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Abstract 

Vegetation regulates the exchange of water, energy, and carbon fluxes between the land and the atmosphere. This regulation 

of surface fluxes differs with vegetation type and climate, but the effect of vegetation on surface fluxes is not well understood. 

A better knowledge of how and when vegetation influences surface fluxes could improve climate models and the extrapolation 15 

of ground-based water, energy, and carbon fluxes. We aim to study the link between vegetation and surface fluxes by 

combining yearly average MODIS leaf area index (LAI) with flux tower measurements of water (latent heat), energy (sensible 

heat), and carbon (gross primary productivity and net ecosystem exchange). We show that the correlation between LAI and 

water and energy fluxes depends on vegetation type and aridity. In water-limited conditions, the link between LAI and water 

and energy fluxes is strong, which is in line with a strong stomatal or vegetation control found in earlier studies. In energy-20 

limited forest we found no link between LAI and water and energy fluxes. In contrast to water and energy fluxes, we found a 

strong spatial correlation between LAI and gross primary productivity that was independent of vegetation type and aridity. 

This study provides insight into the link between vegetation and surface fluxes. It indicates that for modelling or extrapolating 

surface fluxes, LAI can be useful in savanna and grassland, but LAI is only of limited use in deciduous broadleaf forest and 

evergreen needleleaf forest to model variability in water and energy fluxes. 25 

1 Introduction 

Vegetation and water, energy, and carbon fluxes are tightly coupled. Large-scale vegetation patterns are driven by the long-

term memory of water and energy availability (Köppen, 1936; Prentice et al., 1992; Cramer et al., 2001). Recent climate change 

leads to shifts in the spatial distribution of vegetation, as well as shifts in the timing of the growing season (Jeong et al., 2011; 

Rosenzweig et al., 2008; Fei et al., 2017). Additionally, vegetation plays a crucial role in the exchange of water, energy, and 30 

carbon between the land surface and the atmosphere, mainly through its effects on evapotranspiration, turbulence, 

redistribution of water, and surface heating (Shao et al., 2015; Jia et al., 2014; Esau and Lyons, 2002). Large-scale reforestation 
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and afforestation increased evapotranspiration over most of Europe (Teuling et al., 2019), and large-scale deforestation 

increased the air temperature in tropical regions and decreased air temperature in boreal regions (Perugini et al., 2017). This 

two-way interaction between vegetation and terrestrial surface fluxes has been known for a long time (e.g. Bates and Henry, 35 

1928; Woodwell et al., 1978), but is still a very relevant research topic today (Forkel et al., 2019; Lu et al., 2019; Teuling and 

Hoek van Dijke, 2020; Kirchner et al., 2020; Evaristo and McDonnell, 2019), given the importance of understanding the 

impacts of climate change on vegetation, as well as the effects of land cover change on climate. 

 

Plants regulate the exchange of water, energy, and carbon with the atmosphere through their stomata. The stomatal regulation 40 

of these fluxes depends on available energy, transpiration demand, and available soil moisture in the root zone. When both the 

available energy and soil moisture are abundant, stomata open and water and carbon can freely move in and out: the stomatal 

control on surface fluxes is low. When the available energy is high, but soil moisture is limiting, stomata tend to close and 

exert a large control on water and carbon fluxes (Mallick et al., 2016; O'Toole and Cruz, 1980). Zooming out from stomatal to 

canopy scale, there are several other ways in which vegetation influences surface fluxes. Soil and crown mutual shadowing 45 

and deep ground water uptake by vegetation influence the latent heat flux whereas soil moisture influences ecosystem 

respiration and thereby carbon exchange (Chen et al., 2019; Schmitt et al., 2010). The vegetation control of ecosystem fluxes 

has been shown by different data or modelling studies and depends on climate and vegetation type (Williams et al., 2012; Xu 

et al., 2013; Wagle et al., 2015). Williams and Torn (2015) found a strong vegetation control on surface heat flux partitioning 

in both arid and humid grassland, cropland, and forest, but Padrón et al. (2017) concluded that globally, vegetation control on 50 

evapotranspiration was low and even absent in the equatorial regions. Chen et al. (2019) showed that for wetland sites, 

temperature, precipitation and vegetation leaf area explained 91% of the mean annual variability in vegetation carbon uptake. 

Mallick et al. (2018) showed that vegetation control on evapotranspiration was stronger in arid ecosystems as compared to the 

mesic ecosystems. Similar results were found for dry and wet Amazonian forest (Costa et al., 2010; Mallick et al., 2016) and 

dry and wet grassland (De Kauwe et al., 2017). Ferguson et al. (2012) studied land-atmosphere coupling of fluxes, which 55 

includes the effect of vegetation as well as other factors as soil wetness, soil texture, and surface temperature. From remote 

sensing data and model output, they concluded that transitional zones between arid and humid climates (shrublands, grasslands, 

and savannas) tend to have a strong land-atmosphere coupling, while in the energy-limited regions, land-atmosphere coupling 

is weak. 

 60 

Vegetation is coupled to the atmosphere through its leaves. The leaf area index (LAI) is an important vegetation characteristic 

and is indicative of the total amount of foliage that intercepts light and assimilates carbon. Furthermore, both rainfall 

interception and canopy conductance increase with LAI (Van Heerwaarden and Teuling, 2014; Gómez et al., 2001). A high 

LAI is therefore related to high vegetation carbon uptake and high canopy evapotranspiration of water (Lindroth et al., 2008; 

Duursma et al., 2009). Highest mean yearly LAI is found in tropical and temperate forests, while a low LAI is found in cold 65 

and in arid climate zones (Iio et al., 2014; Asner et al., 2003) (Figure 1). This global LAI pattern closely resembles large-scale 
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patterns in estimates of water, energy, and carbon exchange (Miralles et al., 2011; Jung et al., 2011). With an increasing 

availability of remotely sensed LAI data, LAI − besides its usage in many remote sensing applications (e.g. Si et al., 2012; 

Zheng and Moskal, 2009) − became a frequently used variable to represent vegetation in land-surface models (Williams et al., 

