We thank both reviewers again for their constructive comments. Our point-by-point response to their comments is highlighted in bold in this document.

Reviewer #1

- I enjoyed reading this new version of the manuscript: it is now well-composed and the 5 importance of physical processes and 238U variability on the estimation of downward 234Th export fluxes is clear. I recommend acceptance following minor revisions. □ Introduction
- Line 43. There are many more studies investigating the elemental export fluxes. Please add 10 "e.g." [Bhat et al., 1968, etc.]

Response: fixed

Line 50. and "is" [thus strongly scavenged..] 15

Response: fixed

Line 55. You can also add Si to the list C, N, P, trace metals.

20

25

Response: fixed

Line 55. I also would add "e.g." [Bhat et al., 1968, etc..] as it is a succinct list of studies investigating elemental export fluxes.

Response: fixed

Lines 74-75: I think this paragraph break is not necessary. Both paragraphs speak about advection and diffusion effect on 234Th fluxes.

30

Response: We consider the paragraph break appropriate, as the previous paragraph discussed how the single box 234Th models are inappropriate in parts of the open ocean and the second paragraph discussed how 234Th fluxes in coastal regions are more vulnerable to physical processes. This paragraph break is also necessary to avoid a super

long paragraph. 35

Line 75. I think you can delete "that" and add "to" [be included..]

Response: For clarity, we modified the sentence as "The dynamic nature of coastal processes requires that physical terms should be included in 234Th flux calculation 40 whenever possible."

☐ Methods

45 Lines 140-147: Please mention why Mn would be a problem during the ICP MS analyses of 229Th /230Th ratios.

Response: Mn was not a problem for 229Th /230Th ratios but for the maintenance of ICPMS itself. The large amount of Mn in the samples means that the ICPMS needs to be cleaned thoroughly for days after each 229Th /230Th session before other trace-metal users could use it again. Performing column chemistry to remove Mn in 234Th samples before ICPMS analysis is now an agreement among lab users in our group.

Line 149: Why do you use 1N HNO3? Usually ICPMS analyses are made with 2% HNO3 (i.e. 0.3N).

Response: It is not uncommon to dilute samples in 1N HNO3 for ICPMS analysis. Typical ICPMS standard solutions are in 2% (0.32N) - 5% (0.8N) HNO3 solutions, and a few are in 10% (1.6N) HNO3 solutions. Our lab has been using 1N HNO3 for ICPMS analyses, which has been working perfectly well for various trace elements.

Lines 164-166: The recommended time interval between two visits is of >2 weeks. What would a time interval of maximum 4.5 days imply for your study?

65

60

50

Response: We modified line 362-364 in Results to address this comment: "The large errors associated with the non-steady state calculation <u>due to the short duration between station</u> <u>occupations</u> prevent a meaningful application of this model in the current study (also see discussion in Resplandy et al, 2012)."

70

Lines 175-185: I understand the depth for estimating the export fluxes is only of little relevance, but please, indicate at which depths you estimated the fluxes here and why these depths: 100m (for comparing with other studies) and 5-20m below the ML (not exact ML because of sampling logistics).

75

Response: The reasoning on at which depths fluxes were calculated were originally given in lines 372-376 (Results section): "Due to sampling logistics, we did not sample at the base of the ML, but 5-20 m below the ML. This depth corresponded closely to the EZ depth used in Black et al. (2018) in the same study area during austral spring 2013. For the purpose of comparison with earlier studies which reported 234Th fluxes at 100 m, we also calculated 234Th fluxes at 100 m in this study." We now moved this paragraph to Line 185.

Lines 205-207: Please give the values of the Coriolis parameter (*f*) and the water density (ρ) you used and from where they come from.

85

80

Response: The Coriolis parameter is not a fixed value but a function of latitude. We now specified the water density in the text.

Line 223: Please, precise how you estimate the upwelling rate from the vertical velocity (*w*)? By interpolation between 0 and 240m?

Response: The reviewer is correct that upwelling rate was interpolated between 0 and 240 m. We also stated in the original text that "We assumed a linear decrease of w from base of the mixed layer toward both the ocean surface and 240 m depth (bottom depth of our shallowest station). Upwelling rates at any depth between 0 and 240 m at individual stations could thus be determined once w was estimated."

95

Lines 236-237: Please mention where these velocities can be found. In Lüdke et al., in review?

100 Response: We now referenced (Lüdke et al., in review 2020).

Lines 246-247: Which other cruises are you referencing?

Response: We now specified M137 as the follow-up cruise.

105

Line 251: "At most CTD stations": for which stations do you not have microstructure profiles?

Response: For clarification, we modified this sentence to state "On transit between each CTD station 3 to 9 microstructure profiles were collected". Pleas also note that we stated in

110 Line 261, "An average turbulent vertical diffusivity profile was calculated from all inshore (<500m water depth) and from all offshore (>500m water depth) profiles (Figure S1)". So we would like to reiterate that inshore and offshore vertical diffusivity profiles are not individual profiles, but averages of all relevant microstructure profiles in proximation to our CTD stations during cruise M136 and M137.

115

Line 255: Which value did you use for the stratification (*N*) and from where does it come from?

Response: Stratification (Buoyancy frequency) was calculated using CTD data retrieved from microstructure profilers and following the gsw_Nsquared function from the Gibbs
Sea Water library (McDougall et al., 2009; Roquet et al., 2015). A running mean of 10 dbar was applied to avoid including unstable events due to turbulent overturns. We now added this discussion to the text.

Line 277: Why do you use τ 1/2? Please remove $\frac{1}{2}$ if not needed.

125

Response: We now use τ_{Th} as 234Th residence time to avoid confusion with τ (wind stress)

Line 284: Please precise the surface layers are until 30m for M136 and 50m for M138, and explain why these depths.

130

Response: To avoid repetition throughout the text, we now added in Line 243: "As representative for the near-surface flow, we extracted the velocity data from the top 30 m for M136 stations and top 50 m for M138 station <u>(defined as the "top layer" thereafter</u>); these depths correspond to 5-20 m below the base of the ML during each cruise." Note that

135 we've opted to use the term "top layer" throughout the text instead of "surface layer" to avoid confusion.

 \Box Results

140 Line 305: Total 234Th "activities"

Response: fixed

Line 310: Please cite Table 1, where equilibrium depths are showed.

145

Response: fixed

Line 326: Why do you use top layers as top 30m and top 50m? If you agree with one of my previous comment this will be explained in the Methods (line 284).

150

Response: Please refer to our replies in Lines 73 and 128 in this document.

Line 397: Within the upper (?) 27 and 33m layer at offshore (?) deep stations

155 **Response: fixed**

Line 415: please provide again the depths of the surface layer.

Response: Please refer to our reply in Line 128 in this document.

160

Lines 420-421: I think this paragraph break is not necessary. Both paragraphs speak about horizontal advection and diffusion effect on 234Th fluxes.

Response: The former paragraph discussed advection fluxes and the latter one discussed diffusive fluxes. It would be better to have the paragraph break.

 \Box Discussion

Line 443: Delete recent (it was 14 and 9 years ago already!)

170

175

Response: fixed

Line 446: "a minute increase" is not clear. Do you mean that even a short-term oxygenation event, of the order of the minute, could release U from the sediments? If it is the case, please re write.

Posponso: "a minuta inaraa

Response: "a minute increase" means an increase of oxygen of an extremely tiny amount, often below detection limits. We feel that the wording "minute" best described in a scientific manner such extremely small change in oxygen concentrations.

180

Lines 461-479: The explanation is not yet clear. Understanding how U (or Fe) reduction and remobilization could occur "at the same time" was not straightforward at first reading. Please,

make a clear distinction between the ocean-sediment interface where O2 concentrations can increase, realising U; and the suboxic/anoxic sediments where U is reduced and trapped.Is there a study you could cite to support that a strong El Nino event (such as the one preceding your cruise) could induce an oxygenation event large enough to release U (lines 472-473)?

Response: We agreed with the reviewer and have now added the following discussion to Line 468: "In reducing pore water, U reduction and removal from pore water is usually
seen within the Fe reduction zone (Barnes and Cochran, 1990; Barnes and Cochran, 1991; Scholz et al., 2011). As such, a downward diffusive flux of U across the water-sediment interface is expected in reducing sedimentary environment." A reference to Scholtz et al. (GCA, 2011) was included in the original text which showed clear evidence that a tiny increase in bottom water oxygen concentrations would be sufficient to release U.

195

185

Line 503: In order to easily compare with GP16, please give the values you estimated here.

Response: Agreed and fixed

200 Line 505: same comment: please say how much were upwelling fluxes accounting for in your study.

Response: We now specified how much upwelling fluxes made up the total 234Th fluxes in our study.

205

Figure 2: Please add in both the caption and legend what the red line corresponds to.

Response: The caption in the original text stated "Red dashed lines indicate the depth of the mixed layer." For clarity, we only included data symbols in the legend.

210 Reviewer #2

230

Second round comments on "Effects of 238U variability and physical transport on the water column 234Th downward fluxes in the coastal upwelling system off Peru" by Xie et al.

Anonymous reviewer #2

I am very happy to see this version of the manuscript which I read with more fun than their first version. Most of my concerns has been answered in the new version. There are not too many studies trying to discuss the impact of physical transport on the downward 234Th flux in the open ocean. This study is therefore welcome to the community.

Before the acceptance of this paper, I only have one question that I am not satisfied. The authors attributed the abnormal uranium activity to the flooding from the coasts, and they also indicated

- 220 a high activity of particulate 234Th in those flooding waters. Therefore, the dissolved 234Th in those water should be lowered by the sinking of those riverine particles. Once the water was transferred to the region of sampling, it should represent an integrated signal mostly derived from flooding particle export not just the local marine particle export. Then even we have carefully estimated the horizonal and vertical transport of 234Th, the final 234Th flux is still not
- induced by the local export. I do not know for this case 234Th is still a good tracer or not?

Response: Please refer to our previous response to this comment in our last revision. We had agreed that flooding is not likely the main source of additional U to our study site. The discussion on U input via flooding had been removed in our last revision, so that the reviewer's comment is not relevant to the current version of the manuscript.

1	(Mark-up version: Changes made in the revision were marked with an
2	underline.)

3	Effects of ²³⁸ U variability and physical transport on water column
4	²³⁴ Th downward fluxes in the coastal upwelling system off Peru
5	
6	Ruifang C. Xie ¹ *, Frédéric A. C. Le Moigne ² , Insa Rapp ¹ , Jan Lüdke ¹ , Beat Gasser ³ , Marcus
7	Dengler ¹ , Volker Liebetrau ¹ , Eric P. Achterberg ¹
8	
9	¹ GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel,
10	Germany
11	² Mediterranean Institute of Oceanography (UM 110, MIO), CNRS, IRD, Aix Marseille
12	Université, Marseille, France
13	³ IAEA Environment Laboratories, 4 Quai Antoine 1er, 98000 Monaco
14	Monaco
15	

16 * corresponding author: rxie@geomar.de

17 Abstract

The eastern boundary region of the southeastern Pacific Ocean hosts one of the world's most 18 dynamic and productive upwelling systems with an associated oxygen minimum zone (OMZ). 19 20 The variability in downward export fluxes in this region, with strongly varying surface productivity, upwelling intensities and water column oxygen content, is however poorly 21 understood. Thorium-234 (²³⁴Th) is a powerful tracer to study the dynamics of export fluxes 22 of carbon and other elements, yet intense advection and diffusion in nearshore environments 23 impact the assessment of depth-integrated ²³⁴Th fluxes when not properly evaluated. Here we 24 use VmADCP current velocities, satellite wind speed and in situ microstructure measurements 25 to determine the magnitude of advective and diffusive fluxes over the entire ²³⁴Th flux budget 26 at 25 stations from 11°S to 16°S in the Peruvian OMZ. Contrary to findings along the 27 GEOTRACES P16 eastern section, our results showed that weak surface wind speed during 28 our cruises induced low upwelling rates and minimal upwelled ²³⁴Th fluxes, whereas vertical 29 diffusive ²³⁴Th fluxes were important only at a few shallow shelf stations. Horizontal 30 advective and diffusive ²³⁴Th fluxes were negligible because of small alongshore ²³⁴Th 31 gradients. Our data indicated a poor correlation between seawater ²³⁸U activity and salinity. 32 Assuming a linear relationship between the two would lead to significant underestimations of 33 the total ²³⁴Th flux by up to 40% in our study. Proper evaluation of both physical transport 34 and variability in ²³⁸U activity is thus crucial in coastal ²³⁴Th flux studies. Finally, we showed 35 large temporal variations on ²³⁴Th residence times across the Peruvian upwelling zone, and 36 cautioned future carbon export studies to take these temporal variabilities into consideration 37 38 while evaluating carbon export efficiency.

