Interactive comment on "Effects of 238 variability and physical transport on water column 234Th downward fluxes in the coastal upwelling system off Peru" by Ruifang Xie et al.

Anonymous Referee #1

Received and published: 7 April 2020

Xie et al. present new data of 234Th export fluxes from the coastal upwelling system off Peru, associated with an oxygen minimum zone (OMZ). The aim of this research is to investigate the effects of 238U variability and physical processes on the 234Th fluxes. The authors found a poor correlation between measured (by isotopic dilution) and calculated (from salinity) 238U activities. Even though only small variations were observed between measured and calculated 238U activities, this difference leads to significant underestimation of 234Th fluxes. 238U activities are usually not measured, as this represents additional work and the linear relationship with salinity is generally assumed. However, the current study clearly shows the need for measuring 238U activities in non-open ocean systems. The impact of physical processes, such as advection and diffusion, was evaluated by using ADCP, current velocities, satellite wind stress and in situ microstructure measurements. Unlike horizontal diffusion and advection, vertical diffusion and advection were found to significantly modify the 234Th export fluxes at shelf stations. Again, most studies neglect the impact of physics on 234Th fluxes and rare are those considering vertical/horizontal advection and diffusion effects on 234Th fluxes. Finally, the authors investigated the 234Th residence time and found a large temporal variation across the Peruvian upwelling zone, warning future studies to take into account these temporal changes while evaluating carbon export efficiencies. Overall, the manuscript is well written and represents an important effort. In most studies the influence of the 238U variability and physical processes are assumed to be negligible. The findings of this study are therefore highly valuable for the community. With some reorganisation and some more details on the calculations, this manuscript will be a good fit for publication in Biogeosciences.

We thank the reviewer for his/her constructive comments. We've listed our point-by-point response in bold below.

1. Specific comments.

1-Results section. Details are missing to really understand the choices made in the Discussion. I propose to add a "Results" section that would moreover make the discussion clearer for the reader. This new section could present: 1) Total 234Th and 238U activities: basically what is written between the beginning of Section 3 and before the beginning of Section 3.1. 2) Export fluxes of 234Th: - Please give more details on the relevance of estimating fluxes at different horizon depths. First, clearly mention in the Methods that you calculate the export fluxes at 100m and below the mixed layer (ML). Then, in this new Results section, you could explain why

you calculate the fluxes at 2 different depths. Why is it relevant to discuss fluxes at 100m or at the base of the ML for the purpose of this work? Also, explain why you estimate the fluxes "below" the ML and not simply at its base? - Steady state versus non-steady state (it should not be part of the sub-section dedicated to "dynamic advective and diffusive 234Th fluxes").

Response: We have now added a new Results section to the manuscript that include details on the 234Th and 238U profiles, export of 234Th fluxes at 100 m and base of the ML (and why we used these two different depths), and comparison of the steady state versus non-steady state models. Please refer to the manuscript for more details.

Due to sampling logistics, we did not sample at the base of the ML, but 5-20 m below the ML. This depth corresponded closely to the EZ depth used in Black et al. (2018) in the same study area. For the purpose of comparison with earlier studies which reported 234Th fluxes at 100 m, we also calculated 234Th fluxes at 100 m in this study.

2-More details on the physical processes. Methods, section 2.3: For each physical process (horizontal advection, vertical advection, horizontal diffusion and vertical diffusion), please give details on how the 234Th fluxes due to these processes are calculated. For example, lines 180-182, how do you use the daily wind stress to estimate the upwelling velocity? Lines 180-182 and lines 189-191: In addition to the cited references, please, briefly explain how VmADCP and in situ microstructure profiler measurements work and how you obtain current velocities or diffusivities from them?

Response: We have now expanded the Methods section to include detailed descriptions of how upwelling rates, VmADCP -derived current velocities and microstructure-derived diffusivities were calculated.

Table 1: As not significant processes, you do not present the 234Th fluxes due to horizontal advection and diffusion. Please, give the values in Table 1 for comparison.

Response: We grouped stations within a 1° by 1° grid and calculated the average 234Th for the top layer, and large scale (1° apart) horizontal 234Th gradients were calculated based on this grouping. We then used average alongshore current velocities and eddy diffusivities for the flux estimation due to horizontal advection and diffusion. These estimations are correct to the first order. As these values were rough estimates, we feel that we should not include them in Table 1. We now explained these in more details in the manuscript.

Discussion, section 3.2: Please, explain in more details how you calculate the vertical and horizontal 234Th gradients. Explanations about the vertical gradient are for example given by

Black et al. (2018) and are useful for the reader. Moreover, lines 326-329, please, clearly say how you determine the horizontal 234Th gradient. What does "larger spatial scale" mean?

Response: We now specified these details on how we calculated the vertical and alongshore 234Th gradients in the Results section (new subsection 2.3.4).

3-Greater 238U activities in suboxic environment. I am very surprised by these results as I would have expected the opposite, i.e., less U in anoxic/suboxic waters. This is very interesting and I did appreciate reading your possible explanations. I however have some questions about them:

- Lines 265-267: If Fe reduction was going on, it would definitely be associated with U removal to the sediment. Is there enough U adsorbed on oxyhydroxides to outpace U removal?

- Could an oxygenation event such as the one described by Rapp et al. (2020) during the 2015 El Niño be responsible of high U concentrations? Assuming a dynamic OMZ and assuming Uranium needs some time to equilibrate, would it be possible to measure high concentrations in low oxygen waters?

Response to both comments: The presence of high content of organic matter in the Peruvian sediments greatly influence U mobility and promote U sorption onto mineral surfaces, such as Fe hydroxides. However, the reviewer is correct that U reduction and removal should occur when sedimentary Fe reduction took place. This was indeed what was observed on the Peruvian shelf by an earlier study (Scholz et al. 2011). We now significantly toned down the discussion on Fe reduction being the main additional U source to the water column, as we cannot accurately quantify the amount of remobilized adsorbed-U vs. U removal.

The same study by Scholz et al. (2011) further showed considerable diffusive U fluxes out of the sediments along the Peru shelf where both Fe reduction and U reduction took place. This remobilization of U was attributed to ENSO-related transient U re-oxidation and recycling. It was suggested that a minute increase in bottom water oxygen concentration was sufficient to shift the U(VI)/U(IV) boundary by a few centimeters and remobilize authigenic U. The coastal El Niño developed preceding to and during our sampling campaign could induce an oxygenation event large enough to remobilized authigenic U along the Peruvian shelf. We now added this discussion to our manuscript.

We would also like to point out that we have significantly modified the discussion on the U-salinity relationship. We now acknowledged that poor U-salinity correlations were also observed in other open ocean basins, and explored possible explanations for this poor correlation in our study area. - Lines 270-273: Uranium enhancement related to flooding, strong rainfall and landslide would also come with freshwater. Don't you think this would also affect salinity?

Response: This is a fair point. Flooding likely affected both U and salinity in coastal waters. The addition of freshwater and riverine U may draw the datapoints up and down the conservative mixing line (as shown in Owens et al. 2011). However, this was not the case in our study where majority of the U data points fall above the S-U line defined by Owens et al. (2011), indicative of other governing processes other than conservative mixing. We have disregarded the discussion of coastal flooding being one of the main causes of the poor Usalinity correlation.

4-Residence times of 234Th. Lines 371-372: Please, explain how you estimate the residence times.

Response: We now specified in the Methods section the formulation and details on how we calculated the residence times.

2. Line notes.

Line 97, line 104, line 113 and line 676: Keep similar wording all along the text and use "shelf-offshore transect" instead of "shelf-normal" or "shore-normal" transect.

Response: We now used the wording "shelf-offshore transect" instead of the technical term "shore-normal transect".

Line 42: add "e.g." at the beginning of the citation list. There are many more studies.

Response: fixed

Lines 119-120: Please, give the deep ocean average 234Th/238U ratio in your study.

Response: We now added this average 234Th/238U ratio in the Results section

Lines 167-168: Please, mention that fluxes are also estimated at 100m. You should also explain the reason of calculating fluxes at both 100m and at 5-20m below the ML for the relevance of this study – as justified for EZ and ML.

Response: We now specified in the Results section why we chose two different depths for the flux calculation.

Line 183: "the depths correspond to 5-20m below the base of the ML", please mention that this is the reason why you calculate export fluxes at this horizon depth.

Response: fixed

Line 203: would yield a maximum.., instead of would a yield maximum..

Response: fixed

Lines 203-206: Maybe to move to the new "Results" section.

Response: fixed

Lines 217-219: Please, provide the number of replicates for the IAPSO standard seawater: "3.24 \pm 0.06 ng/g, 1SD, n=?".

Response: fixed

Lines: 249-254: "The consequence of this notable difference in 238U to 234Th flux according to Eq. (2) is neither linear nor straightforward, because the vertical gradients of both 238U and 234Th strongly affects the impacts of 238U variations on 234Th fluxes. In this study, 234Th fluxes at 100 m derived from S-based 238U lead to significant underestimation of 234Th fluxes by an average of 20% and as high as 40% (Table 2). These differences in 234Th fluxes will have direct consequences for 234Th derived elemental fluxes such as C, N, P and trace metals." This is a conclusion of the all section. I would thus move these sentences to the end of Section 3.1.

Response: fixed

Line 260: S>12?

Response: It should be S > 10 as stated in the original text. McKee et al. (1987) and Swarzenski et al. (2004) looked at two different salinity thresholds in terms of the 238U-S linear correlation. Lines 276-277: Shepherd et al., 2017 is not listed in the section "References".

Response: fixed

Line 308: For comparison, please give also the fraction of upwelled 234Th fluxes compared to the total fluxes for the offshore stations.

Response: The fraction of upwelled 234Th fluxes compared to total fluxes is now quoted in text.

Line 308: Cite Figure 5.

Response: quoted

Line 322: Mean 234Th "activities" in the top layer..?

Response: fixed

Line 322: Please precise what does "top layer" exactly mean. Like in the caption of Figure 6 and Table 3..

Response: fixed

Line 355: cruises

Response: fixed

Lines 380 and 382: Maybe change the 234Th activities into 234Th/238U ratios, as it might be easier to realise the magnitude of the deficit.

Response: The reviewer provided a very good suggestion here, but we unfortunately cannot proceed for one important reason: the activities of 238U in Black et al. (2017) were not measured nor are they reported in the available GEOTRACES database.

Lines 411-412: And 7Be isotopes, as you mention line 351.

Response: added

Line 696: Error bars "are" (instead of were) indicated. Shelf instead of nearshore (to keep the same wording all along the manuscript).

Response: fixed

Figure 2: It is difficult to see the small variations. Please, decrease the size of the 234Th data points and make the lines thinner. Add the error bars. If they are already indicated but too small to be seen, please mention it in the caption. The x axes are always the same, please, keep the O2 values only on the top of the figure and the 234Th, 238U, fluorescence values only on the bottom of the figure. By doing so, you can slightly increase the size of each graph. Please, keep your colour legend of Figure 1 and indicate the shelf to offshore transect by an arrow (maybe by writing W and E, like in Figure 5). Like in Black et al., 2018: indicate the depth of the mixed layer and the start of the Oxygen deficient zone.

Response: Figure 2 was modified according to most of these comments. The depth of the mixed layer is now indicated by a red dashed line. The start of the oxygen deficient zone is where oxygen diminishes. We did not use color legend from Figure 1 to keep Figure 2 clean and easy to read.

Figure 3: Please indicate the error bars. If it is too much for the figures, I recommend to at least, indicate the size of the average error bar on a corner of the plot. Indicated the O2 concentrations in Figure 3c as well. This would confirm that the poor relationship does not depend on O2 concentrations.

Response: We now added error bars, which are smaller than symbols. We also added oxygen concentrations in Figure 3c.

Figure 4: There is no need to write the depths for each plot. Write the values only on the left side of the figure. The legend has to be fixed and "fluorescence" has to be added on the bottom x axis of Figure 4c. In the legend of Figure 4a, define that the black dotted line corresponds to salinity and that the black solid line corresponds to temperature.

Response: We fixed the vertical axes and Figure 4c horizontal axis (now Figure 5). It is not correct regarding reviewer's comment on the dashed and solid lines. We specified in the caption that the dashed lines corresponded to temperature and dashed lines corresponded to salinity.

Figure 5: I do like this Figure: it is clear. Please modify the caption and write "5-20m below ML" instead of "base of the ML. In the legend, please write "Final total 234Th flux" for the white dots to keep the same wording than in Table 1.

Response: Fixed

Table 1: Please modify the caption and the top line of the 2nd column: "234Th flux 5-20m below the ML" instead of "below the ML" or "at the base of the ML".

Response: Fixed

Interactive comment on "Effects of 238 variability and physical transport on water column 234Th downward fluxes in the coastal upwelling system off Peru" by Ruifang Xie et al.

Anonymous Referee #2

5 Received and published: 16 April 2020

We thank the reviewer for his/her constructive comments. We've listed our point-by-point response in bold below.

- 10 Major comments This study evaluated the impact from the non-linearity of U-S relationship, temporal variability of 234Th and 3-D physical transport of 234Th on the estimation of downward 234Th flux. I initially read the manuscript with interest but realized finally that I need to give it up. This is an important but difficult topic that has been ignored in various 234Th studies, while the superficial description and discussion on the data by the authors keep the
- 15 manuscript from further acceptance. The non-linearity between 238U and salinity is interesting and I totally agree that will induce an over- or under-estimation on the final 234Th flux. I feel very nerves that the authors attributed such non-linearity to the flooding and landslides without any obvious evidences shown in the manuscript. Meanwhile, if it was true that high uranium was transported from the coastal waters, then how was that for 234Th? I guess the 234Th activity
- 20 could be low in the same water, and including the low 234Th water also elevated the 234Th flux calculation.

Response: The coastal El Niño of 2017 induced coastal precipitation as strong as the 1997-98 El Niño (Echevin et al. 2008), resulting in devastating flooding and landslides in central and northern coastal Peru. Evidence of this coastal El Niño has been presented in earlier studies cited in our manuscript. This intense flooding likely delivered large amount of fresh water, dissolved and particulate 238U, and possibly particulate 234Th. 234Th is highly particle reactive so it is unlikely that the coastal flooding has directly introduced dissolved 234Th to the coastal water. 234Th produced in-situ within the upper water column was

- 30 likely scavenged quickly due to enhanced particulate input from land at this time. The addition of freshwater and riverine U may draw the datapoints up and down the conservative U-salinity mixing line (as shown in Owens et al. 2011). However, this was not the case in our study where majority of the U data points fall above the U-salinity line defined by Owens et al. (2011). We thus agreed with the reviewer that coastal flooding is
- 35 unlikely the cause of such deviations. We now have significantly modified the discussion regarding the non-linear U-salinity correlation based on both reviewers' comments to include U remobilization induced by bottom water oxygenation being one of the main

mechanisms for enhanced water column U. We have disregarded the discussion of coastal flooding being one of the main causes of the poor U-salinity correlation.