2016; Sellers et al., 1997; Lawrence and Chase, 2010 amongst many others) or to estimate or extrapolate regional or global 70 

water and carbon fluxes (Beer et al., 2007; Yan et al., 2012; Turner et al., 2003; Xie et al., 2019). The algorithms to retrieve 

LAI from remotely sensed data improved during the past decades, increasing the accuracy of LAI products (Shabanov et al., 

2005; Yan et al., 2016). Nevertheless, it is important to be aware of the product uncertainties, especially over dense forest, 

where saturated reflectance and canopy clumping can only provide limited information for LAI retrievals (Shabanov et al., 

2005; Xu et al., 2018), and at high latitudes, where the solar zenith angle is low (Fang et al., 2019). 75 

 

The interaction between vegetation LAI and surface fluxes on larger scale is not yet well understood and vegetation is not well 

represented in many land-atmosphere and climate models (Williams et al., 2016). A small scale study in temperate deciduous 

forest, for instance, revealed that the correlation between sap flow and the normalized difference vegetation index (NDVI) can 

change from positive to negative depending on the season and soil moisture availability (Hoek van Dijke et al., 2019). A 80 

detailed knowledge of how and when vegetation LAI is linked to the surface fluxes is required to improve global climate 

modelling and extrapolation of water and carbon fluxes from canopy to ecosystems. The high availability of remote sensing 

LAI products, recent developments in cloud-based platforms for geospatial analysis (Mutanga and Kumar, 2019), and the 

availability of publicly available eddy covariance data from FLUXNET (Baldocchi et al., 2001) allows for an analysis of the 

link between vegetation characteristics and surface fluxes. The objective of our study is to get an insight about the link between 85 

vegetation LAI and surface fluxes for different vegetation types along an aridity gradient. We address the following research 

questions: 1) What is the link between LAI versus water, energy, and carbon fluxes in different vegetation types? 2) How is 

the interaction between LAI versus water, energy, and carbon fluxes governed by climatological aridity? We hypothesise that 

Figure 1 Global distribution of vegetation leaf area index (LAI). The mean LAI, at 5 km resolution, is derived from the MODIS data 

product MCD15A3H.006 (Myneni et al., 2015). 
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the link between LAI and surface fluxes is strong in semi-arid and arid climates, owing to the strong stomatal control, while 

the link is weak in humid climates. 90 

 

In our study we focus on five metrics of water, energy, and carbon fluxes measured by flux towers. Latent heat (LE), a measure 

for the evapotranspiration of water, and sensible heat (H), represent the exchange of water and energy between the Earth’s 

surface and the atmosphere. LE and H are linked through the evaporative fraction (EF). The EF is the ratio of latent heat to the 

sum of LE and H and is a useful measure of the partitioning of total available energy between the evapotranspiration of water 95 

and surface heating. Net Ecosystem Exchange (NEE) is the net exchange of carbon between the land and the atmosphere, 

which is directly measured by flux towers. Gross primary productivity (GPP) is derived from NEE and is the gross uptake of 

atmospheric carbon by the vegetation.  

2 Data and methodology 

2.1 Data 100 

2.1.1 Data selection 

This study includes five vegetation types: savanna (SAV), grassland (GRA), deciduous broadleaf forest (DBF), evergreen 

broadleaf forest (EBF), and evergreen needleleaf forest (ENF). The SAV sites include the two classes ‘savanna’ and ‘woody 

savanna’. These vegetation types follow the International Geosphere-Biosphere Program (IGBP) classification (Loveland et 

al., 2001). The five vegetation types were selected because of the availability of a high number of flux tower sites. For some 105 

site-years, LAI, flux, or meteorological measurements were not available. These site-years were included in each of the 

analyses for which the required metrics were available. 

 

Within the FLUXNET-2015 dataset (Baldocchi et al., 2001), we selected all Tier-1 sites (open and free for scientific purposes) 

within the five studied vegetation types. We completed the dataset with two sites from the OzFLUX network to increase the 110 

number of sites in the EBF class (Liddell, 2013b, a). Two forest sites were excluded from the analyses because they were 

effected by a beetle outbreak that resulted in high tree mortality, and one heavily managed grassland site was excluded from 

the analysis. For each site, only years with good-quality data were selected, following the quality selection procedure that is 

explained below. This site selection procedure, in combination with the quality check, resulted in a dataset of 545 site-years 

spread over 93 sites (Figure 2, Table 1). 115 

2.1.2 Data averaging and aggregation 

We studied yearly averaged LAI and surface fluxes for different vegetation types. In most vegetation types, LAI and surface 

fluxes showed seasonal variability, with high values during the growing season and lower or zero LAI and surface fluxes 
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during the cold or dry season. The non-growing season might be non-relevant for finding the link between LAI and surface 

fluxes, however, selecting growing season values only lead to difficulties. The vegetation types differ in the timing, number, 120 

and length of growing seasons, and for instance time-series analysis did not successfully select the growing seasons. To be 

consistent in the methodology, yearly averaged fluxes were used for all flux tower sites. Using yearly averaged values for 

every site (referred to as ‘site-years’) has few implications 1) we study both spatial (site-to-site) variability and temporal (year-

to-year) variability simultaneously, and 2) averaged flux and meteorological measurements might not represent similar 

conditions. The latter is for example when a site-year receives plenty of precipitation in December, increasing the site-year’s 125 

aridity index, while this precipitation mainly impacts the next site-year’s fluxes or LAI values. To test the effect of using site-

year data, we also studied spatial and temporal variability separately. For these analyses, the data was aggregated in three 

ways: 1) Site-year data, having one average value per site per year, 2) multi-year data, having one multi-year average LAI and 

flux value per site, to study spatial correlation, and 3) yearly average data for a few sites, to study the temporal correlation. 

Sites were included in the multi-year data if at least three years of data were available. The three aggregation methods led to 130 

similar conclusions for water and energy, but slightly different results for carbon, as is shown in the manuscript. 

