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Abstract 

Vegetation regulates the exchange of water, energy, and carbon fluxes between the land and the atmosphere. This regulation 

of surface fluxes differs with vegetation type and climate, but the effect of vegetation on surface fluxes is not well understood. 

A better knowledge of how and when vegetation influences surface fluxes could improve climate models and the extrapolation 15 

of ground-based water, energy, and carbon fluxes. We aim to study the large-scale link between vegetation and surface fluxes 

by combining MODIS leaf area index with flux tower measurements of water (latent heat), energy (sensible heat), and carbon 

(gross primary productivity and net ecosystem exchange). We show that the correlation between leaf area index and water and 

energy fluxes depends on vegetation and aridity. In water-limited conditions, the link between vegetation and water and energy 

fluxes is strong, which is in line with a strong stomatal or vegetation control found in earlier studies. In energy-limited forest 20 

we found no vegetation control on water and energy fluxes. In contrast to water and energy fluxes, we found a strong correlation 

between leaf area index and gross primary productivity that was independent of vegetation type and aridity index. This study 

provides insight in the large-scale link between vegetation and surface fluxes. The study indicates that for modelling or 

extrapolating large-scale surface fluxes, LAI can be useful in savanna and grassland, but only of limited use in deciduous 

broadleaf forest and evergreen needleleaf forest. 25 

1 Introduction 

Vegetation and water, energy, and carbon fluxes are tightly coupled. On one hand, large-scale vegetation patterns are driven 

by the long-term memory of water and energy availability (Köppen, 1936; Prentice et al., 1992; Cramer et al., 2001). Recent 

climate change leads to shifts in the spatial distribution of vegetation, as well as shifts in the timing of the growing season 

(Jeong et al., 2011; Rosenzweig et al., 2008; Fei et al., 2017). On the other hand, vegetation also plays a crucial role in the 30 

exchange of water, energy, and carbon between the land surface and the atmosphere, mainly through its effects on 

evapotranspiration, turbulence, redistribution of water, and surface heating (Shao et al., 2015; Jia et al., 2014; Esau and Lyons, 
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2002). Teuling et al. (2019) showed that large-scale changes in vegetation and land cover can have similar impacts on 

evapotranspiration as climate change. This two-way interaction between vegetation and terrestrial surface fluxes has been 

known for a long time (e.g. Bates and Henry, 1928; Woodwell et al., 1978), but is still a very relevant research topic today 35 

(Forkel et al., 2019; Lu et al., 2019; Teuling and Hoek van Dijke, 2020; Kirchner et al., 2020; Evaristo and McDonnell, 2019), 

given the important of understanding the impact of climate change on vegetation, as well as the effect of land cover change on 

climate. 

 

Plants regulate the exchange of water, energy, and carbon with the atmosphere through their stomata. The stomatal regulation 40 

(stomatal control) of these fluxes depends on available energy, transpiration demand, and available soil moisture in the root 

zone. When both the available energy and soil moisture are abundant, stomata open and water and carbon can freely move in 

and out: the stomatal control of surface fluxes is low. When the available energy is high, but soil moisture is limiting, stomata 

tend to close and exert a large control on water and carbon fluxes (Mallick et al., 2016). Zooming out from stomatal to canopy 

scale, there are several other ways in which vegetation influences surface fluxes. Soil and crown mutual shadowing and deep 45 

ground water uptake by vegetation influence the latent heat flux whereas soil moisture influences ecosystem respiration and 

thereby carbon exchange (Chen et al., 2019; Schmitt et al., 2010). The large-scale vegetation control of ecosystem fluxes has 

been shown by different data or modelling studies and depends on climate and vegetation type (Williams et al., 2012; Xu et 

al., 2013; Wagle et al., 2015). Williams and Torn (2015) found a strong vegetation control on surface heat flux partitioning in 

both arid and humid grassland, cropland, and forest while Padrón et al. (2017) concluded that globally, vegetation control on 50 

evapotranspiration was low and even absent in the equatorial regions.  Ferguson et al. (2012) studied land-atmosphere coupling 

of fluxes, which includes the effect of vegetation as well as other factors as soil wetness, texture, surface temperature. They 

showed in their modelling study that transitional zones between arid and humid climates (shrublands, grasslands, and savannas) 

tend to have strong land-atmosphere coupling, while in the energy-limited regions, land-atmosphere coupling is weak.  

