Effects of ²³⁸U variability and physical transport on water column

- 2 234Th downward fluxes in the coastal upwelling system off Peru
- 4 Ruifang C. Xie¹*, Frédéric A. C. Le Moigne², Insa Rapp¹, Jan Lüdke¹, Beat Gasser³, Marcus
- 5 Dengler¹, Volker Liebetrau¹, Eric P. Achterberg¹
- ¹GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel,
- 8 Germany

3

6

- 9 ²Mediterranean Institute of Oceanography (UM 110, MIO), CNRS, IRD, Aix Marseille
- 10 Université, Marseille, France
- ³IAEA Environment Laboratories, 4 Quai Antoine 1er, 98000 Monaco
- 12 Monaco

13

* corresponding author: rxie@geomar.de

Abstract

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

The eastern boundary region of the southeastern Pacific Ocean hosts one of the world's most dynamic and productive upwelling systems with an associated oxygen minimum zone (OMZ). The variability in downward export fluxes in this region, with strongly varying surface productivity, upwelling intensities and water column oxygen content, is however poorly understood. Thorium-234 (²³⁴Th) is a powerful tracer to study the dynamics of export fluxes of carbon and other elements, yet intense advection and diffusion in nearshore environments impact the assessment of depth-integrated ²³⁴Th fluxes when not properly evaluated. Here we use VmADCP current velocities, satellite wind speed and in situ microstructure measurements to determine the magnitude of advective and diffusive fluxes over the entire ²³⁴Th flux budget at 25 stations from 11°S to 16°S in the Peruvian OMZ. Contrary to findings along the GEOTRACES P16 eastern section, our results showed that weak surface wind speed during our cruises induced low upwelling rates and minimal upwelled ²³⁴Th fluxes, whereas vertical diffusive ²³⁴Th fluxes were important only at a few shallow shelf stations. Horizontal advective and diffusive ²³⁴Th fluxes were negligible because of small alongshore ²³⁴Th gradients. Our data indicated a poor correlation between seawater ²³⁸U activity and salinity. Assuming a linear relationship between the two would lead to significant underestimations of the total ²³⁴Th flux by up to 40% in our study. Proper evaluation of both physical transport and variability in ²³⁸U activity is thus crucial in coastal ²³⁴Th flux studies. Finally, we showed large temporal variations on ²³⁴Th residence times across the Peruvian upwelling zone, and cautioned future carbon export studies to take these temporal variabilities into consideration while evaluating carbon export efficiency. **Keywords:** eastern tropical South Pacific, ²³⁴Th tracer, uranium-salinity correlation, physical processes, residence time

1. Introduction

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Isotopes of thorium (Th) are widely used as tracers for particle cycling in the oceans (Waples et al., 2006). In particular, ²³⁴Th has been extensively used to trace particle dynamics and export fluxes in the upper ocean, and to quantify the marine budgets of important macroand micronutrients such as carbon (C), nitrogen (N), phosphorus (P) and iron (Fe) (e.g. Bhat et al., 1968; Buesseler et al., 1992; Coale and Bruland, 1987; Lee et al., 1998; Le Moigne et al., 2013; Cochran and Masqué, 2003; Van Der Loeff et al., 2006; Black et al., 2019). ²³⁴Th has a relatively short half-life ($\tau_{1/2} = 24.1$ days) that allows studies of biological and physical processes occurring on timescales of days to weeks. Unlike its radioactive parent uranium-238 (238 U, $\tau_{1/2} = 4.47$ Ga) that is soluble in seawater, 234 Th is highly particle reactive with a particle-water partition coefficient of 10³ to 10⁸ (Santschi et al., 2006 and references therein) and is thus strongly scavenged by particles (Bhat et al., 1968). Generally, a deficit of ²³⁴Th relative to ²³⁸U is observed in the surface ocean and reflects net removal of ²³⁴Th due to particle sinking, whereas secular equilibrium between ²³⁴Th and ²³⁸U is observed for intermediate and deep waters. Integrating this surface ²³⁴Th deficit with depth yields the sinking flux of ²³⁴Th and, if elemental: ²³⁴Th ratios are known, the sinking flux of elements such as C, N, P, Si and trace metals (e.g. Bhat et al., 1968; Buesseler et al., 1998; Buesseler et al., 1992; Coale and Bruland, 1987; Weinstein and Moran, 2005; Buesseler et al., 2006; Owens et al., 2015; Black et al., 2019; Puigcorbé et al., 2020). Various ²³⁴Th models have been put forward to study adsorption/desorption, aggregation and export, but single box models that assume negligible ²³⁴Th fluxes due to physical transport are commonly used to calculate oceanic ²³⁴Th-derived particle fluxes (see detailed review by Savoye et al., 2006). This assumption is typically appropriate in open ocean settings where ²³⁴Th fluxes due to advection and diffusion are small relative to the downward fluxes of ²³⁴Th associated with particle sinking. However, in upwelling regions

such as the equatorial Pacific and coastal systems, advective and diffusive ²³⁴Th fluxes may become increasingly important (e.g., Bacon et al., 1996; Buesseler et al., 1998; Buesseler et al., 1995; Dunne and Murray, 1999). For example, in the equatorial Pacific, strong upwelling post El-Niño could account for ~50% of the total ²³⁴Th fluxes (Bacon et al., 1996; Buesseler et al., 1995). Ignoring the upwelling term could thus lead to an underestimation of ²³⁴Th fluxes by a factor of 2. Conversely, horizontal diffusion carrying recently upwelled, ²³⁴Th-replete waters has been shown to balance the upwelled ²³⁴Th fluxes in the central equatorial Pacific (Dunne and Murray, 1999). To the contrary, advective and diffusive ²³⁴Th fluxes were minimal off the Crozet Islands in the Southern Ocean due to limited horizontal ²³⁴Th gradients, long residence time of water masses, and low upwelling rates and diffusivities (Morris et al., 2007).

The dynamic nature of coastal processes requires that physical terms should be included in ²³⁴Th flux calculation whenever possible. Accurate measurements of current velocities and diffusivities are however challenging and thus direct observations of the effects of physical processes on ²³⁴Th distributions in coastal regions are scarce. Limited studies have incorporated advection and diffusion in the nearshore zones of the Arabian Sea (Buesseler et al., 1998), Gulf of Maine (Gustafsson et al., 1998; Benitez-Nelson et al., 2000), the South China Sea (Cai et al., 2008) and Peruvian oxygen minimum zone (OMZ) (Black et al., 2018). In the Arabian Sea, coastal upwelling during the southwest monsoon season could account for over 50% of the total ²³⁴Th flux (Buesseler et al., 1998). Horizontal advection has been shown to be substantial in the Inner Cosco Bay of the Gulf of Maine (Gustafsson et al., 1998), whereas offshore advection and diffusion are only important in late summer (Benitez-Nelson et al., 2000). Therefore, the importance of physical processes on the ²³⁴Th flux estimate is highly dependent on the seasonal and spatial variability of the current velocities, diffusivities and ²³⁴Th gradients. In terms of the Peruvian OMZ, Black et al. (2018) showed that coastal

upwelling accounts for >50% of total ²³⁴Th fluxes at 12°S; however, how upwelling ²³⁴Th fluxes vary seasonally and spatially in this region is unclear.

