
 1 

Additional carbon inputs to reach a 4 per 1000 objective in 1 

Europe: feasibility and projected impacts of climate change 2 

based on Century simulations of long-term arable 3 

experiments 4 

Elisa Bruni1, Bertrand Guenet1,2, Yuanyuan Huang3, Hugues Clivot4,5, Iñigo Virto6, 5 
Roberta Farina7, Thomas Kätterer8, Philippe Ciais1, Manuel Martin9, Claire Chenu10 6 
1Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université 7 
Paris-Saclay, F-91191 Gif-sur-Yvette, France 8 
2LG-ENS (Laboratoire de géologie) - CNRS UMR 8538 - École normale supérieure, PSL University - IPSL, 9 
75005 Paris France 10 
3CSIRO Oceans and Atmosphere, Aspendale 3195, Australia  11 
4Université de Lorraine, INRAE, LAE, 68000, Colmar, France 12 
5Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, 51097 Reims, France 13 
6Departamento de Ciencias. IS-FOOD, Universidad Pública de Navarra, 31009 Pamplona, Spain 14 
7CREA - Council for Agricultural Research and Economics, Research Centre for Agriculture 15 
and Environment, 00198 Rome, Italy  16 
8Swedish University of Agricultural Sciences, Department of Ecology, Box 7044, 75007 Uppsala, Sweden 17 
9INRA Orléans, InfoSolUnit, Orléans,France 18 
10Ecosys, INRA-AgroParisTech, Université Paris-Saclay, Campus AgroParisTech, 78850 Thiverval-19 
Grignon, France 20 
Correspondence to: Elisa Bruni (elisa.bruni@lsce.ipsl.fr)  21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

https://doi.org/10.5194/bg-2020-489
Preprint. Discussion started: 12 January 2021
c© Author(s) 2021. CC BY 4.0 License.



 2 

Abstract. The 4 per 1000 initiative aims to promote better agricultural practices to maintain and increase soil 30 
organic carbon stocks for soil fertility, food security and climate change adaptation and mitigation. The most 31 
straightforward way to enhance soil organic carbon stocks is to increase carbon inputs to the soil.  32 
In this study, we assessed the amount of organic carbon inputs that are necessary to reach a target of soil 33 
organic carbon stocks increase by 4‰ per year on average, for 30 years. We used the Century model to 34 
simulate soil organic carbon stocks in 14 European long-term agricultural experiments and assessed the 35 
required level of carbon inputs increase to reach the 4 per 1000 target. Initial simulated stocks were computed 36 
analytically assuming steady state. We compared modelled carbon inputs to different treatments of additional 37 
carbon used on the experimental sites (exogenous organic matter addition and one treatment with different 38 
crop rotations). We then analyzed how this would change under future scenarios of temperature increase. 39 
The model was calibrated to fit the control plot, i.e. conventional management without additional carbon 40 
inputs, and was able to reproduce the SOC stocks dynamics.  41 
We found that, on average among the selected experimental sites, annual carbon inputs will have to increase 42 
by 43.15 ±	5.05 %, which is 0.66 ±	0.23 MgC ha-1 per year (mean ± standard error), with respect to the 43 
control situation. The simulated amount of carbon inputs required to reach the 4‰ SOC increase was lower 44 
or similar to the amount of carbon inputs actually used in the majority of the additional carbon input 45 
treatments of the long-term experiments. However, Century might be overestimating the effect of additional 46 
C inputs on the variation of SOC stocks in some sites, since we found that treatments with additional carbon 47 
inputs were increasing by 0.25% on average among the experimental sites. 48 
We showed that the modeled carbon inputs required to reach the target depended linearly on the initial SOC 49 
stocks. We estimated that annual carbon inputs would have to increase further due to temperature increase 50 
effect on decomposition rates, that is 54% for a 1°C warming and 120% for a 5°C warming.  51 

1 Introduction 52 

Increasing organic carbon (C) stocks in agricultural soils is beneficial for soil fertility and crop production 53 
and for climate change adaptation and mitigation. This consideration was at the basis of the 4 per 1000 54 
(4p1000) initiative, proposed by the French Government during the 21st Conference of the Parties (COP21) 55 
on climate change. The 4p1000 initiative aims at promoting agricultural practices that enable the conservation 56 
of organic carbon in the soil (www.4p1000.org). Because soil organic carbon (SOC) stocks are two to three 57 
times higher than those in the atmosphere, even a small increase of the SOC pool can translate into significant 58 
changes in the atmospheric pool (Minasny et al., 2017). To demonstrate the importance of SOC, the initiative 59 
took as an example the fact that increasing global SOC stocks up to 0.4 m depth by 4p1000 (0.4%) per year 60 
of their initial value could offset the net annual CO2 anthropogenic emissions to the atmosphere (Soussana, 61 
2017). While increasing SOC stocks by 4p1000 annually is not a normative target of the initiative, this value 62 
can be taken as a reference to which current situations and alternative strategies are compared (e.g. Pellerin 63 
et al., 2017). 64 
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Strategies of conservation and expansion of existing SOC pools may be necessary but not sufficient to 65 
mitigate climate change (Paustian et al., 2016). In this sense, increasing SOC stocks cannot be regarded as a 66 
dispensation to continue business as usual, but rather as a wedge of negative greenhouse gases (GHG) 67 
emissions (Wollenberg et al., 2016), as well as a strategy for improving most soils’ resilience face to changes 68 
in climate.  69 
The potential to increase SOC stocks is particularly relevant in cropped soils, where the depletion of organic 70 
matter with respect to the original non-cultivated situation has been assessed (Clivot et al., 2019; Goidts and 71 
van Wesemael, 2007; Meersmans et al., 2011; Saffih-Hdadi and Mary, 2008; Sanderman et al., 2017; Zinn 72 
et al., 2005) and where straightforward management practices can be implemented to promote the 73 
conservation or increment of carbon in the soil (Chenu et al., 2019; Guenet et al., 2020; Paustian et al., 2016). 74 
Moreover, increasing the organic carbon content in agricultural soils is known to improve their fertility and 75 
water retention capacity (Lal 2008), indirectly enhancing agricultural productivity, food security and 76 
eventually promoting a virtuous C cycle. 77 
SOC stocks result from a balance between C inputs and C outputs. To increase SOC stocks one can either 78 
increase C inputs to the soil (i.e. adding plant material or organic fertilizers) or reduce C outputs resulting 79 
from mineralization and, in some cases, soil erosion. Increasing SOC stocks can be achieved via agricultural 80 
practices such as retention of crop residues and organic amendments to the soil, cover cropping, diversified 81 
rotations and agroforestry systems (Chenu et al., 2019). However, some of these practices only lead to local 82 
carbon storage at field scale, rather than a net carbon sequestration from the atmosphere at larger scales. For 83 
example, redistributing crop residues or organic fertilizers on a specific agricultural field rather than 84 
spreading them over a larger landscape might induce local carbon storage increase, but does not remove 85 
additional C from the atmosphere. In general, we can refer to carbon sequestration as the process of 86 
transferring CO2 from the atmosphere to the soil (Olson et al., 2014), while carbon storage more broadly 87 
indicates the increase of SOC stocks over time and is not necessarily associated with net removal of GHG 88 
from the atmosphere (Chenu et al., 2019).  89 
Assessing the evolution of SOC stocks over time is important for estimating correctly the potential of SOC 90 
storage in agricultural soils and evaluating management practices in terms of both SOC stocks increase and 91 
sequestration potential. The dynamics of SOC stocks can be either measured in agricultural soils through 92 
long-term experiments (LTEs) and soil monitoring networks or estimated via biogeochemical models 93 
(Campbell and Paustian, 2015; Manzoni and Porporato, 2009). LTEs where SOC stocks and other 94 
parameters, such as C inputs and climatic conditions, have been measured frequently are expensive and must 95 
have been setup and kept on for a long time. For this reason, they are rare and unequally distributed across 96 
the world. Extrapolating field data analysis from one region of the world to another can lead to wrong 97 
estimations of the SOC storage potential in agricultural soils. In fact, distinct pedo-climatic conditions across 98 
the world affect the potential SOC storage rate and capacity at different scales, as they imply different 99 
mineralization kinetics and initial SOC contents (Chenu et al., 2019). Also, systems with low initial SOC 100 
stocks like croplands may have a larger potential to re-store C than systems that have already high SOC 101 
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stocks (e.g. non-degraded grasslands), as noted by Minasny et al. (2017). Combining measurements of SOC 102 
with models provides a wider applicability of the information collected in field trials. SOC model simulations 103 
allow estimating the evolution of SOC stocks and their future trends to assess the potential gain of SOC at 104 
global scale and following changes in agricultural practices. However, validity of models in the studied areas 105 
has to be assessed and models need to be initialized (i.e. the initial size of SOC in the studied areas has to be 106 
determined), often requiring the hypothesis that SOC is at equilibrium at the beginning of the experiment 107 
(Luo et al., 2017; Xia et al., 2012).  108 
Studying the feasibility and applicability of the 4p1000 initiative at site scale, means taking into account site-109 
specific conditions: historical land-use, pedo-climatic context and management practices. All these elements 110 
will determine the additional organic matter inputs required to increase SOC stocks to a 4‰ annual rate. 111 
Minasny et al. (2017) described opportunities and limitations of a 4‰ SOC increase in 20 regions across the 112 
world. However, several authors (Baveye et al., 2018; van Groenigen et al., 2017; VandenBygaart, 2018) 113 
argued that some of the examples described by Minasny et al. (2017) were not representative of wide-scale 114 
agriculture and suggested that a 4‰ rate was not feasible in many practical situations (Poulton et al., 2018)  115 
In this context, a few questions arise: how much should we increase C inputs to the soil to increase SOC 116 
stocks by 4‰ per year? Is this amount attainable with currently implemented soil practices? And how is that 117 
going to evolve in a future driven by climate change? In this study, we tried to answer these questions using 118 
the biogeochemistry SOC model Century. We set the target of SOC stocks increase to 4‰ per year relatively 119 
to the initial stocks, for 30 years of experiment. We simulated the SOC stocks in 14 different agricultural 120 
LTEs around Europe and estimated the amount of additional carbon inputs required to reach the 4p1000 121 
target. Finally, we evaluated the dependency of the required additional carbon inputs relatively to different 122 
scenarios of increased temperature.  123 

