

1 **Ideas and perspectives: Ushering Indian Ocean into the UN**
2 **Decade of Ocean Science for Sustainable Development**
3 **(UNDOSSD) through Marine Ecosystem Research and**
4 **Operational Services – An early-career’s take**

5

6 Kumar Nimit

7 Indian National Centre for Ocean Information Services (INCOIS), Ministry of Earth Sciences (MoES),
8 Hyderabad-500090, India

9 *Correspondence to:* nimitkumar.j@incois.gov.in

10

11 **Abstract.**

12 The Indian Ocean-rim hosts many of the world’s underdeveloped and emerging economies that depend on the
13 ocean resources for the livelihoods of the populations of millions residing in. Operational ocean information
14 services cater to the requirements of managers and end-users to efficiently harness those resources, and to
15 ensure safety. Fishery information is not the only operational services that will be needed to empower such
16 communities in the coming decades. Coral bleaching alerts, SCUBA-assist advisories, conservation or
17 ecotourism assist services (e.g. Turtle-watch/Whale-watch), poaching/bycatch reduction support,
18 jellyfish/microplastic/oil-spill watch are to name a few, but not an exhaustive list of the services that are needed
19 operationally. This paper outlines existing tools, and explores the ongoing research that has potential to convert
20 the findings into operational services in near-to-mid term.

21

22 **Keywords:**

23 Ecosystem, IIOE-2, Operational Services, UN Decade of Ocean, Perspectives

24

25 **1. Introduction**

26 About a third of the world population reside in the Indian Ocean -rim (IOR) countries. This is projected to
27 increase and may reach to 50% of the global populations by the year 2050 (Doyle, 2018); whose lives and
28 livelihoods are inherently intertwined with the Indian Ocean and its dynamics. These countries have very
29 diverse cultures and philosophies. Their financial capabilities vary widely and so do their aspirations and world-
30 views. The IOR countries thus present a confluence of ideologies to a manager, with their vivid and vibrant
31 demographics that have very different challenges and opportunities. Majority of the IOR countries have either
32 expansive or stationary population pyramid profile, with limited land resources. Their nutritional and
33 employment needs will have more reliance on the Indian Ocean in coming decades. Marine ecosystems are a
34 promising source for the nourishment of populations and at the same time, are under more serious threats than
35 ever before. As more people are brought up from the poverty, consumerism is poised to extend to larger parts of
36 the population, which will create concerns for the health of the adjoining ocean ecosystems.

37 The International Indian Ocean Expedition (IIOE) conducted during 1962-1965, was the first major attempt to
38 study the Indian Ocean, its processes and diversity. It resulted into many multidisciplinary collaborations and
39 gave birth to institutions such as National Institute of Oceanography (NIO) in India. The second IIOE (IIOE-2)
40 was observed during 2015-20 commemorating five decades of the first IIOE, and witnessed even greater
41 participation globally. It has been underlined on the onset IIOE-2 that, the Indian Ocean is one of the relatively
42 poorly studied oceans of the world (Hood et al., 2016). It is thus important to ensure that the resources from this
43 unique (land-locked from the north) ocean are harnessed in harmony with sustainability, and with the equal
44 opportunities. For the successful planning and execution, it is imperative for the resource managers to have
45 community participation (Martini et al., 2017). Hence, it is especially important for the IOR countries to chart
46 the right path at the eve of the United Nations Decade of Ocean Science for Sustainable Development
47 (UNDOSSD, 2021-2030).

48 Advancement of geosciences in last century has provided us many tools to cope with the changing environment
49 and associated challenges. The role of providing such insights in the twenty first century is shifting to
50 operational oceanography (OSOS, 2019). Operational oceanography is defined as systematic and sustained
51 ocean observations which are converted into outputs as per the stakeholder/user requirements; using the
52 scientific research done in the development of those outputs. Operational ocean services are the mechanism
53 through which these outputs are disseminated effectively (often, in real-time or near real-time) and feedbacks
54 are collected on users' experience and needs (Fig.01). Robust combination of observations and modelling,
55 artificial intelligence, effective tools of interpretation and user-friendly dissemination of information can change
56 millions of lives dependent on the oceans. This paper hypothesizes that the best possible approach to win the
57 community attention (and to invoke the responsible ownership of the resources) is to engage the communities
58 with the operational ecosystem related services. Further, this paper explores the regional needs and solutions
59 based on presently available data and technologies.