Another uncertainty in ²³⁴Th flux calculations in such region stems from variations on dissolved ²³⁸U activities. Generally speaking, U behaves conservatively under open ocean oxic conditions and is linearly correlated with salinity (Chen et al., 1986; Ku et al., 1977; Owens et al., 2011). However, numerous studies have shown that such correlation breaks down in various marine environments including the tropical Atlantic (Owens et al., 2011), Mediterranean Sea (Schmidt and Reyss, 1991), and Arabian Sea (Rengarajan et al., 2003). Although it is generally accepted that deviations from the linear ²³⁸U-S correlation will lead to differences in the final calculated ²³⁴Th fluxes, there is currently little knowledge on how significant these differences could be.

In this study, we report vertical profiles of ²³⁴Th and ²³⁸U along four transects perpendicular to the coastline of Peru (i.e. shelf-offshore transects). We evaluate the ²³⁸U-S correlation in low-oxygen waters and how deviations from this correlation impact final ²³⁴Th flux estimates. We also assess the spatial and temporal importance of advection and diffusion on ²³⁴Th flux estimates.

2. Sampling and methods

2.1 Seawater sampling and analysis

Seawater samples were collected at 25 stations along 4 shelf-offshore transects between 11°S and 16°S in the Peruvian OMZ during two cruises M136 and M138 on board the RV Meteor (Figure 1). Cruise M136 took place in austral autumn (April 11 to May 3, 2017) along two main transects at 12°S and 14°S (Dengler and Sommer, 2017). Two stations from M136 (stations 458 and 495) were reoccupied within a week (repeat stations 508 and

516, respectively) to evaluate the steady-state assumption in the ²³⁴Th flux calculation. The surface sample of the repeat station 508 (reoccupied 4.5 days after station 458) was missing so only results from repeat stations 495 and 516 (occupation interval 1.5 days) were compared and discussed in terms of the non-steady state model (section 3.3). ²³⁴Th sampling during cruise M138 was carried out in austral winter (June 1 to July 4, 2017) and focused on four shelf-offshore transects at 11°S, 12°S, 14°S and 16°S.

At each station, a stainless-steel rosette with Niskin bottles (Ocean Test Equipment®) was deployed for sampling of total 234 Th in unfiltered seawater and dissolved 238 U (0.2 µm pore size, Acropak® polycarbonate membrane). High vertical resolution sampling was performed in the upper 200 m where most of the biological activity occurs; additional depths were sampled down to 600 m, or 50 m above the seafloor. Deep seawater at 1000 m, 1500 m, and 2000 m was sampled at three stations to determine the absolute β counting efficiency. Salinity, temperature, oxygen concentrations and fluorescence data (Table S1) were derived from the sensors (Seabird Electronics® 9plus system) mounted on the CTD frame (Krahmann, 2018; Lüdke et al., in review 2020).

Sample collection and subsequent chemical processing and analysis for total ²³⁴Th followed protocols by Pike et al. (2005) and SCOR Working Group RiO5 cookbook (https://cmer.whoi.edu/). Briefly, a ²³⁰Th yield tracer (1 dpm) was added to each sample (4 L) before Th was extracted with MnO₂ precipitates. Precipitates were filtered onto 25 mm quartz microfiber filters (Whatman® QMA, 2.2 μm nominal pore size) and dried overnight at 50°C, after which they were counted at sea on a Risø® low-level beta GM multicounter until uncertainty was below 3%, and again 6 months later at home laboratory for background ²³⁴Th activities. After the second beta counting, filters were digested in an 8M HNO₃/10% H₂O₂ solution (Carl Roth®, trace metal grade). 10 dpm of ²²⁹Th was added to each sample at the beginning of digestion to achieve a 1:1 atom ratio between ²²⁹Th:²³⁰Th. Digested samples were diluted in a 2.5% HNO₃/0.01% HF mixture and ²²⁹Th/²³⁰Th ratios were measured using

an ICP-MS (ThermoFisher® Element XR) to determine the chemistry yield and final 234 Th activities. The average yield was calculated to be 97% \pm 6% (n = 247). For a subset of samples (marked in Table S1) whose analysis failed during initial ICP-MS measurement, anion chromatography (Biorad® AG1x8, 100-200 mesh, Poly-Prep columns) was performed to remove Mn from the sample matrix before another ICP-MS analysis. This subset of samples also included three samples (marked in Table S1) whose initial ICP-MS measurement was successful, to test whether anion chromatography affects final ICP-MS results. Identical 229 Th/ 230 Th ratios were measured for samples with and without column chromatography (see Table S1 footnotes for details).

Each ²³⁸U sample was acidified to pH ~1.6 at sea and transported home for analysis. Samples of dissolved ²³⁸U were diluted 20 times in 1N HNO₃ at home laboratory and spiked with an appropriate amount of ²³⁶U spike to achieve ²³⁶U:²³⁸U ~ 1:1. Ratios of ²³⁶U:²³⁸U were analyzed by ICP-MS (ThermoFisher Element XR) and activities of ²³⁸U were calculated using isotope dilution. Seawater certified reference materials (CRMs), CASS-6 and NASS-7, and the International Association for the Physical Sciences of the Oceans (IAPSO) standard seawater were analyzed routinely for uranium concentrations.

2.2 Flux calculation

Assuming a one box model, the temporal change of ²³⁴Th activities is balanced by production from ²³⁸U, radioactive decay of ²³⁴Th, removal of ²³⁴Th onto sinking particles, and transport into or out of the box by advection and diffusion (Bhat et al., 1968; Savoye et al., 2006; and references therein):

$$\frac{\partial A_{Th}}{\partial t} = \lambda (A_U - A_{Th}) - P + V \tag{1}$$

where A_U and A_{Th} are respectively the activities of dissolved ^{238}U and total ^{234}Th , λ is the decay constant of ^{234}Th , P is the net removal flux of ^{234}Th , and V is the sum of advective and diffusive fluxes. It is recommended that the time interval between station occupations should be >2 weeks in order to adequately capture the temporal variability of the mean spatial gradients rather than small local changes (Resplandy et al., 2012). The solution of Eq. (1) (Savoye et al., 2006) is

$$P = \lambda \left[\frac{A_U(1 - e^{-\lambda \Delta t}) + A_{Th1} \cdot e^{-\lambda \Delta t} - A_{Th2}}{1 - e^{-\lambda \Delta t}} \right]$$
 (2)