2 Materials and methods 124 

2.1. Experimental sites 125 

We compiled data from 14 long-term experiments in arable cropping systems across Europe (Fig. 1), where 126 
a total of 46 treatments increasing the inputs of C into the soil were performed and one control plot was 127 
implemented (Table 1). The experiments lasted between 11 and 53 years (median value of 16 years) in the 128 
period from 1956 to 2018. Most of the experiments had at least 3 replicates, except for the Italian site Foggia, 129 
the French site Champ Noël 3 and the British site Broadbalk, where no replicates were available. We selected 130 
experiments with a duration of at least 10 years, where dry matter (DM) yields and soil organic carbon had 131 
been measured at several dates. C inputs in all sites except from Foggia in Italy included exogenous organic 132 
matter (EOM) addition, e.g. animal manure, household waste, sewage sludge or compost additions. In 133 
Foggia, different rotations without organic matter addition were studied and compared to a wheat-only 134 
treatment, considered as the control plot. The annual C inputs to the soil were substantially higher in the 135 
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rotations compared to the control. More information on crop rotations and carbon inputs for each treatment 136 
can be found in Table 1.  137 
Cropping systems found in the 60 treatments (14 control plots and 46 additional carbon inputs treatments) 138 
were mainly cereal-dominated rotations (wheat, maize, barley and oat). In particular, four were cereal 139 
monocultures (silage maize in Champ Noël 3, Le Rheu 1 and Le Rheu 2 and winter wheat in Broadbalk) and 140 
four sites had rotations of different cereals (winter wheat and silage or grain maize in Crécom 3 PRO, 141 
Feucherolles, La Jaillière 2 PRO and Avrillé). The other experiments rotated cereal crops with legumes 142 
(chickpea, pea) and/or root crops (fodder beet, fodder rape and Swedish turnip), oilseed crops (sunflower and 143 
oilseed rape), cover crops (mustard and rapeseed) and one rotation included tomatoes. Straw residues were 144 
systematically exported except in French sites, where residues were sometimes incorporated into the soil as 145 
accounted for in the carbon input calculations. All LTEs were under conventional tillage, which was 146 
performed with a tractor, except in the case of Ultuna where it was performed manually. All experiments 147 
were rainfed, except for Foggia, where tomatoes were irrigated in summer. The French experiments Champ 148 
Noël 3, Crécom 3 PRO, La Jaillière 2 PRO, Le Rheu 1 and Trévarez received optimal amounts of mineral 149 
fertilizers both in the control plot and in the different organic matter treatments. All other experiments did 150 
not receive any mineral fertilization. All control plots, a part from Arazuri, had decreasing SOC stock trends 151 
(SOC approximated with a linear regression: 𝑆𝑂𝐶	 = 	𝑚 ∙ 𝑡 + 𝑆𝑂𝐶! , with average relative change: "

#$%!
∙152 

100	= -0.76 %, R2 = 0.58). Over the 46 treatments of additional carbon input, 19 exhibited increasing SOC 153 
stocks at a higher ratio than 4‰ per year on average over the experiment length (Table 1). 13 treatments had 154 
increasing SOC stocks, but at a lower ratio than 4p1000. The other 14 treatments with additional carbon 155 
inputs had decreasing SOC stocks (MgC ha-1). However, the decreasing trend was, in these cases, lower than 156 
the decreasing trend in the respective control plot, on the majority of the treatments.  157 

Table 1: Summary of the agricultural experiments included in the study: crop rotations grown at site, amount of 158 
carbon inputs (MgC  ha-1 per year) estimated from crop yields as in (Bolinder et al., 2007), type of treatments, 159 
amount of additional organic carbon for each treatment (MgC ha-1 per year) and mean annual SOC stocks 160 
variation (%). 161 

Site ID Treatment Rotations* Carbon inputs 

from crop 

rotations 

Treatment 

type 

Additional 

carbon inputs 

SOC	

annual	

variation	

      MgC/ha/year   MgC/ha/year %	

Champ Noël 3 Min** sM 1.29 Reference+N

** 

0 -0.92	

(CHNO3) LP Silage maize 1.49 Pig manure 0.79 -0.89	

Colmar T0 wW/Mg/sB/S 2.79 Reference 0 -0.78	

(COL) BIO1 wW/Mg/sB/S 3.93 Biowaste 1.01 0.15	
 

BOUE1 wW/Mg/sB/S 3.96 Sewage 

sludge 

0.49 -0.61	

 
CFB1 wW/Mg/sB/S 4.04 Cow manure 1.07 -0.01	
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DVB1 wW/Mg/sB/S 4.00 Green 

manure+Sewa

ge sludge 

1.08 0.18	

  FB1 wW/Mg/sB/S 3.93 Cow manure 1.36 -0.01	

Crécom 3 

PRO 

Min wW/sM 1.84 Reference+N 0 -0.06	

(CREC3) FB2 wW/sM 1.92 Cow manure 1.82 0.49	

  FV wW/sM 1.96 Poultry 

manure 

0.47 -1.46	

Feucherolles T0 wW/ Mg  2.22 Reference 0 -0.66	

(FEU) BIO1 wW/Mg 3.44 Biowaste 2.21 3.60	
 

DVB1 wW/Mg 3.45 Green 

manure+Sewa

ge sludge 

2.45 3.69	

 
FB1 wW/Mg 3.55 Cow manure 2.28 1.36	

  OMR1 wW/Mg 3.45 Household 

waste 

2.11 1.72	

Jeu-les-Bois M0 wB/R/wW 2.99 Reference 0 -1.33	

(JEU) CFB1 wB/R/wW 2.89 Cow manure 1.1 1.61	
 

CFB2 wB/R/wW 3.06 Poultry 

manure 

1.94 1.52	

  FB2 wB/R/wW 3.11 Cow manure 2.43 0.99	

La Jaillière 2 

PRO 

Min sM/wW 1.59 Reference+N 0 -1.43	

(LAJA2) CFB sM/wW 1.25 Cow manure 1.14 -0.88	
 

CFP sM/wW 1.21 Pig manure 1 -1.09	
 

CFV sM/wW 1.31 Poultry 

manure 

0.94 -1.60	

 
FB sM/wW 1.29 Cow manure 1.44 -0.64	

 
FP sM/wW 1.27 Pig manure 1.07 -1.03	

  FV sM/wW 1.40 Poultry 

manure 

0.93 -1.59	

Le Rheu 1 Min sM 1.31 Reference+N 0 -1.51	

(RHEU1) CFB1 sM 1.31 Cow manure 1.06 -1.21	

Le Rheu 2 T0 sM 1.03 Reference 0 -1.72	

(RHEU2) CFP1 sM 1.20 Pig manure 0.78 -1.28	

  FP sM 1.30 Pig manure 1.62 -0.74	

Arazuri DO_N0 B/P/W/Sf/O 0.98 Reference 0 1.00	

(ARAZ) D1_F1 B/P/W/Sf/O 1.40 Sewage sludge 2.82 0.40	
 

D1_F2 B/P/W/Sf/O 1.41 Sewage sludge 1.4 1.22	
 

D1_F3 B/P/W/Sf/O 1.44 Sewage sludge 0.78 1.22	
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D2_F1 B/P/W/Sf/O 1.30 Sewage sludge 5.64 0.22	

 
D2_F2 B/P/W/Sf/O 1.40 Sewage sludge 2.8 2.32	

  D2_F3 B/P/W/Sf/O 1.49 Sewage sludge 1.56 0.93	

Ultuna P0_B O/sT/Mu/sB/FB/OsR/W/F

R/M 

1.03 Reference 0 -0.52	

(ULTU) S_F O/sT/Mu/sB/FB/OsR/W/F

R/M 

1.10 Straw 1.77 -0.09	

 
GM_H O/sT/Mu/sB/FB/OsR/W/F

R/M 

1.82 Green manure 1.76 0.11	

 
PEAT_I O/sT/Mu/sB/FB/OsR/W/F

R/M 

1.14 Peat 1.97 2.17	

 
FYM_J O/sT/Mu/sB/FB/OsR/W/F

R/M 

1.76 Farmyard 

Manure 

1.91 0.69	

 
SD_L O/sT/Mu/sB/FB/OsR/W/F

R/M 

0.82 Sawdust 1.84 0.56	

  SS_O O/sT/Mu/sB/FB/OsR/W/F

R/M 

2.59 Sewage sludge 1.84 1.36	

Broadbalk 3_Nill wW 0.36 Reference 0 -0.09	

(BROAD) 19_Cast wW 0.65 Castor meal 0.43 0.42	

  22_FYM wW 2.07 Farmyard 

Manure 

3 0.38	

Foggia T0 W 1.56 Reference 0 -0.86	
 

Dw-Dw-Fall W/W/F 2.13 Rotation 0.57 0.01	
 

Dw-Fall W/F 1.95 Rotation 0.39 -0.33	
 

Dw-Oa-Fall W/O/F 2.20 Rotation 0.64 -0.33	
 

Dw-Dw-Cp W/W/C 2.53 Rotation 0.97 -0.15	

  Dw-Dw-To W/W/T 2.57 Rotation 1.01 -0.59	

Trévarez Min RG/Mg/wW/sM 1.94 Reference+N 0 -0.66	

(TREV) FB RG/Mg/wW/sM 2.04 Cow manure 1.52 -0.39	

  FP RG/Mg/wW/sM 2.02 Pig manure 1.18 -0.18	

Avrillé T12TR wW/sM 2.25 Reference 0 -1.18	

(AVRI) T2TR wW/sM 2.36 Cow manure 1.68 -0.76	

*Crops: sM = silage Maize, Mg= Maize grain, wW = winter Wheat, W = Wheat, 

sB = spring Barley, wB = winter Barley, B = barley, S = sugarbeet, 

   