 55 

Figure 1 Global distribution of vegetation leaf area index. The mean leaf area 

index, at 5 km resolution, is derived from the MODIS data product 

MCD15A3H.006 (Myneni, 2015).  
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The leaf area index (LAI) is an important vegetation characteristic and is indicative for the total amount of foliage that 

intercepts light and assimilates carbon. Furthermore, both rainfall interception and canopy conductance increase with LAI 

(Van Heerwaarden and Teuling, 2014; Gómez et al., 2001). A high LAI is therefore related to high vegetation carbon uptake 

and high canopy evapotranspiration of water (Lindroth et al., 2008; Duursma et al., 2009). Highest mean yearly LAI is found 

in tropical forests, while a low LAI is found in cold or arid climate zones (Iio et al., 2014)(Figure 1). This global LAI pattern 60 

closely resembles large-scale patterns in estimates of water, energy, and carbon exchange (Miralles et al., 2011; Jung et al., 

2011). With an increasing availability of remotely sensed LAI data, LAI − besides its usage in many remote sensing 

applications (e.g. Si et al., 2012; Zheng and Moskal, 2009) − became a frequently used parameter to represent vegetation in 

land-surface models (Williams et al., 2016; Sellers et al., 1997 amonst many others; Lawrence and Chase, 2010) or to estimate 

or extrapolate regional or global water and carbon fluxes (Beer et al., 2007; Yan et al., 2012; Turner et al., 2003; Xie et al., 65 

2019). The algorithms to retrieve LAI from remotely sensed data improved during the past decades, increasing the accuracy 

of LAI products (Shabanov et al., 2005; Yan et al., 2016). Nevertheless, it is important to be aware of the product uncertainties, 

especially over dense forest, where saturated reflectance can only provide limited information for LAI retrievals (Shabanov et 

al., 2005; Xu et al., 2018), and at high latitudes, where the solar zenith angle is low (Fang et al., 2019). 

 70 

The interaction between vegetation LAI and surface fluxes on larger scale is however not yet well understood and vegetation 

is not well represented in many land-atmosphere and climate models (Williams et al., 2016). A detailed knowledge of how 

and when vegetation LAI is linked to the surface fluxes is required to improve global climate modelling and extrapolation of 

water and carbon fluxes from canopy to ecosystems. The high availability of remote sensing LAI products, recent 

developments in cloud-based platforms for geospatial analysis (Mutanga and Kumar, 2019), and the availability of publicly 75 

available eddy covariance data from FLUXNET (Baldocchi et al., 2001) allows for a large-scale analysis of the link between 

vegetation characteristics and surface fluxes. The objective of our study is to get an insight about the link between vegetation 

LAI and surface fluxes for different vegetation types along an aridity gradient. We address the following research questions: 

1) What is the link between LAI versus water, energy, and carbon fluxes in different vegetation types? 2) How is the interaction 

between LAI versus water, energy, and carbon fluxes governed by climatological aridity? We hypothesise that the link between 80 

LAI and surface fluxes is strong in semi-arid and arid climates, owing to the strong stomatal control, while the link is weak in 

humid climates. 

 

In our study we focus on five metrics of water, energy, and carbon fluxes measured by flux towers. Latent heat (LE), a measure 

for the evapotranspiration of water, and sensible heat (H), represent the exchange of water and energy between the Earth’s 85 

surface and the atmosphere. LE and H are linked through the evaporative fraction (EF). The EF is the ratio of latent heat to the 

sum of LE and H and is a useful measure of the partitioning of total available energy between the evapotranspiration of water 

and surface heating. Net Ecosystem Exchange (NEE) is the net exchange of carbon between the land and the atmosphere, 
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which is directly measured by flux towers. Gross primary productivity (GPP) is derived from NEE and is the gross uptake of 

atmospheric carbon by the vegetation.  90 

2 Data and methodology 

2.1 Data 

2.1.1 Data selection 

This study includes five land cover types: savanna (SAV), grassland (GRA), deciduous broadleaf forest (DBF), evergreen 

broadleaf forest (EBF), and evergreen needleleaf forest (ENF). The SAV sites include the two classes ‘savanna’ and ‘woody 95 

savanna’. These vegetation types follow the International Geosphere-Biosphere Program (IGBP) classification (Loveland et 

al., 2001). The five land cover types were selected because of the availability of a high number of flux tower sites. For some 

site-years, LAI, flux, or meteorological measurements were not available. These site-years were included in each of the 

analyses for which the required metrics were available. 

 100 

Within the FLUXNET-2015 dataset (Baldocchi et al., 2001), we selected all Tier-1 sites (open and free for scientific purposes) 

within the five studied land cover types. We completed the dataset with two sites from the OzFLUX network to increase the 

number of sites in the EBF class (Liddell, 2013b, a). A few sites, where vegetation was affected by diseases or pests, were 

excluded from the analysis. For each site, only years with good-quality data were selected, following the quality selection 

Figure 2 Location and land cover type of the 93 included flux tower sites. 
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procedure that is explained below. This site selection procedure, in combination with the quality check, resulted in a dataset 105 

of 545 site-years spread over 93 sites (Figure 2, Table 1). 

2.1.2 Data averaging and aggregation 

In some land cover types, the surface fluxes and LAI showed seasonal variation. We however used yearly averaged values to 

be able to combine all the different land cover types with and without one or multiple growing seasons. Using yearly averaged 

values for every site (referred to as ‘site-years’) means that 1) we study both temporal and spatial variability simultaneously, 110 

and 2) averaged flux and meteorological measurements might not represent similar conditions. The latter is for example when 

a site-year receives plenty of precipitation in December, increasing the site-year’s aridity index, while this precipitation mainly 

impacts the next site-year’s fluxes or LAI values. To test the effect of using site-years, instead of multi-year averages, the data 

was aggregated in two ways: 1) Site-year data, having one average value per site per year, and 2) temporally aggregated data, 

referred to as multi-year average data, having one mean flux and LAI value per site, averaged over all years. Calculating multi-115 

year average values was done if at least three years of data were available. The two aggregation methods led to similar 

conclusions, as is shown in the paper. 