2.1.3 Flux measurements 

Within the FLUXNET 2015 database, LE, H, NEE, and GPP measurements are gapfilled using the MDS (Marginal 

Distribution Sampling) method (Reichstein et al., 2005), and LE and H are corrected by an energy balance closure correction 

factor. The MDS method uses the correlation of fluxes with the driver variables (incoming radiation, temperature, and vapour 135 

pressure deficit) to estimate flux values during gap periods. The energy balance closure corrects LE and H for the total 

incoming radiation, assuming that the Bowen ratio (the ratio of the sensible heat flux to the latent heat flux) is correct. A similar 

energy balance closure correction was applied to the LE and H measurements of the OzFLUX sites. Monthly averaged flux 

values were discarded if the percentage of measured and good quality gapfill data was below 50%. Yearly average fluxes were 

Figure 2 Location and vegetation type of the 93 included flux tower sites. 
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calculated if measurements for each month were available. The evaporative fraction (EF), the ratio between LE and the total 140 

energy available at Earth’s surface was calculated using Eq. (1) as follows: 

𝑬𝑭 =
𝑳𝑬

𝑳𝑬+𝑯
 ,       (1) 

where LE is the latent heat flux and H is the sensible heat flux. 

2.1.4 Meteorological measurements 

Meteorological measurements are delivered with the flux tower data. Precipitation data is downscaled from the ERA-interim 145 

reanalysis data (Vuichard and Papale, 2015). Net radiation and air temperature are measured at the flux tower and gap-filled 

using the MDS (Marginal Distribution Sampling) method (Reichstein et al., 2005). Yearly potential evaporation (Ep) was 

calculated from mean daily air temperature and net radiation using the Priestley-Taylor formulation (Priestley and Taylor, 

1972). The Priestley-Taylor equation is a modification of the Penman equation and requires less measurements. The aridity 

index (AI), an indicator of dryness, was calculated according to Eq. (2) 150 

 

𝑨𝑰 =
𝑷

𝑬𝒑
,        (2) 

where P is precipitation and Ep is the potential evaporation. An aridity value of one indicates that, on a yearly scale, 

precipitation equals potential evaporation, while values below one indicate site-years that received less precipitation than their 

potential evaporation.  155 

2.1.5 Leaf Area Index 

Leaf Area Index (LAI) is the ratio of green leaf area to ground area (in m2 m-2). We used LAI derived from the MODIS data 

product MCD15A3H.006 (Myneni et al., 2015). This algorithm derives 4-day composite LAI values on 500 m spatial 

resolution from the Terra and Aqua satellites and is available for 2003 onwards. Within this 4-day period, the best pixel is 

selected from the MODIS sensors located on the Terra and Aqua satellite for the calculation of LAI. The LAI calculation 160 

algorithm uses a Look-up-Table that was generated using a 3D radiative transfer equation (Myneni et al., 2015). Heinsch et al. 

(2006) compared the MODIS data product with ground measurements at FLUXNET sites and concluded that 62.5% of the 

MODIS LAI was well estimated, but that MODIS LAI overestimated ground measured LAI for the other sites. Despite this 

overestimation, MODIS LAI was used, because it has a long record length, good (and free) data availability, good spatial 

coverage, and high temporal resolution. The overestimation and saturation of the signal at high LAI could introduce noise in 165 

the LAI data. We do however not expect this noise to change the conclusions of our analysis. The resolution of the LAI data 

product is 500 m, compared to a typical flux tower footprint length of 100 to 1000 m (Kim et al., 2006). The exact size and 

location of the footprint of flux towers however varies with among others wind direction and wind speed, surface roughness, 

and flux measurement height (Kim et al., 2006; Barcza et al., 2009). For our analyses, we selected the one nearest LAI pixel 

for each flux tower. Data were filtered to remove clouds, using the with the product delivered quality label. To smoothen 170 
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outliers, the moving mean LAI was calculated for three consecutive data points. Monthly mean values were calculated if at 

most one data point was missing. Site-year average LAI was calculated when no monthly data were missing.  

2.2 Methodology 

To study the link between LAI and surface fluxes, we performed a linear regression between LAI and the surface fluxes. We 

calculated the correlation coefficient for 1) site-year data, 2) multi-year average data (spatial variability) and 3) yearly data for 175 

a few specific sites (temporal variability). Afterwards, to study if the link between LAI and fluxes changed with aridity, all 

site-years within one vegetation type were ranked by aridity, from most arid to most humid. For each consecutive 30 site-years 

in this ranking, we performed a linear regression between LAI and the fluxes. For some site-years, part of the data was missing 

that was needed to calculate the regression. Within each window of 30 site-years, the slope of the regression was calculated if 

at least 15 complete site-years were available (Figure 3). 180 

Figure 3 Illustration of the applied methodology. The correlation coefficient between leaf area index (LAI) and 

evaporative fraction (EF) is calculated for 30 site-years for grassland over a moving window of aridity index. In 

the illustration, the correlation has a significant positive slope at p = 0.056 for the 30 most arid grassland sites, 

while for the 30 most humid grassland sites, the slope is nearly flat and not significant (p = 0.49).  



8 

 

Table 1 A list of all included site-years for the 93 sites. For each site, yearly average leaf area index (LAI) and aridity index (AI) are 

calculated for all years included in the dataset. 

FLUXNET-ID Country Years included mean LAI mean AI Vegetation DOI 

AT_Neu Austria 2002-2012 2.31 1.78 GRA 10.18140/FLX/1440121 
AU_Ade Austria 2008 1.19 0.96 Woody SAV 10.18140/FLX/1440193 