R = Rapeseed, Sf = Sunflower, O = Oats, P = Pea, sT = Swedish Turlip, Mu = 

Mustard, DF = Fodder Beet, OsR = Oilseed Rape, FR = fodder Rape, 

   

F = green Fallow, C = Chickpeas, T = Tomato, RG = Ray Grass 
	   

**Optimal amounts of mineral fertilizers added to the control 

plot and to all other treatments in the experiment 
  		     

 162 

https://doi.org/10.5194/bg-2020-489
Preprint. Discussion started: 12 January 2021
c© Author(s) 2021. CC BY 4.0 License.



 8 

 163 
Figure 1: Location of the 60 field trials distributed among the 14 cropland experiments around Europe. 164 

2.1.1. Climate forcing 165 

Mean temperature of the sites ranged from a minimum of 5.7 ˚C to a maximum of 15.5 ˚C, while mean soil 166 
humidity to approximately 20 cm depth was 21.9 kgH2O m-2soil for the whole dataset (Table 2). When available, 167 
observed daily air temperature was used as an approximation of soil temperature. Otherwise, land-168 
atmosphere model ORCHIDEE was used to simulate soil surface temperature and soil humidity at site-scale 169 
(Krinner et al., 2005). ORCHIDEE simulations were run over each site using a 3-hourly global climate dataset 170 
at 0.5˚ (GSWP3 http://hydro.iis.u-tokyo.ac.jp/GSWP3/). Plant cover was set to C3 plant functional type 171 
(PFT) for agriculture. 172 

Table 2: Mean annual values of temperature (C˚) and soil humidity to approximately 20 cm depth (kgH2O m-2) 173 
simulated with ORCHIDEE model over each experimental site. Measured pH, bulk density (g cm-3), clay (%) and 174 
initial SOC stocks in the control plots (MgC ha-1) on the agricultural fields. Reference papers for each site are 175 
indicated. 1For Arazuri, data were directly provided by the Spanish Mancomunidad de la Comarca de Pamplona. 176 

Sites 
Reference 

paper 
Coordinates Years 

Mean 

annual 

Temperature 

Mean annual 

soil humidity 
pH 

Bulk 

density 
Clay 

Initial 

SOC 

stocks 

    ˚C kg H2O m2  
g 

cm-3 
% MgC ha-1 

Champ Noël 

3 

(Clivot et 

al., 2019) 

48.09˚ N, 

1.78 ˚  W 
1990 - 2008 12.1 21.6 6.3 1.35 15.1 40.57 

Colmar 
(Clivot et 

al., 2019) 

48.11 ˚  N, 

7.38 ˚  E 
2000 - 2013 9.6 24.6 8.33 1.3 23.1 54.33 
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Crécom 3 

PRO 

(Clivot et 

al., 2019) 

48.32 ˚  N, 

3.16 ˚  W 
1986 - 2008 11.8 22.9 6.15 1.36 14.6 62 

Feucherolles 
(Clivot et 

al., 2019) 

48.88˚ N, 

1.96˚ E 
1998 - 2013 11.9 21.2 6.73 1.32 15.6 39.78 

Jeu-les-Bois 
(Clivot et 

al., 2019) 

46.68˚ N, 

1.79˚ E 
1998 - 2008 12.2 22.1 6.27 1.52 10 48.53 

La Jaillière 2 

PRO 

(Clivot et 

al., 2019) 

47.44˚ N, 

0.98˚ W 
1995 - 2009 12.7 20.5 6.8 1.37 20.8 32.42 

Le Rheu 1 
(Clivot et 

al., 2019) 

48.09˚ N, 

1.78˚ W 
1994 - 2009 12.2 21.8 5.85 1.27 16.4 36.23 

Le Rheu 2 
(Clivot et 

al., 2019) 

48.09 N, 

1.78 W 
1994 - 2009 12.2 21.8 6.05 1.28 13.9 36.53 

Arazuri1 - 
42.81˚ N, 

1.72˚ W 
1993 - 2018 12.7 20.4 8.6 1.67 27.9 55.39 

Ultuna 

(Kätterer 

et al., 

2011) 

59.82˚ N, 

17.65˚ E 
1956 - 2008 5.7 22.6 6.23 1.4 36.5 41.72 

Broadbalk 

(Powlson 

et al. 

2012) 

51.81˚ N, 

0.37˚ W 
1968 - 2015 10.2 21.5 7.8 1.25 25 24.84 

Foggia 
(Farina et 

al., 2017) 

41.49˚ N, 

15.48˚ E 
1992 - 2008 15.5 22.4 8.1 1.32 41 63.22 

Trévarez 
(Clivot et 

al., 2019) 

48.15˚ N, 

3.76˚ W 
1986 - 2008 11.8 23.4 6.01 1.48 19.2 115.33 

Avrillé 
(Clivot et 

al., 2019) 

47.50˚ N, 

0.60˚ W 
1983 - 1991 12.0 20.2 6.59 1.4 17.6 54.46 

2.1.2. Soil characteristics 177 

The sampling depth of the experiments varied between 20 and 30 cm. SOC stocks were measured in 3 – 4 178 
replicates, apart from Foggia and Champ Noël 3 experiments, were no replicates were available. In 179 
Broadbalk experiment, SOC was measured in each plot using a semi-cylindrical auger where 10-20 cores 180 
were taken from across the plot and bulked together (more details can be found on the e-RA website1). The 181 
clay content ranged from 10% (Jeu-les-Bois) to 41% (Foggia). Soil pH varied from a minimum of 5.85 in Le 182 
Rheu 1 to a maximum of 8.33 in Colmar. The average bulk density (BD) in the control plots was 1.38 g cm-183 
3. SOC stocks (MgC ha-1) were calculated at each site using the following equation: 184 

𝑆𝑂𝐶	(𝑀𝑔𝐶	ℎ𝑎&') = SOC(%) ∙ 𝐵𝐷(𝑔	𝑐𝑚&() ∙ 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔	𝑑𝑒𝑝𝑡ℎ	(𝑐𝑚),    (1) 185 

where SOC (%) is the concentration of organic carbon in the soil, BD is the average bulk density of the 186 
experimental plot. It should be noted that the application of EOMs might induce differences in bulk density 187 
with time, which in turn affects the calculations of SOC stocks. No adjustment was made in this sense, since 188 

 
1 www.era.rothamsted.ac.uk 
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data on the evolution of BD was available only for a few sites. This might explain differences between the 189 
SOC stocks calculated for Broadbalk in this paper and those found by Powlson et al. (2012) in the same site, 190 
by adjusting soil weights to observed decreases in top soil BD due to accumulating farmyard manure (FYM). 191 
Initial SOC stocks values in the control plot and mean climate variables for each site are reported in Table 2. 192 

2.2. Century model 193 

2.2.1. Model description 194 

Soil carbon dynamics in a soil organic matter model with first-order kinetics can be mathematically described 195 
by the following first-order differential matrix equation: 196 

	)𝑺𝑶𝑪(.)
).

