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Key Points :

 LCEs trigger a local phytoplankton biomass increase in winter.

 Chlorophyll variability at surface does not reflect the seasonal cycle of the depth-integrated 

biomass.

 Convective mixing and Ekman pumping are key mechanisms to preferentially supply nutrient 

toward the euphotic layer in LCEs. 
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Abstract

Surface chlorophyll concentrations inferred from satellite images suggest a strong influence of 

the mesoscale activity on biogeochemical variability within the oligotrophic regions of the Gulf of 

Mexico (GoM). More specifically, long-living anticyclonic Loop Current Eddies (LCEs) are shed 

episodically from the Loop Current and propagate westward. This study addresses the biogeochemical 

response of the LCEs to seasonal forcing and show their role in driving phytoplankton biomass 

distribution in the GoM. Using an eddy resolving (1/12°) interannual regional simulation, it is shown 

that the LCEs foster a large biomass increase in winter in the upper ocean. It is based on  the coupled 

physical-biogeochemical model NEMO-PISCES that yields a realistic representation of the surface 

chlorophyll distribution. The primary production in the LCEs is larger than the average rate in the 

surrounding open waters of the GoM. This behavior cannot be directly identified from surface 

chlorophyll distribution alone since LCEs are associated with a negative surface chlorophyll anomaly 

all year long. This anomalous biomass increase in the LCEs is explained by the mixed-layer response 

to winter convective mixing that reaches deeper and nutrient-richer waters.
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I/ Introduction

 Historical satellite ocean color observations of the deep waters of the Gulf of Mexico (roughly 

delimited by the 200m isobath and from hereafter referred to as GoM open-waters) indicate low surface

chlorophyll concentrations ([CHL]), low biomass and low primary productivity (Müller-Karger et al., 

1991; Biggs and Ressler, 2001; Salmerón-García et al., 2011). The GoM open-waters are mostly 

oligotrophic, as confirmed by more recent bio-optical in-situ measurements from autonomous floats 

(Green et al., 2014; Pasqueron de Fommervault et al., 2017; Damien et al., 2018). The surface 

chlorophyll concentration in the GoM open-waters exhibits a clear seasonal cycle which is primarily 

triggered by the seasonal variation of the mixed layer depth (Müller-Karger et al., 2015) and river 

discharges (Brokaw et al., 2019). In tandem, the seasonal cycle is strongly modulated by the energetic 

mesoscale dynamic activity which shapes the distribution of biogeochemical properties (Biggs and 

Ressler, 2001; Pasqueron de Fommervault et al., 2017). This mesoscale activity is dominated by the 

large and long-living Loop Currents Eddies (LCEs) which are shed episodically by the Loop Current 

(Weisberg and Liu, 2017) and constitute the most energetic circulation features in the GoM 

(Sheinbaum et al., 2016; Sturges & Leben, 2000). 

Mesoscale activity (see McGuillicuddy et al., 2016 for a review) modulates the phytoplankton 

biomass distribution (Siegel et al., 1999; Doney et al., 2003; Gaube et al., 2014; Mahadevan, 2014) and

the ecosystem functioning (McGillicuddy et al., 1998, Oschlies and Garcon, 1998, Garcon et al., 2001).

Specifically, the ability of the mesoscale eddies to enhance vertical fluxes of nutrients is determinant in

sustaining the observed phytoplankton growth rate in oligotrophic regions such as the GoM open-

waters, where the phytoplankton primary production is limited by nutrient availability in the euphotic 

layer (McGillicuddy and Robinson 1997; McGillicuddy et al., 1998; Oschlies and Garcon, 1998).
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The upward doming of isopycnals in cyclonic eddies and downward depressions in anticyclonic 

eddies, also known as “eddy-pumping”, occur when the eddies are strengthening (Siegel et al., 1999, 

Klein and Lapeyre, 2009) and produce a vertical nutrient transport. This has been historically proposed 

as the dominant mechanism controlling the mesoscale biogeochemical variability, as it induces a 

reduction of productivity in the anticyclone and an increase in cyclones. This paradigm is however 

challenged by observations of enhanced surface chlorophyll concentrations in anticyclonic eddies 

(Gaube et al., 2014), particularly during winter (Dufois et al., 2016). As a plausible explanation, eddy-

wind interactions may significantly modulate vertical fluxes through Ekman transport divergence 

within the eddies (Martin and Richards, 2001, Gaube et al., 2013, 2015). This mechanism is 

responsible for a downwelling in the core of cyclones and an upwelling in the core of anticyclones. 

Dufois et al. (2014, 2016) link these observations to a deeper mixed layer in anticylonic eddies. This is 

explained by the eddy-driven modulation of the upper ocean stratification which directly affects the 

winter convective mixing (He et al., 2017). Observed mixed layers tend to be deeper in anticyclones 

than in cyclones (Williams, 1998; Kouketsu et al., 2012) and vertical nutrient fluxes to the euphotic 

layer are potentially enhanced in anticyclones during periods prone to convection (e.g. winter in the 

GoM). Although some consensus exists on the fundamental role of anticyclonic eddies on the 

productivity of oligotrophic ocean regions, large uncertainties remain regarding the relative importance

of the different mechanisms involved in the biogeochemical responses.

Besides, in-situ measurements in oligotrophic regions have shown that the surface [CHL] 

variability, observed from ocean color satellite imagery, is not necessarily representative of the total 

phytoplankton (carbon) biomass variability in the water column (Siegel et al., 2013; Mignot et al., 

2014). In particular, a surface [CHL] winter increase, may result from physiological mechanisms (i.e. 

modification of the ratio of [CHL] to phytoplankton carbon biomass) or from a vertical redistribution 

of the phytoplankton (Mayot et al., 2017) rather than from changes in the biomass content. It is not 
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clear yet which of these hypotheses holds in oligotrophic regions, and more specifically in the GoM 

open-waters where this issue has been addressed by in-situ sub-surface [CHL] observations (Pasqueron

de Fommervault et al., 2017). Most of the studies focusing on chlorophyll variability use surface (or 

near-surface) [CHL] as a proxy for phytoplankton biomass and interpret a [CHL] increase as an 

effective biomass production. Only a few studies considered the vertically integrated responses (Dufois

et al., 2017; Guo et al., 2017; Huang and Xu, 2018) emphasizing the importance of considering the 

eddy impact on the subsurface.   

The objective of this study is to better understand the role of LCEs in driving [CHL] distribution 

and variability within the GoM open-waters. Material and methods used in this study are presented in 

section 2. In section 3, the imprint of the LCEs on the surface [CHL] distribution is inferred from 

satellite ocean color observations. Since these measurements are confined to the oceanic surface layer 

and do not allow access to the vertical properties of LCEs, we complete the analysis with a coupled 

physical-biogeochemical simulation (subsections 2 and 3). Particular attention is paid to the validation 

of the modeled LCE dynamical structures and surface [CHL] anomalies. In the last section, we propose

to disentangle the mesoscale mechanisms controlling the seasonal cycle of the [CHL] vertical profile in

LCEs. The model also enables to assess both abiotic and biotic processes and physical-biogeochemical 

interactions that can be difficult to address with in-situ observations only. 