60 **2. Marine Ecosystem Research and operational Services (MERS)**

61 The marine ecosystem related operational ocean information and forecasts services (or products as a service)
62 can be grouped into three major categories based on their prime objectives. The first type of services is related
63 to resource management, conservation and support to livelihood. The second type comprises of services that
64 deal with threats to the ecosystem. The third group is of the solutions for community engagement and
65 dissemination.

66 2.1 Services to cater resource management, conservation and livelihood

67 Under the decadal initiative, the UN Sustainable Development Goal (SDG)-14 (Life below water) will receive
68 significant attention, which heavily relies on remote sensing data in general and in particular, on Ocean Color
69 (OC) observations. In the late 90's, the OC science achieved operational status (after a decade long hiatus post-
70 CZCS era) due to adequate satellite coverage. Since then researchers have made extensive use of these data
71 despite often encountering spatial (clouds and sun-glint), temporal (daily once, daytime only coverage) or
72 spectral (fixed, limited bands) limitations. The applications range wide from fisheries and aquaculture to
73 Harmful Algal Bloom monitoring to estimating productivity and carbon budgeting (Wilson, C., 2011).
74 However, there are limitations with regard to predictability of the base of the food pyramid itself. There are
75 global products for primary production such as Vertically Generalized Productivity Model that are developed
76 with relatively low observations of the Photosynthesis-Irradiance parameters from the Indian Ocean. It is thus
77 very important for the IOR countries to have regional Primary Productivity models for operational applications.
78 This could be taken up as a priority during the UNDOSSD.

79 This decade is chiefly important due to the planned launch of an operational hyperspectral mission named
80 PACE (Plankton, Aerosol, Cloud, ocean Ecosystem), by NASA (National Aeronautics and Space
81 Administration, USA) in the early 2020's. A hyperspectral sensor scans oceans with high-resolution of as much
82 as 1nm wavelength for the entire visible spectrum, that enables the researchers to begin a new era in the OC
83 sciences due to its potential of developing a plethora of applications. This includes but is not limited to better
84 resolving phytoplankton functional types, fishery resource management and ecosystem health monitoring. The
85 latter is more important especially for the second type of services and is discussed in detail in a subsequent
86 section.

87 At the same time, the temporal limitations seem to be mitigated through various approaches such as using the
88 Day-Night Band data or OC data from the geostationary orbit such as Geostationary Ocean Color Imager
89 (Miller et al., 2013; Ruddick et al., 2014). When OC science follows the footsteps of other satellite types, we
90 may also have a "swarm" of nano-satellites or cubesats – further improving temporal and up to some extent,
91 spatial coverage as well. This however needs to be rightly balanced with the concerns of overcrowding the
92 orbits and associated complexities (Bruinsma et al., 2021). Studies are required to shed light on the fate of ocean
93 observations platforms (chiefly, drifting platforms) and setting up best-practices, to minimize their contribution
94 to marine debris. Placement of HICO (Hyperspectral Imager for Coastal Ocean) on International Space Station
95 (ISS) reminds us that the OC science may not be limited to satellite remote sensing in coming decades
96 (Huemannrich et al., 2017). Validations, sampling protocols, inter-comparison exercises and training for all of

97 these will be needed. Modelers are putting efforts to assimilate data products into numerical models or, making
98 use of surface information for better resolving subsurface characteristics. Others strive for carbon, or heat-
99 budgeting. With more than two decades of uninterrupted observations, (applying the rule of thumb of minimum
100 30 years' time-series) we are a few years away of making use of OC data for climate applications.