Keywords: eastern tropical South Pacific, ²³⁴Th tracer, uranium-salinity correlation, physical
processes, residence time

41 **1. Introduction**

Isotopes of thorium (Th) are widely used as tracers for particle cycling in the oceans 42 (Waples et al., 2006). In particular, ²³⁴Th has been extensively used to trace particle dynamics 43 44 and export fluxes in the upper ocean, and to quantify the marine budgets of important macroand micronutrients such as carbon (C), nitrogen (N), phosphorus (P) and iron (Fe) (e.g. Bhat 45 et al., 1968; Buesseler et al., 1992; Coale and Bruland, 1987; Lee et al., 1998; Le Moigne et 46 al., 2013; Cochran and Masqué, 2003; Van Der Loeff et al., 2006; Black et al., 2019). ²³⁴Th 47 has a relatively short half-life ($\tau_{1/2} = 24.1$ days) that allows studies of biological and physical 48 processes occurring on timescales of days to weeks. Unlike its radioactive parent uranium-238 49 $(^{238}\text{U}, \tau_{1/2} = 4.47 \text{ Ga})$ that is soluble in seawater, ²³⁴Th is highly particle reactive with a 50 particle-water partition coefficient of 10^3 to 10^8 (Santschi et al., 2006 and references therein) 51 and is thus strongly scavenged by particles (Bhat et al., 1968). Generally, a deficit of ²³⁴Th 52 relative to ²³⁸U is observed in the surface ocean and reflects net removal of ²³⁴Th due to 53 particle sinking, whereas secular equilibrium between ²³⁴Th and ²³⁸U is observed for 54 intermediate and deep waters. Integrating this surface ²³⁴Th deficit with depth yields the 55 sinking flux of ²³⁴Th and, if elemental:²³⁴Th ratios are known, the sinking flux of elements 56 such as C, N, P, Si and trace metals (e.g. Bhat et al., 1968; Buesseler et al., 1998; Buesseler et 57 al., 1992; Coale and Bruland, 1987; Weinstein and Moran, 2005; Buesseler et al., 2006; 58 Owens et al., 2015; Black et al., 2019; Puigcorbé et al., 2020). 59

Various ²³⁴Th models have been put forward to study adsorption/desorption,
aggregation and export, but single box models that assume negligible ²³⁴Th fluxes due to
physical transport are commonly used to calculate oceanic ²³⁴Th-derived particle fluxes (see
detailed review by Savoye et al., 2006). This assumption is typically appropriate in open
ocean settings where ²³⁴Th fluxes due to advection and diffusion are small relative to the
downward fluxes of ²³⁴Th associated with particle sinking. However, in upwelling regions

such as the equatorial Pacific and coastal systems, advective and diffusive ²³⁴Th fluxes may 66 become increasingly important (e.g., Bacon et al., 1996; Buesseler et al., 1998; Buesseler et 67 al., 1995; Dunne and Murray, 1999). For example, in the equatorial Pacific, strong upwelling 68 post El-Niño could account for ~50% of the total ²³⁴Th fluxes (Bacon et al., 1996; Buesseler 69 et al., 1995). Ignoring the upwelling term could thus lead to an underestimation of ²³⁴Th 70 fluxes by a factor of 2. Conversely, horizontal diffusion carrying recently upwelled, ²³⁴Th-71 replete waters has been shown to balance the upwelled ²³⁴Th fluxes in the central equatorial 72 Pacific (Dunne and Murray, 1999). To the contrary, advective and diffusive ²³⁴Th fluxes were 73 minimal off the Crozet Islands in the Southern Ocean due to limited horizontal ²³⁴Th 74 75 gradients, long residence time of water masses, and low upwelling rates and diffusivities (Morris et al., 2007). 76

The dynamic nature of coastal processes requires that physical terms should be 77 included in ²³⁴Th flux calculation whenever possible. Accurate measurements of current 78 velocities and diffusivities are however challenging and thus direct observations of the effects 79 of physical processes on ²³⁴Th distributions in coastal regions are scarce. Limited studies have 80 incorporated advection and diffusion in the nearshore zones of the Arabian Sea (Buesseler et 81 al., 1998), Gulf of Maine (Gustafsson et al., 1998; Benitez-Nelson et al., 2000), the South 82 83 China Sea (Cai et al., 2008) and Peruvian oxygen minimum zone (OMZ) (Black et al., 2018). In the Arabian Sea, coastal upwelling during the southwest monsoon season could account for 84 over 50% of the total ²³⁴Th flux (Buesseler et al., 1998). Horizontal advection has been shown 85 to be substantial in the Inner Cosco Bay of the Gulf of Maine (Gustafsson et al., 1998), 86 whereas offshore advection and diffusion are only important in late summer (Benitez-Nelson 87 et al., 2000). Therefore, the importance of physical processes on the ²³⁴Th flux estimate is 88 highly dependent on the seasonal and spatial variability of the current velocities, diffusivities 89 and ²³⁴Th gradients. In terms of the Peruvian OMZ, Black et al. (2018) showed that coastal 90

91	upwelling accounts for >50% of total ²³⁴ Th fluxes at 12°S; however, how upwelling ²³⁴ Th
92	fluxes vary seasonally and spatially in this region is unclear.

Another uncertainty in ²³⁴Th flux calculations in such region stems from variations on 93 dissolved ²³⁸U activities. Generally speaking, U behaves conservatively under open ocean 94 oxic conditions and is linearly correlated with salinity (Chen et al., 1986; Ku et al., 1977; 95 96 Owens et al., 2011). However, numerous studies have shown that such correlation breaks down in various marine environments including the tropical Atlantic (Owens et al., 2011), 97 Mediterranean Sea (Schmidt and Reyss, 1991), and Arabian Sea (Rengarajan et al., 2003). 98 Although it is generally accepted that deviations from the linear ²³⁸U-S correlation will lead to 99 differences in the final calculated ²³⁴Th fluxes, there is currently little knowledge on how 100 significant these differences could be. 101

In this study, we report vertical profiles of ²³⁴Th and ²³⁸U along four transects
 perpendicular to the coastline of Peru (i.e. shelf-offshore transects). We evaluate the ²³⁸U-S
 correlation in low-oxygen waters and how deviations from this correlation impact final ²³⁴Th
 flux estimates. We also assess the spatial and temporal importance of advection and diffusion
 on ²³⁴Th flux estimates.

107

108 2. Sampling and methods

109 2.1 Seawater sampling and analysis

Seawater samples were collected at 25 stations along 4 shelf-offshore transects
between 11°S and 16°S in the Peruvian OMZ during two cruises M136 and M138 on board
the RV Meteor (Figure 1). Cruise M136 took place in austral autumn (April 11 to May 3,
2017) along two main transects at 12°S and 14°S (Dengler and Sommer, 2017). Two stations
from M136 (stations 458 and 495) were reoccupied within a week (repeat stations 508 and

516, respectively) to evaluate the steady-state assumption in the ²³⁴Th flux calculation. The
surface sample of the repeat station 508 (reoccupied 4.5 days after station 458) was missing so
only results from repeat stations 495 and 516 (occupation interval 1.5 days) were compared
and discussed in terms of the non-steady state model (section 3.3). ²³⁴Th sampling during
cruise M138 was carried out in austral winter (June 1 to July 4, 2017) and focused on four
shelf-offshore transects at 11°S, 12°S, 14°S and 16°S.

At each station, a stainless-steel rosette with Niskin bottles (Ocean Test Equipment®) 121 was deployed for sampling of total 234 Th in unfiltered seawater and dissolved 238 U (0.2 μ m 122 pore size, Acropak® polycarbonate membrane). High vertical resolution sampling was 123 124 performed in the upper 200 m where most of the biological activity occurs; additional depths were sampled down to 600 m, or 50 m above the seafloor. Deep seawater at 1000 m, 1500 m, 125 and 2000 m was sampled at three stations to determine the absolute β counting efficiency. 126 127 Salinity, temperature, oxygen concentrations and fluorescence data (Table S1) were derived from the sensors (Seabird Electronics[®] 9plus system) mounted on the CTD frame (Krahmann, 128 129 2018; Lüdke et al., in review 2020).

Sample collection and subsequent chemical processing and analysis for total ²³⁴Th 130 followed protocols by Pike et al. (2005) and SCOR Working Group RiO5 cookbook 131 (https://cmer.whoi.edu/). Briefly, a ²³⁰Th yield tracer (1 dpm) was added to each sample (4 L) 132 before Th was extracted with MnO₂ precipitates. Precipitates were filtered onto 25 mm quartz 133 microfiber filters (Whatman[®] QMA, 2.2 µm nominal pore size) and dried overnight at 50°C, 134 after which they were counted at sea on a Risg[®] low-level beta GM multicounter until 135 uncertainty was below 3%, and again 6 months later at home laboratory for background ²³⁴Th 136 137 activities. After the second beta counting, filters were digested in an 8M HNO₃/10% H₂O₂ solution (Carl Roth[®], trace metal grade). 10 dpm of ²²⁹Th was added to each sample at the 138 beginning of digestion to achieve a 1:1 atom ratio between ²²⁹Th:²³⁰Th. Digested samples 139 were diluted in a 2.5% HNO₃/0.01% HF mixture and ²²⁹Th/²³⁰Th ratios were measured using 140

141	an ICP-MS (ThermoFisher [®] Element XR) to determine the chemistry yield and final ²³⁴ Th
142	activities. The average yield was calculated to be 97% \pm 6% (n = 247). For a subset of
143	samples (marked in Table S1) whose analysis failed during initial ICP-MS measurement,
144	anion chromatography (Biorad® AG1x8, 100 – 200 mesh, Poly-Prep columns) was performed
145	to remove Mn from the sample matrix before another ICP-MS analysis. This subset of
146	samples also included three samples (marked in Table S1) whose initial ICP-MS measurement
147	was successful, to test whether anion chromatography affects final ICP-MS results. Identical
148	229 Th/ 230 Th ratios were measured for samples with and without column chromatography (see
149	Table S1 footnotes for details).

Each ²³⁸U sample was acidified to pH ~1.6 at sea and transported home for analysis. Samples of dissolved ²³⁸U were diluted 20 times in 1N HNO₃ at home laboratory and spiked with an appropriate amount of ²³⁶U spike to achieve ²³⁶U:²³⁸U ~ 1:1. Ratios of ²³⁶U:²³⁸U were analyzed by ICP-MS (ThermoFisher Element XR) and activities of ²³⁸U were calculated using isotope dilution. Seawater certified reference materials (CRMs), CASS-6 and NASS-7, and the International Association for the Physical Sciences of the Oceans (IAPSO) standard seawater were analyzed routinely for uranium concentrations.

157

158 2.2 Flux calculation

Assuming a one box model, the temporal change of ²³⁴Th activities is balanced by
production from ²³⁸U, radioactive decay of ²³⁴Th, removal of ²³⁴Th onto sinking particles, and
transport into or out of the box by advection and diffusion (Bhat et al., 1968; Savoye et al.,
2006; and references therein):

163
$$\frac{\partial A_{Th}}{\partial t} = \lambda (A_U - A_{Th}) - P + V \tag{1}$$

164 where A_U and A_{Th} are respectively the activities of dissolved ²³⁸U and total ²³⁴Th, λ is 165 the decay constant of ²³⁴Th, P is the net removal flux of ²³⁴Th, and V is the sum of advective 166 and diffusive fluxes. It is recommended that the time interval between station occupations 167 should be >2 weeks in order to adequately capture the temporal variability of the mean spatial 168 gradients rather than small local changes (Resplandy et al., 2012). The solution of Eq. (1) 169 (Savoye et al., 2006) is

170
$$P = \lambda \left[\frac{A_U (1 - e^{-\lambda \Delta t}) + A_{Th1} \cdot e^{-\lambda \Delta t} - A_{Th2}}{1 - e^{-\lambda \Delta t}} \right]$$
(2)

171 where Δt is the time interval between repeat occupations of a station; A_{Th1} and A_{Th2} 172 are respectively total ²³⁴Th activities during the first and second occupation. At times when 173 repeat sampling is not possible within adequate cruise timeframe, steady state conditions are 174 generally assumed, i.e. $\frac{\partial A_{Th}}{\partial t} = 0$. In this case, Eq. (1) is simplified into:

175
$$P = \int_0^z \lambda (A_U - A_{Th}) dz + V$$
(3)

The vertical flux of ²³⁴Th, P (dpm m⁻² d⁻¹), is integrated to the depth of interest. Earlier 176 studies generally used arbitrarily fixed depths (e.g., the base of mixed layer or ML, and 100 177 m) for ²³⁴Th and POC flux estimates (e.g., Bacon et al., 1996; Buesseler et al., 1992). Recent 178 studies emphasized the need to normalize POC flux to the depth of euphotic zone (EZ), which 179 180 separates the particle production layer in the surface from the flux attenuation layer below (Black et al., 2018; Buesseler and Boyd, 2009; Rosengard et al., 2015). In the open ocean, the 181 depth of EZ is generally similar to ML depth. The PAR (Photosynthetically Active Radiation) 182 sensor was not available during both of our cruises, so that it was not possible to identify the 183 base of the EZ. For the purpose of this study, the slight difference of the exact depth chosen 184 (ML vs. EZ) was of little relevance to the significance of physical processes and ²³⁸U 185 variability. Due to sampling logistics, however, we did not sample at the base of the ML, but 186 5-20 m below the ML. This depth corresponded closely to the EZ depth used in Black et al. 187

188 (2018) in the same study area during austral spring 2013. For the purpose of comparison with

189 earlier studies which reported ²³⁴Th fluxes at 100 m, we also calculated ²³⁴Th fluxes at 100 m
190 in this study.

191

192 2.3 Quantification of the physical fluxes

193 The physical term V in Eq. (2) is expressed as following:

194
$$V = \int_0^z \left(w \frac{\partial Th}{\partial z} - u \frac{\partial Th}{\partial x} - v \frac{\partial Th}{\partial y} \right) dz + \int_0^z \left(K_x \frac{\partial^2 Th}{\partial x^2} + K_y \frac{\partial^2 Th}{\partial y^2} - K_z \frac{\partial^2 Th}{\partial z^2} \right) dz$$
(3)

where *w* is the vertical (i.e. upwelling) velocity (m s⁻¹), u and v respectively the zonal and meridional current velocities (m s⁻¹), and K_x, K_y, and K_z represent eddy diffusivities (m² s⁻¹) in zonal, meridional and vertical directions, respectively. $\frac{\partial Th}{\partial z}$, $\frac{\partial Th}{\partial x}$ and $\frac{\partial Th}{\partial y}$ are vertical and horizontal ²³⁴Th gradients (dpm L⁻¹ m⁻¹), and $\frac{\partial^2 Th}{\partial x^2}$, $\frac{\partial^2 Th}{\partial y^2}$ and $\frac{\partial^2 Th}{\partial z^2}$ are respectively the second derivative of ²³⁴Th (dpm L⁻¹ m⁻²) on the zonal, meridional and vertical directions.

200

201 2.3.1 Estimation of upwelling velocities

In the Mauritanian and Peruvian coastal upwelling regions, there is strong evidence that upwelling velocities in the mixed layer derived from satellite scatterometer winds and Ekman divergence (Gill, 1982) agree well with those from helium isotope disequilibrium (Steinfeldt et al., 2015). The parameterization by Gill (1982) considers the baroclinic response of winds blowing parallel to a coastline in a two-layer ocean. Vertical velocity (*w*) at the interface yields

208
$$W = \frac{\tau}{\rho f a} e^{-x/a} \tag{4}$$

209 where τ is the wind stress (kg m⁻¹ s⁻²) parallel to the coast line, ρ the water density 210 (1023 kg m⁻³), *f* the Coriolis parameter (s⁻¹) as a function of latitude, *a* the first baroclinic 211 Rossby radius (km) and *X* the distance (km) to the coast.

Upwelling velocities were calculated at stations within 60 nautical miles (nm) of the coast, where upwelling is the most significant (Steinfeldt et al., 2015). We used a = 15 km for all stations based on the results reported by Steinfeldt et al. (2015) for the same study area. The magnitude of monthly wind stress was estimated from the monthly wind velocities (Smith, 1988):

217

$$\tau = \rho_{air} C_D U^2 \tag{5}$$

218 where ρ_{air} is the air density above the sea surface (1.225 kg m⁻³), C_D the drag 219 coefficient (10⁻³ for wind speed < 6 m s⁻¹), and *U* the wind speed.