II/ Material and methods

II.1/ The coupled physical-biogeochemical model
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The simulation analyzed in this study (referred as GOLFO12-PISCES) has been described and 

compared with observations in Damien et al. (2018). It relies on a physical-biogeochemical coupled 

model based on the ocean model NEMO (Nucleus for European Modeling of the Ocean, version 3.6; 

Madec, 2016) and the biogeochemical model PISCES (Pelagic Interaction Scheme for Carbon and 

Ecosystem Studies; Aumont and Bopp, 2006; Aumont et al., 2015). The model grid covers the GoM 

and the western part of the Cayman Sea (Fig 1) with a 1/12° horizontal resolution (~ 8.4 km). This 

allows to resolve scales related to the first baroclinic mode, which is of the order of 30-40 km in the 

GoM open-waters (e.g., Chelton et al., 1998). The model is forced with realistic open-boundary 

conditions from the MERCATOR reanalysis GLORYS2V3, high frequency atmospheric forcing based 

on an ECMWF ERA-interim reanalysis (Brodeau et al., 2010), and freshwater and nutrient-rich 

discharges from rivers (Dai and Trenberth, 2002). The open-boundary conditions of biogeochemical 

tracers are prescribed from the World Ocean Atlas observation database (Garcia et al., 2010) for NO3, 

O2, Si, and PO4, and from the global configuration ORCA2 (Aumont & Bopp, 2006) for DIC, DOC, 

Alkalinity, and Fe. The other state variables are forced arbitrary very small constant values. The 

analysis has been performed using 5-day averaged outputs for a period of 5 years from 2002 to 2007. 

We refer the reader to Damien et al. (2018) for an extended model and numerical setup descriptions. In 

this previous study, an extensive validation of the modeled properties were carried out , focusing on 

physical properties that are known to influence primary production and chlorophyll concentration: the 

mixed layer depth and the depth and slope of the nutricline. A novel aspect was to use in-situ 

observations collected from autonomous floats and published in Green et al. (2014) and Fommervault 

et al. (2017) to validate not only the modeled surface chlorophyll concentration but also the chlorophyll

vertical profile in the GoM. To be able to reproduce the vertical profile of chlorophyll correctly, the 

parameters of the biogeochemical model were largely tuned compared to the ones suitable for global 

simulations (Aumont et al., 2015). The ability of GOLFO12-PISCES to reproduce the main observed 

features of the GoM was demonstrated, at least at a basin and seasonal scale.
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Figure 1: 8-days composite images of [CHL]surf  (in mg·m-3) around (a) May 29th 2003 and (b) October 19th 2004 derived from 

Aqua-MODIS images overlaid with contours of Absolute Dynamic Topography (ADT in m) derived from Aviso images are 

superimposed. Contour interval is 10cm and ADT values lower than 40cm are shown with dashed curves.

II.2/ Observational Data Set Used

Satellite observations are used to evaluate the ability of GOLFO12-PISCES to reproduce the 

dynamical and biological signatures associated with LCEs. Surface geostrophic velocities are derived 

from a 1/4° multi-satellite merged product of absolute dynamic topography (ADT) provided by 

AVISO+ (http://marine.copernicus.eu). Surface chlorophyll concentrations are from the Aqua-MODIS 

4 km product (Sathyendranath et al., 2012; http://marine.copernicus.eu) and consist of 8-day 

composites from 2003 to 2015.

II.3/ LCEs detection, tracking and composite construction
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In order to track the LCEs, we use the algorithm developed by Nencioli et al. (2010), which has 

been extensively employed to track coherent mesoscale eddies (Dong et al., 2012, Ciani et al. 2017, 

Zhao et al. 2018) and submesoscale eddies (Damien et al., 2017). It is based on the geometric 

organization of the velocity fields, dominated by rotation, that develop around eddy centers. Here, it is 

applied to weekly AVISO+ surface geostrophic velocities and GOLFO12-PISCES 5-day averaged 

velocities at 20m depth. The selection of LCEs is defined using the criteria that eddies have to be shed 

from the Loop Current. 

In order to assess the [CHL] response to LCE dynamics, eddy-centric horizontal images and 

transects of LCEs are used to make composites constructed by averaging modeled variables of the 

different LCEs collocated to their center. The transect building procedure involves an axisymmetric 

averaging that assumes axis-symmetry of the dynamical structures and no tilting of their rotation axis. 

Moreover, we choose not to consider the LCEs formation period and the LCEs destruction period when

reaching the western basin (Lipphardt et al., 2008; Hamilton et al., 2018) as LCE destruction/formation

involves specific processes (Frolov et al., 2004; Donohue et al., 2016). We therefore focus on the LCEs

contained in the central part of the GoM from 86°W to 94°W. Annual composites are computed along 

with monthly composite averages in order to assess seasonal variability. Composite LCEs averaged 

during the months of January and February are referred to as winter composites and those averaged 

during July and August are referred to as summer composites. These composites provide an overview 

of the LCEs mean hydrographical, biogeochemical and dynamical characteristics. 

II.4/ Diagnostics
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The LCE radius RLCE is estimated as the radial distance between the center and the peak 

azimuthal velocity Vmax. The mixed layer depth (MLD), a major physical factor influencing nutrient 

distribution and [CHL] dynamics (Mann and Lazier, 2006), is defined as the depth at which potential 

density exceeds its value at 10m depth by 0.125 kg·m-3 (Levitus, 1982; Monterey and Levitus, 1997).

The stratification of the water column is evaluated by the square of the buoyancy frequency

N2
( z )=

− g
ρ0

∂ ρ
∂ z , where g is the gravitational acceleration, z is depth, ρ is density and ρ0 is a reference 

density.

As carried out in Damien et al. (2018), several metrics are defined and used to describe [CHL]:

 [CHL]surf: [CHL] averaged between 0 and 30 m depth, and considered as surface concentration 

(in mg CHL·m-3),

 [CHL]tot: integrated content of [CHL] over the 0-350 m layer (in mg CHL·m-2),

 DCM: depth of the Deep Chlorophyll maximum (in m),

 [CHL]DCM: [CHL] value at DCM depth (in mg CHL·m-3).

To understand the mesoscale distribution of [CHL], key biological variables are vertically integrated 

between 0 and 350m: the phytoplanktonic concentration [PHY]tot, the primary production rate PPtot and 

the grazing rate GRZtot. PPtot consists of two components: new production PPNtot fueled by nutrients 

supplied from a source external to the mixed layer and regenerated production PPRtot sustained by 

recycled nutrients within the euphotic layer (Dugdale & Goering, 1967; Eppley & Peterson, 1979). The

euphotic depth corresponds to 1% of the incoming photosynthetic active radiation at surface and 

reaches between 120 and 150 m in the GoM (Jolliff et al., 2008; Linacre et al., 2019). A chlorophyll 

concentration anomaly within LCEs, [CHL]', is computed as [ CHL ] '=[ CHL ] − [ CHL ], where [ CHL ] is 

the averaged background [CHL] field in the open GoM waters (for radius>250km from the LCEs' 
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centers). We also define the normalized anomaly as[ CHL ] ' /SD ( [ CHL ] ' )with SD the standard deviation 

operator, following a similar approach as Gaube et al. (2013, 2014) and Dufois et al. (2016). To limit 

the influence of very high [CHL] values in coastal waters under the direct influence of continental 

discharges, a salinity filtering criterion (lower than 36 psu) is applied. A similar method was used by 

Gaube et al. (2013, 2014) to filter edge effects but using a distance criterion instead.