40 Echevin, V. M., Colas, F., Espinoza-Morriberon, D., Anculle, T., Vasquez, L., and Gutierrez, D.: Forcings and evolution of the 2017 coastal El Niño off Northern Peru and Ecuador, Frontiers in Marine Science, 5, 367, https://doi.org/10.3389/fmars.2018.00367, 2018.

Owens, S., Buesseler, K., and Sims, K.: Re-evaluating the 238U-salinity relationship in seawater: Implications for the 238U–234Th disequilibrium method, Marine Chemistry, 127, 31-39, https://doi.org/10.1016/j.marchem.2011.07.005, 2011.

The authors further examine the physical transport of 234Th, but again the in-depth discussion will be required. Quite a few descriptions and explanations should be listed here: The methods

- 50 on the upwelling rate estimation using wind stress and its uncertainty, the diffusivity using in situ microstructure measurements and the detail calculation for horizontal advection (the equation 3 showed in the manuscript is way too simple for this paper). I strongly recommend the authors to add these parts in the methods and discussion during the revision, and most importantly, the evaluation of the uncertainty and error should be carefully done. For example, the authors
- calculated the upwelling rate was on the order of 10-6 to 10-7 m s-1, those values actually were quite low compared to other upwelling sites.

Response: We have expanded the Methods section to include essential details of how upwelling rates, current velocities and diffusivities were estimated. We did not include methods for error propagation in the Supplement/main text, but refer the readers to references of Resplandy et al., 2012 and Savoye et al., 2006 who illustrated the derivations

60 references of Resplandy et al., 2012 and Savoye et al., 2006 who illustrated the derivations in great details. In the Results section, we detailed 234Th fluxes due to radioactive production and decay, advection and diffusion.

Upwelling rates off Peru estimated in our study were indeed smaller than some of the upwelling rates in other upwelling sites, but is in accord with the atmospheric and oceanic conditions off Peru at the time of sample collection. Wind stress were unusually weak off

Peru beginning the last quarter of 2016 and lasted until the first half of March 2017. Toward the end of March 2017, an increase of the nearshore wind stress and a relaxation in offshore wind stress off northern Peru generated an intense wind stress curl anomaly and an associated downwelling (e.g., Echevin et al. 2008). An SST transect along 12°S off

65

70 Peru showed that upwelling was restricted to the shelf and in the upper 50 m. These atmospheric and oceanic conditions were unique and resulted in very weak upwelling rates off Peru.

Lüdke, J., et al. (in review 2020). "Influence of intraseasonal eastern boundary circulation variability on hydrography and biogeochemistry off Peru." Ocean Sci. Discuss. 2019: 1-31. Resplandy, L., Martin, A. P., Le Moigne, F., Martin, P., Aquilina, A., Mémery, L., Lévy, M., and Sanders, R.: How does dynamical spatial variability impact 234Th-derived estimates of organic export?, Deep Sea Research Part I: Oceanographic Research Papers, 68, 24-45, https://doi.org/10.1016/j.dsr.2012.05.015, 2012.

- 80 Savoye, N., Benitez-Nelson, C., Burd, A. B., Cochran, J. K., Charette, M., Buesseler, K. O., Jackson, G. A., Roy-Barman, M., Schmidt, S., and Elskens, M.: 234Th sorption and export models in the water column: a review, Marine Chemistry, 100, 234-249, https://doi.org/10.1016/j.marchem.2005.10.014, 2006.
- 85 In the last part of the discussion, the authors used a whole paragraph for the 234Th residence time. I did not find any wordings on the detailed calculation method for those residence time. I guess they are estimated using an 1-D steady state model, but given that the physical transport was important for some stations as the authors had pointed out, 3-D estimation for the 234Th residence time will also be needed.
- 90 Response: We now included the formulation for estimation of residence time, which was based on a 1D steady state model. Although this 1D steady state model is an oversimplification of a multi-dimensional process and should be used with caution, it provides a good first order estimate for understanding the highly dynamic nature of the 234Th residence time. It also provides a reasonable value that can be directly compared to
- 95 values estimated in earlier 234Th flux studies that did not consider physical processes. We now added this discussion to the main text.

The 234Th and 238U data obtained in the region could be very interesting, the detailed description of their profiles should be more interesting.

Response: We now included a Result section that describe both 234Th and 238U profiles in detail.

I think the authors should expand their methods part, and separate the result and discussion. In addition, I found some sentences in the conclusion should also move to the discussion.

Response: We now expanded the Methods part to include detail description on how upwelling rates, current velocities and diffusivities were calculated. We also separated the Results and Discussion.

110 I also have quite a few detailed comments listed below. Minor comments:

The title: Effects of 238U variability and physical transport. It gave me an impression that the author is evaluating the 238U transport which is actually 234Th.

Response: The manuscript looks into the roles of 238U variability and physical transport on 234Th distribution and transport, and we think that the title fully reflects the goals and findings of this manuscript.

Page 3, Line 41, Add "in the upper ocean" after "export fluxes"

Response: fixed

120 Page 3, Line 47, Bhat et al., 1968 is not a appropriate reference, add some Santschi paper,

and show the Kd values here.

Response: We disagree with the reviewer. Bhat et al. (1968) is one of the earlier field studies that have demonstrated the particle reactive nature of 234Th in the ocean. We now added the Kd values with reference to Santschi et al. (2006).

125

115

Page 3, Line 50-51, 234Th flux can be obtained even if you do not integrate with depth.

Response: It is necessary to integrate ²³⁴Th activities with depth in order to estimate ²³⁴Th flux.

130 Page 5, Methods part, Add the methods for the upwelling rate estimation, diffusivity calculation and current from ADCP.

Response: We added methods on how upwelling rates, current velocities and diffusivities were calculated

135 Page 6, Line 118-120, Did you just assume that 234Th had been in equilibrium with 238U or you would acidify those sample and let them stay for a year until the equilibrium would be reached. Please make that clearer.

Response: Only 238U samples were acidified. We now clarified this in the manuscript.

140 Page 6, Line 125, 1 dpm or 10 dpm?

Response: It is 1 dpm as stated in the text.

Page 6, Line 125, what was the volume of your sample? 4L or 2L.

Response: We now specified 4L as the sample volume.

145

150

Page 8, Line 171-172, Show the detailed calculation methods here or in the supplements. I guess here involved the simplification and manipulation of your data.

Response: We now added details in the Methods section on how upwelling velocities, current velocities, and diffusivities were calculated. We also added details on how vertical and horizontal gradients were calculated.

Page 9, Line 180-181, I have concerned on the ADCP-data which are snapshots data during the cruise, while 234Th is a chemical tracer with a time integrated information included. How do you match the different time scale between the two parameters?

155 Response: We appreciate the reviewer's concerned. As stated in Lines 226 in the revised manuscript, "Data collected at the same positions 226 within 5 days due to station repeats were also included in the velocity average." In another word, the ADCP-derived current velocities were averaged over a 5-day timescale. This timescale is somewhat shorter than the residence time of 234Th. But given the short cruise timeframe, we consider this time averaged appropriate.

Page 10, Line 208, Separation between results and discussion could be better.

Response: We now separated results and discussion.

165 Page 11, Line 221-231, The detailed description of 234Th and 238U activities, ranges, averages, and their relationship with Chl a and oxygen will be appreciated.

Response: We added detailed descriptions in the new Results section.

Page 13, Line 265-267, How about 234Th?

170 Response: Unlike U, Th is not redox sensitive.

Page 13, Line 268-273, This is too superficial? Do you have any optics data here?

Response: Numerous evidences of the 2017 coastal El Niño off Peru has been published in previous studies, which were referenced in our manuscript.

175 Here we referenced to a figure by Echevin et al. (2018) who showed that the magnitude of precipitation in the eastern equatorial Pacific during the 2017 coastal El Niño was almost as intense as that during the 1997-98 El Niño event:

180 Page 14, Line 290-295, Show the equation for NSS calculation. I think in the supplement you will also need to explain how you do the error propagation.

Response: We now referenced readers to Resplandy et al. (2012) and Savoye et al. (2006) for details regarding the derivation of NSS flux formulation and error propagation.

185 Page 14, Line 303, How reliable is your upwelling rate? I do not believe those numbers. Show the methods and put more discussion here.

Response: We now showed details in the Methods section how we calculated the upwelling rates. Please also refer to our response above in Line 53-58 in this document, which we showed that the upwelling rates estimated in our study were reliable.

190

Page 15, Line 318, How much is "trivial"? less than 10

Response: We now specified it as "insignificant, ranging between 1% and 10%" instead of "trivial".

195 Page 15, Line 325, How do you calculate the 234Th gradient?

Response: We grouped stations within a 1° by 1° grid and calculated the average 234Th for the top layer, and large scale (1° apart) horizontal 234Th gradients were calculated based on this grouping. We now added details in the Results section on how vertical and horizontal gradients were calculated.

200

Page 16-17, Line 353-355, The time scale for the methods is very different.

Response: Agreed. We now specified these two methods estimate upwelling rates at different timescales.

Page 17, Line 370, How do you do the calculation? 1D steady state? Or 3D steady State?

Response: Please refer to our response in Line 70-76 in this document.

Page 19, Line 411-414, not related, or move to discussion part.

Page 19, Line 417-420, Move to discussion part?

210 Response to both comments: Both are relevant in terms of implications for future coastal 234Th flux studies.

The references: all numbers of molecular weight for the isotopes should be in the upper case. There are quite a few errors on the references, please do the careful check.

215 **Response: fixed**

Figures: I think adding some figures here will be much helpful. Please add a transect distribution for 238U and 234Th to show the coast to offshore difference. And also add some profiles of the vertical diffusivity should be better.

220 Response: We now added a figure of 234Th/238U transects to show the distributions of shelf-offshore 234Th deficits (as Figure 3 in the revised manuscript). Diffusivity profiles were shown in the original supplementary file.

Figure 1: It is better to put the current field here in the map, or show it in a separate figure?

225 **Response: We now added the current field in Figure 1.**

Figure 2: Show the MLD and bottom depths here

Response: We now indicated the MLD for all stations (red dashed lines) and bottom depths for stations whose bottom depths are shallower than 600 m (scale of y-axis).

230

Figure 4, Can you show the profiles of 234Th for stations 458 and 508, although the surface sample was missing.

Response: We now showed the comparison between stations 458 and 508 in Figure 4 (Figure 5 in the revised manuscript).

1	(Mark-up version: Changes made in the revision were marked with an
2	underline.)

Effects of ²³⁸U variability and physical transport on water column ²³⁴Th downward fluxes in the coastal upwelling system off Peru Ruifang C. Xie^{1*}, Frédéric A. C. Le Moigne², Insa Rapp¹, Jan Lüdke¹, Beat Gasser³, Marcus Dengler¹, Volker Liebetrau¹, Eric P. Achterberg¹

8

⁹ ¹GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel,

- 10 Germany
- ¹¹ ²Mediterranean Institute of Oceanography (UM 110, MIO), CNRS, IRD, Aix Marseille
- 12 Université, Marseille, France
- ³IAEA Environment Laboratories, 4 Quai Antoine 1er, 98000 Monaco
- 14 Monaco
- 15
- 16 * corresponding author: rxie@geomar.de

17 Abstract

The eastern boundary region of the southeastern Pacific Ocean hosts one of the world's most 18 dynamic and productive upwelling systems with an associated oxygen minimum zone (OMZ). 19 20 The variability in downward export fluxes in this region, with strongly varying surface productivity, upwelling intensities and water column oxygen content, is however poorly 21 understood. Thorium-234 (²³⁴Th) is a powerful tracer to study the dynamics of export fluxes of 22 23 carbon and other elements, yet intense advection and diffusion in nearshore environments impact the assessment of depth-integrated ²³⁴Th fluxes when not properly evaluated. Here we use 24 25 VmADCP current velocities, satellite wind speed and *in situ* microstructure measurements to determine the magnitude of advective and diffusive fluxes over the entire ²³⁴Th flux budget at 25 26 27 stations from 11°S to 16°S in the Peruvian OMZ. Contrary to findings along the GEOTRACES P16 eastern section, our results showed that weak surface wind speed during our cruises induced 28 low upwelling rates and minimal upwelled ²³⁴Th fluxes, whereas vertical diffusive ²³⁴Th fluxes 29 were important only at a few shallow shelf stations. Horizontal advective and diffusive ²³⁴Th 30 fluxes were negligible because of small alongshore ²³⁴Th gradients. Our data indicated a poor 31 correlation between seawater ²³⁸U activity and salinity. Assuming a linear relationship between 32 the two would lead to significant underestimations of the total ²³⁴Th flux by up to 40% in our 33 study. Proper evaluation of both physical transport and variability in ²³⁸U activity is thus crucial 34 in coastal ²³⁴Th flux studies. Finally, we showed large temporal variations on ²³⁴Th residence 35 times across the Peruvian upwelling zone, and cautioned future carbon export studies to take 36 these temporal variabilities into consideration while evaluating carbon export efficiency. 37

Keywords: eastern tropical South Pacific, ²³⁴Th tracer, uranium-salinity correlation, physical
processes, residence time