AU_Cow Australia 2009-2018 5.78 3.83 EBF 102.100.100/14244 

AU_Cpr Australia 2011-2013 0.47 0.29 SAV 10.18140/FLX/1440195 

AU_Ctr Australia 2010-2018 5.39 3.80 EBF 102.100.100/14242 

AU_Cum Australia 2013-2014 1.34 0.49 EBF 10.18140/FLX/1440196 

AU_DaP Australia 2008, 2010 1.71 1.11 GRA 10.18140/FLX/1440123 

AU_DaS Australia 2008-2010, 2012-2014 1.34 0.87 SAV 10.18140/FLX/1440122 

AU_Dry Australia 2012, 2014 1.26 0.52 Woody SAV 10.18140/FLX/1440197 

AU_Emr Australia 2012, 2013 0.76 0.51 GRA 10.18140/FLX/1440198 

AU_Gin Australia 2014 0.96 0.34 Woody SAV 10.18140/FLX/1440199 

AU_GWW Australia 2013 0.37 - SAV 10.18140/FLX/1440200 

AU_How Australia 2003, 2008, 2010-2014 1.83 1.09 Woody SAV 10.18140/FLX/1440125 

AU_Rig Australia 2011-2012, 2014 1.56 0.47 GRA 10.18140/FLX/1440202 

AU_Rob Australia 2014 5.82 1.43 EBF 10.18140/FLX/1440203 

AU_Stp Australia 2010, 2012, 2014 0.52 0.53 GRA 10.18140/FLX/1440204 

AU_Tum Australia 2002-2003, 2005-2009, 2011, 2013-2014 4.62 0.97 EBF 10.18140/FLX/1440126 

AU_Whr Australia 2012-2014 1.12 0.34 EBF 10.18140/FLX/1440206 

AU_Wom Australia 2011-2012 5.10 1.07 EBF 10.18140/FLX/1440207 

AU_Ync Australia 2013 0.45 0.58 GRA 10.18140/FLX/1440208 

BR_Sa3 Brazil 2001-2003 5.94 0.96 EBF 10.18140/FLX/1440033 

CA_Man Canada 1995, 2001 1.07 0.64 ENF 10.18140/FLX/1440035 

CA_NS1 Canada 2003-2004 1.10 - ENF 10.18140/FLX/1440036 

CA_NS3 Canada 2002-2004 0.75 - ENF 10.18140/FLX/1440038 

CA_NS5 Canada 2004 1.10 0.48 ENF 10.18140/FLX/1440040 

CA_NS6 Canada 2002-2004 0.76 0.49 ENF 10.18140/FLX/1440041 

CA_NS7 Canada 2003-2004 0.32 0.66 ENF 10.18140/FLX/1440042 

CA_Qfo Canada 2004-2009 0.87 1.82 ENF 10.18140/FLX/1440045 

CA_SF1 Canada 2004-2005 1.34 1.08 ENF 10.18140/FLX/1440046 

CA_SF2 Canada 2003-2004 1.06 0.73 ENF 10.18140/FLX/1440047 

CA_SF3 Canada 2003-2005 0.66 0.98 ENF 10.18140/FLX/1440048 

CH_DAV Switzerland 1997, 1999-2004, 2006-2014 0.94 1.46 ENF 10.18140/FLX/1440132 

CH_Fru Switzerland 2007-2008, 2011-2014 1.88 2.67 GRA 10.18140/FLX/1440133 

CH_Oe1 Switzerland 2005-2008 1.27 2.41 GRA 10.18140/FLX/1440135 

CN_Cng China 2008-2009 0.41 0.75 GRA 10.18140/FLX/1440209 

CN_Dan China 2004-2005 0.11 1.14 GRA 10.18140/FLX/1440138 

CN_Din China 2003, 2005 3.30 1.49 EBF 10.18140/FLX/1440139 

CN_Du2 China 2007-2008 0.45 0.52 GRA 10.18140/FLX/1440140 

CN_HaM China 2003-2004 0.41 1.21 GRA 10.18140/FLX/1440190 

CN_Qia China 2003-2005 2.95 1.30 ENF 10.18140/FLX/1440141 

CN_Sw2 China 2011 0.25 0.32 GRA 10.18140/FLX/1440212 

DE_Gri Germany 2004-2010, 2012-2014 2.40 1.93 GRA 10.18140/FLX/1440147 

DE_Hai Germany 2000-2009, 2011-2012 2.65 1.60 DBF 10.18140/FLX/1440148 

DE_Lkb Germany 2011-2012 0.84 2.53 ENF 10.18140/FLX/1440214 

DE_Obe Germany 2009-2014 2.47 1.96 ENF 10.18140/FLX/1440151 

DE_RuR Germany 2012-2014 2.58 1.97 GRA 10.18140/FLX/1440215 

DE_Tha Germany 1997-2014 2.59 1.53 ENF 10.18140/FLX/1440152 

DK_Sor Denmark 1997-2004, 2006-2010, 2012 2.30 1.93 DBF 10.18140/FLX/1440155 

FI_Hyy Finland 1997-1999, 2001-2014 1.79 1.44 ENF 10.18140/FLX/1440158 

FI_Sod Finland 2003-2011, 2013-2014 0.56 2.27 ENF 10.18140/FLX/1440160 

FR_Fon France 2006-2013 2.67 1.10 DBF 10.18140/FLX/1440161 

FR_LBr France 1998, 2001-2008 1.61 0.88 ENF 10.18140/FLX/1440163 

FR_Pue France 2001-2010, 2013-2014 2.02 1.20 EBF 10.18140/FLX/1440164 

GF_Guy French Guiana 2004, 2006-2014 5.24 1.89 EBF 10.18140/FLX/1440165 

 
IT_CA1 Italy 2012, 2014 1.23 - DBF 10.18140/FLX/1440230 
IT_CA3 Italy 2012, 2013 1.16 1.03 DBF 10.18140/FLX/1440232 
IT_Col Italy 2007, 2009, 2011, 2014 2.32 1.53 DBF 10.18140/FLX/1440167 