III/ Results

III.1/ Satellite observations of [CHL]

Fig 1 shows the 8-day averaged satellite observations of the surface chlorophyll around May 29th 

2003 (a) and October 19th 2004 (b). These observations highlight the strong contrast between the 

eutrophic conditions in the coastal waters and the oligotrophic conditions in the open ocean, as already 

addressed by several studies (Martinez-Lopez & Zavala-Hidalgo, 2009; Pasqueron de Fommervault et 

al., 2017). Far from the coast, these figures also reveal that the surface chlorophyll varies at a scale of 

the order of 100km with a distribution that tends to follow the absolute dynamic topography (ADT) 

contours.
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Figure 2: Average eddy kinetic energy (EKE) field derived from (a) Aviso geostrophic surface velocities and from (b) GOLFO12-

PISCES currents at 10m depth. The trajectories of the tracked LCEs are superimposed to the EKE field (black lines). Vertical 

black dashed lines indicate the central GoM area over which composites are built. Annual LCE composite images of surface 

geostrophic velocities for (c) Aviso images and (e) GOLFO12-PISCES. Annual LCE composite images of surface chlorophyll 

concentration anomaly for (d) Modis images and (f) GOLFO12-PISCES. Black circles indicate the radius in kilometers. 

LCEs trajectories are reported on Fig 2.a, superimposed onto the geostrophic climatological eddy

kinetic energy (EKE) field at the surface. EKE is computed from eddy velocities defined on each grid 

cell as the difference between the total horizontal current and its mean value over 120 days. This time 

window is chosen to filter the seasonal signal. EKE is concentrated in the LC and on the westward 

pathway of the LCEs (Lipphardt et al. 2008) demonstrating that LCEs constitute the major source of 

EKE in the GoM open waters (Sheinbaum et al., 2016; Sturges & Leben, 2000; Hamilton, 2007; 

Jouanno et al., 2016).
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Figure 3: LCE composite images of [CHL]surf derived from Aqua-MODIS for the (a) summer and (b) winter seasons. Black circles

indicate the radius in kilometers.

LCE annual composites of surface geostrophic velocities (Fig 2.c) and [CHL]surf (Fig 2.d) are 

built from 482 different satellite images. On average, we found that RLCE ~ 120 km and Vmax ~ 0.6-0.7 

m·s-1, in agreement with previously reported LCEs (Elliot, 1982; Cooper et al., 1990; Forristal et al., 

1992; Glenn and Ebbesmeyer, 1993; Weisberg and Liu, 2017; Tenreiro et al., 2018). LCEs are 

associated with a negative [CHL]surf anomaly (~ -0.07 mg.m-3 in the annual average). The LCEs 

influence on [CHL]surf is largest in summer (Fig 3.a) when it reaches very low values (< 0.045 mg·m-3), 

which corresponds to an anomaly of ~ -0.08 mg·m-3. This anomaly is less remarkable in winter (~ -0.06

mg.m-3, Fig 3.b) when [CHL]surf ~ 0.17 mg·m-3 within LCEs. The high chlorophyll concentrations in the

northern part of the composites (in the southern part too but in smaller proportions) are related to 

shelves.
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III.2/ Dynamical characterization of modeled LCEs

A total of 11 model LCEs were detected during the 5 years of simulation. Their trajectories are 

reported in Fig 2.b, superimposed upon the climatological EKE field simulated at 10 meters. The 

westward / southwestward propagation of LCEs is well reproduced (Vukovich, 2007) even though the 

LCEs translation is almost westward in GOLFO12-PISCES. Comparison with Fig 2.a shows the ability

of GOLFO12-PISCES to represent the mean and transient dynamical features of the GoM open waters 

(also see Garcia-Jove et al., 2016).

The robustness of the composite method arises from the number of LCE used to build the 

composites:

 Annual composite is built from 605 5-day averaged LCEs model outputs from 10 different 

LCEs,

 Summer composite is built from 83 5-day averaged LCEs model outputs from 8 different 

LCEs,

 Winter composite is built from 93 5-day averaged LCEs model outputs from 9 different LCEs.

The model LCEs surface geostrophic velocities (Fig 2.e) have important similarities with 

velocities inferred from altimetry (Fig 2.c) confirming that GOLFO12-PISCES reproduces the surface 

signature of the LCEs. However, one can also notice an underestimation of the surface orbital 

velocities (~ 25% on average over the 50-200 km radius range). This bias could result from the 

relatively coarse model resolution and 5-day output frequency that are unable to fully capture the 

gradient intensity at RLCE. The assumption of an axial symmetry of the LCE circulation around its 

center also induces an error that tends to decrease Vmax.
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Figure 4: (a) Orbital velocities at 25m depth in function of the radius of each detected LCE (light gray dots). The red line is the 

LCE orbital velocity profile of the annually-averaged composite. (b) Vertical vorticity and strain computed from the averaged 

orbital velocity profile assuming no radial velocity in cylindrical coordinates as ζ z=
1
f r

∂rv
∂ r

 and S=
1
f ( ∂ v

∂ r
−

v
r ).

 Orbital velocities of composite eddies are used to distinguish different dynamical areas within 

LCEs. The model annual average dynamical profile at 25m depth (Fig 4) reveals a typical vortex-like 

structure with RLCE  ~ 107 km and Vmax ~  0.53 m·s-1 and suggests the following decomposition:

 r < 50 km : the LCEs core, where the eddy is approximately in solid body rotation: Vorb = a·r 

where the coefficient a is related to the Rossby number (Ro = 2a/f ). The ratio a/f is estimated 

to be ~ -0.12 (Fig. 4). In this field, the stain is reduced to a minimum and the flow is dominated

by rotation. 

 50 km < r < 200 km: the LCEs ring structure where the orbital velocity reaches its maximum 

at RLCE and then decreases. The horizontal strain is important in this field, even dominating 

vorticity from radius exceeding  RLCE. 

  r > 200 km: the background GoM, where the velocity anomalies related to the LCE vanish.
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In the vertical (Fig 5.a), LCEs are near-surface intensified anticyclonic vortex rings. At depth, 

the orbital peak velocity decreases rapidly. At 500 m depth, Vmax ~  0.17 m·s-1 and RLCE ~ 75 km, and 

the dynamical LCE signal nearly vanishes below 1500 m depth (Vmax < 0.03 m·s-1). The proposed 

division into 3 distinct dynamical regions applies from the surface down to 500 m depth (Fig 5.a).

Figure 5: Annually-averaged LCE composite transects of (a) orbital velocities [m/s], (b) potential temperature [°C], (c) salinity 

[psu], (d) squared Brunt-Väisälä frequency (N2 in s-2) and (e) nitrate concentration [mmol·m-3]. Isopycnals anomalies (black 

contours) are superimposed on all panels. Vertical white lines delimit the three dynamical fields of the LCE composite. On panel 

e, dashed red lines highlights two specific iso-nitrate contours: 1 and 15 mmol·m-3.

The composite hydrological structure of modeled LCEs is shown in Fig 5.b and 5.c. The 

depression of isopycnals, associated with a depression of isotherms and isohalines, is characteristic of 

oceanic anticyclones. In the core of the eddies, the composite depicts a salinity maximum located 

between 100 and 300 m, corresponding to the signature of the Atlantic Subtropical UnderWater 

(ASTUW) of Caribbean origin entering the GoM through the Yucatan Channel (Badan et al., 2005; 

Hernandez-Guerra & Joyce, 2000; Wuust, 1964). This salinity maximum is not limited to the core of 

the LCE but gradually erodes and shallows: 36.82 psu at 200 m in the LCEs core and 36.61 psu at 150 

m in the background GoM common water. Details on the fate of this salinity maximum investigated 

with GOLFO12 simulations can be found in Sosa-Gutiérrez et al. (2020). The ASTUW layer (salinity >
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36.5 psu) is also thicker in the LCEs core (~190 m thick) compared to the background GoM water 

(~120 m thick). Overall, GOLFO12-PISCES reproduces the observed hydrological structure of LCEs 

(Elliott, 1982; LeHenaff et al., 2012; Hamilton et al., 2018; Meunier et al., 2018b).