where Δt is the time interval between repeat occupations of a station; A_{Th1} and A_{Th2} are respectively total ²³⁴Th activities during the first and second occupation. At times when repeat sampling is not possible within adequate cruise timeframe, steady state conditions are generally assumed, i.e. $\frac{\partial A_{Th}}{\partial t} = 0$. In this case, Eq. (1) is simplified into:

$$P = \int_0^z \lambda (A_U - A_{Th}) dz + V \tag{3}$$

The vertical flux of ²³⁴Th, P (dpm m⁻² d⁻¹), is integrated to the depth of interest. Earlier studies generally used arbitrarily fixed depths (e.g., the base of mixed layer or ML, and 100 m) for ²³⁴Th and POC flux estimates (e.g., Bacon et al., 1996; Buesseler et al., 1992). Recent studies emphasized the need to normalize POC flux to the depth of euphotic zone (EZ), which separates the particle production layer in the surface from the flux attenuation layer below (Black et al., 2018; Buesseler and Boyd, 2009; Rosengard et al., 2015). In the open ocean, the depth of EZ is generally similar to ML depth. The PAR (Photosynthetically Active Radiation) sensor was not available during both of our cruises, so that it was not possible to identify the base of the EZ. For the purpose of this study, the slight difference of the exact depth chosen (ML vs. EZ) was of little relevance to the significance of physical processes and ²³⁸U variability. Due to sampling logistics, however, we did not sample at the base of the ML, but 5-20 m below the ML. This depth corresponded closely to the EZ depth used in Black et al.

(2018) in the same study area during austral spring 2013. For the purpose of comparison with earlier studies which reported ²³⁴Th fluxes at 100 m, we also calculated ²³⁴Th fluxes at 100 m in this study.

2.3 Quantification of the physical fluxes

The physical term V in Eq. (2) is expressed as following:

$$V = \int_0^z \left(w \frac{\partial Th}{\partial z} - u \frac{\partial Th}{\partial x} - v \frac{\partial Th}{\partial y} \right) dz + \int_0^z \left(K_x \frac{\partial^2 Th}{\partial x^2} + K_y \frac{\partial^2 Th}{\partial y^2} - K_z \frac{\partial^2 Th}{\partial z^2} \right) dz$$
 (3)

where w is the vertical (i.e. upwelling) velocity (m s⁻¹), u and v respectively the zonal and meridional current velocities (m s⁻¹), and K_x , K_y , and K_z represent eddy diffusivities (m² s⁻¹) in zonal, meridional and vertical directions, respectively. $\frac{\partial Th}{\partial z}$, $\frac{\partial Th}{\partial x}$ and $\frac{\partial Th}{\partial y}$ are vertical and horizontal ²³⁴Th gradients (dpm L⁻¹ m⁻¹), and $\frac{\partial^2 Th}{\partial x^2}$, $\frac{\partial^2 Th}{\partial y^2}$ and $\frac{\partial^2 Th}{\partial z^2}$ are respectively the second derivative of ²³⁴Th (dpm L⁻¹ m⁻²) on the zonal, meridional and vertical directions.

2.3.1 Estimation of upwelling velocities

In the Mauritanian and Peruvian coastal upwelling regions, there is strong evidence that upwelling velocities in the mixed layer derived from satellite scatterometer winds and Ekman divergence (Gill, 1982) agree well with those from helium isotope disequilibrium (Steinfeldt et al., 2015). The parameterization by Gill (1982) considers the baroclinic response of winds blowing parallel to a coastline in a two-layer ocean. Vertical velocity (*w*) at the interface yields

$$w = \frac{\tau}{\rho f a} e^{-x/a} \tag{4}$$

where τ is the wind stress (kg m⁻¹ s⁻²) parallel to the coast line, ρ the water density (1023 kg m⁻³), f the Coriolis parameter (s⁻¹) as a function of latitude, a the first baroclinic Rossby radius (km) and X the distance (km) to the coast.

Upwelling velocities were calculated at stations within 60 nautical miles (nm) of the coast, where upwelling is the most significant (Steinfeldt et al., 2015). We used a = 15 km for all stations based on the results reported by Steinfeldt et al. (2015) for the same study area. The magnitude of monthly wind stress was estimated from the monthly wind velocities (Smith, 1988):

$$\tau = \rho_{air} C_D U^2 \tag{5}$$

where ρ_{air} is the air density above the sea surface (1.225 kg m⁻³), C_D the drag coefficient (10⁻³ for wind speed < 6 m s⁻¹), and U the wind speed.

Monthly wind speed (m s⁻¹) fields from MetOp-A/ASCAT scatterometer sensor with a spatial resolution of 0.25° (Bentamy and Croize-Fillon, 2010) were retrieved from the Centre de Recherche et d'Exploitation Satellitaire (CERSAT), at IFREMER, Plouzané (France) (data version numbers L3-MWF-GLO-20170903175636-01.0 and L3-MWF-GLO-20170903194638-01.0). We assumed a linear decrease of *w* from base of the mixed layer toward both the ocean surface and 240 m depth (bottom depth of our shallowest station). Upwelling rates at any depth between 0 and 240 m at individual stations could thus be determined once *w* was estimated. Following (Rapp et al., 2019), an error of 50% was assigned to estimated upwelling velocities to account for uncertainties associated with the spatial structure and temporal variability of the wind field, and the satellite wind product near the coast.

2.3.2 Estimation of upper-ocean velocities

During both cruises a phased-array vessel-mounted acoustic Doppler current profiler (VmADCP; 75 kHz Ocean Surveyor, Teledyne RD-Instruments) continuously measured zonal and meridional velocities in the upper 700 m of the water column (Lüdke et al., in review 2020). Post-processing of the velocity data included water track calibration and bottom editing. After calibration, remaining uncertainty of hourly averages of horizontal velocities are smaller than 3 cm s⁻¹ (e.g. Fischer et al., 2003). For the horizontal advective flux calculation (Eq. 3), velocities collected within a 10 km radian at inshore stations (St. 353, 428, 458, 475, 508, 904, and 907) and within a 50 km radian at offshore stations (Lüdke et al., in review 2020) were averaged. Data collected at the same positions within 5 days due to station repeats were also included in the velocity average. As representative for the near-surface flow, we extracted the velocity data from the top 30 m for M136 stations and top 50 m for M138 station (defined as the "top layer" thereafter); these depths correspond to 5-20 m below the base of the ML during each cruise.