= 𝑰 + 𝐀 ∙ 𝛏𝐓𝐖𝐋𝐂𝐥(t) ∙ 𝐊 ∙ 𝑺𝑶𝑪(t),       (2) 197 

where 𝑰 is the vector of the external carbon inputs to the soil system, with four nonzero elements (Fig. 2). 198 
The second term 𝐀 ∙ 𝛏𝐓𝐖𝐋𝐂𝐥(t) ∙ 𝐊 ∙ 𝑺𝑶𝑪(t)of the equation represents organic matter decomposition rates 199 
(diagonal matrix K), losses through respiration (𝛏𝐓𝐖𝐋𝐂𝐥(t)) and transfers of C among different SOC pools 200 
(𝐀) (see Appendix A). We used the daily time-step version of the soil organic matter (SOM) model Century 201 
(Parton et al., 1988) to simulate the amount of carbon inputs required to reach a 4‰ annual increase of soil 202 
organic carbon storage over 30 years. The Century model has been successfully applied to long-term 203 
experiments and has been validated for different ecosystem types (Bortolon et al., 2011; Cong et al., 2014; 204 
Parton et al., 1993). The original version of Century simulates the fluxes of SOC depending on soil relative 205 
humidity, temperature and texture (as a percentage of clay). As shown in Fig. 2, the model is discretized into 206 
7 compartments that exchange carbon with each other: 4 pools of litter (aboveground metabolic, belowground 207 
metabolic, aboveground structural and belowground structural) and 3 pools of soil organic carbon (active, 208 
slow and passive). The litter carbon is partially released to the atmosphere as respired CO2 and partially 209 
converted to soil organic matter in the active, slow and passive pools (see Table S1 in the supporting 210 
information for default Century parameters). The decomposition rate of C in the ith pool depends on climatic 211 
conditions, litter and soil characteristics and is calculated using environmental response functions, as follows: 212 
𝜉567%8(𝑡)9 ∙ 𝐾9 = 𝑘9 ∙ 𝑓5(𝑡) ∙ 𝑓6(𝑡) ∙ 𝑓7	9 ∙ 𝑓%8;<	9,       (3) 213 
where 𝑖 = 1,… ,7 is one of the aboveground (AG) and belowground (BG) metabolic and structural litter 214 
pools, and the active, slow and passive SOC pools; 𝐾9 is the (𝐾)99 element of the diagonal matrix K in Eq. 215 
(2); 𝑘9 is the specific mineralization rate of pool 𝑖, f=(t) is a function of daily soil temperature, f>(t) is a 216 
function used as a proxy to describe the effects of soil moisture, f?	@ is a reduction rate parameter acting on 217 
the AG and BG structural pools only, depending on the lignin concentration in the litter and fABCD	@  is a 218 
reduction rate function of clay on SOC mineralization in the active pool. The temperature function f=(t) 219 
describes the exponential dependence of soil decomposition on surface temperature, through the Q10 220 
relationship that was first presented by M. J. H. van’t Hoff in 1884: 221 

f=(t) = 𝑄'!
(#($)&#'())

*! ,         (4) 222 
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where Q10 is the temperature coefficient, usually set to 2 and Tref is the reference temperature of 30 ˚C. The 223 
Q10 factor is a measure of the soil respiration change rate as a consequence of increasing temperature by 10˚. 224 
The other environmental response functions are described in Appendix A. 225 

 226 

Figure 2: Representation of litter and soil organic carbon (SOC) pools in Century. The model takes as inputs litter 227 
carbon from plants (aboveground metabolic (I1), belowground metabolic (I2), aboveground structural (I3) and 228 
belowground structural (I4)). A certain fraction of carbon can be transferred from one pool to another and each 229 
time a transfer occurs, part of this carbon is respired and leaves the system to the atmosphere as CO2. The SOC 230 
active pool receives carbon from each litter pool, while only the structural material is transferred to the SOC slow 231 
pool. Litter material never goes directly to the SOC passive pool while the three SOC pools exchange C within 232 
each other. 233 

2.2.2. Model initialization 234 

The initialization of the model consists in specifying the initial sizes of the SOC pools. Here, we assumed 235 
initial pools are in equilibrium with carbon inputs before the experiments, in absence of knowledge about 236 
past land use and climate making initial pools different from steady state (Sanderman et al., 2017). Then, 237 
initialization can be done either by running the model iteratively for thousands of years to approximate the 238 
steady state solution (numerical spin-up), or semi-analytically by solving the set of differential equations that 239 
describe the carbon transfers within model compartments (Xia et al., 2012). We solved the matrix equation 240 
by inverse calculations for determining pools sizes at steady state, as in Xia et al. (2012) and Huang et al. 241 
(2018). These authors demonstrated that the matrix inversion approach exactly reproduces the steady state 242 
and SOC dynamics of the model. By enhancing the computational performance of the simulations, this 243 
technique enables the analysis of system properties and facilitates studying model behavior. It allowed us to 244 
perform the optimization of model parameters, the sensitivity analysis of SOC to climatic variables and the 245 
quantification of model outputs uncertainties through Monte-Carlo (MC) iterative procedures. We solved the 246 
matrix equation by using its semi-analytical solution and the following algorithm: 1) calculating annual 247 
averages of matrix items obtained by Century simulations, driven by 30 years of climatic forcing; 2) setting 248 
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Eq. (2) to zero to solve the state vector SOC. For each agricultural site, the 30 years of climate forcing were 249 
set as the 30 years preceding the beginning of the experiment, and the litter input estimated from observed 250 
vegetation was set to be the average litter input in the control plot over the experiment duration. 251 

2.2.3. Carbon inputs 252 

The allocation of C in the different litter pools was estimated with the approach firstly described by Bolinder 253 
et al. (2007) for Canadian experiments and then adapted by Clivot et al. (2019) to the same French sites we 254 
use in this study. This methodology allows splitting C inputs from crop residues after harvest into 255 
aboveground and belowground C inputs, using measured dry matter yields and estimations of the shoot-to-256 
root ratio (S:R) and harvest indexes (HI) of the crops (see Fig. 3). The aboveground plant material is estimated 257 
as the harvested part of the plant (CP), which is exported from the soil, plus the straw and stubble that are left 258 
in the soil after harvest (CS). The harvested part consists of the measurements of dry matter yields (YP), while 259 
the straw and stubble are estimated using the HI coefficient of the different crops in the rotation (Bolinder et 260 
al., 2007). We assumed that the values used in Clivot et al. (2019) for the HI compiled from French 261 
experimental sites were applicable to all the sites in our dataset, which mainly include temperate sites over 262 
Europe. When these values were not available for some crops, they have been directly derived from Bolinder 263 
et al. (2007) or other sources in the literature (S:R ratio for fallow from Mekonnen, Buresh, and Jama (1997) 264 
and tomato from Lovelli et al. (2012)). When straw was exported from the field, we considered that only a 265 
fraction of CS was left on the soil. This fraction was set to 0.4 for all sites and to 0.2 in Ultuna, where almost 266 
no stubble was left on the soil, since plots were harvested by hand and crops were cut at the soil surface. We 267 
considered a carbon content of 0.44 gC gDM-1 in the aboveground plant material (Redin et al., 2014) and 0.4 268 
gC gDM-1 in the belowground part material (Bolinder et al., 2007). We used the asymptotic equation of Gale 269 
and Grigal (1987) to determine the cumulative BG input fraction from the soil surface to a considered depth: 270 

𝐵𝐺E	FGHIJ = 1 − 	𝛽FGHIJ,         (5) 271 

where 𝛽 is a crop-specific parameter determined using the root distributions for temperate agricultural crops, 272 
reported in Fan et al. (2016) and Clivot et al. (2019). The depth was set to 30 cm, since it was the depth at 273 
which soil samples were taken in the majority of the sites. For more details on the carbon inputs allocation 274 
method and the allometric functions involved, see Bolinder et al. (2007) and Clivot et al. (2019).  275 
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 276 
Figure 3: Adapted from (Bolinder et al., 2007). Representation of the distribution of carbon in the different parts 277 
of the plant: CP represents the carbon in the harvested product (grain, forage, tuber); CS is the carbon in the 278 
aboveground residues (straw, stover, chaff); CR is the carbon present in roots and CE represents all the extra-root 279 
carbon (including all root-derived materials not usually recovered in the root fraction). 280 

2.2.4. Model calibration: optimization of the metabolic:structural fractions of the litter 281 
inputs 282 

In the Century model, AG and BG carbon inputs need to be further separated into metabolic and structural 283 
fractions, according to the lignin to nitrogen (L:N) ratio. Because the L:N ratio was not available for all the 284 
crops in the database, we fitted model simulations to observed SOC dynamics for the control plot of each 285 
site, i.e. the reference plot without additional carbon inputs, in order to get the metabolic:structural (M:S) 286 
fraction of the AG and BG carbon inputs. We used the sequential least-squares quadratic programming 287 
function in Python (SciPy v1.5.1, scipy.optimize package with method=‘SLSQP’), a nonlinear constrained, 288 
gradient-based optimization algorithm (Fu et al., 2019). We successfully performed the optimization on 13 289 
sites, where at least three measures of SOC stocks were available. For Jeu-les-Bois, which includes two SOC 290 
measurements only, we decided to use the same optimized values as for Feucherolles, which has similar 291 
pedoclimatic conditions and crop rotations. The optimization consisted in minimizing the following function: 292 

𝐽K9I = ∑
L#$%+

,-.(/&#$%+
-01M

2

N2+
345-01

O
9P' ,        (6) 293 

where i=1,…,n is the year of the experiment, 𝑆𝑂𝐶9"QFG8 	(MgC ha-1) is the SOC simulated with Century for 294 

year i, 𝑆𝑂𝐶9QRS	(MgC ha-1) is the observed SOC for year i in the control plot and 𝜎T9
#$%-01 is the variance of 295 

the 𝑆𝑂𝐶9QRS  estimated from the different replicates. When replicates were not available, we recalculated 296 

𝜎T#$%-01 as the variance amongst 𝑆𝑂𝐶QRS samples of the whole experiment. The optimized M:S values are 297 
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reported in Table 3  and represent the average quality of litter carbon in the rotating crops along the duration 298 
of the experiments that match control SOC data at each site. 299 

Table 3: Optimized values of the aboveground metabolic (AM), aboveground structural (AS), belowground 300 
metabolic (BM) and belowground structural (BS) fractions of the litter inputs and the Q10 and reference 301 
temperature (˚C) parameters. 302 