The annually averaged LCE composite presents a lens-shaped structure exhibiting a ~50 m thick 

layer of weakly stratified waters located between 50 and 100 m depth (Fig 5.d). This subsurface modal 

water presents hydrological characteristics close to the observed background GoM waters (potential 

temperature ~25.4°C and salinity ~ 36.3 psu, Meunier et al., 2018b) and is surrounded below and above

by well stratified layers (Meunier et al., 2018a). The upper pycnocline varies seasonally and vanishes in

winter due to the deepening of the mixed layer, whereas the lower pycnocline is permanent. 

The downward displacement of isopycnals is accompanied by a depletion of nutrients in the 

upper layer of the LCEs core (Fig 5.e). This is a typical feature of mesoscale anticyclones in the ocean 

(McGillicuddy et al. 1998; Oschlies and Garcon, 1998). The 1 mmol.m-3 iso-nitrate concentration 

(hereafter ZNO3, sometimes referred to as the nitracline as in Cullen & Eppley, 1981; Pasqueron de 

Fommervault et al., 2017 or Damien et al., 2018) is located at ~ 70 m depth in the background GoM 

waters whereas it is found much deeper in the core (ZNO3 ~ 106 m). At depth, iso-nitrate layers and 

isopycnals are well correlated (Ascani et al., 2013; Omand & Mahadevan, 2014). For instance, iso-

nitrate concentration of 15 mmol·m-3 follows the displacements of the 1026.5 kg·m-3 isopycnal. 

However, above 150 m, the density/nitrate relation is different inside and outside the eddies (ZNO3 is 

collocated with isopycnal 1024.4 kg·m-3 in the LCEs core while it is on isopycnal 1024.9 kg·m-3 in the 

background GoM).

III.3/ Surface and vertical distribution of chlorophyll in LCEs
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Figure 6: LCE composite transects of [CHL] during summer season (A) and winter season (B). Density anomalies (black 

contours) are superimposed. Vertical white lines delimit the three dynamical fields of the LCE composite. For each season, [CHL]

profiles in the LCE core (r < 50 km, red lines) and in the background GoM (200 km < r < 330 km, gray lines) are plotted. Key 

metrics concerning [CHL] profiles are also indicated in the tables.

The large difference in stratification between the LCEs core and background GoM suggests a 

contrasted seasonal response of the [CHL]. This is evidenced by the analysis of summer and winter 

composites of [CHL] vertical distribution:

 In summer (Fig 6.a), [CHL]surf is ~ 30% lower in the LCEs core (r < 50km) than in the 

background GoM (200 km < r < 330 km). A pronounced DCM, characteristic of oligotrophic 

environments, is deeper in the core (~ 97 m) than in the background GoM (~ 69 m) with 

chlorophyll concentrations significantly lower in the interior (~ - 25%).
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 In winter, the [CHL] is maximum at the surface in all the composite domains (Fig 6.b). 

[CHL]surf is lower in the LCEs core compared to the background GoM but the difference is less 

marked (~ - 6%) than in summer. The main discrepancy is the depth of the inflection point of 

these profiles. It is deeper in the LCEs core (~-150 m), resulting in a more homogenized [CHL] 

over a deeper layer than in the background GoM (~-120 m).

However, despite reduced surface concentration both in winter and summer, the integrated 

chlorophyll content, [CHL]tot, shows a distinct seasonal pattern compared to the surface (tables in Fig 

6):

 In summer, [CHL]tot is lower in the LCEs core (27.58 mg·m-2) compared to the background 

GoM (29.41 mg·m-2) and ∆[CHL]tot = -1.83 mg·m-2,

 In winter, [CHL]tot is higher in the LCEs core (44.98 mg·m-2) compared to the background GoM

(38.03 mg·m-2) and ∆[CHL]tot = + 6.95 mg·m-2.

The winter increase of [CHL]tot is around 29% in the background GoM whereas it reaches 63% in the 

LCEs core, leading to [CHL]tot in the core being larger than [CHL]tot in the background GoM in winter. 

Meanwhile, [CHL]surf remains lower within the LCEs core. The fact that the [CHL] at the surface does 

not reflect its depth-integrated behavior means that the peculiar variability of [CHL] within LCEs may 

not be fully captured by ocean color satellite measurements. This is consistent with Pasqueron de 

Fommervault et al. (2017) and Damien et al. (2018) observations and modeling results which addressed

the vertical [CHL] distribution in the GoM. 
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Figure 7: (a) Anomaly of [CHL]tot in summer and winter seasons. Black circles indicate the radius in kilometers. (b) EOF 

decomposition of the normalized [CHL]tot anomaly. The spatial patterns and monthly magnitude (gray dots; the red line 

represents their monthly averaged value) of the two first modes are indicated. Modes 1 and 2 were summed together (upper 

panel) and represent 50.1% of the total variance.

[CHL]tot is strongly shaped by both the seasonal variability and the LCEs. The seasonal 

composites of [CHL]tot, shown in Fig 7.a, confirm the summer/winter contrast and highlight a 

monopole structure with a relatively homogeneous distribution of [CHL]tot within the eddy's core. In 

order to better characterize the spatio-temporal variability of [CHL]tot induced by LCEs, an Empirical 

Orthogonal Function (EOF) analysis was performed on the normalized [CHL]tot anomaly (Fig 7.b) 

following the methodology of  Dufois et al. (2016). It consists in decomposing the signal into 

orthogonal modes of variability. Here, we choose to focus on the first two most significant modes 

which explain 40.2% and 9.9% of the variability. Since they both depict a similar monopole structure 

in the LCEs core, they were added up in a mode referred to EOF 1+2 responsible for 50% of the total 

[CHL]tot variance within LCEs. The third eigenmode (not shown) accounts for 6.2% and depicts a 

dipole structure with opposite polarity located at the east and north of the eddy center. On average, the 
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EOF1+2 mode is positive in winter (from December to March) and negative the rest of the year (from 

April to November), with a maximum in January December and a minimum in September. This 

justifies, a posteriori, the choice to consider winter and summer LCE composites.

Figure 8: (a) Summer [CHL]tot, (b) winter [CHL]tot and (c) salinity of Caribbean waters (ASTUW defined as the subsurface 

salinity maximum) as a function of longitude in (red) the LCEs core, (blue) the LCEs ring and in (gray) the background GoM. 

Full lines indicate the averaged value and dashed lines the +/- one standard deviation interval.

 The composite evolution of the LCEs [CHL]tot along their westward journey is shown in Fig 8.a 

and 8.b. It illustrates how the total chlorophyll concentration is preferentially increased in winter within

the LCEs core, as soon as the LCEs are shed from the LC. The winter [CHL]tot within LCEs is much 

larger (exceeding one standard deviation) than the background winter [CHL]tot. In terms of integrated 

[CHL], the LCEs-induced seasonal variability overwhelms the GoM open-waters background seasonal 

variability. 