Monthly wind speed (m s⁻¹) fields from MetOp-A/ASCAT scatterometer sensor with 220 a spatial resolution of 0.25° (Bentamy and Croize-Fillon, 2010) were retrieved from the 221 Centre de Recherche et d'Exploitation Satellitaire (CERSAT), at IFREMER, Plouzané 222 223 (France) (data version numbers L3-MWF-GLO-20170903175636-01.0 and L3-MWF-GLO-20170903194638-01.0). We assumed a linear decrease of w from base of the mixed layer 224 toward both the ocean surface and 240 m depth (bottom depth of our shallowest station). 225 Upwelling rates at any depth between 0 and 240 m at individual stations could thus be 226 determined once w was estimated. Following (Rapp et al., 2019), an error of 50% was 227 assigned to estimated upwelling velocities to account for uncertainties associated with the 228 spatial structure and temporal variability of the wind field, and the satellite wind product near 229 the coast. 230

231

232 2.3.2 Estimation of upper-ocean velocities

233	During both cruises a phased-array vessel-mounted acoustic Doppler current profiler
234	(VmADCP; 75 kHz Ocean Surveyor, Teledyne RD-Instruments) continuously measured zonal
235	and meridional velocities in the upper 700 m of the water column (Lüdke et al., in review
236	2020). Post-processing of the velocity data included water track calibration and bottom
237	editing. After calibration, remaining uncertainty of hourly averages of horizontal velocities are
238	smaller than 3 cm s ⁻¹ (e.g. Fischer et al., 2003). For the horizontal advective flux calculation
239	(Eq. 3), velocities collected within a 10 km radian at inshore stations (St. 353, 428, 458, 475,
240	508, 904, and 907) and within a 50 km radian at offshore stations (Lüdke et al., in review
241	2020) were averaged. Data collected at the same positions within 5 days due to station repeats
242	were also included in the velocity average. As representative for the near-surface flow, we
243	extracted the velocity data from the top 30 m for M136 stations and top 50 m for M138 station
244	(defined as the "top layer" thereafter); these depths correspond to 5-20 m below the base of
245	the ML during each cruise.
246	

247 2.3.3 Estimation of vertical and horizontal eddy diffusivities

While the strength of ocean turbulence determines the magnitude of diapycnal or 248 vertical eddy diffusivities, the intensity of meso- and submesoscale eddies determine the 249 magnitude of lateral eddy diffusivities. During the R/V Meteor cruise M136 and the follow up 250 251 cruise (M137) in the same region, the strength of upper-ocean turbulence was measured using 252 shear probes mounted to a microstructure profiler. The loosely-tethered profiler was optimized to sink at a rate of 0.55 m s⁻¹ and equipped with three shear sensors, a fast-response 253 temperature sensor, an acceleration sensor, two tilt sensors and conductivity, temperature, 254 255 depth sensors sampling with a lower response time. On transit between each CTD station 3 to 9 microstructure profiles were collected. Standard processing procedures were used to 256 determine the dissipation rate of turbulent kinetic energy (ε) in the water column (see 257

Schafstall et al., 2010 for detailed description). Subsequently, turbulent vertical diffusivities 258 K_Z were determined from $K_Z = \Gamma \epsilon N^{-2}$ (Osborn, 1980), where N is stratification and Γ is the 259 mixing efficiency for which a value of 0.2 was used following Gregg et al. (2018). 260 Stratification (Buoyancy frequency) was calculated using CTD data retrieved from 261 microstructure profilers and following the gsw_Nsquared function from the Gibbs Sea Water 262 library (McDougall et al., 2009; Roquet et al., 2015). A running mean of 10 dbar was applied 263 to avoid including unstable events due to turbulent overturns. The 95% confidence intervals 264 for averaged K_z values were determined from Gaussian error propagation following Schafstall 265 266 et al. (2010).

Altogether, 189 microstructure profiles were collected during M136 (Thomsen and 267 Lüdke, 2018) and 258 profiles during the follow-up cruise M137 (unpublished data; May 6 -268 29, 2017). An average turbulent vertical diffusivity profile was calculated each from all 269 inshore (<500m water depth) and all offshore (>500m water depth) profiles (Figure S1). 270 Microstructure profiles collected during cruise M138 were not available but there were little 271 variations amongst the cruise average inshore and offshore microstructure profiles from M136 272 and M137 despite drastic change in the intensities of the poleward Peru Chile Undercurrent 273 274 (Lüdke et al., in review 2020). It thus appears appropriate to apply these average vertical diffusivities also to stations during M138. 275

Horizontal eddy diffusivity could not be determined from data collected during the cruises. Surface eddy diffusivities in the North Atlantic OMZ were estimated to be on the order of a few 1000 m² s⁻¹ that decrease exponentially with depth (Hahn et al., 2014). Similar magnitude of eddy diffusivities was estimated for the ETSP based on surface drifter data and satellite altimetry (Abernathey and Marshall, 2013; Zhurbas and Oh, 2004). We thus consider an eddy diffusivity of 1000 m² s⁻¹ as a good approximate in this study for the evaluation of horizontal diffusive ²³⁴Th fluxes.

283

284 2.4 Residence time of 234 Th

The residence time ($\underline{\tau}_{Th}$) of total ²³⁴Th represents a combination of the time required 285 for the partition of dissolved ²³⁴Th onto particulate matter and that for particle removal. In a 286 one-box model, the residence time of an element of interest can be estimated by determining 287 the standing stock of this element and the rates of elemental input to the ocean or the rate of 288 elemental removal from seawater to sediments (Bewers and Yeats, 1977; Zimmerman, 1976): 289 $\tau_{Th} = \frac{A_{Th(mean)} \cdot Z}{P}$ 290 (6)For the case of 234 Th, $A_{Th(mean)}$ is the averaged 234 Th activities of the surface layer, Z is 291 the depth of top layer, and P the removal flux of ²³⁴Th. 292 293 3. Results 294

295 3.1 Profiles of dissolved ²³⁸U, total ²³⁴Th, oxygen and fluorescence

The vertical profiles of ²³⁸U and ²³⁴Th activities are shown in Figure 2 and tabulated in Table S1. Data from station 508 were reported in Figure 2 and Table S1 but excluded in the Discussion section, because the surface sample at 5 m from this station was missing, which prevents any flux calculation. Also tabulated in Table S1 are temperature, salinity and concentrations of oxygen and fluorescence obtained from the CTD sensors. Uranium concentrations of CRMs and the IAPSO standard seawater are reported in Table S2.

Activities of 238 U showed small to negligible variations with depth, averaging 2.54 ±

303 0.05 dpm L⁻¹ (or 3.28 ± 0.07 ng/g, 1SD, n = 247) at all stations. The vertical distributions of

 238 U did not appear to be affected by water column oxygen concentrations or the extent of

305 surface <u>fluorescence maxima</u> (Figure 2). Average U concentrations of both CASS-6 (2.77 ±

306 0.04 ng g⁻¹, 1SD, n = 5) and NASS-7 (2.86 ± 0.05 ng/g, 1SD, n = 5) measured in this study 307 agreed well with certified values (2.86 ± 0.42 ng g⁻¹ and 2.81 ± 0.16 ng g⁻¹, respectively). 308 Average ²³⁸U concentration measured in our IAPSO standard seawater (OSIL batch P156) 309 (3.24 ± 0.06 ng g⁻¹, 1SD, n = 27) is slightly higher than that reported in Owens et al. (2011) 310 (3.11 ± 0.03 ng g⁻¹, 1SD, n = 10, OSIL P149), and may reflect slight differences in U 311 concentrations between different OSIL batches.

Total ²³⁴Th activities varied from 0.63 to 2.89 dpm L⁻¹ (Figure 2). All stations showed 312 large ²³⁴Th deficits in surface waters with ²³⁴Th/²³⁸U ratios as low as 0.25 (Figure 3). The 313 314 extent of surface ²³⁴Th deficits did not vary as a function of depths of either mixed layer or the upper oxic-anoxic interface, nor the magnitude of surface fluorescence concentrations (Table 315 1, Figure 2). ²³⁴Th at all stations generally reached equilibrium with ²³⁸U at depths between 30 316 m and 250 m (Table 1). The equilibrium depths were slightly shallower toward the shelf at the 317 11°S, 12°S and 16°S transects. At St. 912, deficits of ²³⁴Th extended beyond 600 m depth 318 (Figure 2). The following stations (St. 428, 879, 898, 906, 907, 915, 919) displayed a 319 secondary ²³⁴Th deficit below the equilibrium depth, indicative of ²³⁴Th removal processes. A 320 small ²³⁴Th excess at depth was only observed for St. 559 at 100 m. Ratios of ²³⁴Th/²³⁸U for 321 deep samples at 1000 m, 1500 m, and 2000 m varied between 0.95 and 1.02 (1.00 ± 0.04 , 322 1SD, n = 11), suggesting that 234 Th was at equilibrium with 238 U at these depths. 323

324

325 3.2 Vertical and horizontal ²³⁴Th gradients

Discrete vertical ²³⁴Th gradients in each profile (or the curvature of the profile) were estimated by the difference in ²³⁴Th activities and that in sampling depths. As such, vertical ²³⁴Th gradients varied greatly amongst stations, and were larger at shallow depths ranging from 0.003 dpm L^{-1} m⁻¹ to 0.085 dpm L^{-1} m⁻¹ (median 0.013 dpm L^{-1} m⁻¹). Vertical ²³⁴Th gradients were essentially negligible at and below equilibrium depths.

While calculation of the vertical ²³⁴Th gradient is straightforward, the same is hardly 331 true for the determination of horizontal ²³⁴Th gradient. Mean ²³⁴Th activities in the top layer 332 (see section 2.3.2 for depth definition) of the water column are highly variable amongst 333 stations (Table 3, Figure 4), and likely reflect variations occurring at small temporal and 334 spatial scales in the Peruvian OMZ. Quantification of the horizontal ²³⁴Th gradient between 335 individual station thus may not be adequate to evaluate large scale advection and eddy 336 diffusion across the study area. Therefore, alongshore ²³⁴Th gradients on a larger spatial scale 337 (1° apart) were instead calculated by grouping stations into 1° by 1° grids and averaging 234 Th 338 activities of each grid for the top layer. Alongshore ²³⁴Th gradients in the top layer at 339 nearshore stations for M138 are fairly consistent, ranging from $1.5 \times 10^{-6} \text{ dpm L}^{-1} \text{ m}^{-1}$ to $1.7 \times 10^{-6} \text{ dpm L}^{-1} \text{ m}^{-1}$ 340 10⁻⁶ dpm L⁻¹ m⁻¹, with a slightly stronger gradient in the north compared to the south. The net 341 difference in alongshore ²³⁴Th gradient is merely 2 x 10⁻⁷ dpm L⁻¹ m⁻¹. A slightly smaller 342 alongshore ²³⁴Th gradient of 4.8 x 10⁻⁷ dpm L⁻¹ m⁻¹ was observed for M136. The magnitude of 343 the net difference in alongshore ²³⁴Th gradient for M136 cannot be adequately quantified, due 344 to smaller spatial sampling coverage. Judging on the similarity in the spatial distributions of 345 mean ²³⁴Th between cruises M136 and M138 (Figure 4), it is reasonable to assume that net 346 difference in alongshore ²³⁴Th gradient remained similar during both cruises. 347

348

349 3.3 Steady state vs. non-steady state models

The relative importance of ²³⁴Th fluxes due to advection and diffusion were assessed here assuming steady state conditions, which assume negligible temporal ²³⁴Th variability. But how valid is this assumption in the Peruvian upwelling zone? Profiles of temperature and oxygen at repeat stations 458 and 508 showed that a lightly cooler and oxygen-depleted water

mass dominated at the upper 50 m at station 508 (Figure 5). However, an assessment of the 354 ²³⁴Th fluxes at these two stations were not possible as the surface sample from station 508 was 355 missing. Repeat stations 495 and 516 show substantial temporal variations in ²³⁴Th activities 356 at each sampled depth in the top 200 m, while temperature and salinity profiles confirmed that 357 similar water masses were sampled during both occupations (Figure 5). Particularly, the 358 surface 234 Th deficit was more intense at St. 495 (234 Th/ 238 U = 0.44) compared to St. 516 359 $(^{234}\text{Th}/^{238}\text{U} = 0.73)$. Correspondingly, ²³⁴Th fluxes decreased substantially from St. 495 to St. 360 516. At 100 m, the difference in 234 Th fluxes between these two stations was ~ 30% (3200 ± 361 90 dpm m⁻² d⁻¹ at St. 495 and 2230 \pm 110 dpm m⁻² d⁻¹ at St. 516). At 200 m where ²³⁴Th 362 resumed equilibrium with 238 U at both stations, 234 Th flux difference was ~ 25% (4510 ± 220 363 dpm m⁻² d⁻¹ at St. 495 and 3455 \pm 200 dpm m⁻² d⁻¹ at St. 516). Taking the non-steady state 364 term in Eq. (1) into consideration (see details in Resplandy et al. (2012) and Savoye et al. 365 (2006) for the derivation of flux formulation and error propagation) increased total ²³⁴Th at St. 366 516 by 40% to 3110 \pm 1870 dpm m^-2 d^-1 at 100 m (or 45% to 5040 \pm 2290 dpm m^-2 d^-1 at 200 367 m), which is indistinguishable within error from fluxes at St. 495. The large errors associated 368 with the non-steady state calculation due to the short duration between station occupations 369 prevent a meaningful application of this model in the current study (also see discussion in 370 Resplandy et al. 2012). As estimation of the physical fluxes is independent of the models 371 chosen between steady and non-steady states, the following results and discussion sections 372 regarding physical effects on the ²³⁴Th flux estimates is based on the steady state model only. 373

374

375 3.4 Export fluxes of 234 Th

Fluxes of ²³⁴Th due to radioactive production and decay (hereafter 'production flux'), upwelling, and vertical diffusion were reported in Table 1 and Figure 6 for both depths 5-20 m below the ML and at 100 m. The production fluxes of ²³⁴Th at 5-20 m below the ML

ranged from 560 dpm m⁻² d⁻¹ to 1880 dpm m⁻² d⁻¹, whereas at 100 m they were much higher at 850 dpm m⁻² d⁻¹ to 3370 dpm m⁻² d⁻¹. There is no discernable trend regarding the production fluxes between the shelf and offshore stations, similar to those seen along the eastern GP16 transect (Black et al. 2017).