101 There are some proven (e.g. telemetry) and emerging (e.g. eDNA) tools that can help researchers for the
102 services related to higher trophic levels (Costa et al., 2010; Stat et al., 2017). These tools are very useful in
103 providing vital information habitat utilization, migration, environmental preferences and presence-absence
104 analysis. The research can then support the operational services that cater to sustainable resource management,
105 prevention of bycatch or help reduce accidental mortality. TurtleWatch advisory by NOAA (National Oceanic
106 and Atmospheric Administration, USA), is the best suited example for the majority of the Indian Ocean
107 countries (Howell et al., 2015). Other species for which such products are very much needed in the operational
108 mode are Cetaceans, Sharks and marine mammals.

109 The operational services that can predict the movement and presence of these animals are required for
110 conservation authorities who can then effectively design protected areas, do better marine spatial planning or
111 monitor potential hotspots for poaching or IUU (Illegal, Unreported and Unregulated) fishing. Additionally
112 these can also support the ecotourism (e.g. WhaleWatch) as an alternate livelihood for the fishermen that face
113 capture fishery as a less lucrative occupation. Ecotourism needs support from operational services monitoring of
114 mangroves and corals as well. Innovative ideas that put together existing observations and forecasts (e.g. water
115 clarity from OC satellite data, currents and wave-height forecasts from numerical model simulations, and coral
116 health i.e., no-bleaching/stress alert with the help of satellite-based SST), and generate novel products (e.g.,
117 SCUBA-buddy advisories), will support dive operators in many of the IOR-countries, especially the SIDS
118 (Small Island Developing States). Mariculture (open ocean cage culture) is emerging as another area of
119 livelihood as an alternate to the capture fishery and is poised to be more feasible at wider areas with newer
120 designs of submerged cages (Korsøen et al., 2012).

121 Acoustics is another tool that can support development of operational services for various stakeholders.
122 Acoustic telemetry is useful for the species to which satellite telemetry isn't suitable due to various reasons
123 (Crossin et al., 2017), whereas the field of bioacoustics has been furthered into many sub-branches. The
124 estimation of zooplankton biomass with the help of acoustic backscatter isn't only limited to moored buoys and
125 these techniques have transcended to AUVs (Autonomous Underwater Vehicles), aptly called zooglider (Ohman
126 et al., 2019). Such surveys are vital for zooplankton and ichthyoplankton distribution monitoring, and for
127 ecosystem models that would connect the regional PP products to the higher trophic levels. Bioacoustics is also
128 used for monitoring the marine animals' movements by listening to the underwater sounds, often through
129 Passive Acoustic Monitoring (PAM), which would be one of the less intrusive ways of study (Brwonig et al.,
130 2017).

131 2.2 Services to mitigate threats to the ecosystem

132 Many of the human activities can be nuisance to the marine environment in different ways and anthropogenic
133 sound in the ocean is one such example (Williams et al., 2015). Future operational services will need to account
134 for and develop ways to monitor the oceanic soundscape.

135 Another common anthropogenic impact on the marine ecosystems is transport and introduction of alien (non-
136 native) species through the ballast water. These species when lack natural predators, are often turn out to be
137 invasive species and throw off the local ecological equilibrium (Bailey S.A., 2015). Oil spill is yet another
138 source of pollution from the ships. These can be addressed up to certain extent by monitoring vessel AIS
139 (Automatic Identification System) data and applying artificial intelligence-machine learning (AI-ML) tools to
140 identify the ship behavioural patterns prior to such discharges; and then use it as predictive model (Soares et al.,
141 2019).

142 Plastic adversely impacts the marine environment in multiple ways. The known pathways include ghost fishing
143 (entanglement), ingestion, bioaccumulation and allied effects, as well as transport of alien species and
144 pollutants. Among the top-20 countries globally with inadequately managed plastic as a source to the ocean, half
145 are the IOR countries. All of the Bay of Bengal peripheral countries face the issue of land-plastic management
146 (Jambeck et al., 2015). Thus, the Bay of Bengal needs to be a prime focus to monitor the oceanic and beach
147 debris in the mission mode, with the triad of *in-situ* surveys, dispersion models and latest remote sensing
148 techniques (Martínez-Vicente et al., 2019). Whether it is about addressing entry of the plastic from land to
149 ocean, or sustainable exploitation of shared fish stocks; progressive and tangible engagement among
150 stakeholders through forums such as SAARC (South Asian Association for Regional Cooperation), BIMSTEC
151 (Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation), WIOMSA (Western Indian
152 Ocean Marine Science Association) or RIMES (Regional Integrated Multi-Hazard Early Warning System for
153 Africa and Asia), is a necessity.

