The magnitude of SOC storage potential in agricultural soils depends 702 
largely on site-specific conditions, such as climate, soil type and land use. In this study, we did not take into 703 
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account the whole life cycle of C at the farm. However, compensating CO2 emissions from human 704 
activities through SOC sequestration should also comprehend GHG emissions related to the management of 705 
additional EOM. In this study, we considered only temperate, sub-humid and Mediterranean climates. A 706 
broader evaluation of the required C inputs and associated agricultural practices to increase SOC stocks 707 
should be carried out at larger scales. Causes of biases in model simulations should be addressed in future 708 
studies and the representation of C inputs should be improved. We also suggest that future research should 709 
include multiple models, to reduce the influence of extreme model outcomes on the representation of SOC 710 
stocks. 711 
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Appendix A – Century model description and environmental functions used 730 

The temporal evolution of soil organic carbon is described in the Century model as a first order differential 731 
matrix equation: 732 
0𝑺𝑶𝑪(5)

05
= 𝑰 + 𝐀 ∙ 𝛏𝐓𝐖𝐋𝐂𝐥(t) ∙ 𝐊 ∙ 𝑺𝑶𝑪(t),       (2) 733 
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where 𝑺𝑶𝑪(𝑡) is the vector describing the SOC state variables. The first term on the right side of the 734 
equation represents carbon inputs to the soil coming from plant residues and organic material. Carbon 735 
inputs are allocated into four different litter pools. Hence, 𝑰 is a 1x7 matrix with four nonzero elements. 736 
The second term of the equation represents carbon outputs from the soil, following a first order decay 737 
kinetics. 𝐀 is a 7x7 carbon transfer matrix that quantifies the transfers of carbon among the different pools. 738 
The diagonal entries of 𝐀 are equal to -1, denoting the entire decomposition flux that leaves each carbon 739 
pool. The non-diagonal elements represent the fraction of carbon that is transferred from one pool to 740 
another. K is a 7x7 diagonal matrix with the diagonal elements representing the potential decomposition 741 
rate of each carbon pool. 𝝃𝑻𝑾𝑳𝑪𝑰(𝑡) is the environmental scalar matrix, a 7x7 diagonal matrix with each 742 
diagonal element denoting temperature	(fC(t)), water	(fD(t)) lignin	(fE	F) and clay `fGHIJ	Fa scalars, which 743 
modify the potential decomposition rate. Temperature response function fC(t)	is described by Eq. (4), the 744 
others are expressed as follows. The moisture function fD(t) is a polynomial function ranging from 0.25 745 
and 1 and taking the form of: 746 
fD(t) = −1.1 ∙ 𝑤T + 2.4 ∙ 	𝑤 − 0.29,       (A1) 747 
where 𝑤 is the daily relative humidity coefficient, which varies between 0 and 1 and was calculated from 748 
soil moisture	(𝑚(

[A.,\	𝑚
&(

SQ@?), using the following function from (Krinner et al., 2005):  749 

𝑤 = ∑ ]QO]$(7$8'(	∙	"Q@S._\,&=`$(7$8'(
)%$(7$8'(&=`$(7$8'(.,a._\, , 750 

where 𝑤  is the estimated relative humidity, ranging between 0 and 1; 𝑡𝑒𝑥𝑡𝑢𝑟𝑒  = sand, silt and clay; 751 
𝑐𝑜𝑛𝑐.,a._\,	  is the concentration of the different textures; moisture is soil moisture (𝑚(

[A.,\	𝑚
&(

SQ@?), 752 
𝑊𝑃.,a._\, is the wilting point of the different textures (equivalent to 0.0657,	 	 0.0884,	 0.1496	 for	 sand,	 silt	753 
and	 clay	 respectively)	 and	𝐹𝐶.,a._\,	is	 the	 field	 capacity	 of	 texture	 (equivalent	 to	 0.1218,	 0.1654,	754 
0.2697	for	sand,	silt	and	clay	respectively).	755 
The decomposition rate of structural litter pools is affected by their lignin content: 756 
fE	F = 𝑒&?b]	∙	>,          (A2) 757 
where	𝑙𝑔𝑐 is the coefficient that regulates the lignin effect, while 𝐿 is the lignin structural fraction of the 758 
aboveground and the belowground litter pools.  759 
Finally, the fraction of clay in the soil (𝑔	𝑐𝑙𝑎𝑦	𝑔&'𝑠𝑜𝑖𝑙)  influences the decomposition rate of the active 760 
pool: 761 
fGHIJ	F = 1 − 0.75 ∙ 𝑐𝑙𝑎𝑦.         (A3) 762 

Appendix B – Model evaluation 763 

Two residual-based metrics were used to evaluate the goodness-of-fit of modelled and observed SOC 764 
stocks for each site: the Mean Squared Deviation (MSD) and the Normalized Root Mean Squared 765 
Deviation (NRMSD). The MSD for each site is defined as: 766 

𝑀𝑆𝐷 =	∑ ("+&Q+)2
:
+;*

S
,         (B1) 767 
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where i = 1,…,n is the year of the experiment, 𝑚@ and 𝑜@ are respectively modelled and observed values of 768 
SOC stocks and s is the number of observations in the experiment. Following Gauch et al. (2003), the MSD 769 
can be decomposed into three components: the Squared Bias (SB), the Non-Unity slope (NU) and the Lack 770 
of Correlation (LC). SB is calculated as: 771 
𝑆𝐵 = (𝑚� − �̅�)T,          (B2) 772 
where 𝑚�  and �̅� are the mean values of modelled and observed SOC stocks respectively. 773 
Calling ∆𝑀@ = (𝑚� −𝑚@) and ∆𝑂@ = (�̅� − 𝑜@) we have: 774 

𝑁𝑈 = �1 −	∑ ∆e+∙∆$+
:
+;*
∑ ∆e+
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These three components add up to MSD and help locating the causes of error of model predictions, 777 
determining areas in the model that require further improvement (Bellocchi et al., 2010). In particular, SB 778 
provides information about the mean bias of the simulation from measurements, NU indicates the capacity 779 
of the model to correctly reproduce the magnitude of the fluctuation among the measurements and LC is an 780 
indication of the dispersion of the points over a scatterplot, i.e. the capacity of the model to reproduce the 781 
shape of the data (Kobayashi and Salam, 2000). 782 
The second statistical measure we used was computed as the squared root of the MSD, normalized by the 783 
mean observed SOC stocks: 784 

𝑁𝑅𝑀𝑆𝐷 =	√e#h
Qi

∙ 100.         (B5) 785 

This indicator is expressed as a percentage and allows to evaluate the model performance independently to 786 
the units of SOC stocks. 787 
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Appendix C – Sensitivity analysis with default Century parameters 788 

 789 
Figure C1: Temperature sensitivity analysis of carbon inputs change (%) to reach the 4p1000 objective, using 790 
Century default Q10 and reference temperature parameters. CURR=business as usual simulation, AS1=RCP2.6 791 
scenario of +1˚C temperature increase, AS5=RCP8.5 scenario of +5˚C temperature change. 792 
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 793 

Figure C2: Effect of the optimization of the Q10 and reference temperature (Tref) parameters on the additional 794 
carbon inputs to reach the 4p1000 predicted by Century (mean ± standard deviation). 795 
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