2.3.3 Estimation of vertical and horizontal eddy diffusivities

While the strength of ocean turbulence determines the magnitude of diapycnal or vertical eddy diffusivities, the intensity of meso- and submesoscale eddies determine the magnitude of lateral eddy diffusivities. During the R/V Meteor cruise M136 and the follow up cruise (M137) in the same region, the strength of upper-ocean turbulence was measured using shear probes mounted to a microstructure profiler. The loosely-tethered profiler was optimized to sink at a rate of $0.55~{\rm m~s^{-1}}$ and equipped with three shear sensors, a fast-response temperature sensor, an acceleration sensor, two tilt sensors and conductivity, temperature, depth sensors sampling with a lower response time. On transit between each CTD station 3 to 9 microstructure profiles were collected. Standard processing procedures were used to determine the dissipation rate of turbulent kinetic energy (ϵ) in the water column (see

Schafstall et al., 2010 for detailed description). Subsequently, turbulent vertical diffusivities K_Z were determined from $K_Z = \Gamma \varepsilon N^{-2}$ (Osborn, 1980), where N is stratification and Γ is the mixing efficiency for which a value of 0.2 was used following Gregg et al. (2018). Stratification (Buoyancy frequency) was calculated using CTD data retrieved from microstructure profilers and following the gsw_Nsquared function from the Gibbs Sea Water library (McDougall et al., 2009; Roquet et al., 2015). A running mean of 10 dbar was applied to avoid including unstable events due to turbulent overturns. The 95% confidence intervals for averaged K_Z values were determined from Gaussian error propagation following Schafstall et al. (2010).

Altogether, 189 microstructure profiles were collected during M136 (Thomsen and Lüdke, 2018) and 258 profiles during the follow-up cruise M137 (unpublished data; May 6 – 29, 2017). An average turbulent vertical diffusivity profile was calculated each from all inshore (<500m water depth) and all offshore (>500m water depth) profiles (Figure S1). Microstructure profiles collected during cruise M138 were not available but there were little variations amongst the cruise average inshore and offshore microstructure profiles from M136 and M137 despite drastic change in the intensities of the poleward Peru Chile Undercurrent (Lüdke et al., in review 2020). It thus appears appropriate to apply these average vertical diffusivities also to stations during M138.

Horizontal eddy diffusivity could not be determined from data collected during the cruises. Surface eddy diffusivities in the North Atlantic OMZ were estimated to be on the order of a few 1000 m² s⁻¹ that decrease exponentially with depth (Hahn et al., 2014). Similar magnitude of eddy diffusivities was estimated for the ETSP based on surface drifter data and satellite altimetry (Abernathey and Marshall, 2013; Zhurbas and Oh, 2004). We thus consider an eddy diffusivity of 1000 m² s⁻¹ as a good approximate in this study for the evaluation of horizontal diffusive ²³⁴Th fluxes.

2.4 Residence time of ²³⁴Th

The residence time (τ_{Th}) of total ²³⁴Th represents a combination of the time required for the partition of dissolved ²³⁴Th onto particulate matter and that for particle removal. In a one-box model, the residence time of an element of interest can be estimated by determining the standing stock of this element and the rates of elemental input to the ocean or the rate of elemental removal from seawater to sediments (Bewers and Yeats, 1977; Zimmerman, 1976):

$$\tau_{Th} = \frac{A_{Th(mean)} \cdot Z}{P} \tag{6}$$

For the case of 234 Th, $A_{Th(mean)}$ is the averaged 234 Th activities of the surface layer, Z is the depth of top layer, and P the removal flux of 234 Th.

3. Results

3.1 Profiles of dissolved ²³⁸U, total ²³⁴Th, oxygen and fluorescence

The vertical profiles of ²³⁸U and ²³⁴Th activities are shown in Figure 2 and tabulated in Table S1. Data from station 508 were reported in Figure 2 and Table S1 but excluded in the Discussion section, because the surface sample at 5 m from this station was missing, which prevents any flux calculation. Also tabulated in Table S1 are temperature, salinity and concentrations of oxygen and fluorescence obtained from the CTD sensors. Uranium concentrations of CRMs and the IAPSO standard seawater are reported in Table S2.

Activities of 238 U showed small to negligible variations with depth, averaging 2.54 \pm 0.05 dpm L⁻¹ (or 3.28 \pm 0.07 ng/g, 1SD, n = 247) at all stations. The vertical distributions of 238 U did not appear to be affected by water column oxygen concentrations or the extent of surface fluorescence maxima (Figure 2). Average U concentrations of both CASS-6 (2.77 \pm

0.04 ng g⁻¹, 1SD, n = 5) and NASS-7 (2.86 ± 0.05 ng/g, 1SD, n = 5) measured in this study
agreed well with certified values (2.86 ± 0.42 ng g⁻¹ and 2.81 ± 0.16 ng g⁻¹, respectively).
Average ²³⁸U concentration measured in our IAPSO standard seawater (OSIL batch P156)
(3.24 ± 0.06 ng g⁻¹, 1SD, n = 27) is slightly higher than that reported in Owens et al. (2011)
(3.11 ± 0.03 ng g⁻¹, 1SD, n = 10, OSIL P149), and may reflect slight differences in U
concentrations between different OSIL batches.

Total ²³⁴Th activities varied from 0.63 to 2.89 dpm L⁻¹ (Figure 2). All stations showed large ²³⁴Th deficits in surface waters with ²³⁴Th/²³⁸U ratios as low as 0.25 (Figure 3). The extent of surface ²³⁴Th deficits did not vary as a function of depths of either mixed layer or the upper oxic-anoxic interface, nor the magnitude of surface fluorescence concentrations (Table 1, Figure 2). ²³⁴Th at all stations generally reached equilibrium with ²³⁸U at depths between 30 m and 250 m (Table 1). The equilibrium depths were slightly shallower toward the shelf at the 11°S, 12°S and 16°S transects. At St. 912, deficits of ²³⁴Th extended beyond 600 m depth (Figure 2). The following stations (St. 428, 879, 898, 906, 907, 915, 919) displayed a secondary ²³⁴Th deficit below the equilibrium depth, indicative of ²³⁴Th removal processes. A small ²³⁴Th excess at depth was only observed for St. 559 at 100 m. Ratios of ²³⁴Th/²³⁸U for deep samples at 1000 m, 1500 m, and 2000 m varied between 0.95 and 1.02 (1.00 ± 0.04, 1SD, n = 11), suggesting that ²³⁴Th was at equilibrium with ²³⁸U at these depths.

3.2 Vertical and horizontal ²³⁴Th gradients

Discrete vertical ²³⁴Th gradients in each profile (or the curvature of the profile) were estimated by the difference in ²³⁴Th activities and that in sampling depths. As such, vertical ²³⁴Th gradients varied greatly amongst stations, and were larger at shallow depths ranging

from 0.003 dpm L⁻¹ m⁻¹ to 0.085 dpm L⁻¹ m⁻¹ (median 0.013 dpm L⁻¹ m⁻¹). Vertical ²³⁴Th gradients were essentially negligible at and below equilibrium depths.