2.1.3 Flux measurements 

Within the FLUXNET 2015 database, LE, H, NEE, and GPP measurements are gapfilled using the MDS (Marginal 

Distribution Sampling) method (Reichstein et al., 2005), and LE and H are corrected by an energy balance closure correction 120 

factor. The MDS method uses the correlation of fluxes with the driver variables (incoming radiation, temperature, and vapour 

pressure deficit) to estimate flux values during gap periods. The energy balance closure corrects LE and H for the total 

incoming radiation, assuming that the Bowen ratio (the ratio of the sensible heat flux to the latent heat flux) is correct. A similar 

energy balance closure correction was applied to the LE and H measurements of the OzFLUX sites. Monthly averaged flux 

values were discarded if the percentage of measured and good quality gapfill data was below 50%. Yearly mean fluxes were 125 

calculated if measurements for each month were available. The evaporative fraction (EF), the ratio between LE and the total 

energy available at Earth’s surface was calculated using Eq. (1) as follows: 

𝑬𝑭 =
𝑳𝑬

𝑳𝑬+𝑯
 ,       (1) 

where LE is the latent heat flux and H is the sensible heat flux. 

2.1.4 Meteorological measurements 130 

Meteorological measurements are delivered with the flux tower data. These meteorological measurements are measured locally 

and gap filled using the MDS (Marginal Distribution Sampling) method (Reichstein et al., 2005), or are downscaled from 

ERA-interim reanalysis data (Vuichard and Papale, 2015). Yearly potential evaporation (Ep) was calculated from mean daily 

air temperature and net radiation using the Priestley-Taylor formulation (Priestley and Taylor, 1972). The Priestley-Taylor 
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equation is a modification of the Penman equation and requires less measurements. The aridity index (AI), an indicator of 135 

dryness, was calculated according to Eq. (2) 

 

𝑨𝑰 =
𝑷

𝑬𝒑
,        (2) 

where P is precipitation and Ep is the potential evaporation. An aridity value of one indicates that, on a yearly scale, 

precipitation equals potential evaporation, while values below one indicate site-years that receive less precipitation than their 140 

potential evaporation.  

2.1.5 Leaf Area Index 

Leaf Area Index (LAI) is the ratio of leaf area to ground area (in m2 m-2). We used LAI derived from the MODIS data product 

MCD15A3H.006 (Myneni, 2015). This algorithm derives 4-day composite LAI values on 500 m spatial resolution from the 

Terra and Aqua satellites and is available for 2003 onwards. Within this 4-day period, the best pixel is selected from the 145 

MODIS sensors located on the Terra and Aqua satellite for the calculation of LAI. The LAI calculation algorithm uses a Look-

up-Table that was generated using a 3D radiative transfer equation (Myneni, 2015). Heinsch et al. (2006) compared the MODIS 

data product with ground measurements at FLUXNET sites and concluded that 62.5% of the MODIS LAI was well estimated, 

but that MODIS LAI overestimated ground measured LAI for the other sites. The resolution of the LAI data product is 500 m, 

compared to a typical flux tower footprint length of 100 to 1000 m (Kim et al., 2006). The exact size and location of the 150 

footprint of flux towers however varies with among others wind direction and wind speed, surface roughness, and flux 

measurement height (Kim et al., 2006; Barcza et al., 2009). For our analysis, we selected the one nearest LAI pixel for each 

flux tower. Data were filtered to remove clouds, using the with the product delivered quality label. To smoothen outliers, the 

moving mean LAI was calculated for three consecutive data points. Monthly mean values were calculated if at most one data 

point was missing. Site-year mean LAI was calculated when no monthly data were missing.  155 
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Table 1 A list of all included site-years for the 93 sites. For each site, mean yearly leaf area index (LAI) and aridity index (AI) are 

calculated for the included site-years. 

FLUXNET-ID Country Years included mean LAI mean AI Land cover DOI 

AT_Neu Austria 2002-2012 2.31 1.78 GRA 10.18140/FLX/1440121 
AU_Ade Austria 2008 1.19 0.96 Woody SAV 10.18140/FLX/1440193 