http://dx.doi.org/10.18140/FLX/1440197
http://dx.doi.org/10.18140/FLX/1440198
http://dx.doi.org/10.18140/FLX/1440199
http://dx.doi.org/10.18140/FLX/1440200
http://dx.doi.org/10.18140/FLX/1440125
http://dx.doi.org/10.18140/FLX/1440202
http://dx.doi.org/10.18140/FLX/1440203
http://dx.doi.org/10.18140/FLX/1440204
http://dx.doi.org/10.18140/FLX/1440126
http://dx.doi.org/10.18140/FLX/1440206
http://dx.doi.org/10.18140/FLX/1440207
http://dx.doi.org/10.18140/FLX/1440208
http://dx.doi.org/10.18140/FLX/1440033
http://dx.doi.org/10.18140/FLX/1440035
http://dx.doi.org/10.18140/FLX/1440036
http://dx.doi.org/10.18140/FLX/1440038
http://dx.doi.org/10.18140/FLX/1440040
http://dx.doi.org/10.18140/FLX/1440041
http://dx.doi.org/10.18140/FLX/1440042
http://dx.doi.org/10.18140/FLX/1440045
http://dx.doi.org/10.18140/FLX/1440046
http://dx.doi.org/10.18140/FLX/1440047
http://dx.doi.org/10.18140/FLX/1440132
http://dx.doi.org/10.18140/FLX/1440133
http://dx.doi.org/10.18140/FLX/1440135
http://dx.doi.org/10.18140/FLX/1440209
http://dx.doi.org/10.18140/FLX/1440138
http://dx.doi.org/10.18140/FLX/1440138
http://dx.doi.org/10.18140/FLX/1440140
http://dx.doi.org/10.18140/FLX/1440190
http://dx.doi.org/10.18140/FLX/1440141
http://dx.doi.org/10.18140/FLX/1440212
http://dx.doi.org/10.18140/FLX/1440147
http://dx.doi.org/10.18140/FLX/1440148
http://dx.doi.org/10.18140/FLX/1440214
http://dx.doi.org/10.18140/FLX/1440151
http://dx.doi.org/10.18140/FLX/1440215
http://dx.doi.org/10.18140/FLX/1440152
http://dx.doi.org/10.18140/FLX/1440155
http://dx.doi.org/10.18140/FLX/1440158
http://dx.doi.org/10.18140/FLX/1440160
http://dx.doi.org/10.18140/FLX/1440161
http://dx.doi.org/10.18140/FLX/1440163
http://dx.doi.org/10.18140/FLX/1440164
http://dx.doi.org/10.18140/FLX/1440165
http://dx.doi.org/10.18140/FLX/1440230
http://dx.doi.org/10.18140/FLX/1440232
http://dx.doi.org/10.18140/FLX/1440167
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3 Results 185 

3.1 The link between water, energy, and carbon fluxes versus LAI 

LAI and LE were positively correlated in SAV, GRA, and EBF (Figure 4,Table 2). The slope of the correlation between the 

different vegetation types is different; the slope was steepest for SAV (slope = 46.1 W m-2): a doubling in LAI (1 to 2) was 

associated with almost a doubling in LE (51 to 97 W m-2), compared to a flatter slope in GRA (9.80 W m-2) and EBF (13.0 W 

m-2). In ENF and DBF, LAI and LE were not significantly correlated. LAI and H were negatively correlated in SAV, GRA 190 

and EBF, while there was no significant correlation in ENF and DBF. LAI and the EF were positively correlated in SAV, GRA 

and EBF, while no correlation was found in ENF and DBF. A positive slope indicates that, for a higher LAI, a higher fraction 

of the available energy is used for evapotranspiration of water, compared to surface heating. The slope between LAI and EF 

was steeper in SAV and GRA (slope = 0.27 for both) than in EBF (slope = 0.08). A positive correlation between LAI and GPP 

IT_Cp2 Italy 2013 3.84 0.93 EBF 10.18140/FLX/1440233 
IT_Cpz Italy 2003, 2006, 2007 3.12 0.89 EBF 10.18140/FLX/1440168 
IT_Isp Italy 2013, 2014 1.66 2.41 DBF 10.18140/FLX/1440234 

IT_Lav Italy 2003-2013 2.55 1.74 ENF 10.18140/FLX/1440169 

IT_MBO Italy 2003-2013 1.16 2.41 GRA 10.18140/FLX/1440170 

IT_PT1 Italy 2003 0.81 0.77 DBF 10.18140/FLX/1440172 
IT_Ren Italy 2003, 2005-2013 1.53 1.60 ENF 10.18140/FLX/1440173 
IT_Ro1 Italy 2002-2006 - 0.91 DBF 10.18140/FLX/1440174 
IT_Ro2 Italy 2002-2007, 2012 1.99 0.83 DBF 10.18140/FLX/1440175 
IT_SR2 Italy 2013 2.12 1.38 ENF 10.18140/FLX/1440236 
IT_SRo Italy 1999-2004, 2006-2007, 2009, 2012 2.05 0.70 ENF 10.18140/FLX/1440176 
IT_Tor Italy 2010-2014 0.98 2.54 GRA 10.18140/FLX/1440237 
NL_Hor Netherlands 2004-2005, 2007-2008, 2010 1.81 2.01 GRA 10.18140/FLX/1440177 
NL_Loo Netherlands 1996-1997, 2000-2013 2.09 1.20 ENF 10.18140/FLX/1440178 
RU_Fyo Russia 1999-2014 2.09 1.19 ENF 10.18140/FLX/1440183 
SD_Dem Sudan 2008 0.34 0.12 SAV 10.18140/FLX/1440186 
SN_Dhr Senegal 2012 0.61 0.27 SAV 10.18140/FLX/1440246 

US_AR1 United States 2010-2011 0.57 0.68 GRA 10.18140/FLX/1440103 
US_AR2 United States 2010-2011 0.54 0.59 GRA 10.18140/FLX/1440104 
US_Blo United States 2000-2006 1.94 1.26 ENF 10.18140/FLX/1440068 
US_Ha1 United States 1992, 1994-2001, 2004, 2006, 2009, 2011 2.58 1.91 DBF 10.18140/FLX/1440071 
US_Me2 United States 2002, 2004-2005, 2007, 2009-2010, 2012-2014 1.97 0.65 ENF 10.18140/FLX/1440079 
US_Me6 United States 2014 0.82 - ENF 10.18140/FLX/1440099 
US_MMS United States 1999-2014 2.71 1.28 DBF 10.18140/FLX/1440083 
US_NR1 United States 1999-2014 1.32 1.02 ENF 10.18140/FLX/1440087 
US_Prr United States 2011 - 0.92 ENF 10.18140/FLX/1440113 
US_SRG United States 2009-2014 0.41 0.42 GRA 10.18140/FLX/1440114 
US_SRM United States 2004-2014 0.35 0.31 Woody SAV 10.18140/FLX/1440090 
US_Ton United States 2002-2006, 2008-2014 1.02 0.50 Woody SAV 10.18140/FLX/1440092 
US_UMB United States 2000-2014 2.14 0.95 DBF 10.18140/FLX/1440093 
US_UMd United States 2008-2013 1.90 1.09 DBF 10.18140/FLX/1440101 
US_Var United States 2001-2004, 2006-2014 1.07 0.70 GRA 10.18140/FLX/1440094 
US_WCr United States 2000-2003, 2005, 2011, 2013-2014 2.00 1.40 DBF 10.18140/FLX/1440095 
US_Wkg United States 2005-2014 0.28 0.35 GRA 10.18140/FLX/1440096 
ZA_Kru South Africa 2002, 2010 1.08 0.38 SAV 10.18140/FLX/1440188 
ZM_Mon Zambia 2008 1.62 0.49 DBF 10.18140/FLX/1440189 