While calculation of the vertical ²³⁴Th gradient is straightforward, the same is hardly true for the determination of horizontal 234 Th gradient. Mean 234 Th activities in the top layer (see section 2.3.2 for depth definition) of the water column are highly variable amongst stations (Table 3, Figure 4), and likely reflect variations occurring at small temporal and spatial scales in the Peruvian OMZ. Quantification of the horizontal ²³⁴Th gradient between individual station thus may not be adequate to evaluate large scale advection and eddy diffusion across the study area. Therefore, alongshore ²³⁴Th gradients on a larger spatial scale (1° apart) were instead calculated by grouping stations into 1° by 1° grids and averaging ²³⁴Th activities of each grid for the top layer. Alongshore ²³⁴Th gradients in the top layer at nearshore stations for M138 are fairly consistent, ranging from 1.5 x 10⁻⁶ dpm L⁻¹ m⁻¹ to 1.7 x 10⁻⁶ dpm L⁻¹ m⁻¹, with a slightly stronger gradient in the north compared to the south. The net difference in alongshore ²³⁴Th gradient is merely 2 x 10⁻⁷ dpm L⁻¹ m⁻¹. A slightly smaller alongshore ²³⁴Th gradient of 4.8 x 10⁻⁷ dpm L⁻¹ m⁻¹ was observed for M136. The magnitude of the net difference in alongshore ²³⁴Th gradient for M136 cannot be adequately quantified, due to smaller spatial sampling coverage. Judging on the similarity in the spatial distributions of mean ²³⁴Th between cruises M136 and M138 (Figure 4), it is reasonable to assume that net difference in alongshore ²³⁴Th gradient remained similar during both cruises.

346

347

348

349

350

351

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

3.3 Steady state vs. non-steady state models

The relative importance of ²³⁴Th fluxes due to advection and diffusion were assessed here assuming steady state conditions, which assume negligible temporal ²³⁴Th variability. But how valid is this assumption in the Peruvian upwelling zone? Profiles of temperature and oxygen at repeat stations 458 and 508 showed that a lightly cooler and oxygen-depleted water

mass dominated at the upper 50 m at station 508 (Figure 5). However, an assessment of the ²³⁴Th fluxes at these two stations were not possible as the surface sample from station 508 was missing. Repeat stations 495 and 516 show substantial temporal variations in ²³⁴Th activities at each sampled depth in the top 200 m, while temperature and salinity profiles confirmed that similar water masses were sampled during both occupations (Figure 5). Particularly, the surface 234 Th deficit was more intense at St. 495 (234 Th/ 238 U = 0.44) compared to St. 516 $(^{234}\text{Th}/^{238}\text{U} = 0.73)$. Correspondingly, ^{234}Th fluxes decreased substantially from St. 495 to St. 516. At 100 m, the difference in 234 Th fluxes between these two stations was $\sim 30\%$ (3200 \pm 90 dpm m⁻² d⁻¹ at St. 495 and 2230 \pm 110 dpm m⁻² d⁻¹ at St. 516). At 200 m where ²³⁴Th resumed equilibrium with 238 U at both stations, 234 Th flux difference was ~ 25% (4510 ± 220 dpm m⁻² d⁻¹ at St. 495 and 3455 \pm 200 dpm m⁻² d⁻¹ at St. 516). Taking the non-steady state term in Eq. (1) into consideration (see details in Resplandy et al. (2012) and Savoye et al. (2006) for the derivation of flux formulation and error propagation) increased total ²³⁴Th at St. 516 by 40% to 3110 \pm 1870 dpm m⁻² d⁻¹ at 100 m (or 45% to 5040 \pm 2290 dpm m⁻² d⁻¹ at 200 m), which is indistinguishable within error from fluxes at St. 495. The large errors associated with the non-steady state calculation due to the short duration between station occupations prevent a meaningful application of this model in the current study (also see discussion in Resplandy et al. 2012). As estimation of the physical fluxes is independent of the models chosen between steady and non-steady states, the following results and discussion sections regarding physical effects on the ²³⁴Th flux estimates is based on the steady state model only.

372

373

374

375

376

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

3.4 Export fluxes of ²³⁴Th

Fluxes of ²³⁴Th due to radioactive production and decay (hereafter 'production flux'), upwelling, and vertical diffusion were reported in Table 1 and Figure 6 for both depths 5-20 m below the ML and at 100 m. The production fluxes of ²³⁴Th at 5-20 m below the ML

ranged from 560 dpm m⁻² d⁻¹ to 1880 dpm m⁻² d⁻¹, whereas at 100 m they were much higher at 850 dpm m⁻² d⁻¹ to 3370 dpm m⁻² d⁻¹. There is no discernable trend regarding the production fluxes between the shelf and offshore stations, similar to those seen along the eastern GP16 transect (Black et al. 2017).

Alongshore winds were unusually weak off Peru preceding and during our sampling campaign as a result of the 2017 coastal El Niño (Echevin et al., 2018; Lüdke et al., in review 2020; Peng et al., 2019), which resulted in nominal upwelling in the water column. At nearshore stations, upwelling rates at the base of the ML varied between 1.3×10^{-7} m s⁻¹ and 9.7×10^{-6} m s⁻¹, whereas upwelling rates at offshore stations were on the order of 10^{-10} m s⁻¹ to 10^{-8} m s⁻¹ and essentially negligible. As a result, upwelled 234 Th fluxes at 5-20 m below the ML were only significant at stations closest to shore; these stations were 428 (130 dpm m⁻² d⁻¹), 883-12 (80 dpm m⁻² d⁻¹) and 904-16 (280 dpm m⁻² d⁻¹) whose upwelled 234 Th fluxes accounted for 10%, 11% and 25% of the total 234 Th fluxes respectively (Figure 6). Upwelled 234 Th fluxes at the rest of the stations accounted for less than 2% of the total 234 Th fluxes (6% at stations 353 and 907-11) and were insignificant. At 100 m, both vertical 234 Th gradients and upwelling rates were significantly smaller compared to shallower depths. As a result, upwelled 234 Th fluxes were less than 70 dpm m⁻² d⁻¹, or less than 4% of total 234 Th fluxes.