154 On the other hand, mass sink of jellyfish swarming has been reported in the Arabian Sea (Billet et al., 2006).
155 Jellyfish swarms are known to be disruptive to fisheries and to the cooling water intake facilities of coastal
156 industries with causes little known, and thus the need for development of predictive capabilities. The Arabian
157 Sea also witnesses large scale blooms of *Noctiluca scintillans* and research in recent years may provide the
158 foundation for the bloom forecasting (Xiang et al., 2019). Crashing of jellyfish swarms or algal blooms have
159 implications to the deep sea ecology, particularly in regions such as the Arabian Sea, which has prominent
160 oxygen minimum zone (OMZ) (Rixen et al., 2020). Stratified waters such as those of the northern Indian Ocean
161 basins have implications for large pelagic, which may face additional fishing pressure with the expansion of the
162 OMZs due to shrinkage of the habitat (Nimit et al., 2020).

163 2.3 Effective dissemination and user-engagement

164 While it is important to have robust observations and modelling capabilities in order to generate operational
165 services and products, it is equally important to have effective dissemination. Presently, the IOR countries rely
166 on information dissemination through conventional modes that are almost entirely land-based. Dissemination of
167 operational services onboard has its own benefits during fair weather as well in terms of fuel saving. However,

168 due to limitation of cellular signal support at sea, it is imperative that a full-fledge dissemination system should
169 be supported through satellite communication (Singh et al., 2016). This results in episodes such as cyclone
170 Ockhi wherein lack of timely alerts costs many lives (Roshan M, 2018). Such dissemination systems are to be
171 provided along with feedback mechanism, to validate the services in real or near-real time. The feedbacks also
172 open new avenues of data collection. Crowdsourcing of data gathering could play an essential role in making
173 seafarers eyes and ears of the scientists (Kelly et al., 2020).

174 **3. Recommendations**

175 All of the seven themes of the UNDOSSD have major implications to the needs of the IOR countries, and has
176 stakeholders at its heart. Hence, operational services can be one of the most important approaches for the
177 community engagement in the fulfilment of theme's goals. The existing frameworks of IIOE-2 and others (e.g.
178 RIMES) may be utilized to ensure that the IOR countries can share their know-how (e.g. digital
179 gene/metabarcoding bank) and have access to the operational services, which will fulfil 'transparent ocean' and
180 'inspiring and engaging ocean' goals. Reliable maps of oil-spill and marine debris are essential for meeting the
181 goal of 'clean ocean'. In addition to the adverse physical sea-state, algal bloom and jellyfish swarming
182 predictions are required for achieving 'safe ocean' objective. Coral-bleaching and SCUBA-buddy advisories can
183 form important pillar to 'healthy and resilient ocean' by supporting ecotourism-based alternate livelihood.
184 Telemetry, acoustics and genomics aided by satellite data and model simulations will enable us in managing
185 responsible fisheries through the virtue of 'predictive ocean'. This can in turn ensure 'sustainable and productive
186 oceans' for the coming generations.

187

188 **Acknowledgements**

189 The author acknowledges support from Scientific Committee on Oceanic Research (SCOR). The author also
190 thanks Director, INCOIS for the motivation for this study. The author is grateful for the support and
191 encouragement from the co-founders of IIOE-2 ECSN (Early Career Scientists' Network). This is INCOIS
192 contribution no. XYZ.

193

194 **References**

195 Bailey, S. A.: An overview of thirty years of research on ballast water as a vector for aquatic invasive species to
196 freshwater and marine environments. *Aquatic Ecosystem Health & Management*, 18(3), 261-268. DOI:
197 10.1080/14634988.2015.1027129, 2015.

198 Behrenfeld, M. J., & Falkowski, P. G.: Photosynthetic rates derived from satellite-based chlorophyll
199 concentration. *Limnology and oceanography*, 42(1), 1-20. DOI: 10.4319/lo.1997.42.1.0001, 1997.