Site AM AS BM BS Q10 Reference temperature 

      
˚C 

CHNO3 0.85 0.15 0.26 0.74 5.0 21.2 

COL 0.85 0.15 0.57 0.43 2.0 30.0 

CREC3 0.15 0.85 0.29 0.71 2.0 30.0 

FEU 0.85 0.15 0.52 0.48 5.0 21.6 

JEU* 0.85 0.15 0.52 0.48 5.0 21.6 

LAJA2 0.85 0.15 0.72 0.28 5.0 21.5 

RHEU1 0.85 0.15 0.49 0.51 5.0 21.3 

RHEU2 0.85 0.15 0.32 0.68 5.0 21.3 

ARAZ 0.53 0.47 0.53 0.47 3.0 30.0 

ULTU 0.85 0.15 0.85 0.15 2.2 30.0 

BROAD 0.42 0.58 0.15 0.85 2.9 30.0 

FOGGIA 0.15 0.85 0.15 0.85 5.0 27.1 

TREV1 0.15 0.85 0.15 0.85 5.0 23.0 

AVRI 0.85 0.15 0.76 0.24 2.0 30.0 

2.2.5. Model calibration: optimization of temperature dependency parameters 303 

We optimized the Q10 and daily soil reference temperature parameters, which affect SOC decomposition. 304 
The Q10 factor is fixed to 2 in Century. However, many authors have shown that Q10 measurements vary with 305 
pedoclimatic conditions and vegetation activity (Craine et al., 2010; Lefèvre et al., 2014; Meyer et al., 2018; 306 
Wang et al., 2010). For this reason and to correctly reproduce interregional variations among the sites in the 307 
dataset, we decided to optimize both the Q10 and reference temperature parameters to better fit the SOC 308 
dynamics (MgC ha-1) of each agricultural site at control plot. We decided to bind the Q10 between 1 and 5, 309 
following the variation of Q10 found by Wang et al. (2010) over 384 samples collected in the Northern 310 
Hemisphere. The reference temperature ranged between 10 and 30˚C. We used the SLSQP optimization 311 
algorithm and the cost function of Eq. (6) to perform the optimization, which was successful in 13 sites and 312 
we assigned the values obtained from the optimization of Feucherolles to Jeu-les-Bois, where SOC 313 
measurements were too sparse to perform a two-dimensional optimization. Optimized values of Q10 and 314 
reference temperature are reported in Table 3 . 315 
Model performance in the control plot was evaluated using two residual-based metrics. The first one is the 316 
Mean Squared Deviation (MSD), decomposed into its three components to help locating the source of error 317 
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of model simulations: the Squared Bias (SB), the Non-Unity slope (NU) and the Lack of Correlation (LC). 318 
The second metrics used is the Normalized Root Mean Squared Deviation (NRMSD) (see Appendix B). 319 

2.3. 4p1000 analysis 320 

2.3.1. Optimization of C inputs to reach the 4p1000 target 321 

After the spin-up to steady state, the model was set to calculate the SOC stocks dynamics of the control plot 322 
and the carbon inputs for virtual treatments, assuming an average increase of SOC stocks by 4‰ per year 323 
over 30 years. 30 years is considered as a period of time over which the variation of SOC can be detected 324 
correctly. During this period length, we supposed the soil was fed with constant amounts of carbon inputs 325 
from plant material. For the control, we derived carbon inputs from measurements of DM yields and 326 
calculated the annual mean over the whole experiment length. For the virtual treatments, we used an 327 
optimization algorithm to calculate the required amount of carbon inputs to reach a linear increase of SOC 328 
storage by 4‰ per year above the SOC stock at the start of the simulation. Mathematically, we minimized 329 
the following function: 330 

𝐽UH'!!! =X	𝑆𝑂𝐶! ∙ (1 + 0.004 ∙ 30) − 𝑆𝑂𝐶(!"QFG8(𝑰)X,     (7) 331 

where 𝑰 is the 1x4 vector of C inputs to minimize over, 𝑆𝑂𝐶! is the initial soil organic carbon stock and 332 
𝑆𝑂𝐶(!"QFG8(𝑰)	is the soil organic carbon stock after 30 years of simulation. During the optimization, the 333 
metabolic:structural fractions were allowed to vary to estimate the quality of the optimal carbon inputs. 334 
Instead, we kept the aboveground:belowground ratio of the C inputs fixed to its initial value, to bind the 335 
model in order to represent agronomically plausible C inputs. In fact, if not bound, the model tends to increase 336 
the belowground C fraction to unrealistic values (assuming the same crop rotations persisted on site). On the 337 
other hand, keeping the aboveground:belowground ratio fixed implies that the simulated additional C inputs 338 
will be spread equally on surface and belowground. As for the previous optimizations, we used the Python 339 
function SLSQP to solve the minimization problem. The outcome of the optimization is a 4x1 vector (𝑰QHI) 340 
representing the amount of carbon in the four litter input pools that matches the 4p1000 rate target. 341 

2.3.2. Uncertainties quantification 342 

Uncertainties of model outcomes were quantified using a Monte-Carlo approach. We initially calculated the 343 
standard error (SE) of the mean C inputs derived from yield measurements for each experimental site: 344 

𝑆𝐸 =	]N26
S

,          (8) 345 

where 𝜎TV  is the variance of the estimated C input from yield measurements and s is the size of the 346 
experiment. If not available, we calculated 𝜎TV as the average relative variance of C inputs among the control 347 
plots. We therefore randomly generated N vectors of C inputs (𝑰) around the calculated standard error and 348 
performed the 4p1000 optimization N times, each time using one of the generated vectors I as a prior for the 349 
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optimization.  To correctly assess the uncertainty over the required carbon inputs we set N to 50 (Anderson, 350 
1976). The standard error of model outputs was calculated with Eq. (8), where the variance was set as the 351 
variance of the modelled carbon outputs and the experiment size (s) to 50. 352 

2.3.3. Sensitivity analysis to temperature 353 

We considered two representative concentration pathways (RCPs) of global average surface temperature 354 
change projections (IPCC, 2015). The first scenario (RCP2.6) is the one that contemplates stringent 355 
mitigation policies and predicts that average global land temperature will increase by 1˚C during the period 356 
2081-2100, compared to the mean temperature of 1986-2005. The second scenario (RCP8.5) estimates an 357 
average temperature increase of +4.8˚C, compared to the same period of time. We ran two simulations of 358 
increasing temperature scenarios with Century. We considered the same initial conditions as the standard 359 
simulations, hence running the spin-up with the average soil temperature and relative humidity of the 30 360 
years preceding the experiments. Then, we increased daily temperature by 1˚C (AS1) and 5˚C (AS5) for the 361 
entire simulation length, to assess the variation of the required carbon inputs to reach the 4p1000 target, 362 
mimicking RCP2.6 and RCP8.5 scenarios respectively. 363 

3 Results 364 

3.1.  Fit of calibrated model to control SOC values  365 

Modelled and measured SOC stocks in the control plot were compared to evaluate the capability of the 366 
calibrated version of Century to reproduce the dynamics of carbon stocks in the selected sites. As shown in 367 
Fig. 4.b, the normalized root mean square error of the control plot SOC stocks is lower than 15% for all the 368 
treatments, indicating that overall model simulations fitted quite well the observed SOC stocks (observed 369 
SOC stocks variance was 16.3% on average in the control plots). Fig 4.a, provides the values of the three 370 
components of the MSD indicator for each site. It can be noticed that the LC and NU components are the 371 
highest contributors to MSD. This means that the major sources of error are the representation of the data 372 
shape and magnitude of fluctuation among the measurements. The highest NRMSD can be found in Le Rheu 373 
1 and Le Rheu 2 (around 12% and 14% respectively). In these sites the model seems to better capture the 374 
shape of the data (low LC compared to the other sites), but it misses the representation of mean C stock (high 375 
SB) and data scattering (high NU) of the experimental profiles.  376 
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 377 
Figure 4: a) Decomposed mean squared deviation (MgC ha-1)2 in control plots for all sites. LC = Lack of 378 
Correlation, NU = Non-Unity slope and SB = Squared Bias. b) Normalized root squared deviation (%) in control 379 
plots for all sites. 380 