AU_Cow Australia 2009-2018 5.78 3.83 EBF 102.100.100/14244 

AU_Cpr Australia 2011-2013 0.47 0.29 SAV 10.18140/FLX/1440195 

AU_Ctr Australia 2010-2018 5.39 3.80 EBF 102.100.100/14242 

AU_Cum Australia 2013-2014 1.34 0.49 EBF 10.18140/FLX/1440196 

AU_DaP Australia 2008, 2010 1.71 1.11 GRA 10.18140/FLX/1440123 

AU_DaS Australia 2008-2010, 2012-2014 1.34 0.87 SAV 10.18140/FLX/1440122 

AU_Dry Australia 2012, 2014 1.26 0.52 Woody SAV 10.18140/FLX/1440197 

AU_Emr Australia 2012, 2013 0.76 0.51 GRA 10.18140/FLX/1440198 

AU_Gin Australia 2014 0.96 0.34 Woody SAV 10.18140/FLX/1440199 

AU_GWW Australia 2013 0.37 - SAV 10.18140/FLX/1440200 

AU_How Australia 2003, 2008, 2010-2014 1.83 1.09 Woody SAV 10.18140/FLX/1440125 

AU_Rig Australia 2011-2012, 2014 1.56 0.47 GRA 10.18140/FLX/1440202 

AU_Rob Australia 2014 5.82 1.43 EBF 10.18140/FLX/1440203 

AU_Stp Australia 2010, 2012, 2014 0.52 0.53 GRA 10.18140/FLX/1440204 

AU_Tum Australia 2002-2003, 2005-2009, 2011, 2013-2014 4.62 0.97 EBF 10.18140/FLX/1440126 