IV/ Discussion
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In an oligotrophic environment such as the GoM open-waters, the primary production is 

generally limited by nutrient supply and [CHL]tot exhibits low seasonal variability at the GoM basin 

scale (Pasqueron de Fommervault et al., 2017). The winter increase of [CHL]tot within the LCEs core 

(which translates into an effective increase of biomass, see appendix A) contrasts and may have large 

implications for the regional biogeochemical cycles and ecosystem structuration. It also echoes several 

studies which report elevated [CHL]surf within anticyclonic eddies in the oligotrophic subtropical gyre 

of the southeastern Indian Ocean (Martin and Richards, 2001; Waite et al., 2007; Gaube et al., 2013; 

Dufois et al., 2016, 2017; He et al., 2017), questioning the classical paradigm of low productivity 

usually associated with anticyclonic eddies. 

The mechanisms explaining the LCE impact on [CHL] are discussed below, trying to rationalize 

the respective role of abotic (e.g., trapping, winter mixing, Ekman pumping) and biotic processes (e.g., 

primary production (PP), grazing pressure, regenerated versus new PP).

IV.1 Eddy trapping

The distinct hydrological and biogeochemical properties associated with the LCEs core suggest 

their ability to trap and transport oceanic properties. This mechanism, known as the eddy-trapping 

(Early et al., 2011; Lehahn et al., 2011; McGillicuddy, 2015; Gaube et al., 2017), is efficient only if the

orbital velocities of the vortex are faster than the eddy propagation speed (Flierl, 1981; d'Ovidio et al., 

2013). The rotational velocities of the model LCEs are ~ 0.53m·s-1 are one order of magnitude larger 

than the propagation velocities (~ 0.046 m·s-1 on average). This suggests that LCEs might have a 
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certain ability to trap the water masses present in their core with relatively low exchanges with the 

exterior.

Salinity is well-suited to investigate water masses trapped within the LCEs core during their 

propagation toward the western GoM (Fig 8.c; Sosa-Gutierez et al., 2020): salinity distribution shows a

marked subsurface maximum that is not affected by biogeochemical processes. In the Western 

Caribbean Sea, ASTUW is characterized by high salinity (~ 36.9 psu on average) and low standard 

deviation (< 0.05 psu). The eastern GoM salinity field reveals that most of the ASTUW crosses the 

Yucatan Channel within the Loop Current. During the formation of LCEs, a significant part of 

ASTUW is captured into the LCEs core with low alteration of its properties (Fig 5.c and 8.c). Within 

the LCEs core, the water mass is transported from eastern to the western GoM where its salinity 

decreases from 36.9 psu to 36.7 psu. Although altered, the ASTUW signature is still clearly detectable 

in the GoM western boundary. The other part of ASTUW entering the GoM is found in the LCEs ring. 

Compared to the core, the salinity in the ring is on average lower (~ 36.8 psu in the eastern GoM) and 

presents a high standard deviation, pointing out that more recent ASTUW co-exists with older ASTUW

that yields lower salinity maxima. As LCEs travel westward across the GoM, salinity in the LCEs ring 

decays rapidly to reach values similar to the background GoM values (~ 36.6 psu). This 

homogenization mainly arises from vertical mixing and winter mixed layer convection (Sosa-Gutierez 

et al., 2020). Horizontal intrusions and filamentation may also contribute to this homogenization 

(Meunier et al., 2020). The composites also suggest that almost no ASTUW enters the GoM apart from 

the LCEs. The slight increase of the background salinity from eastern to western GoM is a consequence

of the diffusion of salt from the LCEs toward the exterior. 

Although LCEs undergo considerable decaying rates, their erosion is particularly strong in the 

ring while the core remains better isolated from the surrounding waters (Lehahn et al., 2011; Bracco et 
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al., 2017). Since no significant [CHL]tot seasonal variability is reported in the Western Caribbean Sea 

(Fig. 8), the biogeochemical behavior in the LCEs core has then to be driven by local processes with 

low influence of horizontal advective process from the ring or of the Caribbean waters trapped during 

the LCEs formation. Given that the LCEs core is also quite homogeneous, the following discussion 

relies on the analysis of the seasonal cycles of selected parameters averaged within the LCEs core.

IV.2 Nitracline depth and nutrient supply into the mixed layer

Figure 9: Climatological seasonal cycles of (a and b) nitrate concentration profiles (the red line overlaid is the average mixed layer

depth, the blue line is the base of the euphotic layer and the black line the nitracline), (c and d) the total primary production 

(blue) and the ratio of grazing rate over primary production (red) and (e and f) the new (blue) and regenerated (red) primary 

production. The left panels (a, c and e) refer to the seasonal time series in the LCEs core (r < 50 km) whereas the right panels (b, d
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and f) refer to the seasonal time series in the background GoM (r > 200 km). For each average cycle, the mean value is shown (full

line) along with its variability (+/- 1 standard deviation relative to the mean, dashed lines).

The LCEs impact the upper ocean stratification (Fig 5.d), the nutricline depth (Fig 5.e) and 

consequently the nutrient supply to the euphotic layer (McGillicuddy et al., 2015). The relationship 

between mixed layer deepening and nutrient supply is studied here by comparing the ZNO3 with the 

MLD (Fig 9.a,b).

In late-spring and summer (from May to September), the water column is stratified (shallow 

MLD) and the downward displacement of the isopycnals within the LCEs pushes nutrients below the 

euphotic zone (see also Figs 5.e, 6.a): less nutrients are available within the LCE cores for 

phytoplankton growth, explaining a deeper and less intense DCM. In winter, the convective mixing, 

fostered both by intense buoyancy losses and strong mechanical energy input at the surface, causes a 

larger deepening of the mixed layer within the LCEs core (~ - 125 m, Fig 9.a) compared to the 

background (~ - 85 m, Fig 9.b). This asymmetry is due to a pronounced decrease of the surface and 

subsurface stratification within the LCE core (Fig 5.d, Kouketsu et al., 2012). A quantitative diagnostic 

of the stratification is given by the columnar buoyancy, ∫
0

H

N2
( z ) . z .dz which measures the buoyancy 

loss required to mix the water column to a depth H (Herrmann et al. 2008). Fig 10.a reveals significant 

differences in pre-winter buoyancy between the eddy core and its surroundings. Assuming that the 

change in buoyancy content is mainly controlled by the buoyancy flux at the surface (see Turner 1973; 

Lascaratos & Nittis, 1998), it suggests that mixing the water column down to ~ -210 m depth requires 

smaller surface buoyancy loss in LCEs cores compared to the background GoM (Fig 10.b). 
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However, the larger winter deepening of the mixed layer within the LCEs core is not a sufficient 

condition to explain a larger nutrient supply. Indeed, it fosters the transport of nutrients from the 

nitracline toward the mixed layer because both are getting closer. Fig 10.c highlights that a smaller 

buoyancy loss mixes down the water column to greater nutrient concentration levels in the LCEs core 

compared to the LCEs surrounding. This likely explains the winter increase of surface nitrate 

concentration within the LCEs (Fig 9.a). In addition, a diagnostic of the different contributions to 

[NO3] evolution is proposed in appendix B. It shows the dominant role of vertical advection and 

diffusion in winter in providing nutrients to the euphotic layer in the LCEs core. 

Figure 10: (a) Columnar Buoyancy transect composite in summer, corresponding to pre-winter mixing season. Iso-nitrate 

concentrations (black contours) are superimposed. Vertical white lines delimit the three dynamical fields of the LCE composite. 