http://dx.doi.org/10.18140/FLX/1440233
http://dx.doi.org/10.18140/FLX/1440170
http://dx.doi.org/10.18140/FLX/1440172
http://dx.doi.org/10.18140/FLX/1440173
http://dx.doi.org/10.18140/FLX/1440174
http://dx.doi.org/10.18140/FLX/1440175
http://dx.doi.org/10.18140/FLX/1440236
http://dx.doi.org/10.18140/FLX/1440176
http://dx.doi.org/10.18140/FLX/1440237
http://dx.doi.org/10.18140/FLX/1440177
http://dx.doi.org/10.18140/FLX/1440178
http://dx.doi.org/10.18140/FLX/1440183
http://dx.doi.org/10.18140/FLX/1440246
http://dx.doi.org/10.18140/FLX/1440103
http://dx.doi.org/10.18140/FLX/1440104
http://dx.doi.org/10.18140/FLX/1440068
http://dx.doi.org/10.18140/FLX/1440071
http://dx.doi.org/10.18140/FLX/1440079
http://dx.doi.org/10.18140/FLX/1440099
http://dx.doi.org/10.18140/FLX/1440083
http://dx.doi.org/10.18140/FLX/1440087
http://dx.doi.org/10.18140/FLX/1440113
http://dx.doi.org/10.18140/FLX/1440114
http://dx.doi.org/10.18140/FLX/1440090
http://dx.doi.org/10.18140/FLX/1440092
http://dx.doi.org/10.18140/FLX/1440093
http://dx.doi.org/10.18140/FLX/1440101
http://dx.doi.org/10.18140/FLX/1440094
http://dx.doi.org/10.18140/FLX/1440095
http://dx.doi.org/10.18140/FLX/1440096
http://dx.doi.org/10.18140/FLX/1440188
http://dx.doi.org/10.18140/FLX/1440189
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was found in all vegetation types (r = 0.47 - 0.97), with a very strong correlation coefficient for SAV (r = 0.97). The correlation 195 

followed a steep slope for SAV (slope = 3.37 gC m-2 d-1) and GRA (slope = 2.17 gC m-2 d-1), a similar slope in EBF (slope = 

1.71 gC m-2 d-1) and ENF (slope = 1.81 gC m-2 d-1), and a less steep slope in DBF (slope = 0.76 gC m-2 d-1). The correlation 

between LAI and NEE is negative in SAV, EBF, and ENF. This indicates that net carbon uptake increases with LAI. Among 

the different fluxes, GPP showed the strongest correlation with LAI for all vegetation types. Comparing the different vegetation 

types, the correlation between LAI and fluxes was strongest in SAV. 200 

 

Using multi-year average data reduced the number of data points to only 5 to 16 sites per vegetation type. Nevertheless, the 

spatial correlation (site-to-site variability) between LAI and surface fluxes is very similar to the spatio-temporal correlation 

(Figure 5,Table 2). For SAV, GRA, and ENF, the slope and strength of the correlation were similar when compared with the 

site-year data. For the EBF, for the site-year data, the correlation with LE and EF was only significant at p ≤ 0.1 and the 205 

correlation was not significant for H and NEE. 

 

Figure 4 The spatio-temporal correlation between surface fluxes and leaf area index (LAI). Panels show (a) the latent heat flux (LE), 

(b) the sensible heat flux (H), (c) the evaporative fraction (EF), (d) gross primary productivity (GPP), and (e) net ecosystem exchange 

(NEE). A line indicates a significant correlation at p < 0.05. 
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Table 2 Strength and significance of the correlation between LAI versus surface fluxes for site-year and multi-year average data. 

The correlation coefficients are shown for significant correlations at p ≤ 0.05 (*) or at p ≤ 0.1 (·). A - indicates that the correlation 

was not significant. 210 

 Site-years  Multi-year average 

 LE H EF GPP NEE  LE H EF GPP NEE 

Savanna 0.88* − 0.72* 0.89* 0.97* − 0.89*  0.94* − 0.96* 0.95* 0.99* − 0.90* 

Grassland 0.65* − 0.71* 0.74* 0.86* -  0.68* − 0.80* 0.79* 0.84* - 

Evergreen Broadleaf Forest 0.84* − 0.69* 0.83* 0.88* − 0.51*  0.87· - 0.87· 0.96* - 

Evergreen Needleleaf Forest - - - 0.84* − 0.58*  - - - 0.89* − 0.57* 

Deciduous Broadleaf Forest - - - 0.47* − 0.33*  - - - 0.65· - 

 

Temporal (year-to-year) variability in LAI and surface fluxes was smaller than spatial (site-to-site) variability (Figure 6). For 

both SAV sites, and one of the two GRA, EBF, and DBF sites, LAI and LE were positively correlated in time. For H, one EBF 

site showed a significant negative correlation with LAI, and for EF, and one of the two SAV, GRA, EBF, and DBF sites 

Figure 5 The spatial correlation between surface fluxes and leaf area index (LAI).  Panels show (a) the latent heat flux (LE), 

(b) the sensible heat flux (H), (c) the evaporative fraction (EF), (d) gross primary productivity (GPP), and (e) net ecosystem 

exchange (NEE). All sites are included that have at least three years of LAI and flux data available. A line indicates a significant 

correlation at p < 0.05 and a dashed line indicates a significant correlation at p < 0.1.  
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showed a positive correlation with LAI (p ≤ 0.1 or p ≤ 0.05). For GPP and NEE, one of the SAV, GRA, EBF, and ENF sites 215 

showed a positive correlation. Overall, the temporal correlations between LAI and surface fluxes was of similar direction as 

the spatio-temporal and spatial correlations. For more than half of the sites in Figure 6, however, year-to-year variability in 

LAI and surface fluxes was low and variability in fluxes was not significantly correlated with variability in LAI.  