Alongshore winds were unusually weak off Peru preceding and during our sampling 383 campaign as a result of the 2017 coastal El Niño (Echevin et al., 2018; Lüdke et al., in review 384 385 2020; Peng et al., 2019), which resulted in nominal upwelling in the water column. At nearshore stations, upwelling rates at the base of the ML varied between 1.3×10^{-7} m s⁻¹ and 386 9.7×10^{-6} m s⁻¹, whereas upwelling rates at offshore stations were on the order of 10^{-10} m s⁻¹ 387 to 10^{-8} m s⁻¹ and essentially negligible. As a result, upwelled ²³⁴Th fluxes at 5-20 m below the 388 ML were only significant at stations closest to shore; these stations were 428 (130 dpm m⁻² d⁻ 389 ¹), 883-12 (80 dpm m⁻² d⁻¹) and 904-16 (280 dpm m⁻² d⁻¹) whose upwelled 234 Th fluxes 390 accounted for 10%, 11% and 25% of the total ²³⁴Th fluxes respectively (Figure 6). Upwelled 391 ²³⁴Th fluxes at the rest of the stations accounted for less than 2% of the total ²³⁴Th fluxes (6% 392 at stations 353 and 907-11) and were insignificant. At 100 m, both vertical ²³⁴Th gradients and 393 upwelling rates were significantly smaller compared to shallower depths. As a result, 394 upwelled ²³⁴Th fluxes were less than 70 dpm m⁻² d⁻¹, or less than 4% of total ²³⁴Th fluxes. 395

Similarly, vertical diffusivities, shown as running mean over 20 m in Figure S1, were 396 an order of magnitude higher at shallow stations $(3.2 \times 10^{-4} \pm 1.7 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}; 1\text{SD}, 27 \text{ m to})$ 397 100 m below sea surface) compared to those at deep stations $(1.7 \times 10^{-5} \pm 0.6 \times 10^{-5} \text{ m}^2 \text{ s}^{-1};$ 398 1SD; 34 - 100 m below sea surface). Within the upper 27 m to 33 m layer at offshore deep 399 stations, vertical diffusivities decreased exponentially by an order of magnitude within a few 400 401 meters; below this depth, vertical diffusivities remained relatively stable (Figure S1). This is not surprising as wind-driven turbulent is most significant at the ocean surface (Buckingham 402 et al., 2019). In this study, the sampling depths immediately below the ML were generally 30 403

m and 60 m. A few high vertical diffusivity values around 30 m at deep stations were unlikely 404 representative for the 30 m - 60 m water column layer. We thus opted to only apply vertical 405 diffusivities below 33 m at deep stations. Relative standard errors (RSE) associated with 406 diffusivity estimates varied from 35% to 55%. Vertical diffusive ²³⁴Th fluxes at 5-20 m below 407 the ML, determined using both vertical diffusivity and vertical ²³⁴Th gradient, varied greatly 408 amongst stations. At shallow stations 428, 458, and 883-12, vertical diffusive ²³⁴Th fluxes 409 made up 37% (490 dpm m⁻² d⁻¹), 14% (160 dpm m⁻² d⁻¹), and 21% (160 dpm m⁻² d⁻¹) of total 410 ²³⁴Th fluxes, respectively (Figure 6). At the rest of the stations, vertical diffusive ²³⁴Th fluxes 411 appeared to be insignificant, ranging between 1% and 10% in the total ²³⁴Th flux budget. At 412 100 m, vertical diffusive ²³⁴Th fluxes at station 428, 458, and 883-12 remained high at 390 413 dpm m⁻² d⁻¹, 150 dpm m⁻² d⁻¹, 120 dpm m⁻² d⁻¹, respectively, whereas those at the rest of the 414 stations accounted for < 2% of the total ²³⁴Th flux. 415

Horizontal advective and diffusive ²³⁴Th fluxes were both very small. Average alongshore current velocities (Lüdke et al., in review 2020) for the top layer varied from 0.06 m s⁻¹ to 0.34 m s⁻¹. At the peripheral of a freshly-formed anticyclonic eddy (St. 915-1), alongshore current velocities could be as high as 0.53 m s⁻¹. Taking the mean alongshore velocity of 0.2 m s⁻¹ and the net difference in alongshore ²³⁴Th gradient of 2 x 10⁻⁷ dpm L⁻¹ m⁻¹, the resulting net horizontal advective ²³⁴Th flux <u>at the top layer</u> is ~ 50 dpm m⁻² d⁻¹, a mere 3-9% of the total ²³⁴Th fluxes.

Horizontal diffusive ²³⁴Th flux was estimated using an average eddy diffusivity of 1000 m² s⁻¹ (see Methods section 2.3.3) and the alongshore ²³⁴Th gradient. A maximum value of 10 dpm m⁻² d⁻¹ was calculated, which accounted for <1% of total ²³⁴Th flux at all stations. Note that the horizontal advective and lateral diffusive fluxes presented here are a rough estimate and should only provide an idea of their order of magnitude. Due to the uncertainty inherent to the estimates, we refrain from adding these values to Table 1.

4. Discussion

431 4.1 Lack of linear ²³⁸U – salinity correlation in the Peruvian OMZ

432	The water column profiles of ²³⁸ U in the Peruvian OMZ (Figure 2) are similar to those
433	seen in the open ocean (see compilations in Owens et al., 2011 and Van Der Loeff et al.
434	(2006), and references therein). It thus appears that water column suboxic/anoxic conditions
435	alone is not sufficient to remove U, in contrast to sedimentary U studies underlying low
436	oxygen waters where soluble U(VI) diffused downward into subsurface sediments and
437	reduced to insoluble U(IV) (Anderson et al., 1989; Böning et al., 2004; Scholz et al., 2011).
438	Our inference is in accord with water column ²³⁸ U studies in intense OMZs in the eastern
439	tropical North Pacific (Nameroff et al., 2002) and the Arabian Sea (Rengarajan et al., 2003),
440	where ²³⁸ U concentrations remain constant over the entire upper water column studied.
441	Dissolved ²³⁸ U and salinity across the entire Peruvian OMZ displayed poor linear
442	correlation regardless of seawater oxygen concentrations (Figure 7a-b). The general consensus
443	is that U behaves conservatively in oxic seawater in the open ocean and early observations
444	have shown that ²³⁸ U activities can be calculated from salinity based on a simple linear
445	correlation between the two (e.g. Chen et al., 1986; Ku et al., 1977). Compilations in Van Der
446	Loeff et al. (2006) and Owens et al. (2011) further demonstrated that the majority of uranium
447	data points in the global seawater dataset follow a linear correlation with seawater salinity.
448	The ²³⁸ U-salinity formulations from either Chen et al. (1986) or Owens et al. (2011) are thus
449	generally appropriate for open ocean conditions and have been widely used in ²³⁴ Th flux
450	studies. However, this linear ²³⁸ U-salinity correlation breaks down in the Peruvian OMZ.
451	Furthermore, the measured ²³⁸ U activities in this study correlated poorly with those calculated
452	from salinity using the Owens formulation regardless of water column oxygen concentrations
453	(Table S2, Figure 7c), with the former significantly higher than the projected values and 19

differences up to 10%. Both evidences suggested that non-conservative processes haveintroduced significant amount of dissolved U into the water column.

It is likely that this poor ²³⁸U-salinity correlation in the water column is not a unique 456 feature off the coast of Peru. Poor correlations between dissolved ²³⁸U and salinity have been 457 previously observed in open ocean settings such as the Arabian Sea (Rengarajan et al., 2003) 458 and the Pacific Ocean (Ku et al., 1977), and shelf-estuary systems such as the Amazon shelf 459 460 (McKee et al., 1987; Swarzenski et al., 2004). It is possible that the narrow range of salinity within any single ocean basin precludes a meaningful ²³⁸U-salinity correlation (Ku et al., 461 1977; Owens et al., 2011). For the Peruvian shelf system, two possible scenarios may further 462 explain the lack of linear ²³⁸U-salinity correlation in the water column. Firstly, authigenic U 463 within the sediments may be remobilized under ENSO-related oxygenation events. In 464 reducing pore water, U reduction and removal from pore water is usually seen within the Fe 465 reduction zone (Barnes and Cochran, 1990; Barnes and Cochran, 1991; Scholz et al., 2011). 466 As such, a downward diffusive flux of U across the water-sediment interface is expected in 467 468 reducing sedimentary environment. However, pore water and bottom water geochemistry measurements during two previous cruises (M77-1 and M77-2) along an 11°S transect off 469 Peru showed large diffusive fluxes of U out of the Peruvian shelf sediments despite that both 470 471 Fe reduction and U reduction took place in the top centimeters of sediments (Scholz et al., 2011). It was suggested that a minute increase in bottom water oxygen concentration induced 472 by El Niño events would be sufficient in shifting the U(VI)/U(IV) boundary by a few 473 centimeters and remobilize authigenic U (Scholz et al., 2011). Preceding and during our 474 475 sampling campaign, a coastal El Niño event, with coastal precipitation as strong as the 1997-476 98 El Niño event, had developed rapidly and unexpectedly in January, and disappeared by May 2017 during cruise M136 (Echevin et al., 2018; Garreaud, 2018; Peng et al., 2019). This 477 strong coastal El Niño event could induce an oxygenation event large enough to remobilized 478

authigenic U along the Peruvian shelf. Secondly, resuspension of bottom sediments and
subsequent desorption of U from ferric-oxyhydroxides could affect the ²³⁸U-salinity
relationship, similar to that seen on the Amazon shelf at salinity above 10 (McKee et al.,
1987) and in laboratory experiments (Barnes and Cochran, 1993). Fe reduction and release
from the Peruvian shelf sediments (Noffke et al., 2012; Scholz et al., 2014) could release
additional U to overlying waters. The magnitude of such, however, has not been quantified.

The consequence of the notable difference between measured ²³⁸U in this study and 485 salinity-based ²³⁸U to ²³⁴Th flux according to Eq. (2) is neither linear nor straightforward, 486 because the vertical gradients of both ²³⁸U and ²³⁴Th strongly affects the impacts of ²³⁸U 487 variations on ²³⁴Th fluxes. In this study, ²³⁴Th fluxes at 100 m derived from salinity-based 488 ²³⁸U lead to significant underestimation of ²³⁴Th fluxes by an average of 20% and as high as 489 40% (Table 2). These differences in ²³⁴Th fluxes will have direct consequences for ²³⁴Th 490 derived elemental fluxes such as C, N, P and trace metals. It is thus important to note that U 491 concentrations in coastal systems are highly sensitive to bottom water oxygen concentrations 492 493 and redox-related U addition, variability of which is expected to intensify with future climate change (Shepherd et al., 2017). Relatively minor variations in dissolved ²³⁸U could account 494 for substantial overestimation/underestimation of the depth-integrated ²³⁴Th fluxes. We thus 495 encourage future ²³⁴Th flux studies in such environments to include seawater ²³⁸U analysis. 496

497

498 4.2 Dynamic advective and diffusive ²³⁴Th fluxes

The significance of advection and diffusion in the total ²³⁴Th flux budget highly depends on the upwelling rate, current velocity, vertical diffusivity, and ²³⁴Th gradient on the horizontal and vertical directions. Our results demonstrated that physical processes off Peru during and post the 2017 coastal El Niño have very limited impact on the downward fluxes of ²³⁴Th (Figure 6).

Our findings are in reasonable agreement with those from the GEOTRACES GP16 504 505 eastern section along 12°S from Peru to Tahiti, in which Black et al. (2018) quantified both horizontal and vertical advective ²³⁴Th fluxes. Horizontal advective fluxes for the upper 30 m 506 water column estimated during GP16 were ~180 dpm $m^{-2} d^{-1}$ for all nearshore and offshore 507 stations, similar in magnitude to those estimated in our study (~ 50 dpm m⁻² d⁻¹). Upwelling 508 fluxes along GP16 eastern section was suggested to account for 50% to 80% of total ²³⁴Th 509 510 fluxes at the base of the euphotic zone (Black et al., 2018), a depth similar to or slightly deeper than ML depths in the current study where upwelling fluxes accounted for less than 511 25% of total ²³⁴Th fluxes). Total ²³⁴Th fluxes along the GP16 eastern section, ranging from 512 4000 to 5000 dpm m⁻² d⁻¹ at the base of the euphotic zone, were much higher than those in our 513 study (560 to 1900 dpm m⁻² d⁻¹ 5-20 m below the ML). This difference could be related to the 514 period of sampling (austral autumn and winter 2017 in our study vs. austral spring 2013 for 515 the GP16 section). We note that the estimated vertical mixing rates based on ⁷Be isotope at 516 517 the base of the euphotic zone along the GP16 section (Kadko, 2017) were at least an order of magnitude higher than the upwelling rates at the base of the ML at nearby stations in our 518 study. This difference could stem from different methods used to estimate upwelling rates at 519 520 different timescales, and may also reflect the dynamic upwelling system off Peru in which upwelling rates vary greatly seasonally and interannually. During cruises M136 and M138, 521 upwelling favorable easterly winds off Peru were weak, resulting in negligible coastal 522 upwelling. Coastal upwelling in the same general area was also suggested to be negligible in 523 austral summer 2013 during cruise M92 due to nominal surface wind stress (Thomsen et al., 524 2016). Results from studies conducted in the same year (October to December 2013, Kadko, 525 2017; December 2012, Steinfeldt et al., 2015; January 2013, Thomsen et al., 2016) indicate 526 that seasonal upwelling rates vary drastically in the Peruvian upwelling zone. The seasonal 527 dynamics of coastal upwelling off Peru are similar to those seen in the Arabian Sea, where 528 large upwelled ²³⁴Th fluxes only occurred during mid-late southwest monsoon at stations 529

close to shore (Buesseler et al., 1998). Our findings lend further support to earlier studies that
advection and diffusion are seasonally important for ²³⁴Th fluxes in regions with high
upwelling velocities and diffusivities such as the equatorial Pacific (Bacon et al., 1996;
Buesseler et al., 1995; Dunne and Murray, 1999) and coastal sites such as the Arabian Sea
(Buesseler et al., 1998) and offshore Peru (Black et al., 2018; this study).