(b) Vertical increase of the columnar buoyancy in the LCEs core versus the background GoM. Colors refer to depth. (c) 

Columnar buoyancy loss required to mix the water column down to the iso-nitrate surface defined by the line color.
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So far we have assumed that the surface buoyancy fluxes are identical over the LCEs core and 

the background GoM. However, this is not strictly the case because temperature/salinity features in the 

LCEs and background waters are different (Fig 5.b,c; see also Williams 1988). The modeled surface 

buoyancy loss during winter season is ~18 % more intense within the LCEs. This difference is 

substantial and probably mainly driven by additional surface cooling applied on the warm LCE core 

through air-sea interaction. It contributes to enhance convection within the eddies core, and then 

nutrient supply toward the surface.

IV.3 Productivity and grazing

The primary productivity PPtot presents a clear seasonal cycle both in the LCEs cores and in the 

background GoM with lower values in October-November, a sharp increase starting in November, a 

maximum in February and a gradual decrease from March to October (Fig 9.c.d). The annual PPtot is 

slightly lower in the LCEs core (~ 142.4 mgC·m-2.d-1) than in the background GoM (~ 148.9 mgC·m-

2.d-1). The amplitude of the seasonal cycle is larger in the LCEs core: from April to November, PPtot is 

on average ~12% lower in the LCEs core whereas, in winter, PPtot is ~14% higher where it reaches ~ 

243.2 mgC·m-2.d-1 in February. Particularly in the LCE core, the PPtot seasonal cycle is tightly 

correlated with vertical mixing revealing the important role of mixing in the biogeochemistry. The 

relatively low standard deviation of the monthly PPtot distribution in the LCE core also supports the 

idea that the influence of the seasonal variability of the forcing largely overwhelms their interannual 

and sub-monthly variability (Fig 9.c).
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The ratio of the PPNtot and PPRtot provides information about the mechanisms controlling the 

biomass growth (Fig 9.e and 9.f). In winter, the PPNtot plays a leading role, reaching up to 113-147 

mgC·m-2·d-1, driven by the winter mixing and induced NO3 fluxes (see Appendix B). Conversely, the 

PPRtot is dominant from April to October. During this period, low NO3 resources are available in the 

euphotic layer and the ecosystem preferentially uses ammonium to sustain the PPtot. This seasonal 

pattern is characteristic of oligotrophic environments such as the GoM open waters (Wawrik et al., 

2004; Linacre et al., 2015). In winter, changes in PPtot are correlated to the intensity of winter mixing in

the LCEs core (Fig 9.c) and the background GoM (Fig 9.d). The larger PPNtot in the eddy core is 

consistent with a larger supply of NO3 and evidences that the core of anticyclones can be preferential 

spots of enhanced biological production.

The pressure exerted by zooplankton grazers varies seasonally  (Fig 9.c .d). It shows a similar 

seasonal cycle in the LCEs core and in the background GoM. On average, ~ 90% of the total growth is 

consumed by grazers, reaching the highest impact in March, just one month after the peak season of the

PPtot in both areas. In February the difference between the primary production and the grazing rate 

tends to be larger in the LCEs core (GRZtot/PPtot = 0.95 +/- 0.08) than in the GoM background 

(GRZtot/PPtot = 0.96 +/- 0.13, Fig. 9.c), leading to an enhanced net primary production. Considering the 

ecosystem from a “top-down” perspective, the grazing rate also participates then in enhancing [CHL]tot 

within the LCEs core compared to the background. 

IV.4 Eddy-wind interactions

In summer, the total primary production is higher in the background GoM waters as the 

regenerated production rate is higher. Since grazing is known to be a major contributor of the recycling 
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loop in the euphotic zone (Sherr and Sherr, 2002), the lower grazing rate inside the LCE during 

summer (Fig. 9.c.d.) likely explains this lower regenerated production. In addition, the biogeochemical 

consumption of nitrate that foster the production of organic matter occurs in a deeper layer within the 

LCEs core compared to the background GoM (Fig. B1. e. f.). It is then more likely exported out of the 

euphotic layer in the form of settling particle, leading to lower remineralization rates in the upper layers

to feed regenerated production. More surprising, the new primary production exhibits similar rates in 

both regions, although NO3 depletion occurs deeper in the LCEs core. In the absence of a strong 

enough vertical mixing when the mixed layer is shallow, this apparent mismatch requires an additional 

mechanism, vertical advection, capable to supply NO3 to the euphotic layer (Sweeney et al., 2003; 

McGillicuddy et al., 2015).

The model vertical velocity in the LCEs reveals an upward pumping in their core (Fig 11). The 

vertical velocity between 100 and 500 m is on average + 0.07 m·day-1. This vertical transport is mainly 

driven by two mechanisms, eddy pumping (Falkowski et al., 1991) and eddy-wind interaction (Dewar 

and Flierl, 1987), but their relative importance is difficult to quantify (Gaube et al. 2014; McGillicuddy

et al., 2015). 

The eddy pumping mechanism is related to the decay of the rotational velocities from the 

moment LCEs are released from the Loop Current. In the LCE core, this decay is considered as 

moderate since lateral diffusivity is expected to be relatively low (section V.1). This process may 

however be considerable in the LCE ring where the erosion rates are important (Meunier at al., 2020).
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Figure 11: Annually-averaged LCE composite transects of vertical velocities (m/day). Isopycnals anomalies (black contours) are 

superimposed on all panels. Vertical white lines delimit the three dynamical fields of the LCE composite.

Eddy-wind interactions are due to mesoscale modulation of the Ekman transport, so that they are 

often qualified as eddy-Ekman pumping (He et al, 2017). Following the observation of a LCE core in 

quasi-solid body rotation, the horizontal vorticity varies little with the radius resulting in a negligible 

“non-linear” contribution of the Ekman pumping (McGillicuddy et al., 2008; Gaube et al., 2015). 

Assuming a small effect of the eddy SST-induced Ekman pumping, the total Ekman pumping 

simplifies into its “linear” contribution computed as W E=
∇ × τ

ρ0 . (f +ζ )
, where ρ0 is the surface density, f 

the Coriolis parameter, τ the stress at the sea surface depending on both the wind and ocean currents at 

the surface (Martin and Richards, 2001, equation 12) and ∇× the curl operator. Considering uniform 

wind velocities ranging from 4.5 to 7.5 m·s-1 (Nowlin & Parker, 1974; Passalacqua et al., 2016) 

blowing over the LCE, the curl of the stress arises from the anticyclonic surface circulation generated 

by the eddy. Its manifestation is a persistent horizontal divergence at surface balanced by an upward 
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pumping in the eddy interior (see Martin & Richards, 2001; Gaube et al., 2013, 2014 for further 

details). With ρ0 ~ 1023 kg·m-3 and f ~ 6.2.10-5 s-1, we estimate WE to range from + 0.06 to 0.13 m·day-

1, in agreement with the modeled vertical velocity within the core. The Ekman-eddy pumping 

mechanism could explain a large fraction of the gradual upwelling within the eddy’s core (Fig. 11) and 

may actively contribute to the advective vertical flux of nutrients (see Appendix B). In summer, this 

mechanism could explain why new primary production rates are similar in the LCEs core and the 

background GoM waters although the nutrient pool is located much deeper in the LCEs core.

