

1 **Ideas and perspectives: Ushering Indian Ocean into the UN
2 Decade of Ocean Science for Sustainable Development
3 (UNDOSSD) through Marine Ecosystem Research and
4 Operational Services – An early-career's take**

5

6 Kumar Nimit

7 Ministry of Earth Sciences (MoES), Indian National Centre for Ocean Information Services (INCOIS),
8 Hyderabad-500090, India

9 *Correspondence to:* nimitkumar.j@incois.gov.in

10

11 **Abstract.**

12 The Indian Ocean-rim hosts many of the underdeveloped and emerging economies that depend on the ocean
13 resources for livelihood of the populations of millions residing. Operational ocean information services cater to
14 the requirements of managers and end-users to efficiently harness those resources, and to ensure safety.
15 However, fishery information isn't the only operational services that will be needed empower such communities
16 in the coming decades. Coral bleaching alerts, SCUBA-assist advisories, conservation or ecotourism assist
17 services (e.g. Turtle-watch/Whale-watch), poaching/bycatch reduction support, jellyfish/microplastic/oil-spill
18 watch are to name a few, but not an exhaustive list. This paper reviews existing tools, and explores the ongoing
19 research that has potential to convert the findings into operational services in near-to-mid term.

20

21 **Keywords:**

22 Ecosystem, Operational Services, UN Decade of Ocean, Perspectives

23

24 **1. Introduction**

25 About a third of the world population reside in the Indian Ocean (IO)-rim countries. This is projected to increase
26 and may reach to 50% of global population by year 2050 (Doyle, 2018). Their lives and livelihoods are
27 inherently intertwined with the IO and its dynamics. These countries have very diverse cultures and philosophies.
28 Their financial capabilities vary widely and so are their aspirations and world-views. The IO-rim (IOR)
29 countries thus present a confluence of ideologies to a manager, with their vivid and vibrant demographics that
30 have very different challenges and opportunities. Majority of the IOR countries have either expansive or
31 stationary population pyramid profile, with limited land resources. Their nutritional and employment needs will
32 have more reliance on the IO in coming decades. Marine ecosystems are promising source for the nourishment
33 of populations and at the same time, are under serious threats than ever before. As more people are brought up
34 from the poverty, consumerism is poised to extend to larger part of the population, which will create concerns
35 for the health of the adjoining ocean ecosystems.

36 The IO is one of the relatively poorly studied oceans of the world. It is thus important to ensure that the
37 resources in this unique, land-locked from the north ocean, are harnessed in harmony with the sustainability and
38 with the equal opportunities. For the successful planning and execution, it is imperative for the resource
39 managers to have community participation (Martini et al., 2017). It is especially important for the IOR countries
40 to chart right path at the eve of the United Nations Decade of Ocean Science for Sustainable Development
41 (UNDOSSD, 2021-2030). Advancement of geosciences in last century has provided us many tools to cope with
42 the changing environment and associated challenges. The same role for the twenty first century is shifting to
43 operational oceanography. Robust combination of observations and modelling, artificial intelligence, effective
44 tools of interpretation and user-friendly dissemination of information can change millions of lives depending on
45 the oceans. This paper hypothesize that the best possible approach to win the community attention (and to
46 invoke the responsible ownership of the resources) is to engage the communities with the operational ecosystem
47 related services. Further, this paper explores the regional needs and solutions based on presently available data
48 and technologies.

49 **2. Marine Ecosystem Research and operational Services (MERS)**

50 The marine ecosystem related operational ocean information and forecasts services (or products as a service)
51 can be grouped into three major categories based on their prime objectives. First type of services is related to the
52 resource management, conservation and support to livelihood. Second type comprises of service that deal with
53 threats to the ecosystem. The third group is of solutions for community engagement and dissemination.

54 Under the decadal initiative the UN Sustainable Development Goal (SDG)-14 (Life below water) will receive
55 significant attention, which heavily relies on the remote sensing data in general and in particular, Ocean Color
56 (OC) observations. In late 90's, the OC science achieved operational status (after a decade long hiatus post-
57 CZCS era) due to adequate satellite coverage. Since then researchers have made extensive use of these data
58 despite often encountering spatial (clouds and sun-glint), temporal (daily once, daytime only coverage) or
59 spectral (fixed, limited bands) limitations. The applications range wide from fisheries and aquaculture to
60 Harmful Algal Bloom (HAB) monitoring to estimating productivity and carbon budgeting (Wilson, C., 2011).