535

536 4.3 Residence time of ²³⁴Th in the Peruvian OMZ

The residence time calculated using equation (6) was based on a simplified one-537 538 dimension (1D) model of Zimmerman (1976). This 1D steady state model is obviously an oversimplification of a multi-dimensional process, it however provides a good first order 539 estimate for understanding the highly dynamic nature of the ²³⁴Th residence time. It also 540 provides a reasonable value that can be directly compared to values estimated in earlier ²³⁴Th 541 flux studies that did not consider the physical processes. Furthermore, we showed in the 542 Discussion (sections 4.2) that physical processes, namely upwelling and vertical diffusion, are 543 only important at a few shelf stations. We thus consider this simple 1D model robust in 544 estimating the residence time of total ²³⁴Th. 545

In this study, residence time of total ²³⁴Th in the top layer varied from 20 days at 546 shallow stations to 95 days at deep stations (mean $\tau = 51 \pm 23$ days, 1SD, n = 24; Table 3). 547 548 These values were similar to those estimated within the California Current (Coale and Bruland, 1985) and the residence times of particulate organic carbon (POC) and nitrogen 549 (PON) (Murray et al., 1989), but were much longer than predicted in nearshore shelf waters 550 where residence times of total ²³⁴Th were on the order of a few days (Kaufman et al., 1981; 551 Kim et al., 1999; and references therein). The longer residence times estimated in our study 552 could reflect a combination of weak surface 234 Th deficits (234 Th = 0.63 to 1.82 dpm L⁻¹) 553 (Figure 3) and low export fluxes (800 to 2000 dpm m⁻² d⁻¹, Figure 7). Nearshore seawater 554

samples during GP16 (Black et al., 2018) featured similar surface ²³⁴Th deficits (²³⁴Th = 0.63 to 1.33 dpm L⁻¹) but much higher downward ²³⁴Th fluxes (4000 to 5000 dpm m⁻² d⁻¹) as a result of strong upwelling, implying that residence times of total ²³⁴Th in the Peruvian OMZ during GP16 occupation would be 3 – 6 times shorter. Indeed, a quick re-assessment of the GP16 data predicted a shorter residence time of total ²³⁴Th of 5 – 23 days within the euphotic zone of the coastal Peruvian OMZ.

These temporal variations on the residence times of total ²³⁴Th have important 561 implications for the estimation of POC fluxes and quantification of carbon export efficiency. 562 Firstly, seasonal changes in Th residence times reflect variations in particle removal over 563 564 different integrated timescales. For example, POC produced in surface waters during GP16 (austral spring 2013) (Black et al., 2018) would have been exported out of the euphotic zone 565 3-6 times faster than it did during austral autumn 2017 (this study). Secondly, to properly 566 evaluate carbon export efficiency, surface net primary production (NPP) should be averaged 567 over a similar timescale as the residence time of total ²³⁴Th during station occupation. 568 Applying a 16-day averaged NPP for export efficiency estimate (Black et al., 2018; Henson et 569 al., 2011) would likely not be appropriate in the current study in which total ²³⁴Th fluxes 570 integrated timescales of several weeks. ²³⁴Th residence times should thus be properly 571 572 quantified in coastal studies before deriving export efficiencies over varying NPP integration timescales. 573

574

575 **5. Conclusions and implications for coastal** ²³⁴Th flux studies

Advection and diffusion are important in coastal and upwelling regions with respect to
²³⁴Th export fluxes (Bacon et al., 1996; Buesseler et al., 1995; Dunne and Murray, 1999;
Buesseler et al., 1998). Our findings show that their significance is subject to the seasonal
variability of the current and upwelling velocities, diffusivities and ²³⁴Th gradients, and

should be evaluated on a case-to-case basis. Advective fluxes are perhaps the most 580 581 straightforward to estimate as current velocities can be obtained routinely from shipboard ADCP measurements and upwelling rates calculated from satellite wind stress (Steinfeldt et 582 al., 2015; Bacon et al., 1996). Horizontal and vertical velocities derived from general ocean 583 circulation models also provide a good first order estimate for advective ²³⁴Th fluxes; this 584 approach has been successfully demonstrated in a few studies (Buesseler et al., 1995; 585 586 Buesseler et al., 1998). In addition, the anthropogenic SF_6 tracer and radium isotopes, widely used to quantify nutrient and Fe fluxes (Charette et al., 2007; Law et al., 2001), as well as ⁷Be 587 isotope (Kadko, 2017), could be used independently to constrain horizontal and vertical 588 exchange rates of ²³⁴Th (Morris et al., 2007; Charette et al., 2007; Buesseler et al., 2005). 589 When in situ microstructure measurements are available (this study), vertical diffusivity can 590 be directly calculated to estimate the vertical diffusive ²³⁴Th fluxes. Yet, microstructure 591 592 analysis is not a routine measurement on oceanographic cruises. Earlier studies in the equatorial Pacific and the Gulf of Maine have shown that general ocean circulation models 593 594 and a simple assumption on dissipation coefficients could provide a robust estimate on vertical and horizontal diffusivities (Benitez-Nelson et al., 2000; Gustafsson et al., 1998; 595 596 Charette et al., 2001). Therefore, the calculation of physical fluxes is possible, though challenging, and ²³⁴Th fluxes due to physical processes should be carefully considered when 597 conducting research in a coastal and upwelling systems. 598

A striking finding in this study is that the assumption of a linear ²³⁸U-salinity correlation could lead to one of the largest errors in ²³⁴Th flux estimates. In our study, using the salinity-based ²³⁸U activities resulted in significant underestimation of total ²³⁴Th fluxes by as much as 40%. Because the translation of ²³⁸U activities to ²³⁴Th fluxes is not linear, larger differences between measured and salinity-based ²³⁸U do not necessarily contribute to greater overestimation or underestimation of ²³⁴Th fluxes. For example, moderate difference of 3-6%

in ²³⁸U throughout the upper 100 m at station 898 lead to 40% difference in final ²³⁴Th flux,
while a 5-9% difference in ²³⁸U at station 906 only resulted in 16% ²³⁴Th flux difference
(Table 2, S2). We would thus stress the importance of ²³⁸U measurements in future ²³⁴Th flux
studies particularly in coastal and shelf regions.

Finally, our study showed that the residence times of total ²³⁴Th in the Peruvian 609 nearshore waters varied seasonally. Tropical OMZs are important hotspots for carbon 610 611 sequestration from the atmosphere and enhanced sedimentary carbon preservation (Arthur et al., 1998; Suess et al., 1987). These OMZs are projected to intensify as a result of future 612 climate change (Keeling and Garcia, 2002; Schmidtko et al., 2017; Stramma et al., 2008). 613 614 Future studies should take into consideration the large temporal variations of the residence times of total ²³⁴Th in order to properly evaluates how carbon biogeochemical cycles and 615 carbon export efficiency in these OMZs will respond to continuing ocean deoxygenation, 616

617

618 Data availability

- 619 Data are available in supplementary tables and <u>archived at</u>
- 620 <u>https://doi.org/10.1594/PANGAEA.921917 (Xie et al., 2020).</u>

621

622 Author contribution

RCX, FACLM and EAP designed the study. RCX carried out sampling, on-board beta counting of ²³⁴Th, and drafted the manuscript. IR conducted ²³⁴Th and ²³⁸U analyses at home laboratory. JL computed current velocities and vertical diffusivities respectively from VmADCP and microstructure profiler data. All co-authors had a chance to review the manuscript and contributed to discussion and interpretation of the data presented. 628

629 **Competing interests**

630 The authors declare that they have no conflict of interest.

631

632 Acknowledgements

633 We thank the crew and science party on board M136 and M138 for their help in sample

634 collection and instrument operation. Thank you to SiaoJean Ko, Dominik Jasinski, André

635 Mutzberg and Mario Esposito for their laboratory assistance. We thank two anonymous

reviewers and the associate editor, Marilaure Grégoire, for their constructive comments. The

637 project, cruises, IR, JL and RCX were funded by the German SFB 754 program ('Climate-

Biogeochemistry Interactions in the Tropical Ocean'), <u>RCX additionally by a DFG research</u>

639 grant (project number 432469432), and FACLM by a DFG Fellowship of the Excellence

640 Cluster "The Future Ocean" (CP1403). This manuscript benefited from stimulating

641 discussions at the BIARRITZ ('bridging international activity and related research into the

twilight zone') workshop held in Southampton, UK in 2019.

643	References
644 645	Abernathey, R. P., and Marshall, J.: Global surface eddy diffusivities derived from satellite
646	altimetry, Journal of Geophysical Research: Oceans, 118, 901-916,
647	https://doi.org/10.1002/jgrc.20066, 2013.
648	Anderson, R. F., Fleisher, M. Q., and LeHuray, A. P.: Concentration, oxidation state, and
649	particulate flux of uranium in the Black Sea, Geochimica et Cosmochimica Acta, 53, 2215-
650	2224, https://doi.org/10.1016/0016-7037(89)90345-1, 1989.
651	Arthur, M. A., Dean, W. E., and Laarkamp, K.: Organic carbon accumulation and
652	preservation in surface sediments on the Peru margin, Chemical Geology, 152, 273-286,
653	https://doi.org/10.1016/S0009-2541(98)00120-X, 1998.
654	Bacon, M., Cochran, J., Hirschberg, D., Hammar, T., and Fleer, A.: Export flux of carbon at
655	the equator during the EqPac time-series cruises estimated from ²³⁴ Th measurements, Deep
656	Sea Research Part II: Topical Studies in Oceanography, 43, 1133-1153,
657	https://doi.org/10.1016/0967-0645(96)00016-1, 1996.
658	Barnes, C., and Cochran, J.: Uranium removal in oceanic sediments and the oceanic U
659	balance, Earth and Planetary Science Letters, 97, 94-101, https://doi.org/10.1016/0012-
660	<u>821X(90)90101-3</u> , 1990.
661	Barnes, C. E., and Cochran, J. K.: Geochemistry of uranium in Black Sea sediments, Deep
662	Sea Research Part A. Oceanographic Research Papers, 38, S1237-S1254,
663	https://doi.org/10.1016/S0198-0149(10)80032-9, 1991.
664	Barnes, C. E., and Cochran, J. K.: Uranium geochemistry in estuarine sediments: Controls on
665	removal and release processes, Geochimica et Cosmochimica Acta, 57, 555-569,
666	https://doi.org/10.1016/0016-7037(93)90367-6, 1993.
667	Benitez-Nelson, C. R., Buesseler, K. O., and Crossin, G.: Upper ocean carbon export,
668	horizontal transport, and vertical eddy diffusivity in the southwestern Gulf of Maine,

669 Continental Shelf Research, 20, 707-736, <u>https://doi.org/10.1016/S0278-4343(99)00093-X</u>,

670 2000.

- 671 Bentamy, A., and Croize-Fillon: Gridded surface wind fields from Metop/ASCAT
- 672 measurements, International Journal of Remote Sensing,
- 673 DOI:10.1080/01431161.2011.600348, 2010.
- Bewers, J., and Yeats, P.: Oceanic residence times of trace metals, Nature, 268, 595-598,
- 675 <u>https://doi.org/10.1038/268595a0</u>, 1977.
- Bhat, S., Krishnaswamy, S., Lal, D., and Moore, W.: ²³⁴Th/²³⁸U ratios in the ocean, Earth and
- 677 Planetary Science Letters, 5, 483-491, <u>https://doi.org/10.1016/S0012-821X(68)80083-4</u>, 1968.
- Black, E. E., Buesseler, K. O., Pike, S. M., and Lam, P. J.: ²³⁴Th as a tracer of particulate
- export and remineralization in the southeastern tropical Pacific, Marine Chemistry, 201, 35-
- 680 50, <u>https://doi.org/10.1016/j.marchem.2017.06.009</u>, 2018.
- 681 Black, E. E., Lam, P. J., Lee, J. M., and Buesseler, K. O.: Insights From the ²³⁸U ²³⁴Th
- 682 Method Into the Coupling of Biological Export and the Cycling of Cadmium, Cobalt, and
- 683 Manganese in the Southeast Pacific Ocean, Global Biogeochemical Cycles, 33, 15-36,
- 684 <u>https://doi.org/10.1029/2018GB005985</u>, 2019.
- Böning, P., Brumsack, H.-J., Böttcher, M. E., Schnetger, B., Kriete, C., Kallmeyer, J., and
- Borchers, S. L.: Geochemistry of Peruvian near-surface sediments, Geochimica et
- 687 Cosmochimica Acta, 68, 4429-4451, <u>https://doi.org/10.1016/j.gca.2004.04.027</u>, 2004.
- Buckingham, C. E., Lucas, N. S., Belcher, S. E., Rippeth, T. P., Grant, A. L. M., Le Sommer,
- 589 J., Ajayi, A. O., and Naveira Garabato, A. C.: The Contribution of Surface and Submesoscale
- 690 Processes to Turbulence in the Open Ocean Surface Boundary Layer, Journal of Advances in
- 691 Modeling Earth Systems, 11, 4066-4094, <u>https://doi.org/10.1029/2019MS001801</u>, 2019.
- Buesseler, K., Ball, L., Andrews, J., Benitez-Nelson, C., Belastock, R., Chai, F., and Chao,
- 693 Y.: Upper ocean export of particulate organic carbon in the Arabian Sea derived from

- thorium-234, Deep Sea Research Part II: Topical Studies in Oceanography, 45, 2461-2487,
- 695 <u>https://doi.org/10.1016/S0967-0645(98)80022-2</u>, 1998.
- 696 Buesseler, K. O., Bacon, M. P., Cochran, J. K., and Livingston, H. D.: Carbon and nitrogen
- 697 export during the JGOFS North Atlantic Bloom Experiment estimated from ²³⁴Th: ²³⁸U
- disequilibria, Deep Sea Research Part A. Oceanographic Research Papers, 39, 1115-1137,
- 699 https://doi.org/10.1016/0198-0149(92)90060-7, 1992.
- 700 Buesseler, K. O., Andrews, J. A., Hartman, M. C., Belastock, R., and Chai, F.: Regional
- rot estimates of the export flux of particulate organic carbon derived from thorium-234 during the
- JGOFS EqPac program, Deep Sea Research Part II: Topical Studies in Oceanography, 42,
- 703 777-804, <u>https://doi.org/10.1016/0967-0645(95)00043-P</u>, 1995.
- Buesseler, K. O., Andrews, J., Pike, S. M., Charette, M. A., Goldson, L. E., Brzezinski, M. A.,
- and Lance, V.: Particle export during the southern ocean iron experiment (SOFeX),
- Construction 706 Limnology and Oceanography, 50, 311-327, <u>https://doi.org/10.4319/lo.2005.50.1.0311</u>, 2005.
- 707 Buesseler, K. O., Benitez-Nelson, C. R., Moran, S., Burd, A., Charette, M., Cochran, J. K.,
- 708 Coppola, L., Fisher, N., Fowler, S., and Gardner, W.: An assessment of particulate organic
- carbon to thorium-234 ratios in the ocean and their impact on the application of 234 Th as a
- 710 POC flux proxy, Marine Chemistry, 100, 213-233,
- 711 <u>https://doi.org/10.1016/j.marchem.2005.10.013</u>, 2006.
- 712 Buesseler, K. O., and Boyd, P. W.: Shedding light on processes that control particle export
- and flux attenuation in the twilight zone of the open ocean, Limnology and Oceanography, 54,
- 714 1210-1232, <u>https://doi.org/10.4319/lo.2009.54.4.1210</u>, 2009.
- 715 Cai, P., Chen, W., Dai, M., Wan, Z., Wang, D., Li, Q., Tang, T., and Lv, D.: A high -
- resolution study of particle export in the southern South China Sea based on 234 Th: 238 U
- disequilibrium, Journal of Geophysical Research: Oceans, 113,
- 718 <u>https://doi.org/10.1029/2007JC004268</u>, 2008.