AU_Whr Australia 2012-2014 1.12 0.34 EBF 10.18140/FLX/1440206 

AU_Wom Australia 2011-2012 5.10 1.07 EBF 10.18140/FLX/1440207 

AU_Ync Australia 2013 0.45 0.58 GRA 10.18140/FLX/1440208 

BR_Sa3 Brazil 2001-2003 5.94 0.96 EBF 10.18140/FLX/1440033 

CA_Man Canada 1995, 2001 1.07 0.64 ENF 10.18140/FLX/1440035 

CA_NS1 Canada 2003-2004 1.10 - ENF 10.18140/FLX/1440036 

CA_NS3 Canada 2002-2004 0.75 - ENF 10.18140/FLX/1440038 

CA_NS5 Canada 2004 1.10 0.48 ENF 10.18140/FLX/1440040 

CA_NS6 Canada 2002-2004 0.76 0.49 ENF 10.18140/FLX/1440041 

CA_NS7 Canada 2003-2004 0.32 0.66 ENF 10.18140/FLX/1440042 

CA_Qfo Canada 2004-2009 0.87 1.82 ENF 10.18140/FLX/1440045 

CA_SF1 Canada 2004-2005 1.34 1.08 ENF 10.18140/FLX/1440046 

CA_SF2 Canada 2003-2004 1.06 0.73 ENF 10.18140/FLX/1440047 

CA_SF3 Canada 2003-2005 0.66 0.98 ENF 10.18140/FLX/1440048 

CH_DAV Switzerland 1997, 1999-2004, 2006-2014 0.94 1.46 ENF 10.18140/FLX/1440132 

CH_Fru Switzerland 2007-2008, 2011-2014 1.88 2.67 GRA 10.18140/FLX/1440133 

CH_Oe1 Switzerland 2005-2008 1.27 2.41 GRA 10.18140/FLX/1440135 

CN_Cng China 2008-2009 0.41 0.75 GRA 10.18140/FLX/1440209 

CN_Dan China 2004-2005 0.11 1.14 GRA 10.18140/FLX/1440138 

CN_Din China 2003, 2005 3.30 1.49 EBF 10.18140/FLX/1440139 

CN_Du2 China 2007-2008 0.45 0.52 GRA 10.18140/FLX/1440140 

CN_HaM China 2003-2004 0.41 1.21 GRA 10.18140/FLX/1440190 

CN_Qia China 2003-2005 2.95 1.30 ENF 10.18140/FLX/1440141 

CN_Sw2 China 2011 0.25 0.32 GRA 10.18140/FLX/1440212 

DE_Gri Germany 2004-2010, 2012-2014 2.40 1.93 GRA 10.18140/FLX/1440147 

DE_Hai Germany 2000-2009, 2011-2012 2.65 1.60 DBF 10.18140/FLX/1440148 

DE_Lkb Germany 2011-2012 0.84 2.53 ENF 10.18140/FLX/1440214 

DE_Obe Germany 2009-2014 2.47 1.96 ENF 10.18140/FLX/1440151 

DE_RuR Germany 2012-2014 2.58 1.97 GRA 10.18140/FLX/1440215 

DE_Tha Germany 1997-2014 2.59 1.53 ENF 10.18140/FLX/1440152 

DK_Sor Denmark 1997-2004, 2006-2010, 2012 2.30 1.93 DBF 10.18140/FLX/1440155 

FI_Hyy Finland 1997-1999, 2001-2014 1.79 1.44 ENF 10.18140/FLX/1440158 

FI_Sod Finland 2003-2011, 2013-2014 0.56 2.27 ENF 10.18140/FLX/1440160 

FR_Fon France 2006-2013 2.67 1.10 DBF 10.18140/FLX/1440161 

FR_LBr France 1998, 2001-2008 1.61 0.88 ENF 10.18140/FLX/1440163 

FR_Pue France 2001-2010, 2013-2014 2.02 1.20 EBF 10.18140/FLX/1440164 

GF_Guy French Guiana 2004, 2006-2014 5.24 1.89 EBF 10.18140/FLX/1440165 

 
IT_CA1 Italy 2012, 2014 1.23 - DBF 10.18140/FLX/1440230 
IT_CA3 Italy 2012, 2013 1.16 1.03 DBF 10.18140/FLX/1440232 
IT_Col Italy 2007, 2009, 2011, 2014 2.32 1.53 DBF 10.18140/FLX/1440167 
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IT_Cp2 Italy 2013 3.84 0.93 EBF 10.18140/FLX/1440233 
IT_Cpz Italy 2003, 2006, 2007 3.12 0.89 EBF 10.18140/FLX/1440168 
IT_Isp Italy 2013, 2014 1.66 2.41 DBF 10.18140/FLX/1440234 

IT_Lav Italy 2003-2013 2.55 1.74 ENF 10.18140/FLX/1440169 

IT_MBO Italy 2003-2013 1.16 2.41 GRA 10.18140/FLX/1440170 

IT_PT1 Italy 2003 0.81 0.77 DBF 10.18140/FLX/1440172 
IT_Ren Italy 2003, 2005-2013 1.53 1.60 ENF 10.18140/FLX/1440173 
IT_Ro1 Italy 2002-2006 - 0.91 DBF 10.18140/FLX/1440174 
IT_Ro2 Italy 2002-2007, 2012 1.99 0.83 DBF 10.18140/FLX/1440175 
IT_SR2 Italy 2013 2.12 1.38 ENF 10.18140/FLX/1440236 
IT_SRo Italy 1999-2004, 2006-2007, 2009, 2012 2.05 0.70 ENF 10.18140/FLX/1440176 
IT_Tor Italy 2010-2014 0.98 2.54 GRA 10.18140/FLX/1440237 
NL_Hor Netherlands 2004-2005, 2007-2008, 2010 1.81 2.01 GRA 10.18140/FLX/1440177 
NL_Loo Netherlands 1996-1997, 2000-2013 2.09 1.20 ENF 10.18140/FLX/1440178 
RU_Fyo Russia 1999-2014 2.09 1.19 ENF 10.18140/FLX/1440183 
SD_Dem Sudan 2008 0.34 0.12 SAV 10.18140/FLX/1440186 
SN_Dhr Senegal 2012 0.61 0.27 SAV 10.18140/FLX/1440246 

US_AR1 United States 2010-2011 0.57 0.68 GRA 10.18140/FLX/1440103 
US_AR2 United States 2010-2011 0.54 0.59 GRA 10.18140/FLX/1440104 
US_Blo United States 2000-2006 1.94 1.26 ENF 10.18140/FLX/1440068 
US_Ha1 United States 1992, 1994-2001, 2004, 2006, 2009, 2011 2.58 1.91 DBF 10.18140/FLX/1440071 
US_Me2 United States 2002, 2004-2005, 2007, 2009-2010, 2012-2014 1.97 0.65 ENF 10.18140/FLX/1440079 
US_Me6 United States 2014 0.82 - ENF 10.18140/FLX/1440099 
US_MMS United States 1999-2014 2.71 1.28 DBF 10.18140/FLX/1440083 
US_NR1 United States 1999-2014 1.32 1.02 ENF 10.18140/FLX/1440087 
US_Prr United States 2011 - 0.92 ENF 10.18140/FLX/1440113 
US_SRG United States 2009-2014 0.41 0.42 GRA 10.18140/FLX/1440114 
US_SRM United States 2004-2014 0.35 0.31 Woody SAV 10.18140/FLX/1440090 
US_Ton United States 2002-2006, 2008-2014 1.02 0.50 Woody SAV 10.18140/FLX/1440092 
US_UMB United States 2000-2014 2.14 0.95 DBF 10.18140/FLX/1440093 
US_UMd United States 2008-2013 1.90 1.09 DBF 10.18140/FLX/1440101 
US_Var United States 2001-2004, 2006-2014 1.07 0.70 GRA 10.18140/FLX/1440094 
US_WCr United States 2000-2003, 2005, 2011, 2013-2014 2.00 1.40 DBF 10.18140/FLX/1440095 
US_Wkg United States 2005-2014 0.28 0.35 GRA 10.18140/FLX/1440096 
ZA_Kru South Africa 2002, 2010 1.08 0.38 SAV 10.18140/FLX/1440188 
ZM_Mon Zambia 2008 1.62 0.49 DBF 10.18140/FLX/1440189 
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2.2 Method 

To study if the link between LAI and fluxes changes with aridity, we performed a linear regression between the fluxes and 

LAI for each consecutive 30 site-years (with a minimum of 15 site-years for the lowest and highest aridity boundary), moving 165 

from a low AI to a high AI (Figure 3).  