The eddy-Ekman pumping persists in the LCEs core throughout their lifetime as long as there is 

a wind stress applied at the surface. During wintertime, we expect that both vertical mixing and eddy-

Ekman pumping participate to increase the new primary production. A question then arises on the 

relative contribution of winter mixing to eddy-Ekman pumping in the LCEs core primary production 

increase in winter. This issue was tackled by He et al. (2017) and Travis et al. (2019) comparing the 

rate of change of the mixed layer depth with the vertical velocity induced by the eddy-Ekman pumping 

(equation 4 in He et al, 2017). In the GoM, even if the wind shows larger magnitudes in winter, it is 

also associated with a large variability. As a consequence, the variability of Ekman pumping is also 

found large and a robust seasonal cycle which would allow to isolate the Ekman pumping in winter 

cannot be clearly identified. However, in the LCEs core, we estimate the mixed layer to deepen at 

roughly 0.8 m·day-1, which is on average about one order of magnitude larger than the higher bound of 

the estimated pumping mechanism typically occurring in winter in response to stronger wind events. 

This supports winter mixing as the overwhelming process for the LCEs-induced primary production 

peak in winter.

V/ Summary and perspectives
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The [CHL] variability induced by the mesoscale Loop Current Eddies in the Gulf of Mexico is 

studied by analyzing vortex composite fields generated from a coupled physical-biogeochemical model

at 1/12° horizontal resolution. LCEs are hotspots for mesoscale biogeochemical variability. Despite the 

[CHL]surf negative anomaly associated with their core (r < 50 km), model results indicate that LCEs are 

associated with enhanced phytoplankton biomass content, particularly in winter. This enhancement 

results from the contribution of multiple mechanisms of physical-biogeochemical interactions and 

contrasts with the background oligotrophic surface waters of the GoM. 

The main results of this study are: 

 LCEs cores present a negative surface chlorophyll anomaly,

 Unlike [CHL]surf, [CHL]tot is larger in the LCEs cores compared to the background GoM in 

winter. 

 LCEs core trigger a large phytoplankton biomass increase in winter,

 The winter mixing is a key mesoscale mechanism that preferentially supplies nutrients to the 

euphotic layer within the LCEs core. Consequently, it drives an eddy-induced peak of new 

primary production,

 Ekman-eddy pumping is a significant mechanism for sustaining relatively high new primary 

production rates within LCE cores during summer.

The phytoplankton biomass increase in individual LCEs cores suggests that LCEs play an important 

role in sustaining the large-scale GoM productivity. 

GOLFO12-PISCES provides numerical results which were largely confronted to observations. 

This extensive validation gives confidence about its ability to produce realistic seasonal and mesoscale 

variability of biogeochemical tracers at surface and sub-surface, in particular the one associated with 
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LCEs. However, biases are inherent to model and might affect the main conclusions drawn. For 

example, in-situ measurements reveal an intense variability of [CHL] vertical profiles in winter that the

model tends to underestimate (Green et al., 2014; Damien et al., 2018). In particular, some individual 

observed profiles in winter present a DCM while GOLFO12-PISCES largely favors well mixed [CHL] 

profiles. The under-representation of these profiles, potentially due to a relatively coarse model 

resolution, could be associated with an under-estimation of [CHL]tot in winter. The results exposed in 

this study would require further confirmation, notably by more sub-surface in-situ measurements, in 

particular within the core of LCEs where no [CHL] profiles were observed in winter. 

Although the biological response to LCEs may present some specificities due to the particular 

dynamical nature of LCEs, this study suggests potentially generic insights on the biogeochemical role 

that anticyclonic eddies could play in oligotrophic environments. It echoes the previous works of 

Martin and Richards (2001), Gaube et al. (2014, 2015) and especially Dufois et al. (2014, 2016) and He

et al. (2017) who proposed winter vertical mixing as an explanation for the positive [CHL]surf anomaly 

observed in anticyclones in the South Indian Ocean. One of the most crucial points to be underlined 

from our results is that the enhanced primary production and biomass content within anticyclonic 

eddies may not necessarily be correlated with the surface layer variability. In oligotrophic areas, the 

integrated content of chlorophyll in the water column has to be considered. This implies that caution 

should be exercised in the analysis and interpretation of [CHL]surf observed by remote sensing 

instruments and highlights the crucial need for in-situ biogeochemical and bio-optical measurements. 

In oligotrophic environments, defined by their low production rates and their low chlorophyll 

concentration, anticyclonic eddies are able to trigger local enhanced biological productivity and 

generate phytoplankton biomass positive anomalies. In a scenario of expansion of oligotrophic areas 

(Barnett et al., 2001; Behrenfeld et al., 2006; Polovina et al., 2008), the fate and role of mesoscale 

anticyclones is an important aspect to be considered.
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This study focuses on mesoscale physical-biogeochemical interactions which is the spectral 

range resolved by GOLFO12-PISCES configuration. It evidences the important role of mixing on 

primary production in the LCE core at seasonal scale. However, mixing also presents significant 

fluctuations at higher frequencies, associated with particular atmospheric events like storms. The PPtot 

response to such forcing requires further investigation to verify if the correlation between PPtot and 

mixing still hold on at higher frequencies where additional other drivers might also become important. 

For instance,  the role of submesoscale is of particular interest since it has been proved to trigger 

mechanisms of significance importance for biogeochemistry (Levy et al., 2018). Higher model 

resolutions can locally enhanced density gradients (Levy et al., 2012; Omand et al., 2015) leading to 

ageostrophic circulations that perturbs the circular flow around vortices (Martin and Richards, 2001) or

enhanced vertical velocities that potentially foster the nutrient supply to the euphotic layer. Beside the 

mesoscale Ekman pumping located at the eddy center, eddy-wind interactions also produce vertical 

velocities at the eddy periphery (e.g. Flierl and McGillicuddy, 2002). Finally, it is also worth noting 

that anticyclonic mesoscales eddies are capable of trapping near-inertial energy waves in the ocean  

(Kunze 1985, Danioux et al. 2008, Koszalka et al. 2010, Pallas-Sanz et al., 2016) where they produce 

vertical recirculation patterns (Zhong and Bracco, 2013). Even if, some of these dynamical aspects are 

partially resolved at 1/12° horizontal resolution, higher resolutions simulations with higher frequency 

outputs are necessary to correctly assess their specific impact.
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APPENDIX A: CHL/C-biomass ratio and ecosystem structure 

[CHL] is widely used as a proxy for phytosynthetic biomass (Strickland, 1965; Cullen, 1982). 

However, in addition to depend on phytoplankton concentration, it is also affected by several other 

factors mainly produced by intracellular physiological mechanisms (Geider, 1987). In particular, 

photoacclimation processes have been proved to be determinant to explain [CHL]surf variability in 

oligotrophic areas (Mignot et al. 2014). In the GoM open-waters, this issue was specifically addressed 

at a basin scale in Pasqueron de Fommervault et al. (2017) considering in-situ particulate 

backscattering measurements and in Damien et al. (2018) from modeling tools. They both reach the 

same conclusion: [CHL]tot variability provides a reasonably good estimate of the total C-biomass 

variability ([PHY]tot). 

This is confirmed by the small amplitude of the seasonal cycle of the ratio [CHL]tot/[PHY]tot in 

the background GoM (0.256 +/- 0.004 g·mol-1 averaged throughout the year, Fig A1). In the LCEs 

core, this statement is still valid but must be qualified, since the ratio [CHL]tot/[PHY]tot presents small 

but significant changes through the year (Fig A1.a). It is around 0.24 g·mol-1 from March to November 

and increases sharply in December to reach about 0.32 g·mol-1 in January and February. As a result, in 

winter, the photoacclimation mechanism accounts for ~25% of the total [CHL]tot increase (the 

remaining part being an effective phytoplankton biomass increase). In summer, the ratio 

[CHL]tot/[PHY]tot is slightly lower in the LCEs core compared to the background GoM. As a 

consequence, the [CHL]tot negative anomaly associated with LCEs core does not necessarily translate 

into a [PHY]tot negative anomaly. 