Figure 6 An illustration of the temporal correlation between yearly average surface fluxes and leaf area index (LAI). For 

each land cover type, two sites were selected that had the highest number of available data. The colours of the symbols 

indicate the land cover type as in Fig 4 and Fig 5. Panels show (a) the latent heat flux (LE), (b) the sensible heat flux (H), 

(c) the evaporative fraction (EF), (d) gross primary productivity (GPP), and (e) net ecosystem exchange (NEE). A line 

indicates a significant correlation at p < 0.05 and a dashed line indicates a significant correlation at p < 0.1.  
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3.2 The effect of climatological aridity on the link between LAI and surface fluxes 220 

Figure 7 shows the steepness and significance of the correlation between LAI and surface fluxes for different aridity values. 

In dry vegetation types or regions, the correlation between LAI and fluxes was significant and had a steeper slope, while in the 

more humid vegetation types or regions, the slope was relatively horizontal and the correlation was often not significant. In 

SAV, GRA, and EBF, the correlation between LAI and LE was significant for the whole range of aridity values. In arid GRA, 

the correlation had a steeper slope, as compared to humid GRA. For LAI versus H and LAI versus EF, the slope was steep and 225 

significant for SAV. For GRA, the correlation was strong and significant in the arid regions, and insignificant for the humid 

regions. For EBF, the slope and significance of the correlation did not change with aridity. For LAI and GPP, the slope and 

significance of the correlation did not change with aridity for SAV, GRA, EBF, and ENF. For DBF, the correlation between 

LAI and GPP was negative at higher aridity, but these results were strongly influenced by one site with an above average LAI 

for all the site-years. For LAI versus NEE, a steep slope with negative correlation was found in arid SAV and humid ENF. In 230 

other humid regions, the correlation was less steep.  

Figure 7 The effect of aridity on the relation between surface fluxes and leaf area index (LAI). The slope of the correlation between 

LAI and surface fluxes is shown for different aridity values for (a) the latent heat flux (LE), (b) the sensible heat flux (H), (c) the 

evaporative fraction (EF), (d) gross primary productivity (GPP), and (e) net ecosystem exchange (NEE). Each dot indicates the slope 

value for the 30 closest aridity values. The filled symbols indicate that the correlation was significant at p < 0.05, while the empty 

symbols indicate a non-significant correlation. 
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To study how the correlations varied with climatic drivers of surface fluxes, we calculated the correlation coefficient between 

the fluxes versus precipitation (P) and incoming shortwave radiation (Rg) (Figure 8). In SAV, GRA, and EBF, the water fluxes 

showed a strong correlation with P, indicating that water availability partly explained the spatio-temporal variability in surface 

fluxes. In ENF and DBF, there was a weak or no correlation between LE and P, but a strong correlation with Rg. This indicates 235 

that available radiation was the primary driver of water and energy fluxes in these sites.  

4 Discussion 

The EBF site-years span a wide range of LAI values (LAI = 0.9 - 6.1) and aridity conditions (AI = 0.3 - 9.3), and both are a 

potential limitation of our analysis for the EBF vegetation type. The uncertainty of the LAI retrieval in dense vegetation is 

higher compared to other vegetation types due to saturation of the remotely sensed signal. The large range of climatic 240 

conditions indicates that our EBF site-years range from arid, water-limited conditions to humid conditions. Despite this high 

variability in site-years, the sites fell within one vegetation type. 

 

The correlation between LAI versus water and energy fluxes (LE, H, and EF) varied with vegetation type and aridity. For the 

spatio-temporal and spatial variability, we found 1) strong (positive or negative) correlations and (partly) steep slopes for SAV 245 

and GRA, 2) a significant correlation, but less steep slope for EBF, and 3) no significant correlations for ENF and DBF. For 

the temporal variability, this pattern was similar for LE, but almost no significant correlations were found for LAI versus H 

and EF for SAV and GRA. Evapotranspiration is the sum of transpiration, soil evaporation and interception evaporation and 

the magnitude of each component depends on LAI. Transpiration increases with LAI at the cost of soil evaporation when there 

is sufficient moisture available (Gu et al., 2018; Wang et al., 2014). In arid climates, the transpiration component is higher 250 

Figure 8 Water and energy control on surface fluxes. The correlation coefficient (r) between site-year surface fluxes versus (a) mean 

yearly precipitation (P) and (b) incoming shortwave radiation (Rg). Each bar indicates a significant correlation at p < 0.05. 
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compared to wetter climates (Gu et al., 2018) and the link between transpiration and LAI is particularly strong in these arid 

climates (Sun et al., 2019). When soil moisture is deficient and vegetation encounters a high evaporative demand, stomatal 

control is stronger (Mallick et al., 2016). This accelerates a strong stomatal coupling between LAI and LE and could explain 

the strong correlation between LAI versus LE, H, and EF that was found in SAV and arid GRA. Soil water deficiency and 

high evaporative demand leads to a high increase in LE, for a small increase in LAI, which could explain the steep(er) slope 255 

in arid GRA and SAV vegetation. 