1. Introduction

41	Isotopes of thorium (Th) are widely used as tracers for particle cycling in the oceans
42	(Waples et al., 2006). In particular, ²³⁴ Th has been extensively used to trace particle dynamics and
43	export fluxes in the upper ocean, and to quantify the marine budgets of important macro- and
44	micronutrients such as carbon (C), nitrogen (N), phosphorus (P) and iron (Fe) (Bhat et al., 1968;
45	Buesseler et al., 1992; Coale and Bruland, 1987; Lee et al., 1998; Le Moigne et al., 2013;
46	Cochran and Masqué, 2003; Van Der Loeff et al., 2006; Black et al., 2019). ²³⁴ Th has a relatively
47	short half-life ($\tau_{1/2} = 24.1$ days) that allows studies of biological and physical processes occurring
48	on timescales of days to weeks. Unlike its radioactive parent uranium-238 (238 U, $\tau_{1/2}$ = 4.47 Ga)
49	that is soluble in seawater, ²³⁴ Th is highly particle reactive with a particle-water partition
50	coefficient of 10 ³ to 10 ⁸ (Santschi et al., 2006 and references therein) and thus strongly scavenged
51	by particles (Bhat et al., 1968). Generally, a deficit of ²³⁴ Th relative to ²³⁸ U is observed in the
52	surface ocean and reflects net removal of ²³⁴ Th due to particle sinking, whereas secular
53	equilibrium between ²³⁴ Th and ²³⁸ U is observed for intermediate and deep waters. Integrating this
54	surface ²³⁴ Th deficit with depth yields the sinking flux of ²³⁴ Th and, if elemental: ²³⁴ Th ratios are
55	known, the sinking flux of elements such as C, N, P, and trace metals (Bhat et al., 1968;
56	Buesseler et al., 1998; Buesseler et al., 1992; Coale and Bruland, 1987; Weinstein and Moran,
57	2005; Buesseler et al., 2006; Owens et al., 2015; Black et al., 2019; Puigcorbé et al., 2020).
58	Various ²³⁴ Th models have been put forward to study adsorption/desorption, aggregation
59	and export, but single box models that assume negligible ²³⁴ Th fluxes due to physical transport
60	are commonly used to calculate oceanic ²³⁴ Th-derived particle fluxes (see detailed review by
61	Savoye et al., 2006). This assumption is typically appropriate in open ocean settings where ²³⁴ Th
62	fluxes due to advection and diffusion are small relative to the downward fluxes of ²³⁴ Th

associated with particle sinking. However, in upwelling regions such as the equatorial Pacific and 63 coastal systems, advective and diffusive ²³⁴Th fluxes may become increasingly important (e.g., 64 Bacon et al., 1996; Buesseler et al., 1998; Buesseler et al., 1995; Dunne and Murray, 1999). For 65 example, in the equatorial Pacific, strong upwelling post El-Niño could account for ~50% of the 66 total ²³⁴Th fluxes (Bacon et al., 1996; Buesseler et al., 1995). Ignoring the upwelling term could 67 thus lead to an underestimation of ²³⁴Th fluxes by a factor of 2. Conversely, horizontal diffusion 68 carrying recently upwelled, ²³⁴Th-replete waters has been shown to balance the upwelled ²³⁴Th 69 fluxes in the central equatorial Pacific (Dunne and Murray, 1999). To the contrary, advective and 70 diffusive ²³⁴Th fluxes were minimal off the Crozet Islands in the Southern Ocean due to limited 71 horizontal ²³⁴Th gradients, long residence time of water masses, and low upwelling rates and 72 diffusivities (Morris et al., 2007). 73

The dynamic nature of coastal processes requires that physical terms be included in ²³⁴Th 74 75 flux calculation whenever possible. Accurate measurements of current velocities and diffusivities are however challenging and thus direct observations of the effects of physical processes on ²³⁴Th 76 77 distributions in coastal regions are scarce. Limited studies have incorporated advection and 78 diffusion in the nearshore zones of the Arabian Sea (Buesseler et al., 1998), Gulf of Maine (Gustafsson et al., 1998; Benitez-Nelson et al., 2000), the South China Sea (Cai et al., 2008) and 79 80 Peruvian oxygen minimum zone (OMZ) (Black et al., 2018). In the Arabian Sea, coastal upwelling during the southwest monsoon season could account for over 50% of the total ²³⁴Th 81 flux (Buesseler et al., 1998). Horizontal advection has been shown to be substantial in the Inner 82 83 Cosco Bay of the Gulf of Maine (Gustafsson et al., 1998), whereas offshore advection and diffusion are only important in late summer (Benitez-Nelson et al., 2000). Therefore, the 84 importance of physical processes on the ²³⁴Th flux estimate is highly dependent on the seasonal 85 and spatial variability of the current velocities, diffusivities and ²³⁴Th gradients. In terms of the 86

Peruvian OMZ, Black et al. (2018) showed that coastal upwelling accounts for >50% of total
²³⁴Th fluxes at 12°S; however, how upwelling ²³⁴Th fluxes <u>vary</u> seasonally and spatially in this
region is unclear.

Another uncertainty in ²³⁴Th flux calculations in such region stems from variations on 90 dissolved ²³⁸U activities. Generally speaking, U behaves conservatively under open ocean oxic 91 92 conditions and is linearly correlated with salinity (Chen et al., 1986; Ku et al., 1977; Owens et al., 2011). However, numerous studies have shown that such correlation breaks down in various 93 marine environments including the tropical Atlantic (Owens et al., 2011), Mediterranean Sea 94 (Schmidt and Reyss, 1991), and Arabian Sea (Rengarajan et al., 2003). Although it is generally 95 accepted that deviations from the linear ²³⁸U-S correlation will lead to differences in the final 96 calculated ²³⁴Th fluxes, there is currently little knowledge on how significant these differences 97 could be. 98

In this study, we report vertical profiles of ²³⁴Th and ²³⁸U along four transects
perpendicular to the coastline of Peru (i.e. <u>shelf-offshore</u> transects). We evaluate the ²³⁸U-S
correlation in low-oxygen waters and how deviations from this correlation impact final ²³⁴Th flux
estimates. We also assess the spatial and temporal importance of advection and diffusion on ²³⁴Th
flux estimates.

104

105 **2. Sampling and methods**

106 2.1 Seawater sampling and analysis

Seawater samples were collected at 25 stations along 4 <u>shelf-offshore</u> transects between
108 11°S and 16°S in the Peruvian OMZ during two cruises M136 and M138 on board the RV

Meteor (Figure 1). Cruise M136 took place in austral autumn (April 11 to May 3, 2017) along 109 110 two main transects at 12°S and 14°S (Dengler and Sommer, 2017). Two stations from M136 (stations 458 and 495) were reoccupied within a week (repeat stations 508 and 516, respectively) 111 to evaluate the steady-state assumption in the ²³⁴Th flux calculation. The surface sample of the 112 repeat station 508 (reoccupied 4.5 days after station 458) was missing so only results from repeat 113 stations 495 and 516 (occupation interval 1.5 days) were compared and discussed in terms of the 114 non-steady state model (section 3.3). ²³⁴Th sampling during cruise M138 was carried out in 115 austral winter (June 1 to July 4, 2017) and focused on four shelf-offshore transects at 11°S, 12°S, 116 14°S and 16°S. 117

At each station, a stainless-steel rosette with Niskin bottles (Ocean Test Equipment[®]) was 118 deployed for sampling of total ²³⁴Th in unfiltered seawater and dissolved ²³⁸U (0.2 µm pore size, 119 Acropak® polycarbonate membrane). High vertical resolution sampling was performed in the 120 121 upper 200 m where most of the biological activity occurs; additional depths were sampled down to 600 m, or 50 m above the seafloor. Deep seawater at 1000 m, 1500 m, and 2000 m was 122 sampled at three stations to determine the absolute β counting efficiency. Salinity, temperature, 123 oxygen concentrations and fluorescence data (Table S1) were derived from the sensors (Seabird 124 Electronics[®] 9plus system) mounted on the CTD frame (Krahmann, 2018; Lüdke et al., in review 125 2020). 126

Sample collection and subsequent chemical processing and analysis for total ²³⁴Th
followed protocols by Pike et al. (2005) and SCOR Working Group RiO5 cookbook
(https://cmer.whoi.edu/). Briefly, a ²³⁰Th yield tracer (1 dpm) was added to each sample (<u>4 L</u>)
before Th was extracted with MnO₂ precipitates. Precipitates were filtered onto 25 mm quartz
microfiber filters (Whatman[®] QMA, 2.2 µm nominal pore size) and dried overnight at 50°C, after
which they were counted at sea on a Risø[®] low-<u>level</u> beta GM multicounter_until uncertainty was

133	below 3%, and again 6 months later at home laboratory for background ²³⁴ Th activities. After the
134	second beta counting, filters were digested in an 8M HNO ₃ /10% H ₂ O ₂ solution (Carl Roth [®] , trace
135	metal grade). 10 dpm of ²²⁹ Th was added to each sample at the beginning of digestion to achieve
136	a 1:1 atom ratio between 229 Th: 230 Th. Digested samples were diluted in <u>a</u> 2.5% HNO ₃ /0.01% HF
137	mixture and ²²⁹ Th/ ²³⁰ Th ratios were measured using an ICP-MS (ThermoFisher [®] Element XR) to
138	determine the chemistry yield and final ²³⁴ Th activities. The average yield was calculated to be
139	97% \pm 6% (n = 247). For a subset of samples (marked in Table S1) whose analysis failed during
140	initial ICP-MS measurement, anion chromatography (Biorad® AG1x8, 100 – 200 mesh, Poly-
141	Prep columns) was performed to remove Mn from the sample matrix before another ICP-MS
142	analysis. This subset of samples also included three samples (marked in Table S1) whose initial
143	ICP-MS measurement was successful, to test whether anion chromatography affects final ICP-
144	MS results. Identical ²²⁹ Th/ ²³⁰ Th ratios were measured for samples with and without column
145	chromatography (see Table S1 footnotes for details).
146	Each ²³⁸ U sample was acidified to pH ~1.6 at sea and transported home for analysis.
147	Samples of dissolved ²³⁸ U were diluted 20 times in 1N HNO ₃ at home laboratory and spiked with
148	an appropriate amount of 236 U spike to achieve 236 U: 238 U ~ 1:1. Ratios of 236 U: 238 U were analyzed
149	by ICP-MS (ThermoFisher Element XR) and activities of ²³⁸ U were calculated using isotope
150	dilution. Seawater certified reference materials (CRMs), CASS-6 and NASS-7, and the
151	International Association for the Physical Sciences of the Oceans (IAPSO) standard seawater
152	were analyzed routinely for uranium concentrations.

154 2.2 Flux calculation

Assuming a one box model, the temporal change of ²³⁴Th activities is balanced by
production from ²³⁸U, radioactive decay of ²³⁴Th, removal of ²³⁴Th onto sinking particles, and
transport into or out of the box by advection and diffusion (Bhat et al., 1968; Savoye et al., 2006;
and references therein):

$$\frac{\partial A_{Th}}{\partial t} = \lambda (A_U - A_{Th}) - P + V \tag{1}$$

159

160 where A_U and A_{Th} are respectively the activities of dissolved ²³⁸U and total ²³⁴Th, λ is the 161 decay constant of ²³⁴Th, P is the net removal flux of ²³⁴Th, and V is the sum of advective and 162 diffusive fluxes. It is recommended that the time interval between station occupations should 163 <u>be >2 weeks in order to adequately capture the temporal variability of the mean spatial gradients</u> 164 <u>rather than small local changes (Resplandy et al., 2012). The solution of Eq. (1) (Savoye et al.,</u> 165 2006) is

166
$$\underline{P} = \lambda \left[\frac{A_U (1 - e^{-\lambda \Delta t}) + A_{Th1} \cdot e^{-\lambda \Delta t} - A_{Th2}}{1 - e^{-\lambda \Delta t}} \right]$$
(2)

167 where Δt is the time interval between repeat occupations of a station; A_{Th1} and A_{Th2} are 168 respectively total ²³⁴Th activities during the first and second occupation. At times when repeat 169 sampling is not possible within adequate cruise timeframe, steady state conditions are generally 170 assumed, i.e. $\frac{\partial A_{Th}}{\partial t} = 0$. In this case, Eq. (1) is simplified into:

171
$$P = \int_0^z \lambda (A_U - A_{Th}) dz + V$$
(3)

The vertical flux of 234 Th, P (<u>dpm m⁻² d⁻¹</u>), is integrated to the depth of interest. Earlier studies generally used arbitrarily fixed depths (e.g., the base of mixed layer or ML, <u>and 100 m</u>) for 234 Th and POC flux estimates (<u>e.g., Bacon et al., 1996</u>; Buesseler et al., 1992). Recent studies emphasized the need to normalize POC flux to the depth of euphotic zone (EZ), which separates

- the particle production layer in the surface from the flux attenuation layer below (Black et al.,
- 177 2018; Buesseler and Boyd, 2009; Rosengard et al., 2015). In the open ocean, the depth of EZ is
- 178 generally similar to ML depth. The PAR (Photosynthetically Active Radiation) sensor was not
- 179 available during both of our cruises, so that it was not possible to identify the base of the EZ. For
- 180 the purpose of this study, the slight difference of the exact depth chosen (ML vs. EZ) was of little
- 181 relevance to the significance of physical processes and 238 U variability.

- 183 2.3 Quantification of the physical fluxes
- 184 The physical term V in Eq. (2) is expressed as following:

185
$$V = \int_0^z \left(w \frac{\partial Th}{\partial z} - u \frac{\partial Th}{\partial x} - v \frac{\partial Th}{\partial y} \right) dz + \int_0^z \left(K_x \frac{\partial^2 Th}{\partial x^2} + K_y \frac{\partial^2 Th}{\partial y^2} - K_z \frac{\partial^2 Th}{\partial z^2} \right) dz$$
(3)

186 where <u>w</u> is the <u>vertical (i.e. upwelling) velocity</u> (m s⁻¹), u and v respectively the zonal and 187 meridional current velocities (<u>m s⁻¹</u>), and <u>K_x, K_y, and K_z represent eddy</u> diffusivities (m² s⁻¹) in 188 zonal, meridional and vertical directions, respectively. $\frac{\partial Th}{\partial z}$, $\frac{\partial Th}{\partial x}$ and $\frac{\partial Th}{\partial y}$ are vertical and horizontal 189 ²³⁴Th gradients (dpm L⁻¹ m⁻¹), and $\frac{\partial^2 Th}{\partial x^2}$, $\frac{\partial^2 Th}{\partial y^2}$ and $\frac{\partial^2 Th}{\partial z^2}$ are respectively the second derivative of 190 ²³⁴Th (dpm L⁻¹ m⁻²) on the zonal, meridional and vertical directions.

191

192 <u>2.3.1 Estimation of upwelling velocities</u>

In the Mauritanian and Peruvian coastal upwelling regions, there is strong evidence that
 upwelling velocities in the mixed layer derived from satellite scatterometer winds and Ekman
 divergence (Gill, 1982) agree well with those from helium isotope disequilibrium (Steinfeldt et

196	al., 2015). The parameterization by Gill (1982) considers the baroclinic response of winds
197	blowing parallel to a coastline in a two-layer ocean. Vertical velocity (w) at the interface yields
198	$\underline{W} = \frac{\tau}{\rho f a} e^{-x/a} \tag{4}$
199	where τ is the wind stress (kg m ⁻¹ s ⁻²) parallel to the coast line, ρ the water density (kg m ⁻¹
200	³), f the Coriolis parameter (s ⁻¹), a the first baroclinic Rossby radius (km) and X the distance (km)
201	to the coast.
202	Upwelling velocities were calculated at stations within 60 nautical miles (nm) of the
203	coast, where upwelling is the most significant (Steinfeldt et al., 2015). We used $a = 15$ km for all
204	stations based on the results reported by Steinfeldt et al. (2015) for the same study area. The
205	magnitude of monthly wind stress was estimated from the monthly wind velocities (Smith, 1988):
206	$\underline{\tau} = \rho_{air} C_D U^2 \tag{5}$
207	where ρ_{air} is the air density above the sea surface (1.225 kg m ⁻³), C_D the drag coefficient
208	(10 ⁻³ for wind speed < 6 m s ⁻¹), and U the wind speed.
209	Monthly wind speed (m s ⁻¹) fields from MetOp-A/ASCAT scatterometer sensor with a
210	spatial resolution of 0.25° (Bentamy and Croize-Fillon, 2010) were retrieved from the Centre de
211	Recherche et d'Exploitation Satellitaire (CERSAT), at IFREMER, Plouzané (France) (data
212	version numbers L3-MWF-GLO-20170903175636-01.0 and L3-MWF-GLO-20170903194638-
213	01.0). We assumed a linear decrease of w from base of the mixed layer toward both the ocean
214	surface and 240 m depth (bottom depth of our shallowest station). Upwelling rates at any depth
215	
	between 0 and 240 m at individual station could thus be determined once w was estimated.