3.2. Estimates of additional carbon inputs and SOC changes 381 

3.2.1. Virtual C inputs to reach the 4p1000 382 

Figure 5 represents the average percentage change of carbon inputs optimized to reach the 4‰ annual 383 
increase of SOC stocks, among the whole sites. The increase of carbon inputs is given for each litter pool. 384 
On average, a 43.15 ±	5.05 % (mean ±	SE across sites) increase of total annual carbon inputs compared to 385 
the current situation in the control plot, is required to meet the 4p1000 target. In terms of absolute values, 386 
this represents an additional 0.66 ±	0.23 MgC ha-1 inputs per year, i.e. 2.35 ±	0.21 MgC ha-1 total inputs per 387 
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year (equivalent approximately to 4.05 ±	0.36 MgDM ha-1 per year). What stands out in the graph, is that 388 
globally the aboveground structural litter pool should be more than doubled, while the other pools need only 389 
to increase by about half of their initial value. In terms of absolute values, the structural aboveground biomass 390 
(which was initially 0.29 MgC ha-1 per year on average in the control treatments) would need an additional 391 
0.18 MgC ha-1 per year to reach the 4p1000; the metabolic aboveground (initially 0.70 MgC ha-1 per year on 392 
average) needs an additional 0.14 MgC ha-1 per year; structural and metabolic belowground biomass (initially 393 
0.65 and 0.52 MgC ha-1 per year) require an additional C input corresponding to 0.21 and 0.13 MgC ha-1 per 394 
year respectively. 395 
Analysis of the SOC pools evolution in the runs with optimized inputs to match the 4p1000 increase rate, 396 
indicates that the active and slow pools increased by 0.58% and 0.61% per year respectively, while the 397 
passive pool increased annually by 0.01% (Fig. 6). In absolute values, the slow compartment contributed the 398 
most to the increase of SOC during the 30 years runs, as it increased by 2.7 MgC ha-1 on average among the 399 
sites. This corresponds to a storage efficiency for the 30 years of simulation of approximately 13.7 % in the 400 
slow pool, compared to a storage efficiency of 0.5% and 0.34% in the active and in the passive pools 401 
respectively. 402 
We found a high linear relation (R2=0.80) between observed initial SOC stocks and optimized carbon inputs 403 
(Fig. 7). It is logical and expected that for low initial SOC stocks in steady state, a small increase of carbon 404 
inputs is sufficient to reach the 4p1000 target. Conversely, when SOC is high at the beginning of the 405 
experiment (e.g. Trévarez) much higher C inputs must be employed since our target increase rate is a relative 406 
target. The regression line that emerges from the cross sites’ relationship can be written as: 407 
IUH'!!! 	= 	0.013	 ∙ 	𝑆𝑂𝐶!QRS 	+ 	0.001,       (9) 408 
where IUH'!!!  are the simulated C inputs needed to reach the 4p1000 target (𝑀𝑔𝐶	ℎ𝑎&'	per year) and 409 
𝑆𝑂𝐶!QRS	(𝑀𝑔𝐶	ℎ𝑎&') is the observed initial SOC stock. This result means that site differences in Q10 and 410 
decomposition rates are less influential than initial SOC in determining the optimal input increase to reach 411 
the 4‰ per year target. 412 
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 413 
Figure 5: Sites average percentage change of carbon inputs needed to reach the 4p1000 (TOT), separated into the 414 
four litter input pools. AM = aboveground metabolic, BM = belowground metabolic, AS = aboveground structural, 415 
BS = belowground structural and TOT = total litter inputs. Error bars indicate the standard error. 416 

 417 
Figure 6: Sites average soil organic carbon pools (ACT = active, SLOW = slow and PASS= passive) evolution 418 
(MgC ha-1) over the 30 years of simulation to reach the 4p1000 target. In the graph the mean percentage increase 419 
is given for each SOC pool. 420 
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 421 
Figure 7: Correlation between initial observed SOC stocks (MgC ha-1) and modelled carbon inputs needed to 422 
reach the 4p1000 target (MgC ha-1 year-1). The correlation coefficient (R2) is 0.80 and the regression line is y = 423 
0.013∙x+0.001. 424 

3.2.2. Virtual versus actual C inputs in the experimental carbon treatments  425 

In  Fig. 8 we compare the virtual inputs required to reach the 4p1000 target to the actual inputs used across 426 
the 46 treatments of additional carbon. The additional carbon (MgC ha-1 per year) shown in the graph for all 427 
experimental treatments refers to exogenous organic amendments, plus additional carbon due to increased 428 
crop yields, relatively to the reference plot. The most striking result emerging from the data is that modelled 429 
additional C inputs are systematically lower or similar to at least one treatment of additional C in all sites, 430 
except for Foggia. In Foggia experiment, different crop rotations were compared and no additional 431 
exogenous organic matter was incorporated to the soil. Here, none of the rotations had sufficient additional 432 
C content (compared to the control wheat-only treatment), to meet the required OC input level predicted by 433 
Century for a 4p1000 increase rate. Overall, 86.91% of the experimental treatments used higher amounts of 434 
carbon inputs compared to the modelled need of additional carbon inputs in the same site. For the other 435 
treatments, the difference between simulated and observed additional C input was not significant. On average, 436 
in the experimental treatments were applied 1.52 MgC ha-1 per year and SOC stocks were found to be 437 
increasing by 0.25% per year. Modelled additional carbon input to reach the 4p1000 was 0.66 MgC ha-1 per 438 
year, on average among the sites. 439 
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 440 
Figure 8: Additional modelled carbon inputs (MgC ha-1 year-1) to reach the 4p1000 (grey bars) compared to 441 
additional carbon input treatments (colored bars) on each experimental site. Additional carbon inputs for field 442 
trials are calculated as the sum of organic fertilizers and the delta carbon inputs from crop yields (compared to 443 
the control plot). Additional carbon treatments are separated into different categories: BIO waste = biowaste 444 
compost, green manure, green manure + sewage sludge and household waste, Cow Manure = cow manure and 445 
farmyard manure (in Broadbalk and Ultuna), Pig Manure, Poultry Manure,  Sewage Sludge, Rotations = different 446 
crop rotations, Other organic amendments (OA) = straw, sawdust and peat (in Ultuna) and Castor Meal (in 447 
Broadbalk). The error bars shown are the standard errors computed with the Monte Carlo method. 448 
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3.3. Carbon inputs change in future scenarios of temperature increase 449 

The temperature sensitivity analysis of the Century model for the 4p1000 target framework is plotted in Fig. 450 
9. The required amount of C inputs to reach the 4p1000 target is likely to increase with increasing temperature 451 
scenarios. In particular, carbon inputs will have to increase on average by 54% in the AS1 scenario of +1˚C 452 
and 120% in the AS5 scenario of +5˚C temperature change. This represents an additional C inputs increase 453 
of 11% and 77% respectively, compared to the business as usual situation with current temperature setup. 454 
What can be clearly seen in the graph is the increased amount of C inputs required in Trévarez, where C 455 
inputs should more than quadruplicate to reach the 4p1000 objective. 456 

 457 
Figure 9: Temperature sensitivity analysis of carbon inputs change (%) to reach the 4p1000 objective. 458 
CURR=business as usual simulation, AS1=RCP2.6 scenario of +1˚C temperature increase, AS5=RCP8.5 scenario 459 
of +5˚C temperature change. 460 

https://doi.org/10.5194/bg-2020-489
Preprint. Discussion started: 12 January 2021
c© Author(s) 2021. CC BY 4.0 License.



 23 

4 Discussion 461 

4.1. Reliability of the Century model 462 

The Century model has been widely used to simulate SOC stocks dynamics in arable cropping systems 463 
(Bortolon et al., 2011; Cong et al., 2014; Kelly et al., 1997; Xu et al., 2011). Optimizing the 464 
metabolic:structural ratio in the reference plots allowed us to initialize the carbon inputs compartments, since 465 
no measurement of the lignin:nitrogen ratio was available. This allowed us: 1) taking into account the average 466 
carbon quality of the litter pools in the different crops rotations and 2) correctly estimating the initial values 467 
of SOC stocks on the majority of the sites. On the other side, this could have influenced the predicted 468 
redistribution of C in the additional C inputs required to reach the 4p1000 (Fig. 5). We suggest that taking 469 
into account the historical site-specific land use could help initializing SOC stocks without requiring any 470 
assumption on the metabolic:structural ratio (e.g. with historically based equilibrium scenarios as in Lugato 471 
et al. (2014)). To further improve SOC stock simulations, we decided to optimize the Q10 and reference 472 
temperature parameters on the reference plots, to account for the different pedo-climatic conditions of the 473 
experimental sites and enhance model predictions of SOC stocks dynamics (Craine et al., 2010; Lefèvre et 474 
al., 2014; Meyer et al., 2018; Wang et al., 2010). Although the dispersion of SOC stocks over time is not 475 
perfectly captured in the majority of the control plots (see the high LC component of the MSD in Fig. 4), the 476 
simulations of SOC dynamics were improved by the optimization of temperature related parameters and the 477 
NRMSD was found to be lower than 15% on all sites. However, the capability of Century to simulate SOC 478 
stocks variation on the virtual simulations of additional C treatments might be a major shortcoming of 479 
modeling results. In fact, although SOC stocks were found to be increasing on average in the additional C 480 
treatments (0.25% per year with 1.52 MgC ha-1 yearly additional carbon inputs), this increase rate is lower 481 
than the 0.4% increase of SOC stocks predicted by Century with lower amounts of virtual C inputs (0.66 482 
MgC ha-1 per year). 483 

4.2. Increasing annual SOC stocks by 4p1000 484 

4.2.1. Modelled carbon inputs to reach the 4p1000 485 

Century simulations estimated that annual carbon inputs should increase by 43±5% (SE) on average to reach 486 
the 4p1000 target on the selected experimental sites, under the condition that the additional carbon inputs are 487 
equally distributed among the surface and belowground, in order to maintain the same 488 
aboveground:belowground ratio as at the beginning of the experiment.  This is higher than the values found 489 
by Chenu et al. (2019) using default RothC 26.3 parameters, who estimated a relative increase of C inputs in 490 
temperate sandy soils by 24% and in temperate clayey soils by 29%. However, not only the quantity of carbon 491 
but also the quality will need to change according to Century predictions. In fact, the predicted aboveground 492 
structural litter change was threefold higher than all other pools on average, representing an additional 0.18 493 
MgC ha-1 each year. A way for the farmer to increase the structural fraction of the carbon inputs is to compost 494 
the organic amendments that will be spread on soil surface. Increasing EOM in large quantities may not be 495 
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possible everywhere. First of all, the amount of organic fertilizers is limited at site scale and farmers may 496 
have difficulties in producing or buying high quantities of EOMs (Poulton et al., 2018). Secondly, farmers 497 
may be prevented from applying high amounts of EOM because of the risk of nitrate and phosphate pollution 498 
(Li et al., 2017; Piovesan et al., 2009). 499 