200 Billett, D. S. M., Bett, B. J., Jacobs, C. L., Rouse, I. P., & Wigham, B. D.: Mass deposition of jellyfish in the
201 deep Arabian Sea. *Limnology and Oceanography*, 51(5), 2077-2083. DOI: 10.4319/lo.2006.51.5.2077, 2006.

202 Browning, E.; Gibb, R.; Glover-Kapfer, P. and Jones, K.E.: Passive acoustic monitoring in ecology and
203 conservation. Woking, UK, WWF-UK, 76pp. (WWF Conservation Technology Series 1(2)). DOI:
204 10.25607/OPB-876, 2017.

205 Bruinsma, S., M. Fedrizzi, J. Yue, C. Siemes, and S. Lemmens (2021), Charting satellite courses in a crowded
206 thermosphere, *Eos*, 102, Published on 19 January 2021. DOI: 10.1029/2021EO153475.

207 Costa, D. P., Block, B. A., Bograd, S., Fedak, M. A., & Gunn, J. S.: TOPP as a marine life observatory: using
208 electronic tags to monitor the movements, behaviour and habitats of marine vertebrates. *Proc. OceanObs*, 9, 21-
209 25, 2010.

210 Crossin, G. T., Heupel, M. R., Holbrook, C. M., Hussey, N. E., Lowerre-Barbieri, S. K., Nguyen, V. M., Raby,
211 G.D. & Cooke, S. J. Acoustic telemetry and fisheries management. *Ecological Applications*, 27(4), 1031-1049.
212 DOI: 10.1002/eap.1533, 2017.

213 Hood, R.R., Urban, E.R., McPhaden, M.J., Su, D. and Raes, E., 2016. The 2nd International Indian Ocean
214 Expedition (IIOE-2): Motivating New Exploration in a Poorly Understood Basin. *Limnology and Oceanography*
215 *Bulletin*, 25(4), pp.117-124. DOI: 10.1002/lob.10149.

216 Howell, E. A., Hoover, A., Benson, S. R., Bailey, H., Polovina, J. J., Seminoff, J. A., & Dutton, P. H.:
217 Enhancing the TurtleWatch product for leatherback sea turtles, a dynamic habitat model for ecosystem-based
218 management. *Fisheries Oceanography*, 24(1), 57-68. DOI: 10.1111/fog.12092, 2015.

219 Huemmrich, K. F., Campbell, P. K. E., Gao, B. C., Flanagan, L. B., & Goulden, M.: ISS as a platform for
220 optical remote sensing of ecosystem carbon fluxes: a case study using HICO. *IEEE Journal of Selected Topics*
221 *in Applied Earth Observations and Remote Sensing*, 10(10), 4360-4375. DOI: 10.1109/JSTARS.2017.2725825,
222 2017.

223 Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrade, A., Narayan, R. & Law, K. L.:
224 Plastic waste inputs from land into the ocean. *Science*, 347(6223), 768-771. DOI: 10.1126/science.1260352,
225 2015.

226 Kelly, R., Fleming, A., Pecl, G. T., von Gönner, J., & Bonn, A.: Citizen science and marine conservation: a
227 global review. *Philosophical Transactions of the Royal Society B*, 375(1814), 20190461. DOI:
228 10.1098/rstb.2019.0461, 2020. Korsøen, Ø. J., Fosseidengen, J. E., Kristiansen, T. S., Oppedal, F., Bui, S., &
229 Dempster, T.: Atlantic salmon (*Salmo salar* L.) in a submerged sea-cage adapt rapidly to re-fill their swim
230 bladders in an underwater air filled dome. *Aquacultural engineering*, 51, 1-6. DOI:
231 10.1016/j.aquaeng.2012.04.001, 2012.

232 Martínez-Vicente, V., Clark, J. R., Corradi, P., Aliani, S., Arias, M., Bochow, M., ... & Vethaak, A. D.:
233 Measuring marine plastic debris from space: initial assessment of observation requirements. *Remote Sensing*,
234 11(20), 2443. DOI: 10.3390/rs11202443, 2019.