- 217 account for uncertainties associated with the spatial structure and temporal variability of the wind
- 218 field, and the satellite wind product near the coast.
- 219
- 220 <u>2.3.2 Estimation of upper-ocean velocities</u>

221	During both cruises a	phased-array	vessel-mounted	l acoustic Dop	pler current profiler
-----	-----------------------	--------------	----------------	----------------	-----------------------

222 (VmADCP; 75 kHz Ocean Surveyor, Teledyne RD-Instruments) continuously measured zonal

- 223 and meridional velocities in the upper 700 m of the water column (Lüdke et al., in review 2020).
- 224 <u>Post-processing of the velocity data included water track calibration and bottom editing. After</u>
- 225 <u>calibration, remaining uncertainty of hourly averages of horizontal velocities are smaller than 3</u>
- 226 <u>cm s⁻¹ (e.g. Fischer et al., 2003)</u>. For the horizontal advective flux calculation (Eq. 3), velocities
- 227 <u>collected within a 10 km radian at inshore stations (St. 353, 428, 458, 475, 508, 904, and 907)</u>
- 228 and within a 50 km radian at offshore stations were averaged. Data collected at the same positions
- 229 within 5 days due to station repeats were also included in the velocity average. As representative
- 230 for the near-surface flow, we extracted the velocity data from the top 30 m for M136 stations and
- top 50 m for M138 station; these depths correspond to 5-20 m below the base of the ML during
- 232 <u>each cruise.</u>
- 233

234 <u>2.3.3 Estimation of vertical and horizontal eddy diffusivities</u>

- 235 While the strength of ocean turbulence determines the magnitude of diapycnal or vertical
- 236 eddy diffusivities, the intensity of meso- and submesoscale eddies determine the magnitude of
- 237 <u>lateral eddy diffusivities. During the R/V Meteor cruise M136 and the follow up cruise in the</u>
- 238 same region, the strength of upper-ocean turbulence was measured using shear probes mounted to

239	a microstructure profiler. The loosely-tethered profiler was optimized to sink at a rate of 0.55 m s ⁻
240	¹ and equipped with three shear sensors, a fast-response temperature sensor, an acceleration
241	sensor, two tilt sensors and conductivity, temperature, depth sensors sampling with a lower
242	response time. At most CTD stations 3 to 9 microstructure profiles were collected. Standard
243	processing procedures were used to determine the dissipation rate of turbulent kinetic energy (ϵ)
244	in the water column (see Schafstall et al., 2010 for detailed description). Subsequently, turbulent
245	vertical diffusivities K_Z were determined from $K_Z = \Gamma \epsilon N^{-2}$ (Osborn, 1980), where N is
246	stratification and Γ is the mixing efficiency for which a value of 0.2 was used following Gregg et
247	al. (2018). The 95% confidence intervals for averaged K_z values were determined from Gaussian
248	error propagation following Schafstall et al. (2010).
249	Altogether, 189 microstructure profiles were collected during M136 (Thomsen and
250	Lüdke, 2018) and 258 profiles during the follow-up cruise M137 (unpublished data; May 6 – 29,
251	2017). An average turbulent vertical diffusivity profile was calculated from all inshore (<500m
252	water depth) and from all offshore (>500m water depth) profiles (Figure S1). Microstructure
253	profiles collected during cruise M138 were not available but there were little variations amongst
254	the cruise average inshore and offshore microstructure profiles from M136 and M137 despite
255	drastic change in the intensities of the poleward Peru Chile Undercurrent (Lüdke et al., in review
256	2020). It thus appears appropriate to apply these average vertical diffusivities also to stations
257	during M138.
258	Horizontal eddy diffusivity could not be determined from data collected during the
259	cruises. Surface eddy diffusivities in the North Atlantic OMZ were estimated to be on the order of
260	a few 1000 $\text{m}^2 \text{ s}^{-1}$ that decrease exponentially with depth (Hahn et al., 2014). Similar magnitude

- 261 of eddy diffusivities was estimated for the ETSP based on surface drifter data and satellite
 - 12

262	altimetry (Abernathey and Marshall, 2013; Zhurbas and Oh, 2004). We thus consider an eddy
263	diffusivity of 1000 m ² s ⁻¹ as a good approximate in this study for the evaluation of horizontal
264	diffusive ²³⁴ Th fluxes.
265	
266	2.4 Residence time of ²³⁴ Th
267	The residence time ($\tau_{1/2}$) of total ²³⁴ Th represents a combination of the time required for
268	the partition of dissolved ²³⁴ Th onto particulate matter and that for particle removal. In a one-box
269	model, the residence time of an element of interest can be estimated by determining the standing
270	stock of this element and the rates of elemental input to the ocean or the rate of element removal
271	from seawater to sediments (Bewers and Yeats, 1977; Zimmerman, 1976):
272	$\underline{\tau_{1/2}} = \frac{A_{Th(mean)} \cdot Z}{P} \tag{6}$
273	For the case of 234 Th, $A_{Th(mean)}$ is the averaged 234 Th activities of the surface layer, Z is the
274	depth of surface layer, and P the removal flux of ²³⁴ Th.
275	
276	3. Results
277	3.1 Profiles of dissolved ²³⁸ U, total ²³⁴ Th, oxygen and fluorescence
278	The vertical profiles of ²³⁸ U and ²³⁴ Th activities are shown in Figure 2 and tabulated in
279	Table S1. Data from station 500 were reported in Figure 2 and Table S1 but evaluated in the
	Table S1. Data from station 508 were reported in Figure 2 and Table S1 but excluded in the
280	Discussion section, because the surface sample $\underline{at 5 m}$ from this station was missing, which

concentrations of oxygen and fluorescence <u>obtained</u> from the CTD sensors. Uranium

concentrations of CRMs and the IAPSO standard seawater are reported in Table S2.

284	Activities of 238 U showed small to negligible variations with depth, <u>averaging 2.54 ± 0.05</u>
285	<u>dpm L⁻¹ (or 3.28 ± 0.07 ng/g, 1SD, n = 247) at all stations</u> . The vertical distributions of ²³⁸ U did
286	not appear to be affected by water column oxygen concentrations or the extent of surface Chl a
287	(Figure 2). Average U concentrations of both CASS-6 (2.77 \pm 0.04 ng g ⁻¹ , 1SD, n = 5) and
288	NASS-7 (2.86 \pm 0.05 ng/g, 1SD, n = 5) measured in this study agreed well with certified values
289	$(2.86 \pm 0.42 \text{ ng g}^{-1} \text{ and } 2.81 \pm 0.16 \text{ ng g}^{-1}$, respectively). Average ²³⁸ U concentration measured in
290	our IAPSO standard seawater (OSIL batch P156) (3.24 \pm 0.06 ng g ⁻¹ , 1SD, n = 27) is slightly
291	higher than that reported in Owens et al. (2011) (3.11 \pm 0.03 ng g ⁻¹ , 1SD, n = 10, OSIL P149),
292	and may reflect slight differences in U concentrations between different OSIL batches.
293	Total ²³⁴ Th varied from 0.63 to 2.89 dpm L ⁻¹ (Figure 2). All stations showed large ²³⁴ Th
294	deficits in surface waters with 234 Th/ 238 U ratios as low as 0.25 (Figure <u>3</u>). The extent of surface
295	$\frac{234}{10}$ Th deficits did not vary as a function of depths of either mixed layer or the upper oxic-anoxic
296	interface, nor the magnitude of surface fluorescence concentrations (Table 1, Figure 2). ²³⁴ Th at
297	all stations generally reached equilibrium with 238 U at depths between 30 m and 250 m. The
298	equilibrium depths were slightly shallower toward the shelf at the 11°S, 12°S and 16°S transects.
299	At St. 912, deficits of ²³⁴ Th extended beyond 600 m depth (Figure 2). The following stations (St.
300	428, 879, 898, 906, 907, 915, 919) displayed a secondary ²³⁴ Th deficit below the equilibrium
301	depth, indicative of ²³⁴ Th removal processes. A small ²³⁴ Th excess at depth was only observed for
302	St. 559 at 100 m. Ratios of ²³⁴ Th/ ²³⁸ U for deep samples at 1000 m, 1500 m, and 2000 m varied
303	between 0.95 and 1.02 (1.00 \pm 0.04, 1SD, n = 11), suggesting that ²³⁴ Th was at equilibrium with
304	$\frac{238}{\text{U}}$ at these depths.

306 <u>3.2 Vertical and horizontal ²³⁴Th gradients</u>

307	Discrete vertical ²³⁴ Th gradients in each profile (or the curvature of the profile) were
308	estimated by the difference in ²³⁴ Th activities and that in sampling depths. As such, vertical ²³⁴ Th
309	gradients varied greatly amongst stations, and were larger at shallow depths ranging from 0.003
310	dpm L ⁻¹ m ⁻¹ to 0.085 dpm L ⁻¹ m ⁻¹ (median 0.013 dpm L ⁻¹ m ⁻¹). Vertical ²³⁴ Th gradients were
311	essentially negligible at and below equilibrium depths.
312	While calculation of the vertical ²³⁴ Th gradient is straightforward, the same is hardly true
313	for the determination of horizontal ²³⁴ Th gradient. Here we consider the top layer as top 30 m
314	during M136 and top 50 m during M138. Mean ²³⁴ Th activities in the top layer of the water
315	column are highly variable amongst stations (Table 3, Figure 4), and likely reflect variations
316	occurring at small temporal and spatial scales in the Peruvian OMZ. Quantification of the
317	horizontal ²³⁴ Th gradient between individual station thus may not be adequate to evaluate large
318	scale advection and eddy diffusion across the study area. Therefore, alongshore ²³⁴ Th gradients
319	on a larger spatial scale (1° apart) were instead calculated by grouping stations into 1° by 1° grids
320	and averaging ²³⁴ Th activities of each grid for the top layer. Alongshore ²³⁴ Th gradients in the top
321	layer at nearshore stations for M138 are fairly consistent, ranging from 1.5 x 10 ⁻⁶ dpm L ⁻¹ m ⁻¹ to
322	1.7×10^{-6} dpm L ⁻¹ m ⁻¹ , with a slightly stronger gradient in the north compared to the south. The
323	net difference in alongshore ²³⁴ Th gradient is merely 2 x 10 ⁻⁷ dpm L ⁻¹ m ⁻¹ . A slightly smaller
324	alongshore ²³⁴ Th gradient of 4.8 x 10 ⁻⁷ dpm L ⁻¹ m ⁻¹ was observed for M136. The magnitude of the
325	net difference in alongshore ²³⁴ Th gradient for M136 cannot be adequately quantified, due to
326	smaller spatial sampling coverage. Judging on the similarity in the spatial distributions of mean

²³⁴Th between cruises M136 and M138, it is reasonable to assume that net difference in
alongshore ²³⁴Th gradient remained similar during both cruises.

329

330 <u>3.3 Steady state vs. non-steady state models</u>

331	The relative importance of ²³⁴ Th fluxes due to advection and diffusion were assessed here
332	assuming steady state conditions, which assume negligible temporal ²³⁴ Th variability. But how
333	valid is this assumption in the Peruvian upwelling zone? Profiles of temperature and oxygen at
334	repeat stations 458 and 508 showed that a lightly cooler and oxygen-depleted water mass
335	dominated at the upper 50 m at station 508 (Figure 5). However, an assessment of the ²³⁴ Th
336	fluxes at these two stations were not possible as the surface sample from station 508 was missing.
337	Repeat stations 495 and 516 show substantial temporal variations in ²³⁴ Th activities at each
338	sampled depth in the top 200 m, while temperature and salinity profiles confirmed that similar
339	water masses were sampled during both occupations (Figure 5). Particularly, the surface ²³⁴ Th
340	deficit was more intense at St. 495 (234 Th/ 238 U = 0.44) compared to St. 516 (234 Th/ 238 U = 0.73).
341	Correspondingly, ²³⁴ Th fluxes decreased substantially from St. 495 to St. 516. At 100 m, the
342	difference in ²³⁴ Th fluxes between these two stations was ~ 30% (3200 \pm 90 dpm m ⁻² d ⁻¹ at St.
343	495 and 2230 \pm 110 dpm m ⁻² d ⁻¹ at St. 516). At 200 m where ²³⁴ Th resumed equilibrium with ²³⁸ U
344	at both stations, 234 Th flux difference was ~ 25% (4510 ± 220 dpm m ⁻² d ⁻¹ at St. 495 and 3455 ±
345	200 dpm m ⁻² d ⁻¹ at St. 516). Taking the non-steady state term in Eq. (1) into consideration (see
346	details in Resplandy et al. (2012) and Savoye et al. (2006) for the derivation of flux formulation
347	and error propagation) increased total ²³⁴ Th at St. 516 by 40% to 3110 \pm 1870 dpm m ⁻² d ⁻¹ at 100
348	m (or 45% to 5040 \pm 2290 dpm m ⁻² d ⁻¹ at 200 m), which is indistinguishable within error from
349	fluxes at St. 495. The large errors associated with the non-steady state calculation prevent a

meaningful application of this model in the current study (also see discussion in Resplandy et al,
2012). As estimation of the physical fluxes is independent of the models chosen between steady
and non-steady states, the following results and discussion sections regarding physical effects on
the ²³⁴Th flux estimates is based on the steady state model only.