3 Results 

3.1 The link between water, energy, and carbon fluxes versus LAI 

LAI and LE were positively correlated in SAV, GRA, and EBF (Figure 4, Table 2). The slope of the correlation between the 

different vegetation types is different: the slope was steep for SAV (slope = 46.1 W m-2): a doubling in LAI (1 to 2) was 170 

associated with almost a doubling in LE (51 to 97 W m-2). In ENF and DBF, LAI and LE were not significantly correlated. 

LAI and H were negatively correlated in SAV, GRA and EBF, while there was no significant correlation in ENF and DBF. 

LAI and the EF were positively correlated in SAV, GRA and EBF, while no correlation was found in ENF and DBF. A positive 

slope indicates that, for a higher LAI, a higher fraction of the available energy is used for evapotranspiration of water, compared 

Figure 3  Illustration of the applied methodology. The correlation coefficient between leaf area index 

(LAI) and evaporative fraction (EF) is calculated for 30 site-years for grassland over a moving window 

of aridity index. In the illustration, the correlation has a significant positive slope at p = 0.056 for the 

30 most arid grassland sites, while for the 30 most humid grassland sites, the slope is nearly flat and 

not significant (p = 0.49).  
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to surface heating. The slope between LAI and EF was steeper in SAV and GRA (slope = 0.27 for both) than in EBF (slope = 175 

0.08). A positive correlation between LAI and GPP was found in all vegetation types (r = 0.47 - 0.97), with a very strong 

correlation coefficient for SAV (r = 0.97). The correlation followed a steep slope for SAV (slope = 3.37 gC m-2 d-1) and GRA 

(slope = 2.17 gC m-2 d-1), a similar slope in EBF (slope = 1.71 gC m-2 d-1) and ENF (slope = 1.81 gC m-2 d-1), and a less steep 

slope in DBF (slope = 0.76 gC m-2 d-1). The correlation between LAI and NEE is negative in SAV, EBF, and ENF. This 

indicates that net carbon uptake increases with LAI. Among the different fluxes, GPP showed the strongest correlation with 180 

LAI for all vegetation types. Comparing the different vegetation types, the correlation between LAI and fluxes was strongest 

in SAV. 

 

Using multi-year averaged data reduced the number of data points to only 5 to 16 sites per land cover type and it does not 

include year-to-year variability. Nevertheless, multi-year data gave similar results as compared to using site-year data (Figure 185 

5, Table 2). For SAV, GRA, and ENF, the slope and strength of the correlation were similar when compared with the site-year 

data. For the EBF, for the site-year data, the correlation with LE and EF was only significant at p ≤ 0.1 and the correlation was 

Figure 4 The relation between site-year surface fluxes and leaf area index (LAI). Panels show (a) the latent heat flux (LE), (b) the 

sensible heat flux (H), (c) the evaporative fraction (EF), (d) gross primary productivity (GPP), and (e) net ecosystem exchange 

(NEE). A line indicates a significant correlation at p < 0.05. 
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not significant for H and NEE. Given the similarity in results, the site-year data were used in the further analysis, because this 

averaging method created a larger data set and provided the opportunity to study year-to-year variability. 

 190 
Table 2 Strength and significance of the correlation between LAI versus surface fluxes for site-years and multi-year average data. 

The correlation coefficients are shown for significant correlations at p ≤ 0.05 (*) or at p ≤ 0.1 (·). A - indicates that the correlation 

was not significant. 

 Site-years  Multi-year average 

 LE H EF GPP NEE  LE H EF GPP NEE 

Savanna 0.88* − 0.72* 0.89* 0.97* − 0.89*  0.94* − 0.96* 0.95* 0.99* − 0.90* 

Grassland 0.65* − 0.71* 0.74* 0.86* -  0.68* − 0.80* 0.79* 0.84* - 

Evergreen Broadleaf Forest 0.84* − 0.69* 0.83* 0.88* − 0.51*  0.87· - 0.87· 0.96* - 

Evergreen Needleleaf Forest - - - 0.84* − 0.58*  - - - 0.89* − 0.57* 

Deciduous Broadleaf Forest - - - 0.47* − 0.33*  - - - 0.65· - 

Figure 5 The relation between multi-year average surface fluxes and leaf area index (LAI).  Panels show (a) the latent heat 

flux (LE), (b) the sensible heat flux (H), (c) the evaporative fraction (EF), (d) gross primary productivity (GPP), and (e) net 

ecosystem exchange (NEE). All sites are included that have at least three years of leaf area index and flux data available. A 

line indicates a significant correlation at p < 0.05 and a dashed line indicates a significant correlation at p < 0.1. The 

similarity with figure 4 indicates that including year-to-year variability did not influence the results. 

https://doi.org/10.5194/bg-2020-50
Preprint. Discussion started: 11 March 2020
c© Author(s) 2020. CC BY 4.0 License.