61 However, there are limitations with regard to predictability of the base of the food pyramid itself. There are
62 global products for primary production such as VGPM (Vertically Generalized Productivity Model) that are
63 developed with relatively low observations of the P-I (Photosynthesis-Irradiance) parameters from the IO. It is
64 thus very much important for the IOR countries to have a regional Primary Productivity (PP) model for
65 operational applications. This could be taken up as a priority during the UNDOSSD.

66 This decade is chiefly important due to the planned launch of operational hyperspectral mission such as PACE
67 (Plankton, Aerosol, Cloud, ocean Ecosystem) by NASA in the early 2020's. A hyperspectral sensor scans
68 oceans with high-resolution of as much as 1nm wavelength for whole the visible spectrum, that enables the
69 researchers to begin a new era in the OC sciences due to its potential of developing a plethora of applications.
70 This includes but does not limit to better resolving phytoplankton functional types, fishery resource management
71 and ecosystem health monitoring. The latter is more important especially for the second type of services and is
72 discussed in detail in subsequent section.

73 At the same time, the temporal limitations seem to be negated through various approaches such as using the
74 Day-Night Band (DNB) data or OC data from the geostationary orbit such as GOCI (Geostationary Ocean Color
75 Imager) (Miller et al., 2013; Ruddick et al., 2014). When OC science follows the footsteps of other satellite
76 types, we may also have a “swarm” of nano-satellites or cubesats – further improving temporal and up to some
77 extent, spatial coverage as well. Placement of HICO (Hyperspectral Imager for Coastal Ocean) on International
78 Space Station (ISS) reminds us that the OC science may not limit to satellite remote sensing in coming decades
79 (Huemmrich et al., 2017). Validations, sampling protocols (SOPs), inter-comparison exercises and training for
80 all of these will be needed. Modelers are putting efforts to assimilate data products into numerical models or,
81 making use of surface information for better resolving subsurface characteristics. Others strive for carbon, or
82 heat-budgeting. With more than two decade of uninterrupted observations, (applying the rule of thumb of
83 minimum 30 years time-series) we are a few years away of making use of OC data for climate applications.

84 There are some proven (e.g. telemetry) and emerging (e.g. eDNA) tools that can help researchers for the
85 services related to higher trophic levels (Costa et al., 2010; Stat et al., 2017). These tools are very useful in
86 providing vital information habitat utilization, migration, environmental preferences and presence-absence
87 analysis. The research can then support to the operational services that cater to sustainable resource
88 management, prevention of bycatch or help reduce accidental mortality. National Oceanic and Atmospheric
89 Administration (NOAA)'s TurtleWatch is the best suited example for majority of the IO countries (Howell et
90 al., 2015). Other species for which such products are very much needed in the operational mode are Cetaceans,
91 Sharks and marine mammals.

92 The operational services that can predict the movement and presence of these animals are required for
93 conservation authorities who can then effectively design protected areas, do better marine spatial planning or
94 monitor potential hotspots for poaching or IUU (Illegal, Unreported and Unregulated) fishing. Additionally
95 these can also support the ecotourism (e.g. WhaleWatch) as an alternate livelihood for the fishermen that face
96 capture fishery as less lucrative occupation. Ecotourism needs support from operational services monitoring
97 mangroves and corals as well. Innovative ideas that put together existing observations and forecasts (e.g. water
98 clarity, currents and wave-height, coral health i.e. no-bleaching/stress alert), and generate novel products (e.g.

99 SCUBA-buddy advisories), will support dive operators in the many of the IOR-countries, especially to the SIDS
100 (Small Island Developing States). Mariculture (open ocean cage culture) is emerging as another area of
101 livelihood as an alternate to the capture fishery and is poised to be more feasible at wider areas with newer
102 designs of submerged cages (Korsøen et al., 2012).