354

355 <u>3.4 Export fluxes of ²³⁴Th</u>

356	Fluxes of ²³⁴ Th due to radioactive production and decay (hereafter 'production flux'),
357	upwelling, and vertical diffusion were reported in Table 1 and Figure 6 for both depths 5-20 m
358	below the ML and at 100 m. Due to sampling logistics, we did not sample at the base of the ML,
359	but 5-20 m below the ML. This depth corresponded closely to the EZ depth used in Black et al.
360	(2018) in the same study area during austral summer 2013. For the purpose of comparison with
361	earlier studies which reported ²³⁴ Th fluxes at 100 m, we also calculated ²³⁴ Th fluxes at 100 m in
362	this study. The production fluxes of 234 Th at 5-20 m below the ML ranged from 560 dpm m ⁻² d ⁻¹
363	to 1880 dpm m ⁻² d ⁻¹ , whereas at 100 m they were much higher at 850 dpm m ⁻² d ⁻¹ to 3370 dpm m ⁻²
364	$\frac{2}{2}$ d ⁻¹ . There is no discernable trend regarding the production fluxes between the shelf and offshore
365	stations, similar to those seen along the eastern GP16 transect (Black et al. 2017).
366	Alongshore winds were unusually weak off Peru preceding and during our sampling
367	campaign as a result of the 2017 coastal El Niño (Echevin et al., 2018; Lüdke et al., in review
368	2020; Peng et al., 2019), which resulted in nominal upwelling in the water column. At nearshore
369	stations, upwelling rates at the base of the ML varied between $1.3\times10^{\text{-7}}$ m s^{\text{-1}} and $9.7\times10^{\text{-6}}$ m s^{\text{-1}}
370	¹ , whereas upwelling rates at offshore stations were on the order of 10^{-10} m s ⁻¹ to 10^{-8} m s ⁻¹ and
371	essentially negligible. As a result, upwelled ²³⁴ Th fluxes at 5-20 m below the ML were only
372	significant at stations closest to shore; these stations were 428 (130 dpm m ⁻² d ⁻¹), 883-12 (80 dpm

 $\frac{\text{m}^{-2} \text{d}^{-1}}{\text{m}^{-2} \text{d}^{-1}} \text{ and } 904-16 (280 \text{ dpm m}^{-2} \text{d}^{-1}) \text{ whose upwelled}^{234}\text{Th fluxes accounted for 10\%, 11\% and} 25\% of the total ²³⁴Th fluxes respectively (Figure 6). Upwelled ²³⁴Th fluxes at the rest of the stations accounted for less than 2% of the total ²³⁴Th fluxes (6% at stations 353 and 907-11) and were insignificant. At 100 m, both vertical ²³⁴Th gradients and upwelling rates were significantly smaller compared to shallower depths. As a result, upwelled ²³⁴Th fluxes were less than 70 dpm m⁻² d⁻¹, or less than 4% of total ²³⁴Th fluxes.$

379 Similarly, vertical diffusivities, shown as running mean over 20 m in Figure S1, were an order of magnitude higher at shallow stations $(3.2 \times 10^{-4} \pm 1.7 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}; 1\text{SD}, 27 \text{ m to } 100 \text{ m})$ 380 below sea surface) compared to those at deep stations $(1.7 \times 10^{-5} \pm 0.6 \times 10^{-5} \text{ m}^2 \text{ s}^{-1}; 1\text{SD}; 34 - 10^{-5} \text{ m}^2 \text{ s}^{-1}; 1\text{ m}^2 \text{ s}^{-1}; 1\text$ 381 100 m below sea surface). Within the 27 m to 33 m layer at deep stations, vertical diffusivities 382 383 decreased exponentially by an order of magnitude within a few meters; below this depth, vertical diffusivities remained relatively stable (Figure S1). This is not surprising as wind-driven 384 385 turbulent is most significant at the ocean surface (Buckingham et al., 2019). In this study, the 386 sampling depths immediately below the ML were generally 30 m and 60 m. A few high vertical 387 diffusivity values around 30 m at deep stations were unlikely representative for the 30 m - 60 m 388 water column layer. We thus opted to only apply vertical diffusivities below 33 m at deep stations. Relative standard errors (RSE) associated with diffusivity estimates varied from 35% to 389 55%. Vertical diffusive ²³⁴Th fluxes at 5-20 m below the ML, determined using both vertical 390 diffusivity and vertical ²³⁴Th gradient, varied greatly amongst stations. At shallow stations 428, 391 458, and 883-12, vertical diffusive 234 Th fluxes made up 37% (490 dpm m⁻² d⁻¹), 14% (160 dpm 392 $\underline{m^{-2} d^{-1}}$, and 21% (160 dpm $\underline{m^{-2} d^{-1}}$) of total ²³⁴Th fluxes, respectively (Figure 6). At the rest of 393 the stations, vertical diffusive ²³⁴Th fluxes appeared to be insignificant, ranging between 1% and 394 10% in the total ²³⁴Th flux budget. At 100 m, vertical diffusive ²³⁴Th fluxes at station 428, 458, 395

396	and 883-12 remained	ed high at 390	dpm m ⁻² d ⁻¹	. 150 dpn	$n m^{-2} d^{-1}$.	120 d	pm m ⁻² d ⁻¹ .	respectively.

397 whereas those at the rest of the stations accounted for < 2% of the total ²³⁴Th flux.

398	Horizontal advective and diffusive ²³⁴ Th fluxes were both very small. Average alongshore
399	current velocities (Lüdke et al., in review 2020) for the surface layer varied from 0.06 m s ⁻¹ to
400	0.34 m s ⁻¹ . At the peripheral of a freshly-formed anticyclonic eddy (St. 915-1), alongshore current
401	velocities could be as high as 0.53 m s ⁻¹ . Taking the mean alongshore velocity of 0.2 m s ⁻¹ and the
402	net difference in alongshore 234 Th gradient of $2 \ge 10^{-7}$ dpm L ⁻¹ m ⁻¹ , the resulting net horizontal
403	advective ²³⁴ Th flux is ~ 50 dpm m ⁻² d ⁻¹ , a mere 3-9% of the total ²³⁴ Th fluxes.
404	Horizontal diffusive ²³⁴ Th flux was estimated using an average eddy diffusivity of 1000
405	m^{2} s ⁻¹ (see Methods section 2.3.3) and the alongshore ²³⁴ Th gradient. A maximum value of 10
406	dpm m ⁻² d ⁻¹ was calculated, which accounted for $<1\%$ of total ²³⁴ Th flux at all stations. Note that
407	the horizontal advective and lateral diffusive fluxes presented here are a rough estimate and
408	should only provide an idea of their order of magnitude. Due to the uncertainty inherent to the
409	estimates, we refrain from adding these values to Table 1.
410	
411	4. Discussion
412	4.1 Lack of linear 238 U – salinity correlation in the Peruvian OMZ
413	The water column profiles of ²³⁸ U in the Peruvian OMZ (Figure 2) are similar to those
414	seen in the open ocean (see compilations in Owens et al., 2011 and Van Der Loeff et al. (2006),
415	and references therein). It thus appears that water column suboxic/anoxic conditions alone is not
416	sufficient to remove U, in contrast to sedimentary U studies underlying low oxygen waters where
417	soluble U(VI) diffused downward into subsurface sediments and reduced to insoluble U(IV)

(Anderson et al., 1989; Böning et al., 2004; Scholz et al., 2011). Our inference is in accord with
 water column ²³⁸U studies in intense OMZs in the eastern tropical North Pacific (Nameroff et al.,
 2002) and the Arabian Sea (Rengarajan et al., 2003), where ²³⁸U concentrations remain constant
 over the entire upper water column studied.

Dissolved ²³⁸U and salinity across the entire Peruvian OMZ displayed poor linear 422 correlation regardless of seawater oxygen concentrations (Figure 7a-b). The general consensus is 423 424 that U behaves conservatively in oxic seawater in the open ocean and early observations have shown that ²³⁸U activities can be calculated from salinity based on a simple linear correlation 425 426 between the two (e.g. Chen et al., 1986; Ku et al., 1977). Recent compilations in Van Der Loeff et al. (2006) and Owens et al. (2011) further demonstrated that the majority of uranium data points 427 in the global seawater dataset follow a linear correlation with seawater salinity. The ²³⁸U-salinity 428 429 formulations from either Chen et al. (1986) or Owens et al. (2011) are thus generally appropriate for open ocean conditions and have been widely used in ²³⁴Th flux studies. However, this linear 430 ²³⁸U-salinity correlation breaks down in the Peruvian OMZ. Furthermore, the measured ²³⁸U 431 432 activities in this study correlated poorly with those calculated from salinity using the Owens 433 formulation regardless of water column oxygen concentrations (Table S2, Figure 7c), with the former significantly higher than the projected values and differences up to 10%. Both evidences 434 435 suggested that non-conservative processes have introduced significant amount of dissolved U into 436 the water column.

437 It is likely that this poor ²³⁸U-salinity correlation in the water column is not a unique
438 feature off the coast of Peru. Poor correlations between dissolved ²³⁸U and salinity have been
439 previously observed in open ocean settings such as the Arabian Sea (Rengarajan et al., 2003) and
440 the Pacific Ocean (Ku et al., 1977), and shelf-estuary systems such as the Amazon shelf (McKee

441	et al., 1987; Swarzenski et al., 2004). It is possible that the narrow range of salinity within any
442	single ocean basin precludes a meaningful ²³⁸ U-salinity correlation (Ku et al., 1977; Owens et al.,
443	2011). For the Peruvian shelf system, two possible scenarios may further explain the lack of
444	linear ²³⁸ U-salinity correlation in the water column. Firstly, authigenic U within the sediments
445	may be remobilized under ENSO-related oxygenation events. Pore water and bottom water
446	geochemistry measurements during two previous cruises (M77-1 and M77-2) along an 11°S
447	transect off Peru showed large diffusive fluxes of U out of the Peruvian shelf sediments despite
448	that both Fe reduction and U reduction took place in the top centimeters of sediments (Scholz et
449	al., 2011). It was suggested that a minute increase in bottom water oxygen concentration induced
450	by El Niño events would be sufficient in shifting the U(VI)/U(IV) boundary by a few centimeters
451	and remobilize authigenic U (Scholz et al., 2011). Preceding and during our sampling campaign,
452	a coastal El Niño event, with coastal precipitation as strong as the 1997-98 El Niño event, had
453	developed rapidly and unexpectedly in January, and disappeared by May 2017 during cruise
454	M136 (Echevin et al., 2018; Garreaud, 2018; Peng et al., 2019). This strong coastal El Niño event
455	could induce an oxygenation event large enough to remobilized authigenic U along the Peruvian
456	shelf. Secondly, resuspension of bottom sediments and subsequent desorption of U from ferric-
457	oxyhydroxides could affect the ²³⁸ U-salinity relationship, similar to that seen on the Amazon
458	shelf at salinity above 10 (McKee et al., 1987) and in laboratory experiments (Barnes and
459	Cochran, 1993). Fe reduction and release from the Peruvian shelf sediments (Noffke et al., 2012;
460	Scholz et al., 2014) could release additional U to overlying waters. The magnitude of such,
461	however, has not been quantified.
462	The consequence of the notable difference between measured ²³⁸ U in this study and
463	salinity-based ²³⁸ U to ²³⁴ Th flux according to Eq. (2) is neither linear nor straightforward, because

the vertical gradients of both ²³⁸U and ²³⁴Th strongly affects the impacts of ²³⁸U variations on

465	²³⁴ Th fluxes. In this study, ²³⁴ Th fluxes at 100 m derived from salinity-based ²³⁸ U lead to
466	significant underestimation of 234 Th fluxes by an average of 20% and as high as 40% (Table 2).
467	These differences in ²³⁴ Th fluxes will have direct consequences for ²³⁴ Th derived elemental fluxes
468	such as C, N, P and trace metals. It is thus important to note that U concentrations in coastal
469	systems are highly sensitive to bottom water oxygen concentrations and redox-related U addition,
470	variability of which is expected to intensify with future climate change (Shepherd et al., 2017).
471	Relatively minor variations in dissolved ²³⁸ U could account for substantial
472	overestimation/underestimation of the depth-integrated ²³⁴ Th fluxes. We thus encourage future
473	²³⁴ Th flux studies in such environments to include seawater ²³⁸ U analysis.
474	
475	4.2 Dynamic advective and diffusive ²³⁴ Th fluxes
476	The significance of advection and diffusion in the total ²³⁴ Th flux budget highly depends
477	on the upwelling rate, current velocity, vertical diffusivity, and ²³⁴ Th gradient on the horizontal
478	and vertical directions. Our results demonstrated that physical processes off Peru during and post
479	the 2017 coastal El Nino have very limited impact on the downward fluxes of ²³⁴ Th (Figure 6).
480	Our findings are in reasonable agreement with those from the GEOTRACES GP16
481	eastern section along 12°S from Peru to Tahiti, in which Black et al. (2018) quantified both
482	horizontal and vertical advective ²³⁴ Th fluxes. Horizontal advective fluxes for the upper 30 m
483	water column estimated during GP16 were ~180 dpm m ⁻² d ⁻¹ for all nearshore and offshore
484	stations, similar in magnitude to those estimated in our study. Upwelling fluxes along GP16
485	eastern section was suggested to account for 50% to 80% of total ²³⁴ Th fluxes at the base of the
486	euphotic zone (at similar depths or slightly deeper than ML depths in the current study) (Black et
487	al., 2018). Total ²³⁴ Th fluxes along the GP16 eastern section, ranging from 4000 to 5000 dpm m ⁻²

488	d^{-1} at the base of the euphotic zone, were much higher than those in our study (560 to 1900 dpm
489	$m^{-2} d^{-1}$ at the base of the ML). This difference could be related to the period of sampling (austral
490	autumn and winter 2017 in our study vs. austral summer 2013 for the GP16 section). We note that
491	the estimated vertical mixing rates based on ⁷ Be isotope at the base of the euphotic zone along the
492	GP16 section (Kadko, 2017) were at least an order of magnitude higher than the upwelling rates
493	at the base of the ML at nearby stations in our study. This difference could stem from different
494	methods used to estimate upwelling rates at different timescales, and may also reflect the
495	dynamic upwelling system off Peru in which upwelling rates vary greatly seasonally and
496	interannually. During cruises M136 and M138, upwelling favorable easterly winds off Peru were
497	weak, resulting in negligible coastal upwelling. Coastal upwelling in the same general area was
498	also suggested to be negligible in austral summer 2013 during cruise M92 due to nominal surface
499	wind stress (Thomsen et al., 2016). Results from studies conducted in the same year (October to
500	December 2013, Kadko, 2017; December 2012, Steinfeldt et al., 2015) indicate that seasonal
501	upwelling rates vary drastically in the Peruvian upwelling zone. The seasonal dynamics of coastal
502	upwelling off Peru are similar to those seen in the Arabian Sea, where large upwelled ²³⁴ Th fluxes
503	only occurred during mid-late southwest monsoon at stations close to shore (Buesseler et al.,
504	1998). Our findings lend further support to earlier studies that advection and diffusion are
505	seasonally important for ²³⁴ Th fluxes in regions with high upwelling velocities and diffusivities
506	such as the equatorial Pacific (Bacon et al., 1996; Buesseler et al., 1995; Dunne and Murray,
507	1999) and coastal sites such as the Arabian Sea (Buesseler et al., 1998) and offshore Peru (Black
508	et al., 2018; this study).