Similarly, vertical diffusivities, shown as running mean over 20 m in Figure S1, were an order of magnitude higher at shallow stations $(3.2 \times 10^{-4} \pm 1.7 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}; 1\text{SD}, 27 \text{ m}$ to 100 m below sea surface) compared to those at deep stations $(1.7 \times 10^{-5} \pm 0.6 \times 10^{-5} \text{ m}^2 \text{ s}^{-1}; 1\text{SD}; 34 - 100 \text{ m}$ below sea surface). Within the upper 27 m to 33 m layer at offshore deep stations, vertical diffusivities decreased exponentially by an order of magnitude within a few meters; below this depth, vertical diffusivities remained relatively stable (Figure S1). This is not surprising as wind-driven turbulent is most significant at the ocean surface (Buckingham et al., 2019). In this study, the sampling depths immediately below the ML were generally 30

m and 60 m. A few high vertical diffusivity values around 30 m at deep stations were unlikely representative for the 30 m - 60 m water column layer. We thus opted to only apply vertical diffusivities below 33 m at deep stations. Relative standard errors (RSE) associated with diffusivity estimates varied from 35% to 55%. Vertical diffusive 234 Th fluxes at 5-20 m below the ML, determined using both vertical diffusivity and vertical 234 Th gradient, varied greatly amongst stations. At shallow stations 428, 458, and 883-12, vertical diffusive 234 Th fluxes made up 37% (490 dpm m⁻² d⁻¹), 14% (160 dpm m⁻² d⁻¹), and 21% (160 dpm m⁻² d⁻¹) of total 234 Th fluxes, respectively (Figure 6). At the rest of the stations, vertical diffusive 234 Th fluxes appeared to be insignificant, ranging between 1% and 10% in the total 234 Th flux budget. At 100 m, vertical diffusive 234 Th fluxes at station 428, 458, and 883-12 remained high at 390 dpm m⁻² d⁻¹, 150 dpm m⁻² d⁻¹, 120 dpm m⁻² d⁻¹, respectively, whereas those at the rest of the stations accounted for < 2% of the total 234 Th flux.

Horizontal advective and diffusive 234 Th fluxes were both very small. Average alongshore current velocities (Lüdke et al., in review 2020) for the top layer varied from 0.06 m s⁻¹ to 0.34 m s⁻¹. At the peripheral of a freshly-formed anticyclonic eddy (St. 915-1), alongshore current velocities could be as high as 0.53 m s⁻¹. Taking the mean alongshore velocity of 0.2 m s⁻¹ and the net difference in alongshore 234 Th gradient of 2 x 234 Th gradient of 2 x 234 Th flux at the top layer is 234 Th fluxes.

Horizontal diffusive ²³⁴Th flux was estimated using an average eddy diffusivity of 1000 m² s⁻¹ (see Methods section 2.3.3) and the alongshore ²³⁴Th gradient. A maximum value of 10 dpm m⁻² d⁻¹ was calculated, which accounted for <1% of total ²³⁴Th flux at all stations. Note that the horizontal advective and lateral diffusive fluxes presented here are a rough estimate and should only provide an idea of their order of magnitude. Due to the uncertainty inherent to the estimates, we refrain from adding these values to Table 1.

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

4. Discussion

4.1 Lack of linear ²³⁸U – salinity correlation in the Peruvian OMZ

The water column profiles of ²³⁸U in the Peruvian OMZ (Figure 2) are similar to those seen in the open ocean (see compilations in Owens et al., 2011 and Van Der Loeff et al. (2006), and references therein). It thus appears that water column suboxic/anoxic conditions alone is not sufficient to remove U, in contrast to sedimentary U studies underlying low oxygen waters where soluble U(VI) diffused downward into subsurface sediments and reduced to insoluble U(IV) (Anderson et al., 1989; Böning et al., 2004; Scholz et al., 2011). Our inference is in accord with water column ²³⁸U studies in intense OMZs in the eastern tropical North Pacific (Nameroff et al., 2002) and the Arabian Sea (Rengarajan et al., 2003), where ²³⁸U concentrations remain constant over the entire upper water column studied. Dissolved ²³⁸U and salinity across the entire Peruvian OMZ displayed poor linear correlation regardless of seawater oxygen concentrations (Figure 7a-b). The general consensus is that U behaves conservatively in oxic seawater in the open ocean and early observations have shown that ²³⁸U activities can be calculated from salinity based on a simple linear correlation between the two (e.g. Chen et al., 1986; Ku et al., 1977). Compilations in Van Der Loeff et al. (2006) and Owens et al. (2011) further demonstrated that the majority of uranium data points in the global seawater dataset follow a linear correlation with seawater salinity. The ²³⁸U-salinity formulations from either Chen et al. (1986) or Owens et al. (2011) are thus generally appropriate for open ocean conditions and have been widely used in ²³⁴Th flux studies. However, this linear ²³⁸U-salinity correlation breaks down in the Peruvian OMZ. Furthermore, the measured ²³⁸U activities in this study correlated poorly with those calculated from salinity using the Owens formulation regardless of water column oxygen concentrations

(Table S2, Figure 7c), with the former significantly higher than the projected values and

differences up to 10%. Both evidences suggested that non-conservative processes have introduced significant amount of dissolved U into the water column.

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

It is likely that this poor ²³⁸U-salinity correlation in the water column is not a unique feature off the coast of Peru. Poor correlations between dissolved ²³⁸U and salinity have been previously observed in open ocean settings such as the Arabian Sea (Rengarajan et al., 2003) and the Pacific Ocean (Ku et al., 1977), and shelf-estuary systems such as the Amazon shelf (McKee et al., 1987; Swarzenski et al., 2004). It is possible that the narrow range of salinity within any single ocean basin precludes a meaningful ²³⁸U-salinity correlation (Ku et al., 1977; Owens et al., 2011). For the Peruvian shelf system, two possible scenarios may further explain the lack of linear ²³⁸U-salinity correlation in the water column. Firstly, authigenic U within the sediments may be remobilized under ENSO-related oxygenation events. In reducing pore water, U reduction and removal from pore water is usually seen within the Fe reduction zone (Barnes and Cochran, 1990; Barnes and Cochran, 1991; Scholz et al., 2011). As such, a downward diffusive flux of U across the water-sediment interface is expected in reducing sedimentary environment. However, pore water and bottom water geochemistry measurements during two previous cruises (M77-1 and M77-2) along an 11°S transect off Peru showed large diffusive fluxes of U out of the Peruvian shelf sediments despite that both Fe reduction and U reduction took place in the top centimeters of sediments (Scholz et al., 2011). It was suggested that a minute increase in bottom water oxygen concentration induced by El Niño events would be sufficient in shifting the U(VI)/U(IV) boundary by a few centimeters and remobilize authigenic U (Scholz et al., 2011). Preceding and during our sampling campaign, a coastal El Niño event, with coastal precipitation as strong as the 1997-98 El Niño event, had developed rapidly and unexpectedly in January, and disappeared by May 2017 during cruise M136 (Echevin et al., 2018; Garreaud, 2018; Peng et al., 2019). This strong coastal El Niño event could induce an oxygenation event large enough to remobilized

authigenic U along the Peruvian shelf. Secondly, resuspension of bottom sediments and subsequent desorption of U from ferric-oxyhydroxides could affect the ²³⁸U-salinity relationship, similar to that seen on the Amazon shelf at salinity above 10 (McKee et al., 1987) and in laboratory experiments (Barnes and Cochran, 1993). Fe reduction and release from the Peruvian shelf sediments (Noffke et al., 2012; Scholz et al., 2014) could release additional U to overlying waters. The magnitude of such, however, has not been quantified.