103 Acoustics is another such tool that can support development of operational services for various stakeholders.
104 Acoustic telemetry is useful for the species to which satellite telemetry isn't suitable due to various reasons
105 (Crossin et al., 2017). Whereas, the field of bioacoustics has been furthered into many sub-branches. The
106 estimation of zooplankton biomass with the help of acoustic backscatter isn't only limited to moored buoys and
107 these techniques have transcended to AUVs (Autonomous Underwater Vehicles), aptly called as zooglider
108 (Ohman et al., 2019). Such surveys are vital for zooplankton and ichthyoplankton distribution monitoring, and
109 for ecosystem models that would connect the regional PP products to the higher trophic levels. Bioacoustics is
110 also used in terms of monitoring the marine animals' movements by listening to the underwater sounds, often
111 through Passive Acoustic Monitoring (PAM), which would be one of the less intrusive ways of study (Brwoning
112 et al., 2017). Human activities can be nuisance to the marine environment in many ways and sound is one of the
113 ways (Williams et al., 2015). Future operational services will need to account for developing ways to monitor
114 the oceanic soundscape.

115 Another common anthropogenic impact to the marine ecosystems is transport and introduction of alien (non-
116 native) species through the ballast water. These species when lack natural predators, are often turn out to be
117 invasive species and throw off the local ecological equilibrium (Bailey S.A., 2015). Oil spill is yet another
118 source of pollution from the ships. These can be addressed up to certain extent by monitoring vessel AIS
119 (Automatic Identification System) data and applying artificial intelligence-machine learning (AI-ML) tools to
120 identify the ship behavioural patterns prior to such discharges; and then use it as predictive model (Soares et al.,
121 2019).

122 Plastic adversely impact the marine environment in multiple ways. The known pathways include ghost fishing
123 (entanglement), ingestion, bioaccumulation and allied effects, as well as transport of alien species and
124 pollutants. Among the top-20 countries globally with inadequately managed plastic as a source to the ocean, half
125 are the IO-rim countries. All of the Bay of Bengal (BoB) peripheral countries face the issue of land-plastic
126 management (Jambeck et al., 2015). Thus, the BoB needs to be prime focus to monitor the oceanic and beach
127 debris in the operational mode, with the help of latest remote sensing techniques (Martinez-Vicente et al., 2019).

128 On the other hand, mass sink of jellyfish swarming have been reported the Arabian Sea (AS) (Billet et al.,
129 2006). Jellyfish swarms are known to be disruptive to fisheries, and to cooling water intake facilities of coastal
130 industries with causes little known, and thus calls for development of predictive capabilities. The AS also
131 witness large scale blooms of *Noctiluca scintillans* and research in recent years may provide the foundation for
132 the bloom forecasting (Xiang et al., 2019). Crashing of jellyfish swarms or algal blooms have implications to the
133 deep sea ecology, particularly in the regions such as the AS which has prominent oxygen minimum zone
134 (OMZ). The stratified waters such as of the northern IO basins have implications for large pelagic which may
135 face additional fishing pressure with the expansion of the OMZs due to shrink of the habitat (Nimit et al., 2020).

136 While it is important to have robust observations and modelling capabilities in order to generate operational
137 services and products, it is equally important to have effective dissemination. Presently, the IOR countries rely
138 on information dissemination through conventional modes which are almost entirely land-based. This results in
139 episodes such as cyclone Ockhi wherein lack of timely alerts cost many lives (Roshan M, 2018). Dissemination
140 of operational services onboard has benefits during fair weather as well in terms of fuel saving. Due to limitation
141 of cellular signal support at sea, it is imperative that a full-fledge dissemination system should be supported
142 through satellite communication (Singh et al., 2016). Such dissemination systems are to be provided along with
143 feedback mechanism so to validate the services in real or near-real time. The feedbacks also open new avenues
144 of data collection. Crowdsourcing of data gathering could play an essential role in making seafarers eyes and
145 ears of the scientists (Kelly et al., 2020).

146

147 **Acknowledgements**

148 The author acknowledges support from Director, INCOIS. This is INCOIS contribution no. XYZ.

149

150 **References**

151 Timothy Doyle: Blue Economy and the Indian Ocean Rim, *Journal of the Indian Ocean Region*, 14:1, 1-6, DOI:
152 10.1080/19480881.2018.1421450, 2018.