- 719 Charette, M. A., Moran, S. B., Pike, S. M., and Smith, J. N.: Investigating the carbon cycle in
- the Gulf of Maine using the natural tracer thorium 234, Journal of Geophysical Research:
- 721 Oceans, 106, 11553-11579, https://doi.org/10.1029/1999JC000277, 2001.
- 722 Charette, M. A., Gonneea, M. E., Morris, P. J., Statham, P., Fones, G., Planquette, H., Salter,
- I., and Garabato, A. N.: Radium isotopes as tracers of iron sources fueling a Southern Ocean
- phytoplankton bloom, Deep Sea Research Part II: Topical Studies in Oceanography, 54, 1989-
- 725 1998, <u>https://doi.org/10.1016/j.dsr2.2007.06.003</u>, 2007.
- 726 Chen, J., Edwards, R. L., and Wasserburg, G. J.: ²³⁸U, ²³⁴U and ²³²Th in seawater, Earth and
- 727 Planetary Science Letters, 80, 241-251, <u>https://doi.org/10.1016/0012-821X(86)90108-1</u>, 1986.
- Coale, K. H., and Bruland, K. W.: ²³⁴Th: ²³⁸U disequilibria within the California Current 1,
- Limnology and Oceanography, 30, 22-33, <u>https://doi.org/10.4319/lo.1985.30.1.0022</u>, 1985.
- 730 Coale, K. H., and Bruland, K. W.: Oceanic stratified euphotic zone as elucidated by ²³⁴Th:
- ²³⁸U disequilibria 1, Limnology and Oceanography, 32, 189-200,
- 732 <u>https://doi.org/10.4319/lo.1987.32.1.0189</u>, 1987.
- 733 Cochran, J., and Masqué, P.: Short-lived U/Th series radionuclides in the ocean: tracers for
- rates, export fluxes and particle dynamics, Reviews in Mineralogy and
- 735 geochemistry, 52, 461-492, <u>https://doi.org/10.2113/0520461</u>, 2003.
- 736 Dengler, M., and Sommer, S.: Coupled benthic and pelagic oxygen, nutrient and trace metal
- 737 cycling, ventilation and carbon degradation in the oxygen minimum zone of the Peruvian
- continental margin (SFB 754): Cruise No. M 136 11.04.–03.05. 2017 Callao (Peru)–Callao
- 739 Solute-Flux Peru I, METEOR-Berichte, DOI: 10.3289/CR_M136, 2017, 2017.
- 740 Dunne, J. P., and Murray, J. W.: Sensitivity of ²³⁴Th export to physical processes in the
- central equatorial Pacific, Deep Sea Research Part I: Oceanographic Research Papers, 46,
- 742 831-854, https://doi.org/10.1016/S0967-0637(98)00098-3, 1999.

- 743 Echevin, V. M., Colas, F., Espinoza-Morriberon, D., Anculle, T., Vasquez, L., and Gutierrez,
- D.: Forcings and evolution of the 2017 coastal El Niño off Northern Peru and Ecuador,
- 745 Frontiers in Marine Science, 5, 367, <u>https://doi.org/10.3389/fmars.2018.00367</u>, 2018.
- Fischer, J., Brandt, P., Dengler, M., Müller, M., and Symonds, D.: Surveying the upper ocean
- 747 with the Ocean Surveyor: a new phased array Doppler current profiler, Journal of
- 748 Atmospheric and Oceanic Technology, 20, 742-751, <u>https://doi.org/10.1175/1520-</u>
- 749 <u>0426(2003)20</u><742:STUOWT>2.0.CO;2, 2003.
- 750 Garreaud, R. D.: A plausible atmospheric trigger for the 2017 coastal El Niño, International
- 751 Journal of Climatology, 38, e1296-e1302, <u>https://doi.org/10.1002/joc.5426</u>, 2018.
- 752 Gregg, M., D'Asaro, E., Riley, J., and Kunze, E.: Mixing efficiency in the ocean, Annual
- review of marine science, 10, 443-473, DOI: 10.1146/annurev-marine-121916-063643, 2018.
- 754 Gustafsson, Ö., Buesseler, K. O., Rockwell Geyer, W., Bradley Moran, S., and Gschwend, P.
- 755 M.: An assessment of the relative importance of horizontal and vertical transport of particle-
- reactive chemicals in the coastal ocean, Continental Shelf Research, 18, 805-829,
- 757 <u>https://doi.org/10.1016/S0278-4343(98)00015-6</u>, 1998.
- Hahn, J., Brandt, P., Greatbatch, R. J., Krahmann, G., and Körtzinger, A.: Oxygen variance
- and meridional oxygen supply in the Tropical North East Atlantic oxygen minimum zone,
- 760 Climate dynamics, 43, 2999-3024, <u>https://doi.org/10.1007/s00382-014-2065-0</u>, 2014.
- Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., and Quartly, G. D.: A
- reduced estimate of the strength of the ocean's biological carbon pump, Geophysical Research
- 763 Letters, 38, DOI: 10.1029/2011gl046735, 2011.
- Kadko, D.: Upwelling and primary production during the US GEOTRACES East Pacific
- 765 Zonal Transect, Global Biogeochemical Cycles, 31, 218-232,
- 766 <u>https://doi.org/10.1002/2016GB005554</u>, 2017.

- 767 Kaufman, A., Li, Y.-H., and Turekian, K. K.: The removal rates of ²³⁴Th and ²²⁸Th from
- vaters of the New York Bight, Earth and Planetary Science Letters, 54, 385-392,
- 769 <u>https://doi.org/10.1016/0012-821X(81)90054-6</u>, 1981.
- 770 Keeling, R. F., and Garcia, H. E.: The change in oceanic O₂ inventory associated with recent
- global warming, Proceedings of the National Academy of Sciences, 99, 7848-7853, DOI:
- 772 10.1073/pnas.122154899, 2002.
- Kim, G., Hussain, N., and Church, T. M.: How accurate are the ²³⁴Th based particulate
- residence times in the ocean?, Geophysical research letters, 26, 619-622,
- 775 <u>https://doi.org/10.1029/1999GL900037</u>, 1999.
- 776 Ku, T.-L., Knauss, K. G., and Mathieu, G. G.: Uranium in open ocean: concentration and
- isotopic composition, Deep Sea Research, 24, 1005-1017, <u>https://doi.org/10.1016/0146-</u>
- 778 <u>6291(77)90571-9</u>, 1977.
- 779 Law, C., Martin, A., Liddicoat, M., Watson, A., Richards, K., and Woodward, E.: A
- 780 Lagrangian SF6 tracer study of an anticyclonic eddy in the North Atlantic: Patch evolution,
- vertical mixing and nutrient supply to the mixed layer, Deep Sea Research Part II: Topical
- 782 Studies in Oceanography, 48, 705-724, <u>https://doi.org/10.1016/S0967-0645(00)00112-0</u>,
- 783 2001.
- Le Moigne, F. A. C., Henson, S. A., Sanders, R. J., and Madsen, E.: Global database of
- surface ocean particulate organic carbon export fluxes diagnosed from the ²³⁴Th technique,
- 786 Earth Syst. Sci. Data, 5, 295-304, <u>https://doi.org/10.5194/essd-5-295-2013</u>, 2013.
- Lee, C., Murray, D., Barber, R., Buesseler, K., Dymond, J., Hedges, J., Honjo, S., Manganini,
- 788 S., Marra, J., and Moser, C.: Particulate organic carbon fluxes: compilation of results from the
- 1995 US JGOFS Arabian Sea process study: By the Arabian Sea carbon flux group, Deep Sea
- Research Part II: Topical Studies in Oceanography, 45, 2489-2501,
- 791 <u>https://doi.org/10.1016/S0967-0645(98)00079-4</u>, 1998.

- Lüdke, J., Dengler, M., Sommer, S., Clemens, D., Thomsen, S., Krahmann, G., Dale, A. W.,
- 793 Achterberg, E. P., and Visbeck, M.: Influence of intraseasonal eastern boundary circulation
- variability on hydrography and biogeochemistry off Peru, Ocean Sci. Discuss., 2019, 1-31,
- 795 <u>https://doi.org/10.5194/os-2019-93</u>, in review 2020.
- 796 McDougall, T., Feistel, R., Millero, F., Jackett, D., Wright, D., King, B., Marion, G., Chen,
- 797 C., Spitzer, P., and Seitz, S.: The International Thermodynamic Equation Of Seawater 2010
- 798 (TEOS-10): Calculation and Use of Thermodynamic Properties, Global Ship-based Repeat
- 799 Hydrography Manual, IOCCP Report No, 14, 2009.
- 800 McKee, B. A., DeMaster, D. J., and Nittrouer, C. A.: Uranium geochemistry on the Amazon
- shelf: Evidence for uranium release from bottom sediments, Geochimica et Cosmochimica
- 802 Acta, 51, 2779-2786, <u>https://doi.org/10.1016/0016-7037(87)90157-8</u>, 1987.
- 803 Morris, P. J., Sanders, R., Turnewitsch, R., and Thomalla, S.: ²³⁴Th-derived particulate
- organic carbon export from an island-induced phytoplankton bloom in the Southern Ocean,
- Deep Sea Research Part II: Topical Studies in Oceanography, 54, 2208-2232,
- 806 <u>https://doi.org/10.1016/j.dsr2.2007.06.002</u>, 2007.
- 807 Murray, J. W., Downs, J. N., Strom, S., Wei, C.-L., and Jannasch, H. W.: Nutrient
- 808 assimilation, export production and ²³⁴Th scavenging in the eastern equatorial Pacific, Deep
- Sea Research Part A. Oceanographic Research Papers, 36, 1471-1489,
- 810 <u>https://doi.org/10.1016/0198-0149(89)90052-6</u>, 1989.
- 811 Nameroff, T., Balistrieri, L., and Murray, J.: Suboxic trace metal geochemistry in the eastern
- tropical North Pacific, Geochimica et Cosmochimica Acta, 66, 1139-1158,
- 813 <u>https://doi.org/10.1016/S0016-7037(01)00843-2</u>, 2002.
- Noffke, A., Hensen, C., Sommer, S., Scholz, F., Bohlen, L., Mosch, T., Graco, M., and
- 815 Wallmann, K.: Benthic iron and phosphorus fluxes across the Peruvian oxygen minimum
- zone, Limnology and Oceanography, 57, 851-867, <u>https://doi.org/10.4319/lo.2012.57.3.0851</u>,
- 817 2012.

- 818 Osborn, T.: Estimates of the local rate of vertical diffusion from dissipation measurements,
- Journal of physical oceanography, 10, 83-89, <u>https://doi.org/10.1175/1520-</u>
- 820 <u>0485(1980)010</u><0083:EOTLRO>2.0.CO;2, 1980.
- 821 Owens, S., Buesseler, K., and Sims, K.: Re-evaluating the ²³⁸U-salinity relationship in
- seawater: Implications for the $^{238}U^{-234}$ Th disequilibrium method, Marine Chemistry, 127, 31-
- 823 39, <u>https://doi.org/10.1016/j.marchem.2011.07.005</u>, 2011.
- 824 Owens, S. A., Pike, S., and Buesseler, K. O.: Thorium-234 as a tracer of particle dynamics
- and upper ocean export in the Atlantic Ocean, Deep Sea Research Part II: Topical Studies in
- 826 Oceanography, 116, 42-59, <u>http://dx.doi.org/10.1016/j.dsr2.2014.11.010</u>, 2015.
- Peng, Q., Xie, S.-P., Wang, D., Zheng, X.-T., and Zhang, H.: Coupled ocean-atmosphere
- dynamics of the 2017 extreme coastal El Niño, Nature Communications, 10, 298, DOI:
- 829 10.1038/s41467-018-08258-8, 2019.
- 830 Pike, S., Buesseler, K., Andrews, J., and Savoye, N.: Quantification of ²³⁴Th recovery in small
- volume sea water samples by inductively coupled plasma-mass spectrometry, Journal of
- 832 Radioanalytical and Nuclear Chemistry, 263, 355-360, <u>https://doi.org/10.1007/s10967-005-</u>
- 833 <u>0594-z</u>, 2005.
- 834 Puigcorbé, V., Masqué, P., and Le Moigne, F. A. C.: Global database of ratios of particulate
- organic carbon to thorium-234 in the ocean: improving estimates of the biological carbon
- 836 pump, Earth Syst. Sci. Data, 12, 1267-1285, DOI: 10.5194/essd-12-1267-2020, 2020.
- 837 Rapp, I., Schlosser, C., Menzel Barraqueta, J. L., Wenzel, B., Lüdke, J., Scholten, J., Gasser,
- 838 B., Reichert, P., Gledhill, M., Dengler, M., and Achterberg, E. P.: Controls on redox-sensitive
- trace metals in the Mauritanian oxygen minimum zone, Biogeosciences, 16, 4157-4182, DOI:
- 840 10.5194/bg-16-4157-2019, 2019.
- 841 Rengarajan, R., Sarin, M., and Krishnaswami, S.: Uranium in the Arabian Sea: role of
- denitrification in controlling its distribution, Oceanologica acta, 26, 687-693,
- 843 <u>https://doi.org/10.1016/j.oceact.2003.05.001</u>, 2003.

- Resplandy, L., Martin, A. P., Le Moigne, F., Martin, P., Aquilina, A., Mémery, L., Lévy, M.,
- and Sanders, R.: How does dynamical spatial variability impact ²³⁴Th-derived estimates of
- organic export?, Deep Sea Research Part I: Oceanographic Research Papers, 68, 24-45,

847 <u>https://doi.org/10.1016/j.dsr.2012.05.015</u>, 2012.