The consequence of the notable difference between measured ²³⁸U in this study and salinity-based ²³⁸U to ²³⁴Th flux according to Eq. (2) is neither linear nor straightforward, because the vertical gradients of both ²³⁸U and ²³⁴Th strongly affects the impacts of ²³⁸U variations on ²³⁴Th fluxes. In this study, ²³⁴Th fluxes at 100 m derived from salinity-based ²³⁸U lead to significant underestimation of ²³⁴Th fluxes by an average of 20% and as high as 40% (Table 2). These differences in ²³⁴Th fluxes will have direct consequences for ²³⁴Th derived elemental fluxes such as C, N, P and trace metals. It is thus important to note that U concentrations in coastal systems are highly sensitive to bottom water oxygen concentrations and redox-related U addition, variability of which is expected to intensify with future climate change (Shepherd et al., 2017). Relatively minor variations in dissolved ²³⁸U could account for substantial overestimation/underestimation of the depth-integrated ²³⁴Th fluxes. We thus encourage future ²³⁴Th flux studies in such environments to include seawater ²³⁸U analysis.

4.2 Dynamic advective and diffusive ²³⁴Th fluxes

The significance of advection and diffusion in the total ²³⁴Th flux budget highly depends on the upwelling rate, current velocity, vertical diffusivity, and ²³⁴Th gradient on the horizontal and vertical directions. Our results demonstrated that physical processes off Peru during and post the 2017 coastal El Niño have very limited impact on the downward fluxes of ²³⁴Th (Figure 6).

Our findings are in reasonable agreement with those from the GEOTRACES GP16 eastern section along 12°S from Peru to Tahiti, in which Black et al. (2018) quantified both horizontal and vertical advective ²³⁴Th fluxes. Horizontal advective fluxes for the upper 30 m water column estimated during GP16 were ~180 dpm m⁻² d⁻¹ for all nearshore and offshore stations, similar in magnitude to those estimated in our study (~50 dpm m⁻² d⁻¹). Upwelling fluxes along GP16 eastern section was suggested to account for 50% to 80% of total ²³⁴Th fluxes at the base of the euphotic zone (Black et al., 2018), a depth similar to or slightly deeper than ML depths in the current study where upwelling fluxes accounted for less than 25% of total ²³⁴Th fluxes). Total ²³⁴Th fluxes along the GP16 eastern section, ranging from 4000 to 5000 dpm m⁻² d⁻¹ at the base of the euphotic zone, were much higher than those in our study (560 to 1900 dpm m⁻² d⁻¹ 5-20 m below the ML). This difference could be related to the period of sampling (austral autumn and winter 2017 in our study vs. austral spring 2013 for the GP16 section). We note that the estimated vertical mixing rates based on ⁷Be isotope at the base of the euphotic zone along the GP16 section (Kadko, 2017) were at least an order of magnitude higher than the upwelling rates at the base of the ML at nearby stations in our study. This difference could stem from different methods used to estimate upwelling rates at different timescales, and may also reflect the dynamic upwelling system off Peru in which upwelling rates vary greatly seasonally and interannually. During cruises M136 and M138, upwelling favorable easterly winds off Peru were weak, resulting in negligible coastal upwelling. Coastal upwelling in the same general area was also suggested to be negligible in austral summer 2013 during cruise M92 due to nominal surface wind stress (Thomsen et al., 2016). Results from studies conducted in the same year (October to December 2013, Kadko, 2017; December 2012, Steinfeldt et al., 2015; January 2013, Thomsen et al., 2016) indicate that seasonal upwelling rates vary drastically in the Peruvian upwelling zone. The seasonal dynamics of coastal upwelling off Peru are similar to those seen in the Arabian Sea, where large upwelled ²³⁴Th fluxes only occurred during mid-late southwest monsoon at stations

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

close to shore (Buesseler et al., 1998). Our findings lend further support to earlier studies that advection and diffusion are seasonally important for ²³⁴Th fluxes in regions with high upwelling velocities and diffusivities such as the equatorial Pacific (Bacon et al., 1996; Buesseler et al., 1995; Dunne and Murray, 1999) and coastal sites such as the Arabian Sea (Buesseler et al., 1998) and offshore Peru (Black et al., 2018; this study).

4.3 Residence time of ²³⁴Th in the Peruvian OMZ

The residence time calculated using equation (6) was based on a simplified one-dimension (1D) model of Zimmerman (1976). This 1D steady state model is obviously an oversimplification of a multi-dimensional process, it however provides a good first order estimate for understanding the highly dynamic nature of the ²³⁴Th residence time. It also provides a reasonable value that can be directly compared to values estimated in earlier ²³⁴Th flux studies that did not consider the physical processes. Furthermore, we showed in the Discussion (sections 4.2) that physical processes, namely upwelling and vertical diffusion, are only important at a few shelf stations. We thus consider this simple 1D model robust in estimating the residence time of total ²³⁴Th.

In this study, residence time of total 234 Th in the top layer varied from 20 days at shallow stations to 95 days at deep stations (mean $\tau = 51 \pm 23$ days, 1SD, n = 24; Table 3). These values were similar to those estimated within the California Current (Coale and Bruland, 1985) and the residence times of particulate organic carbon (POC) and nitrogen (PON) (Murray et al., 1989), but were much longer than predicted in nearshore shelf waters where residence times of total 234 Th were on the order of a few days (Kaufman et al., 1981; Kim et al., 1999; and references therein). The longer residence times estimated in our study could reflect a combination of weak surface 234 Th deficits (234 Th = 0.63 to 1.82 dpm L⁻¹) (Figure 3) and low export fluxes (800 to 2000 dpm m⁻² d⁻¹, Figure 7). Nearshore seawater

samples during GP16 (Black et al., 2018) featured similar surface 234 Th deficits (234 Th = 0.63 to 1.33 dpm L⁻¹) but much higher downward 234 Th fluxes (4000 to 5000 dpm m⁻² d⁻¹) as a result of strong upwelling, implying that residence times of total 234 Th in the Peruvian OMZ during GP16 occupation would be 3 – 6 times shorter. Indeed, a quick re-assessment of the GP16 data predicted a shorter residence time of total 234 Th of 5 – 23 days within the euphotic zone of the coastal Peruvian OMZ.

These temporal variations on the residence times of total ²³⁴Th have important implications for the estimation of POC fluxes and quantification of carbon export efficiency. Firstly, seasonal changes in Th residence times reflect variations in particle removal over different integrated timescales. For example, POC produced in surface waters during GP16 (austral spring 2013) (Black et al., 2018) would have been exported out of the euphotic zone 3-6 times faster than it did during austral autumn 2017 (this study). Secondly, to properly evaluate carbon export efficiency, surface net primary production (NPP) should be averaged over a similar timescale as the residence time of total ²³⁴Th during station occupation. Applying a 16-day averaged NPP for export efficiency estimate (Black et al., 2018; Henson et al., 2011) would likely not be appropriate in the current study in which total ²³⁴Th fluxes integrated timescales of several weeks. ²³⁴Th residence times should thus be properly quantified in coastal studies before deriving export efficiencies over varying NPP integration timescales.