153 Martini, U., Buffa, F., & Notaro, S.: Community participation, natural resource management and the creation of
154 innovative tourism products: Evidence from Italian networks of reserves in the Alps. *Sustainability*, 9(12), 2314.
155 DOI: 10.3390/su9122314, 2017.

156 Wilson, C.: The rocky road from research to operations for satellite ocean-colour data in fishery management.
157 *ICES Journal of Marine Science*, 68(4), 677-686, DOI: 10.1093/icesjms/fsq168, 2011.

158 Behrenfeld, M. J., & Falkowski, P. G.: Photosynthetic rates derived from satellite-based chlorophyll
159 concentration. *Limnology and oceanography*, 42(1), 1-20. DOI: 10.4319/lo.1997.42.1.0001, 1997.

160 Miller, S. D., Straka, W., Mills, S. P., Elvidge, C. D., Lee, T. F., Solbrig, J., Walther, A., Heidinger, A.K. &
161 Weiss, S. C.: Illuminating the capabilities of the suomi national polar-orbiting partnership (NPP) visible
162 infrared imaging radiometer suite (VIIRS) day/night band. *Remote Sensing*, 5(12), 6717-6766. DOI:
163 10.3390/rs5126717, 2013.

164 Ruddick, K., Neukermans, G., Vanhellemont, Q., & Jolivet, D.: Challenges and opportunities for geostationary
165 ocean colour remote sensing of regional seas: A review of recent results. *Remote Sensing of Environment*, 146,
166 63-76. DOI: 10.1016/j.rse.2013.07.039, 2014.

167 Huemmrich, K. F., Campbell, P. K. E., Gao, B. C., Flanagan, L. B., & Goulden, M.: ISS as a platform for
168 optical remote sensing of ecosystem carbon fluxes: a case study using HICO. *IEEE Journal of Selected Topics*

169 in *Applied Earth Observations and Remote Sensing*, 10(10), 4360-4375. DOI: 10.1109/JSTARS.2017.2725825,
170 2017.

171 Costa, D. P., Block, B. A., Bograd, S., Fedak, M. A., & Gunn, J. S.: TOPP as a marine life observatory: using
172 electronic tags to monitor the movements, behaviour and habitats of marine vertebrates. *Proc. OceanObs*, 9, 21-
173 25, 2010.

174 Stat, M., Huggett, M. J., Bernasconi, R., DiBattista, J. D., Berry, T. E., Newman, S. J., Harvey, E.S. & Bunce,
175 M.: Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine
176 environment. *Scientific Reports*, 7(1), 1-11. DOI: 10.1038/s41598-017-12501-5, 2017.

177 Howell, E. A., Hoover, A., Benson, S. R., Bailey, H., Polovina, J. J., Seminoff, J. A., & Dutton, P. H.:
178 Enhancing the TurtleWatch product for leatherback sea turtles, a dynamic habitat model for ecosystem-based
179 management. *Fisheries Oceanography*, 24(1), 57-68. DOI: 10.1111/fog.12092, 2015.

180 Korsøen, Ø. J., Fosseidengen, J. E., Kristiansen, T. S., Oppedal, F., Bui, S., & Dempster, T.: Atlantic salmon
181 (*Salmo salar* L.) in a submerged sea-cage adapt rapidly to re-fill their swim bladders in an underwater air filled
182 dome. *Aquacultural engineering*, 51, 1-6. DOI: 10.1016/j.aquaeng.2012.04.001, 2012.

183 Crossin, G. T., Heupel, M. R., Holbrook, C. M., Hussey, N. E., Lowerre-Barbieri, S. K., Nguyen, V. M., Raby,
184 G.D. & Cooke, S. J. Acoustic telemetry and fisheries management. *Ecological Applications*, 27(4), 1031-1049.
185 DOI: 10.1002/eap.1533, 2017.