12 

 

3.2 The effect of climatological aridity on the link between surface fluxes and LAI 

Figure 6 shows the steepness and significance of the correlation between LAI and surface fluxes for different aridity values. 195 

In dry vegetation types or regions, the correlation between fluxes and LAI was significant and had a steeper slope, while in the 

more humid vegetation types or regions, the slope was lower and the correlation was often not significant. In SAV, GRA, and 

EBF, the correlation between LAI and LE was significant over the whole range of aridity values. In arid grassland, the 

correlation had a steeper slope, as compared to humid GRA. For LAI versus H and LAI versus EF, the slope was steep and 

significant for SAV. For GRA, the correlation was strong and significant in the arid regions, and insignificant for the humid 200 

regions. For EBF, the slope and significance of the correlation did not change with aridity. For LAI and GPP, the slope and 

significance of the correlation did not change with aridity for SAV, GRA, EBF, and ENF. For DBF, the relationship between 

LAI and GPP was negative at higher aridity, but these results were strongly influenced by one site with an above average LAI 

for all the site-years. For LAI versus NEE, a steep slope with negative correlation was found in arid SAV and humid ENF. In 

other humid regions, the correlation was less steep. 205 

 

To study how the correlations varied with climatic drivers of ecosystem fluxes, we calculated the correlation coefficient 

between the fluxes versus precipitation (P) and incoming shortwave radiation (Rg) (Figure 7). In SAV, GRA, and EBF, the 

water fluxes showed a strong correlation with P, indicating that water availability partly explained the spatio-temporal 

Figure 6 The effect of aridity on the relation between surface fluxes and leaf area index (LAI). The slope of the correlation between 

LAI and surface fluxes is shown for different aridity values for (a) the latent heat flux (LE), (b) the sensible heat flux (H), (c) the 

evaporative fraction (EF), (d) gross primary productivity (GPP), and (e) net ecosystem exchange (NEE). Each dot indicates the 

slope value for the 30 closest aridity values. The filled symbols indicate that the correlation was significant at p < 0.05, while the 

empty symbols indicate a non-significant correlation. 

https://doi.org/10.5194/bg-2020-50
Preprint. Discussion started: 11 March 2020
c© Author(s) 2020. CC BY 4.0 License.



13 

 

variability in ecosystem fluxes. In ENF and DBF, there was a weak or no correlation between LE and P, but a strong correlation 210 

with Rg. This indicates that available radiation was the primary driver of water and energy fluxes in these sites.  

4 Discussion 

The EBF site-years span a wide range of LAI values (LAI = 0.9 - 6.1) and aridity conditions (AI = 0.3 - 9.3), and both are a 

potential limitation of our analysis for the EBF land cover type. The uncertainty of the LAI retrieval in dense vegetation is 

higher compared to other land cover types due to saturation of the remotely sensed signal. The large range of climatic 215 

conditions indicates that our EBF site-years range from arid, water-limited conditions to humid conditions. Despite this high 

variability in site-years, the sites fell within one land cover type. 

 

The correlation between LAI versus water and energy fluxes (LE, H, and EF) varied with vegetation type and aridity. We 

found 1) strong (positive or negative) correlations and (partly) steep slopes for SAV and GRA, 2) a significant correlation, but 220 

less steep slope for EBF, 3) no significant correlations for ENF and DBF. Evapotranspiration is the sum of transpiration, soil 

evaporation and interception evaporation and the magnitude of each component depends on LAI. Transpiration increases with 

LAI at the cost of soil evaporation when there is sufficient moisture available (Gu et al., 2018; Wang et al., 2014). In arid 

climates, the transpiration component is higher compared to wetter climates (Gu et al., 2018) and the link between transpiration 

and LAI is particularly strong in these arid climates (Sun et al., 2019). When soil moisture is deficient and vegetation 225 

encounters a high evaporative demand, stomatal control is stronger (Mallick et al., 2016). This accelerates a strong stomatal 

coupling between LAI and LE and could explain the strong correlation between LAI versus LE, H, and EF that was found in 

Figure 7 Water and energy control on surface fluxes. The correlation coefficient between surface fluxes versus (a) mean 

yearly precipitation (P) and (b) incoming shortwave radiation (Rg). Each bar indicates a significant correlation at p < 

0.05. 
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SAV and GRA. Soil water deficiency and high evaporative demand leads to a high increase in LE, for a small increase in LAI, 

which could explain the steep(er) slope in arid GRA and SAV vegetation. 

In forests, soil evaporation is low, while interception evaporation is large. The high interception evaporation is due to the large 230 

LAI and therefore high canopy water storage capacity, and a high turbulence enhancing fast evaporation (de Jong and Jetten, 

2007). In EBF, interception evaporation contributes to up to 30% of total evapotranspiration (Wei et al., 2017; Gu et al., 2018). 