4.2.2. Stability of the additional carbon stored 500 

Another important aspect to take into consideration is the stability of the additional carbon. In fact, the 501 
duration and persistence of carbon in the soil might be very different whether or not the proportion of stable 502 
carbon is important. In the Century model, this translates into questioning whether the fractions of the long 503 
turnover rate pools (the slow and passive SOC pools) have increased. In our simulations, a general pattern 504 
can be detected (Fig. 6) where both passive and slow pools increased, but at very different rates (0.1‰ and 505 
6.1‰ per year respectively). The active pool increased by 5.8‰ annually, with benefits for soil fertility and 506 
hence food security. The additional carbon is essentially slow (2.7 MgC ha-1 in 30 years of simulations), 507 
meaning that it will be stored in the soil for around 20 to 30 years. The increase in carbon inputs must be 508 
sustained to increase SOC stocks at the desired rate, until a new equilibrium will be reached. To further 509 
increase SOC stocks after the new equilibrium, we might consider implementing new strategies of additional 510 
carbon later on. For instance, this could be achieved through the implementation of complementary 511 
management options to those considered in the long-term experiments described here, such as residues 512 
management, cover crops, conservation agriculture and agroforestry systems (Chenu et al., 2019; Lal, 1997; 513 
Smith et al., 1997).  514 

4.2.3. Simulated carbon inputs and experimental carbon addition treatments 515 

Different types of organic carbon treatments were considered in this study and compared to Century 516 
simulations of carbon inputs required to reach the 4p1000. In all experimental sites with additional EOM 517 
inputs, at least one treatment employed higher amounts of C inputs compared to the simulated C inputs 518 
required for a 4‰ annual target. In Foggia, carbon inputs from different crop rotations were studied, but 519 
none employed sufficient amounts of additional carbon to reach the 4p1000, as predicted by Century. Model 520 
results in Foggia had a high standard error, mainly due to the fact that the variability of crop yields for this 521 
site was not available. Thus, for this site, we calculated model uncertainty using the average relative 522 
variability across the whole dataset, which could have increased the uncertainty of model outputs. 523 
It is important to note that the amount of carbon inputs simulated by Century was constrained to have the 524 
same aboveground:belowground ratio as at the beginning of the experiment. This means that the additional 525 
carbon inputs should be distributed equally on soil surface and belowground, not to change the initial 526 
allocation of carbon in the litter pools. Since all field treatments were performed under conventional tillage, 527 
the comparison between modelled and observed additional carbon inputs under this constraint holds well.  528 
The annual SOC stocks variation (0.25%) estimated in the experimental carbon treatments across the 14 sites, 529 
indicates that Century might be overestimating the effect of additional carbon inputs on SOC stocks. In 530 
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particular, only 19 out of 46 field treatments (with average additional C inputs of 1.93 MgC ha-1 per year) 531 
were found to be actually increasing SOC stocks at a higher rate than 4‰ per year, relatively to their initial 532 
SOC stocks. This is similar to the values found by Poulton et al. (2018), who estimated that adding similar 533 
high amounts of C inputs increased SOC stocks at an annual rate higher than 4‰ in 16 long-term agricultural 534 
experiments. The overestimation of the Century model might be due to several factors. First of all, the C 535 
inputs prescribed to model simulations were constant through time, while C inputs from plant material 536 
actually vary annually and over the years because of agronomical and climatic factors. Historical land use 537 
and management practices such as tillage were not taken into account, although they affect SOC stocks 538 
(Pellerin et al. 2017). Another factor that the model is not taking into account is nitrogen and other nutrients 539 
availability, which might affect the SOC stocks dynamics. This is especially true in treatments with different 540 
frequencies of application (e.g. Arazuri), where nutrients depletion is likely to be more evident when the 541 
application is sparser. The calculation method of C inputs also influences the simulation of SOC stocks 542 
(Clivot et al., 2019). However, estimating the increase of carbon inputs relatively to their initial value has 543 
likely cancelled out uncertainties related to the C inputs estimation method in our analysis. 544 

4.2.4. Organic carbon inputs use in Europe 545 

Zhang et al. (2017) estimated that the proportion of nitrogen inputs from livestock manure applied to 546 
European croplands was 3.9 Tg N in 2014, for a cropland area of 127 M ha in 2015 (Goldewijk et al. 2017). 547 
Cattle manure, which represents the highest proportion of manure produced and applied to croplands, has 548 
average C:N ratio ranging between 10 and 30 (multiple sources from Fuchs et al. (2014) and Pellerin et al. 549 
(2017)). With these data, we can roughly estimate the application of C manure from livestock in European 550 
agricultural soils as ranging between 0.30 and 0.92 MgC ha-1 each year. Most of the experiments used in this 551 
study used higher amounts of C inputs (1.52 MgC ha-1 per year on average). However, the C inputs need 552 
predicted by Century, which ranged between 0.24±0.02 and 1.20±1.00 MgC ha-1 per year, plus one site with 553 
1.45±0.16 MgC ha-1 per year, is in line with the average use of livestock manure in Europe. In terms of C 554 
sequestration, organic fertilizers coming from animal manure are usually being applied to the soil at some 555 
location, hence they cannot account for additional climate mitigation potential (Poulton et al., 2018). 556 
However, according to Zhang et al. (2017) estimation, there is room for improvement since the fraction of 557 
livestock manure applied to cropland in the 2010s was approximately 26% of total livestock production in 558 
Europe. The estimates from Zhang et al. (2017) refer to livestock manure only. In our study, we also 559 
considered treatments with other types of EOM addition, such as sewage sludge and household waste. These 560 
should be accounted for as they represent additional C inputs to agricultural soils. Moreover, in many 561 
countries a significant proportion of food and urban waste is currently left on disposal areas, where carbon is 562 
lost to the atmosphere as CO2 or CH4 emissions (Bijaya et al. 2006). Total sewage sludge used in Europe 563 
(EU26) for agriculture can be calculated from Eurostat (2014b) as 4558	∙	103 MgDM per year (in 2010). 564 
Using the Van Bemmelen factor (1.724) to convert OM to OC (McBratney and Minasny, 2010; Rovira et al., 565 
2015), we can estimate the sewage sludge used in European croplands as being around 0.021 MgC ha-1 per 566 
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year. Moreover, Pellegrini et al. (2016) found that sewage sludge reuse in agriculture is increasing in Europe. 567 
In 2018, household waste composted in Europe (EU27) was 37M MgDM (Eurostat, 2020). Considering a 568 
carbon content in household waste of 71% (Larsen et al., 2013) and assuming that all and only composted 569 
household waste is used in agriculture, we can approximate household waste use in Europe as being 0.2 Mg 570 
C ha-1 per year. A contribution to the sequestration of C from the atmosphere could also come from changing 571 
the treatment methods which affect the quality of C in crop residues and manure, so that their turnover time 572 
increases, e.g. through fermentation or biochar. In general, improving the use efficiency of EOM to the soil 573 
by managing it differently could contribute to some extent to climate change mitigation, increase soil quality, 574 
and reduce mineral fertilizers use (Chadwick et al. 2015). 575 

4.2.5. Reaching a 4p1000 target: only a matter of initial SOC stocks? 576 

As we could expect, the estimated amount of carbon inputs to reach the 4p1000 target was linearly correlated 577 
to the initial observed level of SOC stocks (Fig. 7). This is primarily due to the linear structure of the Century 578 
model. In fact, if we consider the stationary solution for which Eq. (2) is equal to 0, SOC depends linearly 579 
on the carbon inputs. Therefore, the opposite is also true (i.e. carbon inputs are linearly dependent to the 580 
initial amount of SOC stocks). Moreover, the 4p1000 target itself is defined as the increase of SOC by 0.4% 581 
per year, relatively to its initial value (Minasny et al., 2017). Hence, it implies a proportional contribution 582 
that depends on the initial SOC stocks. Wiesmeier et al. (2016) also observed a linear relationship between 583 
SOC increase and C inputs. This linear relationship means that soils with high SOC stocks will have to 584 
increase their carbon stocks more in absolute terms to meet this quantitative target. On the other side, smaller 585 
amounts of C will have to be employed in sites with low levels of SOC stocks, to reach a 4p1000 target. 586 
However, increasing C inputs where SOC stocks are low might require substantial changes in the agricultural 587 
systems and such quantity of additional OM might not be available at a large scale. A counterpoint is also 588 
that the 4p1000 initiative needs all the soils to increase their SOC stocks by 4‰ per year, even those with 589 
medium or high SOC stocks (i.e. higher than 50 MgC ha-1, such as grasslands and forests), where the required 590 
additional C increase will be higher according to Century. This result depends on the quality of the simulated 591 
carbon inputs (i.e. the predicted metabolic:structural ratio) and does not take into account any notion of soil 592 
saturation.  Before applying this trend to calculate the required C inputs from current SOC stocks, we should 593 
extend the database to cover different pedo-climatic regions of the word and use a multi-model analysis to 594 
cut out individual model uncertainty. 595 