510 4.3 Residence time of ²³⁴Th in the Peruvian OMZ

511	The residence time calculated using equation (6) was based on a simplified one-dimension
512	(1D) model of Zimmerman (1976). This 1D steady state model is obviously an oversimplification
513	of a multi-dimensional process, it however provides a good first order estimate for understanding
514	the highly dynamic nature of the ²³⁴ Th residence time. It also provides a reasonable value that can
515	be directly compared to values estimated in earlier ²³⁴ Th flux studies that did not consider the
516	physical processes. Furthermore, we showed in the Discussion (sections 4.2) that physical
517	processes, namely upwelling and vertical diffusion, are only important at a few shelf stations. We
518	thus consider this simple 1D model robust in estimating the residence time of total ²³⁴ Th.
519	In this study, residence time of total ²³⁴ Th in the surface layer (top 30 m during M136 and
520	top 50 m during M138) varied from 20 days at shallow stations to 95 days at deep stations (mean
521	$\tau = 51 \pm 23$ days, 1SD, n = 24; Table 3). These values were similar to those estimated within the
522	California Current (Coale and Bruland, 1985) and the residence times of particulate organic
523	carbon (POC) and nitrogen (PON) (Murray et al., 1989), but were much longer than predicted in
524	nearshore shelf waters where residence times of total ²³⁴ Th were on the order of a few days
525	(Kaufman et al., 1981; Kim et al., 1999; and references therein). The longer residence times
526	estimated in our study could reflect a combination of weak surface 234 Th deficits (234 Th = 0.63 to
527	1.82 dpm L^{-1}) (Figure 3) and low export fluxes (800 to 2000 dpm m ⁻² d ⁻¹ , Figure 7). Nearshore
528	seawater samples during GP16 (Black et al., 2018) featured similar surface 234 Th deficits (234 Th =
529	0.63 to 1.33 dpm L^{-1}) but much higher downward ²³⁴ Th fluxes (4000 to 5000 dpm m ⁻² d ⁻¹) as a
530	result of strong upwelling, implying that residence times of total ²³⁴ Th in the Peruvian OMZ
531	during GP16 occupation would be 3 – 6 times shorter. Indeed, a quick re-assessment of the GP16
532	data predicted a shorter residence time of total 234 Th of 5 – 23 days within the euphotic zone of
533	the coastal Peruvian OMZ.

534	These temporal variations on the residence times of total ²³⁴ Th have important
535	implications for the estimation of POC fluxes and quantification of carbon export efficiency.
536	Firstly, seasonal changes in Th residence times reflect variations in particle removal over
537	different integrated timescales. For example, POC produced in surface waters during GP16
538	(austral summer 2013) (Black et al., 2018) would have been exported out of the euphotic zone 3-
539	6 times faster than it did during austral autumn 2017 (this study). Secondly, to properly evaluate
540	carbon export efficiency, surface net primary production (NPP) should be averaged over a similar
541	timescale as the residence time of total ²³⁴ Th during station occupation. Applying a 16-day
542	averaged NPP for export efficiency estimate (Black et al., 2018; Henson et al., 2011) would likely
543	not be appropriate in the current study in which total ²³⁴ Th fluxes integrated timescales of several
544	weeks. ²³⁴ Th residence times should thus be properly quantified in coastal studies before deriving
545	export efficiencies over varying NPP integration timescales.

547 <u>5.</u> Conclusions and implications for coastal ²³⁴Th flux studies

Advection and diffusion are important in coastal and upwelling regions with respect to 548 ²³⁴Th export fluxes (Bacon et al., 1996; Buesseler et al., 1995; Dunne and Murray, 1999; 549 Buesseler et al., 1998). Our findings show that their significance is subject to the seasonal 550 variability of the current and upwelling velocities, diffusivities and ²³⁴Th gradients, and should be 551 evaluated on a case-to-case basis. Advective fluxes are perhaps the most straightforward to 552 553 estimate as current velocities can be obtained routinely from shipboard ADCP measurements and upwelling rates calculated from satellite wind stress (Steinfeldt et al., 2015; Bacon et al., 1996). 554 Horizontal and vertical velocities derived from general ocean circulation models also provide a 555 good first order estimate for advective ²³⁴Th fluxes; this approach has been successfully 556

557	demonstrated in a few studies (Buesseler et al., 1995; Buesseler et al., 1998). In addition, the
558	anthropogenic SF6 tracer and radium isotopes, widely used to quantify nutrient and Fe fluxes
559	(Charette et al., 2007; Law et al., 2001), as well as ⁷ Be isotope (Kadko, 2017), could be used
560	independently to constrain horizontal and vertical exchange rates of ²³⁴ Th (Morris et al., 2007;
561	Charette et al., 2007; Buesseler et al., 2005). When in situ microstructure measurements are
562	available (this study), vertical diffusivity can be directly calculated to estimate the vertical
563	diffusive ²³⁴ Th fluxes. Yet, microstructure analysis is not a routine measurement on
564	oceanographic cruises. Earlier studies in the equatorial Pacific and the Gulf of Maine have shown
565	that general ocean circulation models and a simple assumption on dissipation coefficients could
566	provide a robust estimate on vertical and horizontal diffusivities (Benitez-Nelson et al., 2000;
567	Gustafsson et al., 1998; Charette et al., 2001). Therefore, the calculation of physical fluxes is
568	possible, though challenging, and ²³⁴ Th fluxes due to physical processes should be carefully
569	considered when conducting research in a coastal and upwelling systems.

A striking finding in this study is that the assumption of a linear ²³⁸U-salinity correlation 570 could lead to one of the largest errors in ²³⁴Th flux estimates. In our study, using the salinity-571 based ²³⁸U activities resulted in significant underestimation of total ²³⁴Th fluxes by as much as 572 40%. Because the translation of ²³⁸U activities to ²³⁴Th fluxes is not linear, larger differences 573 between measured and salinity-based ²³⁸U do not necessarily contribute to greater overestimation 574 or underestimation of ²³⁴Th fluxes. For example, moderate difference of 3-6% in ²³⁸U throughout 575 the upper 100 m at station 898 lead to 40% difference in final ²³⁴Th flux, while a 5-9% difference 576 in ²³⁸U at station 906 only resulted in 16% ²³⁴Th flux difference (Table 2, S2). We would thus 577 stress the importance of ²³⁸U measurements in future ²³⁴Th flux studies particularly in coastal and 578 shelf regions. 579

	Thany, our study showed that the residence times of total — Th in the reduvian hearshore
581	waters varied seasonally. Tropical OMZs are important hotpots for carbon sequestration from the
582	atmosphere and enhanced sedimentary carbon preservation (Arthur et al., 1998; Suess et al.,
583	1987). These OMZs are projected to intensify as a result of future climate change (Keeling and
584	Garcia, 2002; Schmidtko et al., 2017; Stramma et al., 2008). Future studies should take into
585	consideration the large temporal variations of the residence times of total ²³⁴ Th in order to
586	properly evaluates how carbon biogeochemical cycles and carbon export efficiency in these
587	OMZs will respond to continuing ocean deoxygenation,
588	
589	Data availability
590	Data are available in supplementary tables and will be archived in Pangea upon
591	publication of the article.
591 592	publication of the article.
591 592 593	publication of the article. Author contribution
591 592 593 594	publication of the article. Author contribution RCX, FACLM and EAP designed the study. RCX carried out sampling, on-board beta
591 592 593 594 595	publication of the article. Author contribution RCX, FACLM and EAP designed the study. RCX carried out sampling, on-board beta counting of ²³⁴ Th, and drafted the manuscript. IR conducted ²³⁴ Th and ²³⁸ U analyses at home
 591 592 593 594 595 596 	publication of the article. Author contribution RCX, FACLM and EAP designed the study. RCX carried out sampling, on-board beta counting of ²³⁴ Th, and drafted the manuscript. IR conducted ²³⁴ Th and ²³⁸ U analyses at home laboratory. JL computed current velocities and vertical diffusivities respectively from VmADCP
 591 592 593 594 595 596 597 	publication of the article. Author contribution RCX, FACLM and EAP designed the study. RCX carried out sampling, on-board beta counting of ²³⁴ Th, and drafted the manuscript. IR conducted ²³⁴ Th and ²³⁸ U analyses at home laboratory. JL computed current velocities and vertical diffusivities respectively from VmADCP and microstructure profiler data. All co-authors had a chance to review the manuscript and
 591 592 593 594 595 596 597 598 	Publication of the article. Author contribution RCX, FACLM and EAP designed the study. RCX carried out sampling, on-board beta counting of ²³⁴ Th, and drafted the manuscript. IR conducted ²³⁴ Th and ²³⁸ U analyses at home laboratory. JL computed current velocities and vertical diffusivities respectively from VmADCP and microstructure profiler data. All co-authors had a chance to review the manuscript and contributed to discussion and interpretation of the data presented.

Competing interests

The authors declare that they have no conflict of interest.

602

603 Acknowledgements

- We thank the crew and science party on board M136 and M138 for their help in sample collection
- and instrument operation. Thank you to SiaoJean Ko, Dominik Jasinski, André Mutzberg and
- 606 Mario Esposito for their laboratory assistance. We thank two anonymous reviewers and the
- 607 associate editor, Marilaure Grégoire, for their constructive comments. The project, cruises, IR, JL
- and RCX were funded by the German SFB 754 program ('Climate-Biogeochemistry Interactions
- in the Tropical Ocean'), and FACLM by a DFG Fellowship of the Excellence Cluster "The
- Future Ocean" (CP1403). This manuscript benefited from stimulating discussions at the
- 611 BIARRITZ ('bridging international activity and related research into the twilight zone')
- 612 workshop held in Southampton, UK in 2019.

613 614	References
615	Abernathey, R. P., and Marshall, J.: Global surface eddy diffusivities derived from satellite
616	altimetry, Journal of Geophysical Research: Oceans, 118, 901-916,
617	https://doi.org/10.1002/jgrc.20066, 2013.
618	Anderson, R. F., Fleisher, M. Q., and LeHuray, A. P.: Concentration, oxidation state, and
619	particulate flux of uranium in the Black Sea, Geochimica et Cosmochimica Acta, 53, 2215-2224,
620	https://doi.org/10.1016/0016-7037(89)90345-1, 1989.
621	Arthur, M. A., Dean, W. E., and Laarkamp, K.: Organic carbon accumulation and preservation in
622	surface sediments on the Peru margin, Chemical Geology, 152, 273-286,
623	https://doi.org/10.1016/S0009-2541(98)00120-X, 1998.
624	Bacon, M., Cochran, J., Hirschberg, D., Hammar, T., and Fleer, A.: Export flux of carbon at the
625	equator during the EqPac time-series cruises estimated from $\frac{234}{\text{Th}}$ measurements, Deep Sea
626	Research Part II: Topical Studies in Oceanography, 43, 1133-1153, https://doi.org/10.1016/0967-
627	<u>0645(96)00016-1</u> , 1996.
628	Barnes, C. E., and Cochran, J. K.: Uranium geochemistry in estuarine sediments: Controls on
629	removal and release processes, Geochimica et Cosmochimica Acta, 57, 555-569,
630	https://doi.org/10.1016/0016-7037(93)90367-6, 1993.
631	Benitez-Nelson, C. R., Buesseler, K. O., and Crossin, G.: Upper ocean carbon export, horizontal
632	transport, and vertical eddy diffusivity in the southwestern Gulf of Maine, Continental Shelf
633	Research, 20, 707-736, https://doi.org/10.1016/S0278-4343(99)00093-X, 2000.
634	Bentamy, A., and Croize-Fillon: Gridded surface wind fields from Metop/ASCAT measurements,
635	International Journal of Remote Sensing, doi:10.1080/01431161.2011.600348, 2010.
636	Bewers, J., and Yeats, P.: Oceanic residence times of trace metals, Nature, 268, 595-598, 1977.

- Bhat, S., Krishnaswamy, S., Lal, D., and Moore, W.: $\frac{2^{34}\text{Th}/2^{38}\text{U}}{2^{34}}$ ratios in the ocean, Earth and
- 638 Planetary Science Letters, 5, 483-491, <u>https://doi.org/10.1016/S0012-821X(68)80083-4</u>, 1968.
- Black, E. E., Buesseler, K. O., Pike, S. M., and Lam, P. J.: ²³⁴Th as a tracer of particulate export
- and remineralization in the southeastern tropical Pacific, Marine Chemistry, 201, 35-50,
- 641 https://doi.org/10.1016/j.marchem.2017.06.009, 2018.
- Black, E. E., Lam, P. J., Lee, J. M., and Buesseler, K. O.: Insights From the ²³⁸U ²³⁴Th Method
- 643 Into the Coupling of Biological Export and the Cycling of Cadmium, Cobalt, and Manganese in
- the Southeast Pacific Ocean, Global Biogeochemical Cycles, 33, 15-36,
- 645 https://doi.org/10.1029/2018GB005985, 2019.
- 646 Böning, P., Brumsack, H.-J., Böttcher, M. E., Schnetger, B., Kriete, C., Kallmeyer, J., and
- 647 Borchers, S. L.: Geochemistry of Peruvian near-surface sediments, Geochimica et Cosmochimica
- 648 Acta, 68, 4429-4451, https://doi.org/10.1016/j.gca.2004.04.027, 2004.
- Buckingham, C. E., Lucas, N. S., Belcher, S. E., Rippeth, T. P., Grant, A. L. M., Le Sommer, J.,
- Ajayi, A. O., and Naveira Garabato, A. C.: The Contribution of Surface and Submesoscale
- 651 Processes to Turbulence in the Open Ocean Surface Boundary Layer, Journal of Advances in
- 652 Modeling Earth Systems, 11, 4066-4094, <u>https://doi.org/10.1029/2019MS001801</u>, 2019.
- Buesseler, K., Ball, L., Andrews, J., Benitez-Nelson, C., Belastock, R., Chai, F., and Chao, Y.:
- Upper ocean export of particulate organic carbon in the Arabian Sea derived from thorium-234,
- Deep Sea Research Part II: Topical Studies in Oceanography, 45, 2461-2487,
- 656 https://doi.org/10.1016/S0967-0645(98)80022-2, 1998.
- 657 Buesseler, K. O., Bacon, M. P., Cochran, J. K., and Livingston, H. D.: Carbon and nitrogen
- export during the JGOFS North Atlantic Bloom Experiment estimated from ²³⁴Th: ²³⁸U
- disequilibria, Deep Sea Research Part A. Oceanographic Research Papers, 39, 1115-1137,
- 660 https://doi.org/10.1016/0198-0149(92)90060-7, 1992.