This could explain the strong correlation between LAI versus water and energy fluxes in EBF. A high interception evaporation 

was however also reported for temperate and boreal forest (Miralles et al., 2011), while for these forest types, we found no 

correlation between LAI and water and energy fluxes. This is in agreement with an earlier study at smaller scale that did not 235 

found a link between vegetation and water fluxes in temperate forest ecosystems (Hoek van Dijke et al., 2018). The ENF and 

DBF sites were found in humid regions and fluxes were in the first place energy-limited. In these energy-limited sites, LAI 

played no, or a weak role in controlling surface fluxes. This indicates a weak or no vegetation control on surface water and 

energy fluxes in energy-limited sites. This is in line with weak stomatal control found for humid conditions (Mallick et al., 

2016), or a low land-atmosphere coupling in energy-limited sites (Ferguson et al., 2012). 240 

 

In contrast to the results for water and energy fluxes, the correlation between GPP versus LAI is strong across all land cover 

types and (almost) all aridity gradients. A strong link between LAI and carbon uptake on yearly timescale over all vegetation 

types is expected, as plants try to optimize carbon gain and would generally not display leaves with a negative carbon balance. 

A strong link between yearly mean GPP and LAI was also shown by Hashimoto et al. (2012). Other studies however found a 245 

weak link between LAI and GPP for annual time scales (Law et al., 2002). The link between NEE and LAI was less strong as 

for GPP, which is in agreement with results of Chen et al. (2019). NEE is the sum of carbon uptake by the vegetation (GPP) 

and carbon loss by ecosystem respiration. Ecosystem respiration depends among others on climate and soil carbon storage, 

which are not directly related with LAI.  

 250 

The results partly confirmed our hypothesis. As hypothesised, the correlation between LAI and surface fluxes was strong in 

arid regions for water and energy fluxes, and the correlation was absent in humid ENF and DBF. For humid EBF, however, 

we found a strong correlation between LAI and water and energy fluxes, and for GPP, the correlation with LAI was strong 

across all aridity gradients. The difference between LE and H, and GPP can be explained. While carbon uptake is the primary 

goal of vegetation, independent of the aridity gradient, ecosystem water loss comes inevitably with carbon uptake, but also 255 

depends on vapour pressure deficit, available radiation, and soil moisture, which are not directly linked to LAI. 

 

Our statistical analysis cannot be used to study causality between LAI and surface fluxes. The correlation between LAI and 

water fluxes is confounded by the effect of water availability, especially in arid ecosystems, where both canopy development 

and LE increase with water availability (Kergoat, 1998). There are however similarities with previous studies showing the 260 

stomatal or vegetation control on surface fluxes. A strong vegetation control on water and energy fluxes in arid and semi-arid 
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regions was shown on timescales of days or smaller (e.g. Mallick et al., 2016) and also our study shows that, on large spatio-

temporal scale, vegetation versus water and energy fluxes show the strongest correlation in arid regions. For EBF however, 

we found a strong correlation between vegetation versus water, and energy fluxes, while Padrón et al. (2017) showed that 

vegetation control in equatorial regions was absent. An interesting follow-up study would be to investigate stomatal control 265 

for all different studied conditions by calculating the aerodynamic and canopy conductances, and to link this stomatal control 

to the large-scale pattern investigated in this study. 

 

Our analyses give insight in how and when vegetation LAI is related to surface fluxes. The results show that LAI is a good 

predictor for GPP across different land cover types and aridity gradients. Also, the analysis suggests that, in SAV, GRA, and 270 

EBF, LAI could be used to describe canopy-scale spatio-temporal variability water and energy fluxes. LAI is however not a 

good predictor for water and energy fluxes in ENF and DBF and also for NEE, LAI is not a suitable predictor in most land 

cover types. It is important to be aware of these limitations when using LAI to describe or estimate water, energy, and carbon 

fluxes in climate models or extrapolation methods. Also, this study provides insight in the link between surface fluxes and LAI 

and could be used to improve predictions of the effect of land cover change on surface fluxes. 275 

5 Conclusions 

The objective of this study was to get an insight about the link between vegetation LAI and land-atmosphere fluxes for different 

vegetation types along an aridity gradient. We studied this link at large spatio-temporal scales using flux tower measurements 

of water, energy, and carbon, combined with satellite derived LAI data. The data analysis led to the following conclusions: 

a) The link between LAI versus water and energy fluxes depends on vegetation type and aridity. The correlation between 280 

LAI versus water and energy fluxes is strong in SAV, GRA, and EBF. In DBF and ENF however, no significant 

correlation was found. Contrary to water and energy fluxes, the link between LAI versus GPP was strong in all 

analysis, independent of vegetation type and aridity. This suggests that the ability of LAI to model or extrapolate 

surface fluxes is well possible in SAV, GRA, and EBF, but is limited in DBF and ENF. 

b) As hypothesised, the large-scale link between LAI and water and energy fluxes was strong in arid, water-limited 285 

conditions and absent or weak for humid, radiation-limited conditions. This is in agreement with earlier stomatal or 

vegetation control studies on smaller scales. EBF, which was found over a high range of aridity conditions, but mostly 

in humid environments, forms an exception: the link between LAI versus water and energy fluxes was strong, despite 

the overall humid conditions.  

This research – facilitated by the recent availability of large global datasets of remotely sensed LAI, flux tower data, and cloud-290 

computing platforms – has added to the understanding of large-scale LAI interaction with surface fluxes and could help to 

improve the representation of vegetation in land-atmosphere modelling. 
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