4.3. Sensitivity analysis 596 

The predicted need of additional C inputs to reach the 4p1000 target is likely to be higher with future global 597 
warming, as a consequence of modified SOC decomposition rates. Considering the crucial role of soil as a 598 
land-use based option for mitigating climate change, recent studies have shown a growing interest in 599 
temperature sensitivity of SOC stocks decomposition (Dash et al., 2019; Koven et al., 2011; Parihar et al., 600 
2019; Wiesmeier et al., 2016). We know that a significant fraction of SOM is subject to increasing 601 
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decomposition due to temperature sensitivity. However, the magnitude of expected feedbacks from SOC 602 
stocks is still surrounded of controversy. In particular, this is mainly due to the diversity of organic 603 
compounds in the soil that are known to have inherent sensitivities to temperature (Davidson and Janssens, 604 
2006). In this context, the study of the Century model response to predicted scenarios of temperature increase 605 
is of primary importance. We mimicked the most optimistic (+1˚C) and pessimistic (+5˚C) RCPs scenarios 606 
of the 5th IPCC assessment report. What is striking from our results is that with increasing temperatures all 607 
sites will have to provide considerably higher amounts of C inputs to reach the 4p1000 target (Fig. 9). In 608 
particular, the C inputs change needs to more than double in all sites, according to the worst-case scenario of 609 
+5˚C. It is important to point out that the optimization of the Q10 and reference temperature parameters are 610 
likely to influence the outcomes of the simulated SOC stocks and therefore the C inputs need. Nevertheless, 611 
comparing the carbon input change simulated with the optimized version of Century (Fig. 9) to that simulated 612 
with the default parameters setting (Fig. C1), shows that the predicted inputs change follows the same pattern, 613 
even though the intensity of the increase is considerably higher in the optimized version. These results can 614 
be understood in two ways. Either the optimized version of Century is overestimating the effect of 615 
temperature on SOC stocks decomposition, or SOC stocks decomposition patterns are likely to increase even 616 
more intensively when considering the entire range of possible Q10 values. In either case, further research is 617 
needed to reduce the uncertainty around the impact of climate change on SOC decomposition. Studies should 618 
also examine moisture change, which we did not take into account here. This is likely to be impacted as a 619 
consequence of modified precipitations and temperature (IPCC, 2015). Additionally, increased temperature 620 
and CO2 concentration in the atmosphere, as well as changes in precipitations are likely to influence net 621 
primary production and therefore C inputs to the soil. All these feedbacks are important and must be taken 622 
into account for a comprehensive evaluation of carbon cycle effects on climate change. 623 

5 Conclusion 624 

The Century model predicted an average increase of annual carbon inputs by 43±5% to reach a 4p1000 target 625 
over a range of 14 agricultural sites across Europe, with diverse soil types, climates, crop rotations and 626 
practices. The required simulated amount of additional C inputs was found to be systematically lower or 627 
similar to the 46 treatments of carbon inputs carried out in these sites. However, Century might be 628 
overestimating the predicted effect of additional C inputs on the SOC stocks variation rate, as the only field 629 
treatments that were found increasing SOC stocks by at least 4‰ annually were those using very high 630 
amounts of C inputs (~1.93 MgC ha-1 per year). The predicted amount of additional carbon inputs depended 631 
linearly on the initial amount of observed SOC stocks in the control experiments, indicating that lower 632 
amounts of carbon inputs might be sufficient to reach the 4p1000 target where SOC stocks are low. However, 633 
increasing C inputs might require substantial changes in the agricultural systems and high quantities of 634 
additional organic matter might not be available at a large scale. The required amount of additional C inputs 635 
was found to substantially increase with future scenarios of changes in temperature, rising concern on the 636 
feasibility of a 4p1000 target under climate change and beyond that, the feasibility of SOC stocks 637 
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preservation. Promoting and applying soil carbon conservation strategies, namely redistributing crop residues 638 
and organic amendments to the soil, implementing cover crops and conservation agriculture, developing 639 
agroforestry and diversifying crop rotations, improves soil fertility and food production. The magnitude of 640 
SOC storage potential in agricultural soils largely depends on site-specific conditions, such as climate, soil 641 
type and land use. In this study, we only considered temperate, sub-humid and Mediterranean climates. A 642 
broader evaluation of the required carbon inputs and associated agricultural practices to increase SOC stocks 643 
is worthwhile to be carried out at larger scales. We also suggest that future research focuses on multi-644 
modeling analysis, to allow for a correct estimation of the uncertainties related to model-specific 645 
assumptions. 646 
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Appendix A – Century model description and environmental functions used 660 

The temporal evolution of soil organic carbon is described in the Century model as a first order differential 661 
matrix equation: 662 
)𝑺𝑶𝑪(.)

).
= 𝑰 + 𝐀 ∙ 𝛏𝐓𝐖𝐋𝐂𝐥(t) ∙ 𝐊 ∙ 𝑺𝑶𝑪(t),       (2) 663 

where 𝑺𝑶𝑪(𝑡) is the vector describing the SOC state variables. The first term on the right side of the equation 664 
represents carbon inputs to the soil coming from plant residues and organic material. Carbon inputs are 665 
allocated into four different litter pools. Hence, 𝑰 is a 1x7 matrix with four nonzero elements. The second 666 
term of the equation represents carbon outputs from the soil, following a first order decay kinetics. 𝐀 is a 7x7 667 
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carbon transfer matrix that quantifies the transfers of carbon among the different pools. The diagonal entries 668 
of 𝐀 are equal to -1, denoting the entire decomposition flux that leaves each carbon pool. The non-diagonal 669 
elements represent the fraction of carbon that is transferred from one pool to another. K is a 7x7 diagonal 670 
matrix with the diagonal elements representing the potential decomposition rate of each carbon pool. 671 
𝝃𝑻𝑾𝑳𝑪𝑰(𝑡) is the environmental scalar matrix, a 7x7 diagonal matrix with each diagonal element denoting 672 
temperature 	(f=(t)) , water 	(f>(t) ) lignin 	(f?	@)  and clay `fABCD	@a  scalars, which modify the potential 673 
decomposition rate. Temperature response function f=(t)	is described by Eq. (4), the others are expressed as 674 
follows. The moisture function f>(t) is a polynomial function ranging from 0.25 and 1 and taking the form 675 
of: 676 
f>(t) = −1.1 ∙ 𝑤T + 2.4 ∙ 	𝑤 − 0.29,       (A1) 677 
where 𝑤 is the daily relative humidity	(𝑚(

[;IG\	𝑚
&(

SQ98). 678 
The decomposition rate of structural litter pools is affected by their lignin content: 679 
f?	@ = 𝑒&8]^	∙	7,          (A2) 680 
where	𝑙𝑔𝑐 is the coefficient that regulates the lignin effect, while 𝐿 is the lignin structural fraction of the 681 
aboveground and the belowground litter pools.  682 
Finally, the fraction of clay in the soil (𝑔	𝑐𝑙𝑎𝑦	𝑔&'𝑠𝑜𝑖𝑙)  influences the decomposition rate of the active pool: 683 
fABCD	@ = 1 − 0.75 ∙ 𝑐𝑙𝑎𝑦.         (A3) 684 

Appendix B – Model evaluation 685 

Two residual-based metrics were used to evaluate the goodness-of-fit of modeled and observed SOC stocks 686 
for each site: the Mean Squared Deviation (MSD) and the Normalized Root Mean Squared Deviation 687 
(NRMSD). The MSD for each site is defined as: 688 

𝑀𝑆𝐷 =	∑ ("+&Q+)2
7
+8*

S
,         (B1) 689 

where i = 1,…,n is the year of the experiment, 𝑚9 and 𝑜9 are respectively modeled and observed values of 690 
SOC stocks and s is the number of observations in the experiment. Following Gauch et al. (2003), the MSD 691 
can be decomposed into three components: the Squared Bias (SB), the Non-Unity slope (NU) and the Lack 692 
of Correlation (LC). SB is calculated as: 693 
𝑆𝐵 = (𝑚i − �̅�)T,          (B2) 694 
where 𝑚i  and �̅� are the mean values of modeled and observed SOC stocks respectively. 695 
Calling ∆𝑀9 = (𝑚i −𝑚9) and ∆𝑂9 = (�̅� − 𝑜9) we have: 696 

𝑁𝑈 = n1 −	∑ ∆b+∙∆$+
7
+8*
∑ ∆b+

27
+8*

o
T
∙ ∑ ∆b+

27
+8*

S
,       (B3) 697 

𝐿𝐶 = n1 −	 ∑ (∆b+∙∆$+)2
7
+8*

∑ ∆c+
2∙7

+8* ∑ ∆b+
27

+8*
o ∙ ∑ ∆c+

27
+8*

S
.       (B4) 698 

These three components add up to MSD and help locating the causes of error of model predictions, 699 
determining areas in the model that require further improvement (Bellocchi et al., 2010). In particular, SB 700 
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provides information about the mean bias of the simulation from measurements, NU indicates the capacity 701 
of the model to correctly reproduce the magnitude of the fluctuation among the measurements and LC is an 702 
indication of the dispersion of the points over a scatterplot, i.e. the capacity of the model to reproduce the 703 
shape of the data (Kobayashi and Salam, 2000). 704 
The second statistical measure we used was computed as the squared root of the MSD, normalized by the 705 
mean observed SOC stocks: 706 

𝑁𝑅𝑀𝑆𝐷 =	√b#e
Qf

∙ 100.         (B5) 707 

This indicator is expressed as a percentage and allows to evaluate the model performance independently to 708 
the units of SOC stocks. 709 

Appendix C – Sensitivity analysis with default Century parameters 710 

 711 
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Figure C1: Temperature sensitivity analysis of carbon inputs change (%) to reach the 4p1000 objective, using 712 
Century default Q10 and reference temperature parameters. CURR=business as usual simulation, AS1=RCP2.6 713 
scenario of +1˚C temperature increase, AS5=RCP8.5 scenario of +5˚C temperature change. 714 
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