235 Martini, U., Buffa, F., & Notaro, S.: Community participation, natural resource management and the creation of
236 innovative tourism products: Evidence from Italian networks of reserves in the Alps. *Sustainability*, 9(12), 2314.
237 DOI: 10.3390/su9122314, 2017.

238 Miller, S. D., Straka, W., Mills, S. P., Elvidge, C. D., Lee, T. F., Solbrig, J., Walther, A., Heidinger, A.K. &
239 Weiss, S. C.: Illuminating the capabilities of the suomi national polar-orbiting partnership (NPP) visible
240 infrared imaging radiometer suite (VIIRS) day/night band. *Remote Sensing*, 5(12), 6717-6766. DOI:
241 10.3390/rs5126717, 2013.

242 Nimit, K., Masuluri, N. K., Berger, A. M., Bright, R. P., Prakash, S., TVS, U., Rohit, P., Ghosh, S. & Varghese,
243 S. P.: Oceanographic preferences of yellowfin tuna (*Thunnus albacares*) in warm stratified oceans: A remote
244 sensing approach. *International Journal of Remote Sensing*, 41(15), 5785-5805. DOI:
245 10.1080/01431161.2019.1707903, 2020.

246 Ohman, M. D., Davis, R. E., Sherman, J. T., Grindley, K. R., Whitmore, B. M., Nickels, C. F., & Ellen, J. S.:
247 Zooglider: an autonomous vehicle for optical and acoustic sensing of zooplankton. *Limnology and
248 Oceanography: Methods*, 17(1), 69-86. DOI: 10.1002/lom3.10301, 2019.

249 OSOS, 2019. 1st International Operational Satellite Oceanography Symposium; June 18, 2019 - June 20, 2019;
250 College Park, MD; United States.

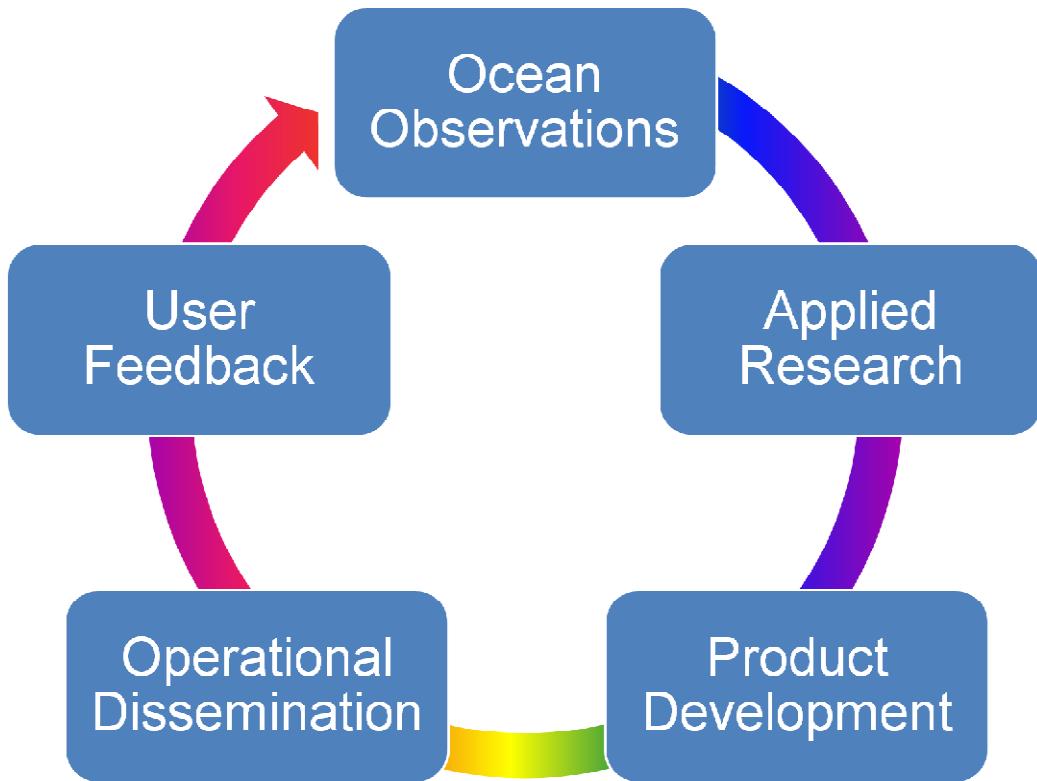
251 Rixen, T., Cowie, G., Gaye, B., Goes, J., do Rosário Gomes, H., Hood, R.R., Lachkar, Z., Schmidt, H.,
252 Segschneider, J. and Singh, A., 2020. Reviews and syntheses: Present, past, and future of the oxygen minimum
253 zone in the northern Indian Ocean. *Biogeosciences*, 17(23), pp.6051-6080. DOI: 10.5194/bg-17-6051-2020.