- Buesseler, K. O., Andrews, J. A., Hartman, M. C., Belastock, R., and Chai, F.: Regional estimates
- of the export flux of particulate organic carbon derived from thorium-234 during the JGOFS
- EqPac program, Deep Sea Research Part II: Topical Studies in Oceanography, 42, 777-804,
- 664 <u>https://doi.org/10.1016/0967-0645(95)00043-P</u>, 1995.
- Buesseler, K. O., Andrews, J., Pike, S. M., Charette, M. A., Goldson, L. E., Brzezinski, M. A.,
- and Lance, V.: Particle export during the southern ocean iron experiment (SOFeX), Limnology
- and Oceanography, 50, 311-327, <u>https://doi.org/10.4319/lo.2005.50.1.0311</u>, 2005.
- Buesseler, K. O., Benitez-Nelson, C. R., Moran, S., Burd, A., Charette, M., Cochran, J. K.,
- 669 Coppola, L., Fisher, N., Fowler, S., and Gardner, W.: An assessment of particulate organic carbon
- to thorium-234 ratios in the ocean and their impact on the application of $\frac{234}{\text{Th}}$ as a POC flux
- 671 proxy, Marine Chemistry, 100, 213-233, <u>https://doi.org/10.1016/j.marchem.2005.10.013</u>, 2006.
- Buesseler, K. O., and Boyd, P. W.: Shedding light on processes that control particle export and
- flux attenuation in the twilight zone of the open ocean, Limnology and Oceanography, 54, 1210-
- 674 1232, <u>https://doi.org/10.4319/lo.2009.54.4.1210</u>, 2009.
- 675 Cai, P., Chen, W., Dai, M., Wan, Z., Wang, D., Li, Q., Tang, T., and Lv, D.: A high resolution
- study of particle export in the southern South China Sea based on $\frac{234}{100}$ disequilibrium,
- Journal of Geophysical Research: Oceans, 113, 2008.
- 678 Charette, M. A., Moran, S. B., Pike, S. M., and Smith, J. N.: Investigating the carbon cycle in the
- 679 Gulf of Maine using the natural tracer thorium 234, Journal of Geophysical Research: Oceans,
- 680 106, 11553-11579, <u>https://doi.org/10.1029/1999JC000277</u>, 2001.
- 681 Charette, M. A., Gonneea, M. E., Morris, P. J., Statham, P., Fones, G., Planquette, H., Salter, I.,
- and Garabato, A. N.: Radium isotopes as tracers of iron sources fueling a Southern Ocean
- 683 phytoplankton bloom, Deep Sea Research Part II: Topical Studies in Oceanography, 54, 1989-
- 684 1998, <u>https://doi.org/10.1016/j.dsr2.2007.06.003</u>, 2007.

- 685 Chen, J., Edwards, R. L., and Wasserburg, G. J.: ²³⁸U, ²³⁴U and ²³²Th in seawater, Earth and
- 686 Planetary Science Letters, 80, 241-251, <u>https://doi.org/10.1016/0012-821X(86)90108-1</u>, 1986.
- 687 Coale, K. H., and Bruland, K. W.: ²³⁴Th: ²³⁸U disequilibria within the California Current 1,
- 688 Limnology and Oceanography, 30, 22-33, <u>https://doi.org/10.4319/lo.1985.30.1.0022</u>, 1985.
- 689 Coale, K. H., and Bruland, K. W.: Oceanic stratified euphotic zone as elucidated by $\frac{234}{\text{Th}}$: $\frac{238}{\text{U}}$
- disequilibria 1, Limnology and Oceanography, 32, 189-200,
- 691 <u>https://doi.org/10.4319/lo.1987.32.1.0189</u>, 1987.
- 692 Cochran, J., and Masqué, P.: Short-lived U/Th series radionuclides in the ocean: tracers for
- 693 scavenging rates, export fluxes and particle dynamics, Reviews in Mineralogy and geochemistry,
- 694 52, 461-492, <u>https://doi.org/10.2113/0520461</u>, 2003.
- 695 Dengler, M., and Sommer, S.: Coupled benthic and pelagic oxygen, nutrient and trace metal
- 696 cycling, ventilation and carbon degradation in the oxygen minimum zone of the Peruvian
- 697 continental margin (SFB 754): Cruise No. M 136 11.04.–03.05. 2017 Callao (Peru)–Callao
- 698 Solute-Flux Peru I, METEOR-Berichte, 10.3289/CR_M136, 2017, 2017.
- 699 Dunne, J. P., and Murray, J. W.: Sensitivity of $\frac{234}{\text{Th}}$ export to physical processes in the central
- roo equatorial Pacific, Deep Sea Research Part I: Oceanographic Research Papers, 46, 831-854,
- 701 <u>https://doi.org/10.1016/S0967-0637(98)00098-3</u>, 1999.
- 702 Echevin, V. M., Colas, F., Espinoza-Morriberon, D., Anculle, T., Vasquez, L., and Gutierrez, D.:
- Forcings and evolution of the 2017 coastal El Niño off Northern Peru and Ecuador, Frontiers in
- 704 Marine Science, 5, 367, <u>https://doi.org/10.3389/fmars.2018.00367</u>, 2018.
- 705 Fischer, J., Brandt, P., Dengler, M., Müller, M., and Symonds, D.: Surveying the upper ocean
- 706 with the Ocean Surveyor: a new phased array Doppler current profiler, Journal of Atmospheric
- 707 and Oceanic Technology, 20, 742-751, https://doi.org/10.1175/1520-
- 708 <u>0426(2003)20<742:STUOWT>2.0.CO;2, 2003.</u>

- Garreaud, R. D.: A plausible atmospheric trigger for the 2017 coastal El Niño, International
- 710 Journal of Climatology, 38, e1296-e1302, <u>https://doi.org/10.1002/joc.5426</u>, 2018.
- 711 Gregg, M., D'Asaro, E., Riley, J., and Kunze, E.: Mixing efficiency in the ocean, Annual review
- 712 of marine science, 10, 443-473, 10.1146/annurev-marine-121916-063643, 2018.
- 713 Gustafsson, Ö., Buesseler, K. O., Rockwell Geyer, W., Bradley Moran, S., and Gschwend, P. M.:
- An assessment of the relative importance of horizontal and vertical transport of particle-reactive
- chemicals in the coastal ocean, Continental Shelf Research, 18, 805-829,
- 716 <u>https://doi.org/10.1016/S0278-4343(98)00015-6</u>, 1998.
- 717 Hahn, J., Brandt, P., Greatbatch, R. J., Krahmann, G., and Körtzinger, A.: Oxygen variance and
- meridional oxygen supply in the Tropical North East Atlantic oxygen minimum zone, Climate
- 719 dynamics, 43, 2999-3024, <u>https://doi.org/10.1007/s00382-014-2065-0</u>, 2014.
- Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., and Quartly, G. D.: A
- reduced estimate of the strength of the ocean's biological carbon pump, Geophysical Research
- 722 Letters, 38, 10.1029/2011gl046735, 2011.
- 723 Kadko, D.: Upwelling and primary production during the US GEOTRACES East Pacific Zonal
- Transect, Global Biogeochemical Cycles, 31, 218-232, <u>https://doi.org/10.1002/2016GB005554</u>,
 2017.
- Kaufman, A., Li, Y.-H., and Turekian, K. K.: The removal rates of ²³⁴Th and ²²⁸Th from waters of
- the New York Bight, Earth and Planetary Science Letters, 54, 385-392,
- 728 <u>https://doi.org/10.1016/0012-821X(81)90054-6</u>, 1981.
- Keeling, R. F., and Garcia, H. E.: The change in oceanic <u>O</u>₂ inventory associated with recent
- roceedings of the National Academy of Sciences, 99, 7848-7853,
- 731 10.1073/pnas.122154899, 2002.

- Kim, G., Hussain, N., and Church, T. M.: How accurate are the ²³⁴Th based particulate residence
- times in the ocean?, Geophysical research letters, 26, 619-622,
- 734 https://doi.org/10.1029/1999GL900037, 1999.
- 735 Ku, T.-L., Knauss, K. G., and Mathieu, G. G.: Uranium in open ocean: concentration and isotopic
- composition, Deep Sea Research, 24, 1005-1017, <u>https://doi.org/10.1016/0146-6291(77)90571-9</u>,
- 737 1977.
- 738 Law, C., Martin, A., Liddicoat, M., Watson, A., Richards, K., and Woodward, E.: A Lagrangian
- 739 SF6 tracer study of an anticyclonic eddy in the North Atlantic: Patch evolution, vertical mixing
- and nutrient supply to the mixed layer, Deep Sea Research Part II: Topical Studies in
- 741 Oceanography, 48, 705-724, <u>https://doi.org/10.1016/S0967-0645(00)00112-0</u>, 2001.
- 742 Le Moigne, F. A. C., Henson, S. A., Sanders, R. J., and Madsen, E.: Global database of surface
- ocean particulate organic carbon export fluxes diagnosed from the $\frac{234}{\text{Th}}$ technique, Earth Syst.
- 744 Sci. Data, 5, 295-304, <u>https://doi.org/10.5194/essd-5-295-2013</u>, 2013.
- Lee, C., Murray, D., Barber, R., Buesseler, K., Dymond, J., Hedges, J., Honjo, S., Manganini, S.,
- Marra, J., and Moser, C.: Particulate organic carbon fluxes: compilation of results from the 1995
- 747 US JGOFS Arabian Sea process study: By the Arabian Sea carbon flux group, Deep Sea
- 748 Research Part II: Topical Studies in Oceanography, 45, 2489-2501,
- 749 <u>https://doi.org/10.1016/S0967-0645(98)00079-4</u>, 1998.
- Lüdke, J., Dengler, M., Sommer, S., Clemens, D., Thomsen, S., Krahmann, G., Dale, A. W.,
- 751 Achterberg, E. P., and Visbeck, M.: Influence of intraseasonal eastern boundary circulation
- variability on hydrography and biogeochemistry off Peru, Ocean Sci. Discuss., 2019, 1-31,
- 753 <u>https://doi.org/10.5194/os-2019-93</u>, in review 2020.

- 754 McKee, B. A., DeMaster, D. J., and Nittrouer, C. A.: Uranium geochemistry on the Amazon
- shelf: Evidence for uranium release from bottom sediments, Geochimica et Cosmochimica Acta,
- 756 51, 2779-2786, <u>https://doi.org/10.1016/0016-7037(87)90157-8</u>, 1987.
- 757 Morris, P. J., Sanders, R., Turnewitsch, R., and Thomalla, S.: ²³⁴Th-derived particulate organic
- carbon export from an island-induced phytoplankton bloom in the Southern Ocean, Deep Sea
- 759 Research Part II: Topical Studies in Oceanography, 54, 2208-2232,
- 760 <u>https://doi.org/10.1016/j.dsr2.2007.06.002</u>, 2007.
- 761 Murray, J. W., Downs, J. N., Strom, S., Wei, C.-L., and Jannasch, H. W.: Nutrient assimilation,
- export production and $\frac{^{234}\text{Th}}{^{234}\text{Th}}$ scavenging in the eastern equatorial Pacific, Deep Sea Research Part
- A. Oceanographic Research Papers, 36, 1471-1489, <u>https://doi.org/10.1016/0198-0149(89)90052-</u>
- 764 <u>6</u>, 1989.
- 765 Nameroff, T., Balistrieri, L., and Murray, J.: Suboxic trace metal geochemistry in the eastern
- 766 tropical North Pacific, Geochimica et Cosmochimica Acta, 66, 1139-1158,
- 767 <u>https://doi.org/10.1016/S0016-7037(01)00843-2, 2002.</u>
- 768 Noffke, A., Hensen, C., Sommer, S., Scholz, F., Bohlen, L., Mosch, T., Graco, M., and
- 769 Wallmann, K.: Benthic iron and phosphorus fluxes across the Peruvian oxygen minimum zone,
- ⁷⁷⁰ Limnology and Oceanography, 57, 851-867, <u>https://doi.org/10.4319/lo.2012.57.3.0851</u>, 2012.
- 771 Osborn, T.: Estimates of the local rate of vertical diffusion from dissipation measurements,
- Journal of physical oceanography, 10, 83-89, https://doi.org/10.1175/1520-
- 773 <u>0485(1980)010<0083:EOTLRO>2.0.CO;2, 1980.</u>
- Owens, S., Buesseler, K., and Sims, K.: Re-evaluating the $\frac{238}{U}$ -salinity relationship in seawater:
- Implications for the $\frac{238}{U}$ disequilibrium method, Marine Chemistry, 127, 31-39,
- 776 https://doi.org/10.1016/j.marchem.2011.07.005, 2011.

- 777 Owens, S. A., Pike, S., and Buesseler, K. O.: Thorium-234 as a tracer of particle dynamics and
- vpper ocean export in the Atlantic Ocean, Deep Sea Research Part II: Topical Studies in
- 779 Oceanography, 116, 42-59, <u>http://dx.doi.org/10.1016/j.dsr2.2014.11.010</u>, 2015.
- 780 Peng, Q., Xie, S.-P., Wang, D., Zheng, X.-T., and Zhang, H.: Coupled ocean-atmosphere
- 781 dynamics of the 2017 extreme coastal El Niño, Nature Communications, 10, 298,
- 782 <u>10.1038/s41467-018-08258-8, 2019.</u>
- Pike, S., Buesseler, K., Andrews, J., and Savoye, N.: Quantification of $\frac{234}{\text{Th}}$ recovery in small
- volume sea water samples by inductively coupled plasma-mass spectrometry, Journal of
- 785 Radioanalytical and Nuclear Chemistry, 263, 355-360, <u>https://doi.org/10.1007/s10967-005-0594-</u>
- 786 <u>z</u>, 2005.
- 787 Puigcorbé, V., Masqué, P., and Le Moigne, F. A. C.: Global database of ratios of particulate
- 788 organic carbon to thorium-234 in the ocean: improving estimates of the biological carbon pump,
- 789 Earth Syst. Sci. Data, 12, 1267-1285, 10.5194/essd-12-1267-2020, 2020.
- 790 Rapp, I., Schlosser, C., Menzel Barraqueta, J. L., Wenzel, B., Lüdke, J., Scholten, J., Gasser, B.,
- 791 Reichert, P., Gledhill, M., Dengler, M., and Achterberg, E. P.: Controls on redox-sensitive trace
- 792 metals in the Mauritanian oxygen minimum zone, Biogeosciences, 16, 4157-4182, 10.5194/bg-
- 793 <u>16-4157-2019, 2019.</u>
- 794 Rengarajan, R., Sarin, M., and Krishnaswami, S.: Uranium in the Arabian Sea: role of
- denitrification in controlling its distribution, Oceanologica acta, 26, 687-693,
- 796 <u>https://doi.org/10.1016/j.oceact.2003.05.001</u>, 2003.
- 797 Resplandy, L., Martin, A. P., Le Moigne, F., Martin, P., Aquilina, A., Mémery, L., Lévy, M., and
- Sanders, R.: How does dynamical spatial variability impact $\frac{234}{\text{Th}}$ -derived estimates of organic
- export?, Deep Sea Research Part I: Oceanographic Research Papers, 68, 24-45,
- 800 <u>https://doi.org/10.1016/j.dsr.2012.05.015</u>, 2012.