- 848 Roquet, F., Madec, G., McDougall, T. J., and Barker, P. M.: Accurate polynomial expressions
- for the density and specific volume of seawater using the TEOS-10 standard, Ocean
- 850 Modelling, 90, 29-43, <u>https://doi.org/10.1016/j.ocemod.2015.04.002</u>, 2015.
- 851 Rosengard, S. Z., Lam, P. J., Balch, W. M., Auro, M. E., Pike, S., Drapeau, D., and Bowler,
- 852 B.: Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt,
- 853 DOI:10.5194/bg-12-3953-2015, 2015.
- 854 Santschi, P., Murray, J. W., Baskaran, M., Benitez-Nelson, C. R., Guo, L., Hung, C.-C.,
- Lamborg, C., Moran, S., Passow, U., and Roy-Barman, M.: Thorium speciation in seawater,
- 856 Marine Chemistry, 100, 250-268, <u>https://doi.org/10.1016/j.marchem.2005.10.024</u>, 2006.
- 857 Savoye, N., Benitez-Nelson, C., Burd, A. B., Cochran, J. K., Charette, M., Buesseler, K. O.,
- Jackson, G. A., Roy-Barman, M., Schmidt, S., and Elskens, M.: ²³⁴Th sorption and export
- models in the water column: a review, Marine Chemistry, 100, 234-249,
- 860 <u>https://doi.org/10.1016/j.marchem.2005.10.014</u>, 2006.
- Schafstall, J., Dengler, M., Brandt, P., and Bange, H.: Tidal induced mixing and diapycnal
- nutrient fluxes in the Mauritanian upwelling region, Journal of Geophysical Research:
- 863 Oceans, 115, <u>https://doi.org/10.1029/2009jc005940</u>, 2010, 2010.
- 864 Schmidt, S., and Reyss, J.: Uranium concentrations of Mediterranean seawater with high
- salinities, Comptes Rendus de l'Academie des Sciences. Serie 2, 312, 479-484, 1991.
- 866 Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic oxygen content
- during the past five decades, Nature, 542, 335, DOI: 10.1038/nature21399, 2017.
- Scholz, F., Hensen, C., Noffke, A., Rohde, A., Liebetrau, V., and Wallmann, K.: Early
- 869 diagenesis of redox-sensitive trace metals in the Peru upwelling area-response to ENSO-

- related oxygen fluctuations in the water column, Geochimica et Cosmochimica Acta, 75,
- 871 7257-7276, DOI: 10.1016/j.gca.2011.08.007, 2011.
- 872 Scholz, F., McManus, J., Mix, A. C., Hensen, C., and Schneider, R. R.: The impact of ocean
- deoxygenation on iron release from continental margin sediments, Nature Geosci, 7, 433-437,
- 874 <u>https://doi.org/10.1038/ngeo2162</u>, 2014.
- Shepherd, J. G., Brewer, P. G., Oschlies, A., and Watson, A. J.: Ocean ventilation and
- 876 deoxygenation in a warming world: introduction and overview, Philosophical Transactions of
- the Royal Society A: Mathematical, Physical and Engineering Sciences, 375, 20170240,
- B78 DOI:10.1098/rsta.2017.0240, 2017.
- 879 Smith, S. D.: Coefficients for sea surface wind stress, heat flux, and wind profiles as a
- function of wind speed and temperature, Journal of Geophysical Research: Oceans, 93,
- 881 15467-15472, <u>https://doi.org/10.1029/JC093iC12p15467</u>, 1988.
- Steinfeldt, R., Sültenfuß, J., Dengler, M., Fischer, T., and Rhein, M.: Coastal upwelling off
- 883 Peru and Mauritania inferred from helium isotope disequilibrium, Biogeosciences, 12, 7519-
- 884 7533, <u>https://doi.org/10.5194/bg-12-7519-2015</u>, 2015.
- 885 Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding oxygen-minimum
- zones in the tropical oceans, science, 320, 655-658, DOI: 10.1126/science.1153847, 2008.
- 887 Suess, E., Kulm, L., and Killingley, J.: Coastal upwelling and a history of organic-rich
- mudstone deposition off Peru, Geological Society, London, Special Publications, 26, 181-197,
- 889 <u>https://doi.org/10.1144/GSL.SP.1987.026.01.11</u>, 1987.
- 890 Swarzenski, P., Campbell, P., Porcelli, D., and McKee, B.: The estuarine chemistry and
- isotope systematics of ^{234,238}U in the Amazon and Fly Rivers, Continental Shelf Research, 24,
- 892 2357-2372, <u>https://doi.org/10.1016/j.csr.2004.07.025</u>, 2004.
- 893 Thomsen, S., Kanzow, T., Krahmann, G., Greatbatch, R. J., Dengler, M., and Lavik, G.: The
- 894 formation of a subsurface anticyclonic eddy in the Peru Chile Undercurrent and its impact

- on the near coastal salinity, oxygen, and nutrient distributions, Journal of Geophysical
- 896 Research: Oceans, 121, 476-501, <u>https://doi.org/10.1002/2015JC010878</u>, 2016.
- Van Der Loeff, M. R., Sarin, M. M., Baskaran, M., Benitez-Nelson, C., Buesseler, K. O.,
- 898 Charette, M., Dai, M., Gustafsson, Ö., Masque, P., and Morris, P. J.: A review of present
- techniques and methodological advances in analyzing ²³⁴Th in aquatic systems, Marine
- 900 Chemistry, 100, 190-212, <u>https://doi.org/10.1016/j.marchem.2005.10.012</u>, 2006.
- 901 Waples, J. T., Benitez-Nelson, C., Savoye, N., van der Loeff, M. R., Baskaran, M., and
- 902 Gustafsson, Ö.: An introduction to the application and future use of ²³⁴Th in aquatic systems,
- 903 Marine Chemistry, 100, 166-189, <u>https://doi.org/10.1016/j.marchem.2005.10.011</u>, 2006.
- Weinstein, S. E., and Moran, S. B.: Vertical flux of particulate Al, Fe, Pb, and Ba from the
- ⁹⁰⁵ upper ocean estimated from ²³⁴Th/²³⁸U disequilibria, Deep Sea Research Part I:
- Oceanographic Research Papers, 52, 1477-1488, <u>https://doi.org/10.1016/j.dsr.2005.03.008</u>,
 2005.
- Xie, R. C., Le Moigne, F. A. C., Rapp, I., Lüdke, J., Gasser, B., Degnler, M., Liebetrau, V.,
- and Achterberg, E. P.: Activities of total 234Th and dissolved 238U during cruises M136 and
- 910 M138 from the Peruvian Oxygen Minimum Zone., PANGAEA,
- 911 <u>https://doi.org/10.1594/PANGAEA.921917</u>, 2020.
- 912 Zhurbas, V., and Oh, I. S.: Drifter derived maps of lateral diffusivity in the Pacific and
- 913 Atlantic oceans in relation to surface circulation patterns, Journal of Geophysical Research:
- 914 Oceans, 109, <u>https://doi.org/10.1029/2003JC002241</u>, 2004.
- 215 Zimmerman, J. T. F.: Mixing and flushing of tidal embayments in the western Dutch Wadden
- 916 Sea part I: Distribution of salinity and calculation of mixing time scales, Netherlands Journal
- 917 of Sea Research, 10, 149-191, <u>https://doi.org/10.1016/0077-7579(76)90013-2</u>, 1976.
- 918
- 919

920 Figure captions

Figure 1. Maps showing (a) locations of each station from M136 (white squares) and M138
(grey circles) and (B) monthly-averaged current field in the top 15 m from April 16 to May
15, 2017 derived from altimetry measurements (http://marine.copernicus.eu/; product ID:
MULTIOBS_GLO-PHY_REP_015_004). Color boxes in (a) schematically divide the four
shelf-offshore transects. Map (a) was created with Ocean Data View (Schlitzer, 2014). The
white box in (b) highlights our study area.

927

Figure 2. Profiles of ²³⁸U (black) and ²³⁴Th (orange squares – M136; orange circles – M138)
along with concentrations of oxygen (grey) and fluorescence (green). Profiles are organized
by cruises, transects, and distance to shore from left to right and top to bottom, indicated by
east (E) to west (W) arrows. Error bars for both ²³⁸U and ²³⁴Th are indicated. Red dashed lines
indicate the depth of the mixed layer. The start of the oxygen deficient zone is where oxygen
diminishes. Bottom depths are indicated for stations whose bottom depths are shallower than
600 m.

935

Figure 3. Shelf-offshore distributions of ²³⁴Th/²³⁸U along the four studied transects, as shown
in Figure 1, for M136 (left) and M138 (right). White dots denote station location.

938

Figure 4. Distributions of averaged ²³⁴Th activities during M136 (a, top 30 m) and M138 (b,
top 50 m).

941

Figure 5. Profiles of temperature (solid lines) and salinity (dashed lines) for (a) repeated
stations 458 (purple) and 508 (yellow), and (d) 495 (blue) and 516 (orange); (b) and (c)
respectively profiles for stations 458 and 508 of ²³⁸U (black), ²³⁴Th (color squares), and
concentrations of oxygen (grey) and fluorescence (green). (e) and (f) respectively profiles for
stations 495and 516 of ²³⁸U (black), ²³⁴Th (color squares), and concentrations of oxygen
(grey) and fluorescence (green).

948

Figure 6. Bar charts of ²³⁴Th fluxes due to production and decay (blue), upwelling (orange),
and vertical diffusion (grey) for the depths at 5 – 20 m below the ML (top) and 100 m <u>below</u>
<u>sea surface</u> (bottom). Color boxes corresponds to individual transects in Figure 1. Within each
transect stations from west (offshore) to east (nearshore) are listed from left to right. Error
bars (1SE) are indicated.

954

Figure 7. Cross plots of measured ²³⁸U activities vs. salinity for M136 (a) and M138 (b),

showing poor linear relationship between 238 U and salinity. (c) shows a direct comparison

between measured and salinity-based 238 U to further highlight the large difference between the

two. The solid blue line indicates the 1:1 ratio between measured and projected ²³⁸U. Blue

dashed lines indicate the ± errors reported in Owens et al. (2011). Error bars for measured

960 $\frac{238}{\text{U}}$ activities are smaller than symbols.

Table 1. ²	²³⁴ Th flu	nxes du	le to pro	duction and	Table 1. 234 Th fluxes due to production and decay, upwelling and vertical	ling and vertic	al diffus	ion below the	mixed layer a	nd at 100 m.	Horizontal a	dvective flu	diffusion below the mixed layer and at 100 m. Horizontal advective fluxes were not quantified at 100 m. Refer to text for details.	uantified at 10	0 m. Refer to	o text for deta	ils.
								23	²³⁴ Th flux at the base of the ML	e base of the	ML			²³⁴ Th	²³⁴ Th flux at 100 m	E	
			Mixed	Upper													
			layer	oxycline	Maximum	Equilibrium		Production and	_				Production				
Cruise S	Station	Cast	depth	depth	fluorescence	depth	Depth	decay	Upwelling	Diffusion	Final flux	1 SD	and decay	Upwelling	Diffusion	Final flux	1 SD
			٤	ε	μg L ⁻¹	E	٤	dpm m ⁻² d ⁻¹	dpm m ⁻² d ⁻¹	dpm m ⁻² d ⁻¹	dpm m ⁻² d ⁻¹	dpm m ⁻² d ⁻¹	dpm m ⁻² d ⁻¹	dpm m ⁻² d ⁻¹	dpm m ⁻² d ⁻¹	dpm m ⁻² d ⁻¹	dpm m ⁻² d ⁻¹
M136	353	1	25	102	1.20	100	30	205	52	-36	923	69	1422	-14	2	1410	189
M136	380	1	26	129	0.87	80	30	1145	0	-41	1105	54	1637	0	Ļ	1637	132
M136	402	-	24	129	7.51	100	30	808	0	-75	732	64	1234	0	2	1236	111
M136	428	-	10	76	4.11	30	30	983	-128	493	1348	129	1772	33	-390	1415	256
M136	445	-	17	64	2.07	100	30	820	-10	16	826	66	1621	53	9	1681	165
M136	458	-	5	55	1.61	100	30	1012	-18	161	1155	117	2101	-11	145	2235	238
M136	472	-	11	29	7.41	200	40	1887	15	-29	1872	77	3315	-12	63	3366	233
M136	495	-	18	50	1.13	200	30	1149	1	-19	1130	50	3195	2	'n	3192	89
M136	516	-	16	45	3.77	200	30	614	0	1	615	49	2229	2	4-	2227	109
M136	547	-	22	48	1.28	150	30	791	0	85	877	61	2510	0	-15	2495	118
M136	559	-	20	79	1.70	85	50	623	ŝ	-67	559	117	854	-4	2	852	120
M136	567	-	21	50	2.40	150	30	1593	0	-23	1570	52	3011	0	-11	3000	86
M138	879	m	43	93	2.24	200	60	1249	0	-16	1266	91	1702	0	'n	1697	111
M138	882	10	39	211	2.68	150	50	1321	-7	16	1331	63	2264	19	-12	2272	82
M138	883	12	10	220	1.31	250	30	683	-84	-159	758	108	1782	31	-121	1692	179
M138	888	7	41	127	1.59	150	50	1364	0	-120	1244	62	1813	0	4-	1809	86
M138	892	14	47	128	1.05	100	60	1395	33	-118	1309	72	1743	'n	1	1741	66
M138	868	1	38	101	1.42	60	50	1099	0	-19	1080	104	1091	0	0	1091	125
M138	904	16	12	72	3.63	150	20	812	275	0	1087	76	2643	0	ę.	2634	79
M138	906	18	32	81	1.73	200	40	1796	0	4	1799	41	3100	0	Ļ	3100	77
M138	907	11	31	100	1.29	60	60	1594	-88	13	1518	147	1787	67	-2	1853	140
M138	912	'n	37	70	2.75	>600	50	1960	0	-79	1881	43	2975	0	'n	2972	78
M138	915	1	26	66	3.51	200	40	1628	0	22	1650	38	2752	0	0	2752	93
M138	919	1	19	79	4.46	150	30	1316	0	49	1365	32	3249	0	ø,	3241	85

			inity-based ²³⁸ U. ²³⁴ Th fluxes at 100 m*		
Cruise	Station	Cast	measured	predicted	Difference
			dpm m ⁻² d ⁻¹	dpm m ⁻² d ⁻¹	%
M136	353	1	1422	1320	8
M136	380	1	1637	1304	26
M136	402	1	1234	865	43
M136	428	1	1772	1443	23
M136	445	1	1621	1365	19
M136	458	1	2101	1859	13
M136	472	1	3315	3073	8
M136	495	1	3195	3058	4
M136	516	1	2229	2140	4
M136	547	1	2510	2313	9
M136	559	1	854	751	14
M136	567	1	3011	2879	5
M138	879	3	1702	1515	12
M138	882	10	2264	1875	21
M138	883	12	1782	1352	32
M138	888	7	1813	1441	26
M138	892	14	1743	1257	39
M138	898	1	1091	770	42
M138	904	16	2643	2280	16
M138	906	18	3100	2673	16
M138	907	11	1787	1308	37
M138	912	3	2975	2572	16
M138	915	1	2752	2380	16
M138	919	1	3249	2862	14

Table 2. Comparison of ²³⁴Th fluxes at 100 m calculated with measured ²³⁸U activities and those with salinity-based ²³⁸U.

* For comparison purposes, we only report here ²³⁴Th fluxes due to radioactive production and decay.