254 Roshan, Manas: *Cyclone Ockhi: disaster risk management and sea safety in the Indian marine fisheries sector*.
255 Chennai, India, International Collective in Support of Fishworkers, 73pp. ISBN 978-93-80802-73-2, 2018.

256 Ruddick, K., Neukermans, G., Vanhellemont, Q., & Jolivet, D.: Challenges and opportunities for geostationary
257 ocean colour remote sensing of regional seas: A review of recent results. *Remote Sensing of Environment*, 146,
258 63-76. DOI: 10.1016/j.rse.2013.07.039, 2014.

259 Singh, D., Kimbahune, S., & Singh, V. V.: Mobile signal extension in deep sea—Towards a safe and sustainable
260 fisheries. In *2016 ITU Kaleidoscope: ICTs for a Sustainable World (ITU WT)* (pp. 1-8). IEEE. DOI:
261 10.1109/ITU-WT.2016.7805711, 2016.

262 Soares, A., Dividino, R., Abreu, F., Brousseau, M., Isenor, A. W., Webb, S., & Matwin, S.: CRISIS: integrating
263 AIS and ocean data streams using semantic web standards for event detection. In *2019 International Conference
264 on Military Communications and Information Systems (ICMCIS)* (pp. 1-7). IEEE. DOI:
265 10.1109/ICMCIS.2019.8842749, 2019.


266 Stat, M., Huggett, M. J., Bernasconi, R., DiBattista, J. D., Berry, T. E., Newman, S. J., Harvey, E.S. & Bunce,
267 M.: Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine
268 environment. *Scientific Reports*, 7(1), 1-11. DOI: 10.1038/s41598-017-12501-5, 2017.

269 Timothy Doyle: Blue Economy and the Indian Ocean Rim, *Journal of the Indian Ocean Region*, 14:1, 1-6, DOI:
270 10.1080/19480881.2018.1421450, 2018.

271 Williams, R., Erbe, C., Ashe, E., & Clark, C. W.: Quiet (er) marine protected areas. *Marine pollution bulletin*,
272 100(1), 154-161. DOI: 10.1016/j.marpolbul.2015.09.012, 2015.

273 Wilson, C.: The rocky road from research to operations for satellite ocean-colour data in fishery management.
274 *ICES Journal of Marine Science*, 68(4), 677-686, DOI: 10.1093/icesjms/fsq168, 2011.

275 Xiang, C., Tan, Y., Zhang, H., Liu, J., Ke, Z., & Li, G.: The key to dinoflagellate (*Noctiluca scintillans*)
276 blooming and outcompeting diatoms in winter off Pakistan, northern Arabian Sea. *Science of The Total
277 Environment*, 694, 133396. DOI: 10.1016/j.scitotenv.2019.07.202, 2019.

278

279 Fig.01. Evolution and life-cycle of an operational ocean service. After identification of user requirement and
 280 consultation with them, ocean observations are planned or retrieved (if already existing). The observations are
 281 then used for the research focused to the development of product customized for stakeholder requirement. The
 282 products are then disseminated as routine operations, and feedbacks from the users are collected for further
 283 improvement of the product. Due to the continuous advancement of the technology and change in the user
 284 requirements, this cycle repeats to find the best achievable solutions for the contemporary needs at the user-
 285 level.