- 801 Rosengard, S. Z., Lam, P. J., Balch, W. M., Auro, M. E., Pike, S., Drapeau, D., and Bowler, B.:
- 802 Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt,
- doi:10.5194/bg-12-3953-2015, 2015.
- 804 Santschi, P., Murray, J. W., Baskaran, M., Benitez-Nelson, C. R., Guo, L., Hung, C.-C.,
- Lamborg, C., Moran, S., Passow, U., and Roy-Barman, M.: Thorium speciation in seawater,
- 806 <u>Marine Chemistry</u>, 100, 250-268, 2006.
- 807 Savoye, N., Benitez-Nelson, C., Burd, A. B., Cochran, J. K., Charette, M., Buesseler, K. O.,
- Jackson, G. A., Roy-Barman, M., Schmidt, S., and Elskens, M.: ²³⁴Th sorption and export models
- in the water column: a review, Marine Chemistry, 100, 234-249,
- 810 <u>https://doi.org/10.1016/j.marchem.2005.10.014</u>, 2006.
- 811 Schafstall, J., Dengler, M., Brandt, P., and Bange, H.: Tidal induced mixing and diapycnal
- 812 <u>nutrient fluxes in the Mauritanian upwelling region, Journal of Geophysical Research: Oceans,</u>
- 813 <u>115, https://doi.org/10.1029/2009jc005940, 2010, 2010.</u>
- 814 Schmidt, S., and Reyss, J.: Uranium concentrations of Mediterranean seawater with high
- salinities, Comptes Rendus de l'Academie des Sciences. Serie 2, 312, 479-484, 1991.
- 816 Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic oxygen content during
- the past five decades, Nature, 542, 335, 10.1038/nature21399, 2017.
- 818 Scholz, F., Hensen, C., Noffke, A., Rohde, A., Liebetrau, V., and Wallmann, K.: Early diagenesis
- 819 of redox-sensitive trace metals in the Peru upwelling area-response to ENSO-related oxygen
- 820 <u>fluctuations in the water column, Geochimica et Cosmochimica Acta, 75, 7257-7276,</u>
- 821 <u>10.1016/j.gca.2011.08.007, 2011.</u>
- 822 Scholz, F., McManus, J., Mix, A. C., Hensen, C., and Schneider, R. R.: The impact of ocean
- deoxygenation on iron release from continental margin sediments, Nature Geosci, 7, 433-437,
- 824 <u>https://doi.org/10.1038/ngeo2162</u>, 2014.

- 825 Shepherd, J. G., Brewer, P. G., Oschlies, A., and Watson, A. J.: Ocean ventilation and
- 826 deoxygenation in a warming world: introduction and overview, Philosophical Transactions of the
- 827 Royal Society A: Mathematical, Physical and Engineering Sciences, 375, 20170240,
- 828 <u>doi:10.1098/rsta.2017.0240, 2017.</u>
- 829 Smith, S. D.: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of
- 830 wind speed and temperature, Journal of Geophysical Research: Oceans, 93, 15467-15472,
- 831 <u>https://doi.org/10.1029/JC093iC12p15467, 1988.</u>
- 832 Steinfeldt, R., Sültenfuß, J., Dengler, M., Fischer, T., and Rhein, M.: Coastal upwelling off Peru
- and Mauritania inferred from helium isotope disequilibrium, Biogeosciences, 12, 7519-7533,
- 834 https://doi.org/10.5194/bg-12-7519-2015, 2015.
- Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding oxygen-minimum zones
 in the tropical oceans, science, 320, 655-658, 2008.
- 837 Suess, E., Kulm, L., and Killingley, J.: Coastal upwelling and a history of organic-rich mudstone
- deposition off Peru, Geological Society, London, Special Publications, 26, 181-197, 1987.
- 839 Swarzenski, P., Campbell, P., Porcelli, D., and McKee, B.: The estuarine chemistry and isotope
- systematics of $\frac{234,238}{U}$ in the Amazon and Fly Rivers, Continental Shelf Research, 24, 2357-2372,
- 841 https://doi.org/10.1016/j.csr.2004.07.025, 2004.
- 842 Thomsen, S., Kanzow, T., Krahmann, G., Greatbatch, R. J., Dengler, M., and Lavik, G.: The
- 843 formation of a subsurface anticyclonic eddy in the Peru Chile Undercurrent and its impact on
- the near coastal salinity, oxygen, and nutrient distributions, Journal of Geophysical Research:
- 845 Oceans, 121, 476-501, https://doi.org/10.1002/2015JC010878, 2016.
- Van Der Loeff, M. R., Sarin, M. M., Baskaran, M., Benitez-Nelson, C., Buesseler, K. O.,
- 847 Charette, M., Dai, M., Gustafsson, Ö., Masque, P., and Morris, P. J.: A review of present

- techniques and methodological advances in analyzing $\frac{234}{Th}$ in aquatic systems, Marine
- 849 Chemistry, 100, 190-212, <u>https://doi.org/10.1016/j.marchem.2005.10.012</u>, 2006.
- 850 Waples, J. T., Benitez-Nelson, C., Savoye, N., van der Loeff, M. R., Baskaran, M., and
- Gustafsson, Ö.: An introduction to the application and future use of $\frac{234}{\text{Th}}$ in aquatic systems,
- 852 Marine Chemistry, 100, 166-189, <u>https://doi.org/10.1016/j.marchem.2005.10.011</u>, 2006.
- 853 Weinstein, S. E., and Moran, S. B.: Vertical flux of particulate Al, Fe, Pb, and Ba from the upper
- ocean estimated from $\frac{234}{\text{Th}}$ disequilibria, Deep Sea Research Part I: Oceanographic
- 855 Research Papers, 52, 1477-1488, <u>https://doi.org/10.1016/j.dsr.2005.03.008</u>, 2005.
- 856 Zhurbas, V., and Oh, I. S.: Drifter derived maps of lateral diffusivity in the Pacific and Atlantic
- 857 oceans in relation to surface circulation patterns, Journal of Geophysical Research: Oceans, 109,
- 858 https://doi.org/10.1029/2003JC002241, 2004.
- 859 Zimmerman, J. T. F.: Mixing and flushing of tidal embayments in the western Dutch Wadden Sea
- 860 part I: Distribution of salinity and calculation of mixing time scales, Netherlands Journal of Sea
- 861 <u>Research, 10, 149-191, 1976.</u>

865	Figure 1. M	laps showing	<u>(a)</u>	locations of	each	station	from	M136	(white	squares)) and M138	(grey
-----	-------------	--------------	------------	--------------	------	---------	------	------	--------	----------	------------	-------

circles) and (B) monthly-averaged current field in the top 15 m from April 16 to May 15, 2017

867 derived from altimetry measurements (http://marine.copernicus.eu/; product ID:

868 <u>MULTIOBS_GLO-PHY_REP_015_004</u>). Color boxes <u>in (a)</u> schematically divide the four shelf-

869 offshore transects. Map (a) was created with Ocean Data View (Schlitzer, 2014). <u>The white box</u>

870 <u>in (b) highlights our study area.</u>

871

872	Figure 2. Profiles of 238 U (black) and 234 Th (orange squares – M136; orange circles – M138)
873	along with concentrations of oxygen (grey) and fluorescence (green). Profiles are organized by
874	cruises, transects, and distance to shore from left to right and top to bottom, indicated by east (E)
875	to west (W) arrows. Error bars for both ²³⁸ U and ²³⁴ Th are indicated. Red dashed lines indicate the
876	depth of the mixed layer. The start of the oxygen deficient zone is where oxygen diminishes.
877	Bottom depths are indicated for stations whose bottom depths are shallower than 600 m.
878	
879	Figure 3. Shelf-offshore distributions of ²³⁴ Th/ ²³⁸ U along the four studied transects, as shown in
880	Figure 1, for M136 (left) and M138 (right). White dots denote station location.
881	
882	Figure 4. Distributions of averaged ²³⁴ Th activities during M136 (a, top 30 m) and M138 (b, top
883	50 m).
004	

Figure 5. Profiles of temperature (solid lines) and salinity (dashed lines) for (a) repeated stations
458 (purple) and 508 (yellow), and (d) 495 (blue) and 516 (orange); (b) and (c) respectively
profiles for stations 458 and 508 of ²³⁸U (black), ²³⁴Th (color squares), and concentrations of
oxygen (grey) and fluorescence (green). (e) and (f) respectively profiles for stations 495 and 516
of ²³⁸U (black), ²³⁴Th (color squares), and concentrations of oxygen (grey) and fluorescence
(green).

891

Figure 6. Bar charts of 234 Th fluxes due to production and decay (blue), upwelling (orange), and vertical diffusion (grey) for <u>the depths at 5 – 20 m below</u> the ML (top) and 100 m (bottom). Color boxes corresponds to individual transects in Figure 1. Within each transect stations from west (offshore) to east (nearshore) are listed from left to right. Error bars (1SE) are indicated.

896

Figure 7. Cross plots of measured ²³⁸U activities vs. salinity for M136 (a) and M138 (b), showing
poor linear relationship between ²³⁸U and salinity. (c) shows a direct comparison between
measured and salinity-based ²³⁸U to further highlight the large difference between the two. The
solid blue line indicates the 1:1 ratio between measured and projected ²³⁸U. Blue dashed lines
indicate the ± errors reported in Owens et al. (2011).

Table 1.	234Th fli	uxes dı	ue to pro	oduction an	ıd decay, upwel	lling and vertic	al diffusi	ion below the	mixed layer aı	nd at 100 m.	. Horizontal a	dvective flu:	xes were not q	uantified at 1(00 m. Refer to	o text for deta	ils.
				:				23	⁴ Th flux at the	e base of the	, ML			²³⁴ Th	n flux at 100 r	c	
			Mixed layer	Upper oxycline	Maximum	Equilibrium	-	Production and	-				Production				
Cruise	Station	n Cast	depth	depth	fluorescence	depth	Depth	decay	Upwelling	Diffusion	Final flux	1 SD	and decay	Upwelling	Diffusion	Final flux	1 SD
			E	E	μg L ⁻¹	£	ε	dpm m ⁻² d ⁻¹									
M136	353	-	25	102	1.20	100	30	907	52	-36	923	69	1422	-14	2	1410	189
M136	380	1	26	129	0.87	80	30	1145	0	-41	1105	54	1637	0	-1	1637	132
M136	402	-	24	129	7.51	100	30	808	0	-75	732	64	1234	0	2	1236	111
M136	428	1	10	76	4.11	30	30	983	-128	493	1348	129	1772	33	-390	1415	256
M136	445	-	17	64	2.07	100	30	820	-10	16	826	66	1621	53	9	1681	165
M136	458	1	5	55	1.61	100	30	1012	-18	161	1155	117	2101	-11	145	2235	238
M136	472	1	Π	29	7.41	200	40	1887	15	-29	1872	77	3315	-12	63	3366	233
M136	495	1	18	50	1.13	200	30	1149	1	-19	1130	50	3195	2	ų	3192	89
M136	516	1	16	45	3.77	200	30	614	0	1	615	49	2229	2	4-	2227	109
M136	547	-	22	48	1.28	150	30	791	0	85	877	61	2510	0	-15	2495	118
M136	559	-	20	62	1.70	85	50	623	ε	-67	559	117	854	-4	2	852	120
M136	567	-	21	50	2.40	150	30	1593	0	-23	1570	52	3011	0	-11	3000	86
M138	879	ŝ	43	93	2.24	200	60	1249	0	-16	1266	91	1702	0	ų	1697	111
M138	882	10	39	211	2.68	150	50	1321	-7	16	1331	63	2264	19	-12	2272	82
M138	883	12	10	220	1.31	250	30	683	-84	-159	758	108	1782	31	-121	1692	179
M138	888	7	41	127	1.59	150	50	1364	0	-120	1244	62	1813	0	4-	1809	86
M138	892	14	47	128	1.05	100	60	1395	33	-118	1309	72	1743	'n	1	1741	66
M138	868	1	38	101	1.42	60	50	1099	0	-19	1080	104	1091	0	0	1091	125
M138	904	16	12	72	3.63	150	20	812	275	0	1087	76	2643	0	6-	2634	79
M138	906	18	32	81	1.73	200	40	1796	0	4	1799	41	3100	0	<u>-</u>	3100	77
M138	907	11	31	100	1.29	60	60	1594	-88	13	1518	147	1787	67	-2	1853	140
M138	912	'n	37	70	2.75	>600	50	1960	0	-79	1881	43	2975	0	'n	2972	78
M138	915	1	26	66	3.51	200	40	1628	0	22	1650	38	2752	0	0	2752	93
M138	919	1	19	79	4.46	150	30	1316	0	49	1365	32	3249	0	ő	3241	85

0 40000			²³⁴ Th fluxes at 100 m*			
Cruise	Station	Cast	measured	predicted	Difference	
			$dpm m^{-2} d^{-1}$	$dpm m^{-2} d^{-1}$	%	
M136	353	1	1422	1320	8	
M136	380	1	1637	1304	26	
M136	402	1	1234	865	43	
M136	428	1	1772	1443	23	
M136	445	1	1621	1365	19	
M136	458	1	2101	1859	13	
M136	472	1	3315	3073	8	
M136	495	1	3195	3058	4	
M136	516	1	2229	2140	4	
M136	547	1	2510	2313	9	
M136	559	1	854	751	14	
M136	567	1	3011	2879	5	
M138	879	3	1702	1515	12	
M138	882	10	2264	1875	21	
M138	883	12	1782	1352	32	
M138	888	7	1813	1441	26	
M138	892	14	1743	1257	39	
M138	898	1	1091	770	42	
M138	904	16	2643	2280	16	
M138	906	18	3100	2673	16	
M138	907	11	1787	1308	37	
M138	912	3	2975	2572	16	
M138	915	1	2752	2380	16	
M138	919	1	3249	2862	14	

Table 2. Comparison of ²³⁴Th fluxes at 100 m calculated with measured ²³⁸U activities and those with salinity-based ²³⁸U.

* For comparison purposes, we only report here ²³⁴Th fluxes due to radioactive production and decay.

			Average ²³⁴ Th in	
Cruise	Station	Cast	the surface layer*	Residence time
			dpm L ⁻¹	days
M136	353	1	1.48	46
M136	380	1	1.35	35
M136	402	1	1.64	61
M136	428	1	1.57	35
M136	445	1	1.64	61
M136	458	1	1.45	38
M136	472	1	0.93	20
M136	495	1	1.20	31
M136	516	1	1.74	85
M136	547	1	1.67	63
M136	559	1	1.75	94
M136	567	1	1.41	45
M138	879	3	1.59	75
M138	882	10	1.81	69
M138	883	12	1.87	74
M138	888	7	1.68	67
M138	892	14	1.69	65
M138	898	1	1.66	92
M138	904	16	1.32	24
M138	906	18	1.15	25
M138	907	11	1.04	41
M138	912	3	1.25	33
M138	915	1	1.16	28
M138	919	1	1.17	26

Table 3. Residence time of total ²³⁴Th in the surface layers of Peruvian OMZ.

* Here 'surface layer' refers to the top 30 m during M136 and top 50 m during M138.

Figure 2

(C)

Figure 7