186 Ohman, M. D., Davis, R. E., Sherman, J. T., Grindley, K. R., Whitmore, B. M., Nickels, C. F., & Ellen, J. S.:
187 Zoogliders: an autonomous vehicle for optical and acoustic sensing of zooplankton. *Limnology and
188 Oceanography: Methods*, 17(1), 69-86. DOI: 10.1002/lim3.10301, 2019.

189 Browning, E.; Gibb, R.; Glover-Kapfer, P. and Jones, K.E.: Passive acoustic monitoring in ecology and
190 conservation. Woking, UK, WWF-UK, 76pp. (WWF Conservation Technology Series 1(2)). DOI:
191 10.25607/OPB-876, 2017.

192 Williams, R., Erbe, C., Ashe, E., & Clark, C. W.: Quiet (er) marine protected areas. *Marine pollution bulletin*,
193 100(1), 154-161. DOI: 10.1016/j.marpolbul.2015.09.012, 2015.

194 Bailey, S. A.: An overview of thirty years of research on ballast water as a vector for aquatic invasive species to
195 freshwater and marine environments. *Aquatic Ecosystem Health & Management*, 18(3), 261-268. DOI:
196 10.1080/14634988.2015.1027129, 2015.

197 Soares, A., Dividino, R., Abreu, F., Brousseau, M., Isenor, A. W., Webb, S., & Matwin, S.: CRISIS: integrating
198 AIS and ocean data streams using semantic web standards for event detection. In *2019 International Conference
199 on Military Communications and Information Systems (ICMCIS)* (pp. 1-7). IEEE. DOI:
200 10.1109/ICMCIS.2019.8842749, 2019.

201 Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrade, A., Narayan, R. & Law, K. L.:
202 Plastic waste inputs from land into the ocean. *Science*, 347(6223), 768-771. DOI: 10.1126/science.1260352,
203 2015.

204 Martínez-Vicente, V., Clark, J. R., Corradi, P., Aliani, S., Arias, M., Bochow, M., ... & Vethaak, A. D.:
205 Measuring marine plastic debris from space: initial assessment of observation requirements. *Remote Sensing*,
206 11(20), 2443. DOI: 10.3390/rs11202443, 2019.

207 Billett, D. S. M., Bett, B. J., Jacobs, C. L., Rouse, I. P., & Wigham, B. D.: Mass deposition of jellyfish in the
208 deep Arabian Sea. *Limnology and Oceanography*, 51(5), 2077-2083. DOI: 10.4319/lo.2006.51.5.2077, 2006.

209 Xiang, C., Tan, Y., Zhang, H., Liu, J., Ke, Z., & Li, G.: The key to dinoflagellate (*Noctiluca scintillans*)
210 blooming and outcompeting diatoms in winter off Pakistan, northern Arabian Sea. *Science of The Total
211 Environment*, 694, 133396. DOI: 10.1016/j.scitotenv.2019.07.202, 2019.

212 Nimit, K., Masuluri, N. K., Berger, A. M., Bright, R. P., Prakash, S., TVS, U., Rohit, P., Ghosh, S. & Varghese,
213 S. P.: Oceanographic preferences of yellowfin tuna (*Thunnus albacares*) in warm stratified oceans: A remote
214 sensing approach. *International Journal of Remote Sensing*, 41(15), 5785-5805. DOI:
215 10.1080/01431161.2019.1707903, 2020.

216 Roshan, Manas: *Cyclone Ockhi: disaster risk management and sea safety in the Indian marine fisheries sector*.
217 Chennai, India, International Collective in Support of Fishworkers, 73pp. ISBN 978-93-80802-73-2, 2018.

218 Singh, D., Kimbahune, S., & Singh, V. V.: Mobile signal extension in deep sea—Towards a safe and sustainable
219 fisheries. In *2016 ITU Kaleidoscope: ICTs for a Sustainable World (ITU WT)* (pp. 1-8). IEEE. DOI:
220 10.1109/ITU-WT.2016.7805711, 2016.

221 Kelly, R., Fleming, A., Pecl, G. T., von Gönner, J., & Bonn, A.: Citizen science and marine conservation: a
222 global review. *Philosophical Transactions of the Royal Society B*, 375(1814), 20190461. DOI:
223 10.1098/rstb.2019.0461, 2020.