In forests, soil evaporation is low, while interception evaporation is large. The high interception evaporation is due to the large 

leaf area (both green leaves included in the LAI and brown leaves after leaf senescence) with a high canopy water storage 

capacity and a high turbulence, enhancing fast evaporation (De Jong and Jetten, 2007). In EBF, interception evaporation 

contributes to up to 30% of total evapotranspiration (Wei et al., 2017; Gu et al., 2018). This could explain the strong correlation 260 

between LAI versus water and energy fluxes in EBF. A high interception evaporation was however also reported for temperate 

and boreal forest (Miralles et al., 2011), while for these forest types, we found no correlation between LAI and water and 

energy fluxes. The ENF and DBF sites were found in humid regions, and fluxes were in the first place energy-limited. In these 

energy-limited sites, LAI played no, or a weak role in controlling surface fluxes. This indicates a weak or no vegetation control 

on surface water and energy fluxes in energy-limited sites. This is in line with a low land-atmosphere coupling in energy-265 

limited sites (Ferguson et al., 2012).  

 

In contrast to the results for water and energy fluxes, the spatio-temporal and spatial correlation between GPP versus LAI was 

strong across all vegetation types and (almost) all aridity gradients. A strong link between LAI and carbon uptake on yearly 

timescale over all vegetation types is expected, as plants try to optimize carbon gain and would generally not display leaves 270 

with a negative carbon balance. A strong link between LAI and mean yearly GPP was also shown by Hashimoto et al. (2012). 

Other studies however found a weak link between LAI and GPP for annual time scales (Law et al., 2002). In contrast to the 

spatial variability, year-to-year variability in GPP was only in part of the sites correlated to LAI. Water availability is an 

important driver for temporal variability in GPP (Williams and Albertson, 2004; Kutsch et al., 2008), and GPP is strongly 

reduced under drought conditions (Vicca et al., 2016). The effect of drought is also visible in reduced LAI, but on a longer 275 

time scale of one or two years in forest (Le Dantec et al., 2000; Kim et al., 2017). This different response time to water 

availability for forest LAI and GPP could partly explain the absence of a temporal correlation for part of the sites. The spatial 

correlation between LAI and NEE was less strong as compared to GPP, which is in agreement with results of Chen et al. 

(2019). NEE is the sum of carbon uptake by the vegetation (GPP) and carbon loss by ecosystem respiration. Ecosystem 

respiration varies with climate and soil carbon storage, which are not directly related with LAI. This could explain the absence 280 

of a correlation between LAI and NEE. 

 

The results partly confirmed our hypothesis. As hypothesised, the correlation between LAI and surface fluxes was strong in 

arid regions for water and energy fluxes, and the correlation was absent in humid ENF and DBF. For humid EBF, however, 
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we found a strong correlation between LAI and water and energy fluxes, and for GPP, the correlation with LAI was strong 285 

across all aridity gradients. While carbon uptake is the primary goal of vegetation, independent of the aridity gradient, 

ecosystem water loss comes inevitably with carbon uptake, but also depends on vapour pressure deficit, available radiation, 

and soil moisture, which are not directly linked to LAI. 

 

Our statistical analysis cannot be used to study causality between LAI and surface fluxes, or to study vegetation control on the 290 

surface fluxes. The correlation between LAI and water fluxes is confounded by the effect of soil moisture, especially in arid 

and semi-arid ecosystems, where both canopy development and LE increase with water availability (Kergoat, 1998; Mallick 

et al., 2018). Similarly, precipitation is the main controller for spatial variability in both vegetation and GPP (Koster et al., 

2014). Furthermore, LAI is related to vegetation properties, but not a direct measure of canopy conductance. Despite, there are 

similarities with previous studies showing the stomatal or vegetation control on surface fluxes. A strong vegetation control on 295 

water and energy fluxes in arid and semi-arid regions was shown on timescales of days or smaller (e.g. Mallick et al., 2016; 

Mallick et al., 2018) and also our study shows that, on large spatio-temporal scale, LAI versus water and energy fluxes show 

the strongest correlation in arid regions. For EBF however, we found a strong spatial correlation between vegetation versus 

water, and energy fluxes, while Padrón et al. (2017) showed that vegetation control in equatorial regions was absent. An 

interesting follow-up study would be to link stomatal control for different vegetation types (De Kauwe et al., 2017) to the 300 

canopy-scale pattern investigated in this study. 

 

Our analyses give insight in how and when vegetation LAI is related to surface fluxes. The results show that LAI is a good 

predictor for spatial variability in GPP across different vegetation types and aridity gradients. Furthermore, the analysis 

suggests that, in SAV, GRA, and EBF, LAI could be used to describe canopy-scale spatio-temporal variability water and 305 

energy fluxes. LAI is however not a good predictor for water and energy fluxes in ENF and DBF and for NEE. It is important 

to be aware of these limitations when using LAI to describe or estimate water, energy, and carbon fluxes in climate models or 

extrapolation methods. This study provides insight in the link between surface fluxes and LAI and could be used to improve 

predictions of the effects of land cover change on surface fluxes. 

5 Conclusions 310 

The objective of this study was to get an insight about the link between vegetation LAI and land-atmosphere fluxes for different 

vegetation types along an aridity gradient. We studied this link at large spatio-temporal scale using flux tower measurements 

of water, energy, and carbon, combined with satellite derived LAI data. The data analysis led to the following conclusions: 

a) The link between LAI versus water and energy fluxes depends on vegetation type and aridity. The correlation between 

LAI versus water and energy fluxes is strong in SAV, GRA, and EBF. In DBF and ENF however, no significant 315 

correlation was found. Contrary to water and energy fluxes, the spatial correlation between LAI versus GPP was 
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strong, independent of vegetation type and aridity. This suggests that using LAI to model or extrapolate surface fluxes 

of water and energy is well possible in SAV, GRA, and EBF, but is limited in DBF and ENF. 

b) As hypothesised, the link between LAI and water and energy fluxes was strong in arid, water-limited conditions and 

absent or weak for humid, radiation-limited conditions. EBF, which was found over a high range of aridity conditions, 320 

but mostly in humid environments, forms an exception: the spatial correlation between LAI versus water and energy 

fluxes was strong, despite the overall humid conditions.  

This research – facilitated by the recent availability of large global datasets of remotely sensed LAI, flux tower data, and cloud-

computing platforms – has added to the understanding of LAI interaction with surface fluxes and could help to improve 

modelling or extrapolating surface fluxes. 325 
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