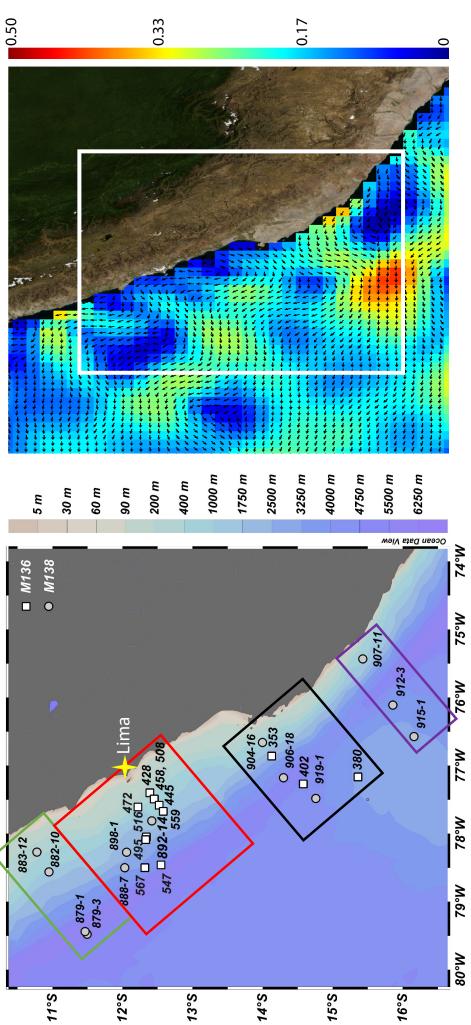

OMZ.			Average ²³⁴ Th in	
Cruise	Station	Cast	the top layer*	Residence time
			dpm L ⁻¹	days
M136	353	1	1.48	46
M136	380	1	1.35	35
M136	402	1	1.64	61
M136	428	1	1.57	35
M136	445	1	1.64	61
M136	458	1	1.45	38
M136	472	1	0.93	20
M136	495	1	1.20	31
M136	516	1	1.74	85
M136	547	1	1.67	63
M136	559	1	1.75	94
M136	567	1	1.41	45
M138	879	3	1.59	75
M138	882	10	1.81	69
M138	883	12	1.87	74
M138	888	7	1.68	67
M138	892	14	1.69	65
M138	898	1	1.66	92
M138	904	16	1.32	24
M138	906	18	1.15	25
M138	907	11	1.04	41
M138	912	3	1.25	33
M138	915	1	1.16	28
M138	919	1	1.17	26

Table 3. Residence time of total ²³⁴Th in the <u>top</u> layers of Peruvian OMZ.

 * Here $^{\prime}\underline{the\ top}$ layer' refers to the top 30 m during M136 and top 50 m during M138.

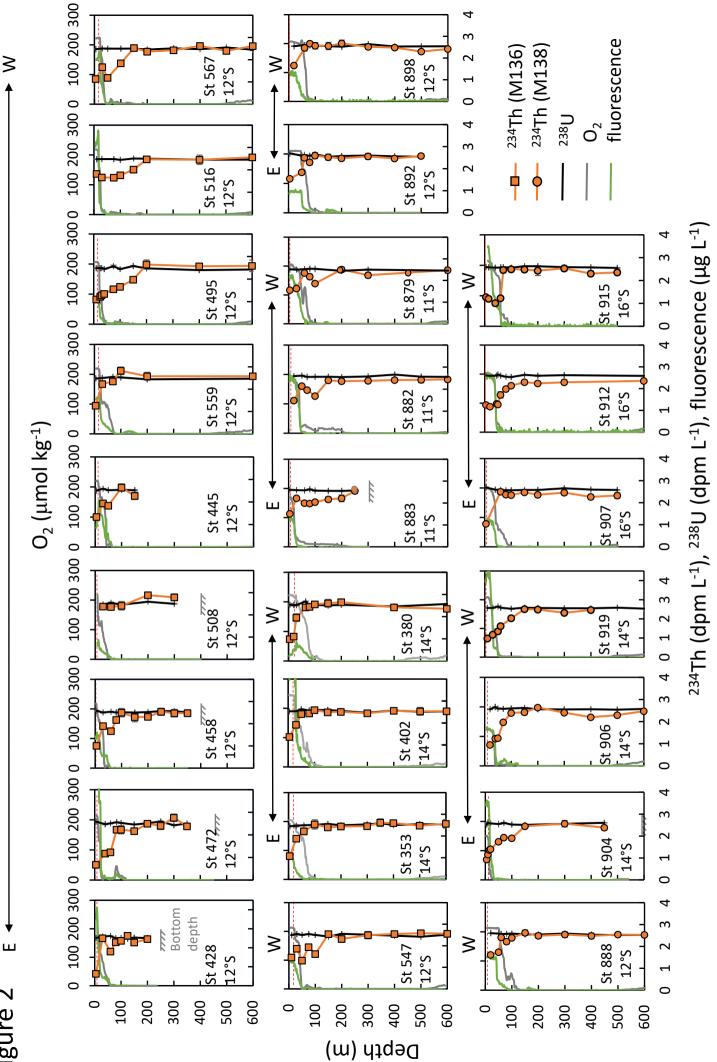
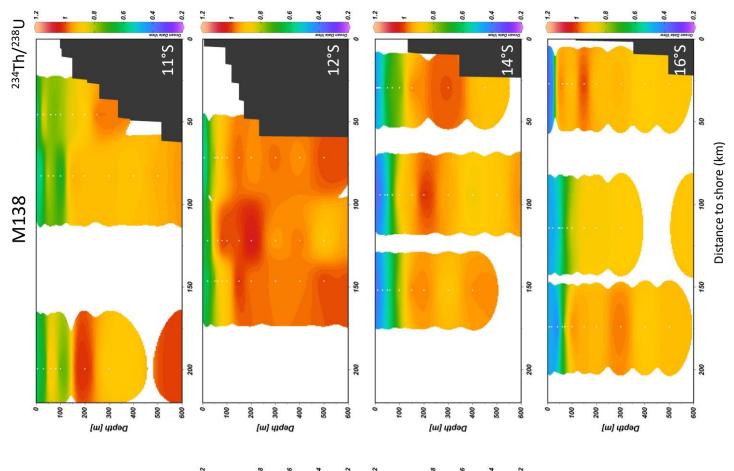
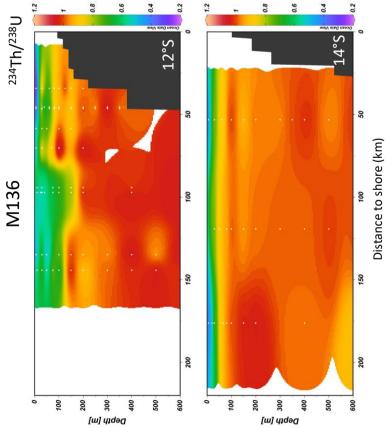
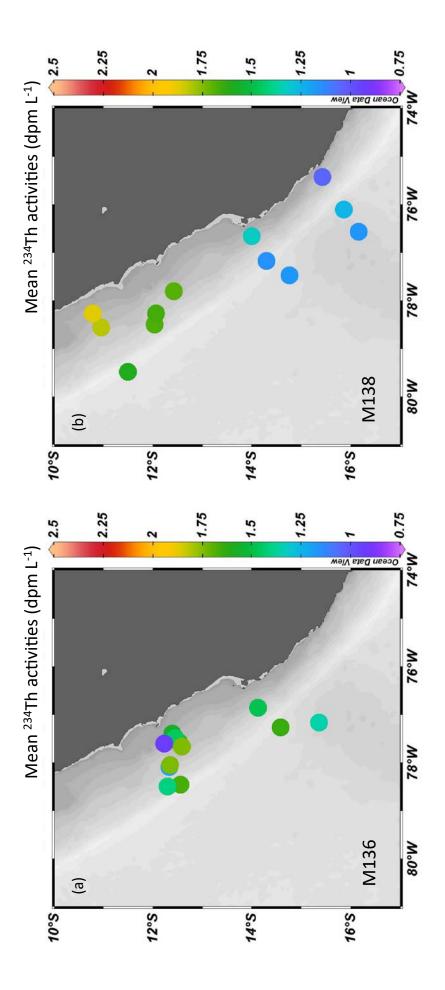
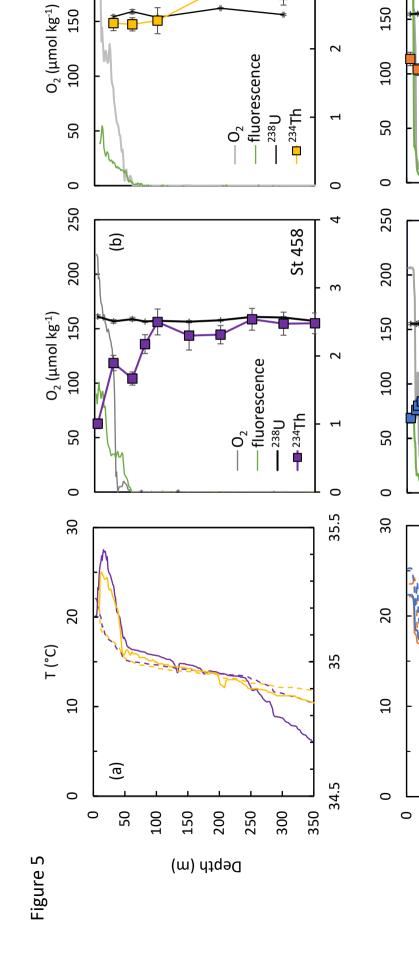
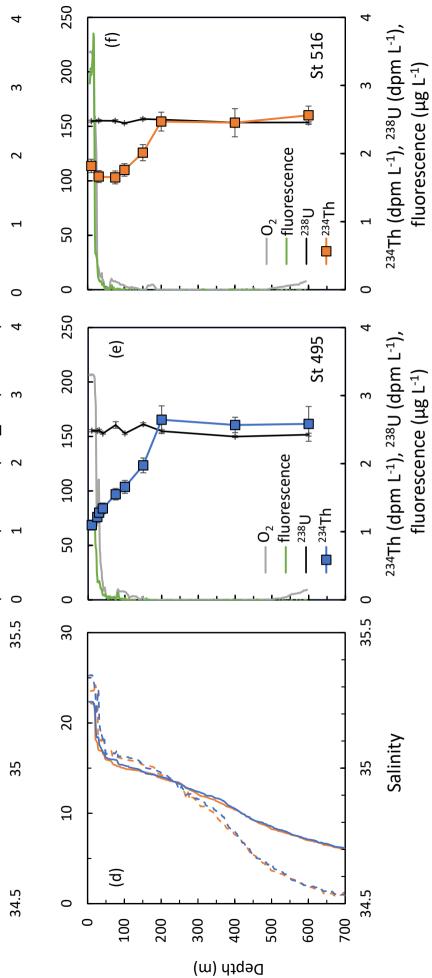
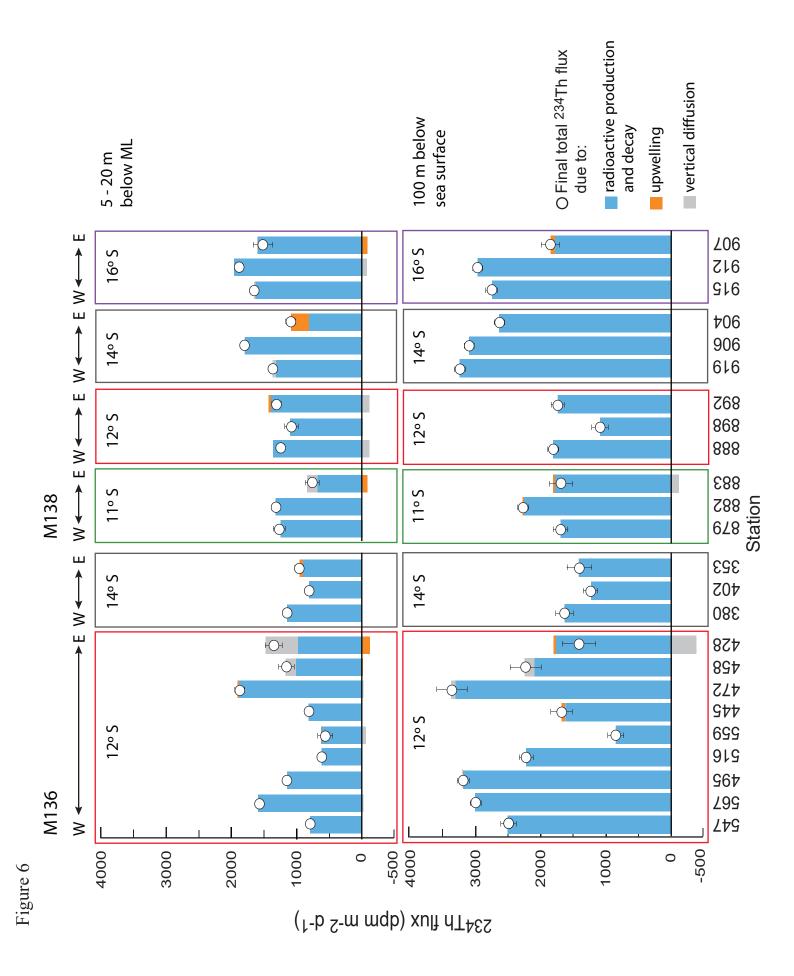





Figure 2






250

200

(C)

St. 508

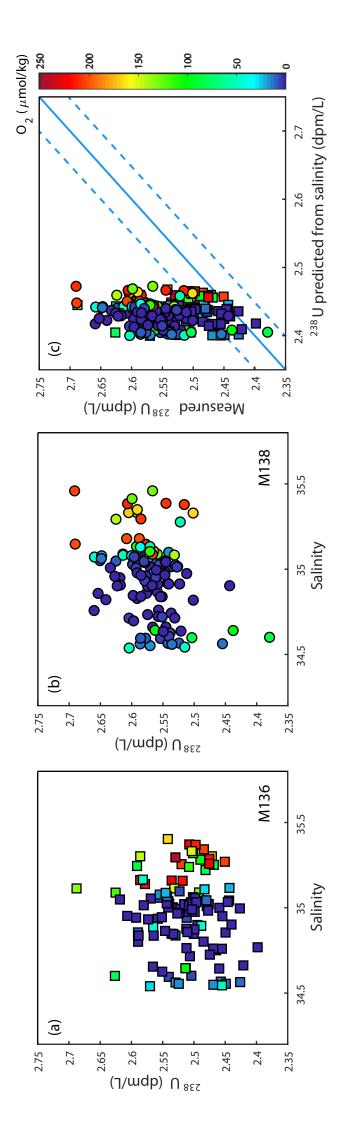


Figure 7