Overall in the GoM open-waters, there is a dominance of the small-size phytoplankton over the 

large-size class in proportion closed to 80%:20% (Linacre et al., 2015). Although the modeled 
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ecosystem structure is relatively simple, this typical community size structure is well reproduced by 

GOLFO12-PISCES (Fig A1.c and A1.d), that also suggests a shift in the ecosystem structure in winter. 

The different response among size classes results from the enhancement of nutrient vertical flux. The 

role of “secondary” nutrient in this change in the community composition must not be overlooked also, 

in particular for diatoms (accounted in the model’s large-size group) since they also uptake on silicate 

(Benitez-Nelson et al., 2007). Moreover, GOLFO12-PISCES exhibits a modulation of the ecosystem 

structure by LCEs. The dominance of small-size phytoplankton is slightly more marked in summer and 

the winter shift is stronger in the LCEs core.

Figure A1: Climatological seasonal cycles of (a and b) the CHL/C-biomass ratio and (c and d) the vertically integrated content of 

phytoplankton concentration (small size in blue, large size in red). The left panels (a and c) refer to the time series in the LCEs 

core (r < 50 km) whereas the right panels (b and d) refer to the time series in the background GoM (r > 200 km). For each 

average cycle, the average value is shown (full line) along with its variability (+/- 1 standard deviation relative to the mean, dashed

lines).
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APPENDIX B : Nitrate budget at a seasonal scale

Nutrients availability in the euphotic layer is a key mechanism to trigger biomass increase in 

LCEs. The processes driving the seasonality of nutrient concentrations are here investigated diagnosing

the different contributions to nitrate concentrations (hereafter [NO3]) variability. The goal is to confirm 

the vertical transport of nutrients and quantify the budget in order to determine the driving mechanisms.

The analysis is restricted to nitrate concentrations, considered as the main limiting factor for large size-

class phytoplankton growth in the GoM (Myers et al., 1981; Turner et al., 2006), although phosphates 

and silicates are also modeled. We do not exclude that phosphates or silicates could also play a 

significant role. In cylindrical coordinates, the [NO3] equation reads: 

∂ NO3

∂ t
=−V r

∂ NO3

∂ r⏟
radial advection

−
V θ

r
∂ NO3

∂ θ⏟
azimuthal advection

− V z

∂ NO3

∂ z⏟
verticaladvection

+
Dl

r
∂

∂ r (r ∂ NO3

∂ r )+ Dl

r2

∂2 NO3

∂θ2
⏟

lateral diffusion

+∂
∂ z (K z

∂ NO3

∂ z )
⏟

verticaldiffusion

+ SMS⏟
Sourcemenus sink

+ Asselin

.

Basically, this is a 3D advection-diffusion equation with added "sources and sinks" terms, namely 

biogeochemical release and uptake rates. One must include also an "Asselin term", a modeling artifact 

due to the Asselin time filtering. We focus on the seasonal cycle of three particular trend terms: the 

vertical mixing (Fig B1.a and B1.b), the vertical advection (Fig B1.c and B1.d) and a "source menus 

sink" term (Fig B1.e B1.f). 

[NO3] variations from vertical dynamics are mainly positive, especially in the first 100 m of the 

water column. This traduces in year-round NO3 source driven by physical processes. By contrast, 

biogeochemical processes consume NO3 in the upper layer to sustain the primary production (Fig B1.e 

and B1.f). In the sub-surface layer (~ below the isoline on which nitrate concentration is equal to 2 

mmol.m-3), the process of nitrification constitutes a biological source of [NO3]. To first order, this 

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750



38

represents the global functioning of the ecosystem, valid in both fields and throughout the year. 

However, the seasonal cycle strongly influence the magnitude of these trend terms, in particular in the 

LCE core.

In winter, from December to February, vertical advective and diffusive motions produce an 

increase of [NO3] within the mixed layer. This tendency consists in an advective entrainment resulting 

from the deepening of the mixed layer which mainly acts to increase [NO3] at the base of the mixed 

layer (Fig B1.c and B1.d) and vertical mixing which redistributes vertically the nutrients and tends to 

homogenize [NO3] in the mixed layer (Fig B1.a and B1.b). The winter [NO3] increase is most important

in the LCE core at the base of the mixed layer (~ + 6.5.10-7 mmol·m-3·d-1, nearly 3 times larger than in 

the background GoM), attesting here a preferential NO3 uplift due to deeper convection. Integrated 

over the mixed layer, the winter vertical fluxes produce [NO3] enhancement of ~ 2.4.10-5 mmol·m-2·d-1 

in the eddy core whereas it is only of ~ 1.6.10-5 mmol·m-2·d-1 in the background GoM. This also 

explains why, on average, the density/nitrate relation differs in the LCEs core (Fig 5.e). In response, the

[NO3] tendency due to biogeochemical processes indicates an increase of the [NO3] uptake. This 

increase is about 1.5 times larger in the core (~ - 1.3.10-3 mmol·m-2·d-1 integrated over the mixed layer) 

than in the background GoM (~ - 0.9.10-3 mmol·m-2·d-1). Knowing that it feeds biomass production, this

[NO3] loss is consistent with the primary production peak in winter (Fig 9.e and 9.f).

 

 In summer, [NO3] variations due to vertical processes are smaller than in winter. They are also 

weaker in the LCEs core upper layer (almost nil in the 0-50m layer) compared to the background GoM,

consistent with a deeper NO3 pool and a shallow mixer layer. In the eddy core, one can assume that the 

NO3 vertical supply is entirely consumed before reaching 50m. Below 50m, vertical [NO3] diffusive 

trends are consistently more important in the background GoM, in agreement with a steeper nitracline 

(Fig 5.e). In contrast, vertical [NO3] advective trends in the eddy core are similar to or can eventually 
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exceed the trends in the background GoM (as in September and October for example). This confirms a 

pumping mechanism to sustain primary production in summer within the eddy core (section V.4) The 

biogeochemical activity related to [NO3] variations is also less intense in summer compared to winter. 

The depth of maximum [NO3] uptake is located just above the DCM and [NO3] release below. The loss 

of [NO3] is about twice larger in the background GoM (~ - 0.9.10-7 mmol·m-3·d-1) than in the LCEs core

(~ - 0.5.10-7 mmol·m-3·d-1). It is noteworthy that the biogeochemical [NO3] source term, namely the 

nitrification rate, is really low within the eddy core.

To close this analysis of the [NO3] budget, it must be said that lateral diffusion and Asselin 

tendencies are marginal terms compared to the others. Horizontal advection is of the same order of 

magnitude as the vertical terms and mainly acts to redistribute horizontally the NO3 vertically moved 

(see supplementary material 1). 

Figure B1: Seasonal cycle of nitrate trend terms in the (left column) LCEs core and in the (right column) background GoM. The 

trend induced by (a and b) vertical mixing, the (c and d) vertical advection and the (e and f) biogeochemical source minus sink are 

represented. Isopycnals anomalies (gray contours) and the depth of the mixed layer (black line) are superimposed.
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