5. Conclusions and implications for coastal ²³⁴Th flux studies

Advection and diffusion are important in coastal and upwelling regions with respect to ²³⁴Th export fluxes (Bacon et al., 1996; Buesseler et al., 1995; Dunne and Murray, 1999; Buesseler et al., 1998). Our findings show that their significance is subject to the seasonal variability of the current and upwelling velocities, diffusivities and ²³⁴Th gradients, and

should be evaluated on a case-to-case basis. Advective fluxes are perhaps the most straightforward to estimate as current velocities can be obtained routinely from shipboard ADCP measurements and upwelling rates calculated from satellite wind stress (Steinfeldt et al., 2015; Bacon et al., 1996). Horizontal and vertical velocities derived from general ocean circulation models also provide a good first order estimate for advective ²³⁴Th fluxes; this approach has been successfully demonstrated in a few studies (Buesseler et al., 1995; Buesseler et al., 1998). In addition, the anthropogenic SF₆ tracer and radium isotopes, widely used to quantify nutrient and Fe fluxes (Charette et al., 2007; Law et al., 2001), as well as ⁷Be isotope (Kadko, 2017), could be used independently to constrain horizontal and vertical exchange rates of ²³⁴Th (Morris et al., 2007; Charette et al., 2007; Buesseler et al., 2005). When in situ microstructure measurements are available (this study), vertical diffusivity can be directly calculated to estimate the vertical diffusive ²³⁴Th fluxes. Yet, microstructure analysis is not a routine measurement on oceanographic cruises. Earlier studies in the equatorial Pacific and the Gulf of Maine have shown that general ocean circulation models and a simple assumption on dissipation coefficients could provide a robust estimate on vertical and horizontal diffusivities (Benitez-Nelson et al., 2000; Gustafsson et al., 1998; Charette et al., 2001). Therefore, the calculation of physical fluxes is possible, though challenging, and ²³⁴Th fluxes due to physical processes should be carefully considered when conducting research in a coastal and upwelling systems.

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

A striking finding in this study is that the assumption of a linear ²³⁸U-salinity correlation could lead to one of the largest errors in ²³⁴Th flux estimates. In our study, using the salinity-based ²³⁸U activities resulted in significant underestimation of total ²³⁴Th fluxes by as much as 40%. Because the translation of ²³⁸U activities to ²³⁴Th fluxes is not linear, larger differences between measured and salinity-based ²³⁸U do not necessarily contribute to greater overestimation or underestimation of ²³⁴Th fluxes. For example, moderate difference of 3-6%

in ²³⁸U throughout the upper 100 m at station 898 lead to 40% difference in final ²³⁴Th flux, while a 5-9% difference in ²³⁸U at station 906 only resulted in 16% ²³⁴Th flux difference (Table 2, S2). We would thus stress the importance of ²³⁸U measurements in future ²³⁴Th flux studies particularly in coastal and shelf regions.

Finally, our study showed that the residence times of total ²³⁴Th in the Peruvian nearshore waters varied seasonally. Tropical OMZs are important hotspots for carbon sequestration from the atmosphere and enhanced sedimentary carbon preservation (Arthur et al., 1998; Suess et al., 1987). These OMZs are projected to intensify as a result of future climate change (Keeling and Garcia, 2002; Schmidtko et al., 2017; Stramma et al., 2008). Future studies should take into consideration the large temporal variations of the residence times of total ²³⁴Th in order to properly evaluates how carbon biogeochemical cycles and carbon export efficiency in these OMZs will respond to continuing ocean deoxygenation,

Data availability

Data are available in supplementary tables and archived at https://doi.org/10.1594/PANGAEA.921917 (Xie et al., 2020).

Author contribution

RCX, FACLM and EAP designed the study. RCX carried out sampling, on-board beta counting of ²³⁴Th, and drafted the manuscript. IR conducted ²³⁴Th and ²³⁸U analyses at home laboratory. JL computed current velocities and vertical diffusivities respectively from VmADCP and microstructure profiler data. All co-authors had a chance to review the manuscript and contributed to discussion and interpretation of the data presented.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgements

We thank the crew and science party on board M136 and M138 for their help in sample collection and instrument operation. Thank you to SiaoJean Ko, Dominik Jasinski, André Mutzberg and Mario Esposito for their laboratory assistance. We thank two anonymous reviewers and the associate editor, Marilaure Grégoire, for their constructive comments. The project, cruises, IR, JL and RCX were funded by the German SFB 754 program ('Climate-Biogeochemistry Interactions in the Tropical Ocean'), RCX additionally by a DFG research grant (project number 432469432), and FACLM by a DFG Fellowship of the Excellence Cluster "The Future Ocean" (CP1403). This manuscript benefited from stimulating discussions at the BIARRITZ ('bridging international activity and related research into the twilight zone') workshop held in Southampton, UK in 2019.

641 642	References
643	Abernathey, R. P., and Marshall, J.: Global surface eddy diffusivities derived from satellite
644	altimetry, Journal of Geophysical Research: Oceans, 118, 901-916,
645	https://doi.org/10.1002/jgrc.20066, 2013.
646	Anderson, R. F., Fleisher, M. Q., and LeHuray, A. P.: Concentration, oxidation state, and
647	particulate flux of uranium in the Black Sea, Geochimica et Cosmochimica Acta, 53, 2215-
648	2224, https://doi.org/10.1016/0016-7037(89)90345-1, 1989.
649	Arthur, M. A., Dean, W. E., and Laarkamp, K.: Organic carbon accumulation and
650	preservation in surface sediments on the Peru margin, Chemical Geology, 152, 273-286,
651	https://doi.org/10.1016/S0009-2541(98)00120-X, 1998.
652	Bacon, M., Cochran, J., Hirschberg, D., Hammar, T., and Fleer, A.: Export flux of carbon at
653	the equator during the EqPac time-series cruises estimated from ²³⁴ Th measurements, Deep
654	Sea Research Part II: Topical Studies in Oceanography, 43, 1133-1153,
655	https://doi.org/10.1016/0967-0645(96)00016-1, 1996.
656	Barnes, C., and Cochran, J.: Uranium removal in oceanic sediments and the oceanic U
657	balance, Earth and Planetary Science Letters, 97, 94-101, https://doi.org/10.1016/0012-
658	821X(90)90101-3, 1990.
659	Barnes, C. E., and Cochran, J. K.: Geochemistry of uranium in Black Sea sediments, Deep
660	Sea Research Part A. Oceanographic Research Papers, 38, S1237-S1254,
661	https://doi.org/10.1016/S0198-0149(10)80032-9, 1991.
662	Barnes, C. E., and Cochran, J. K.: Uranium geochemistry in estuarine sediments: Controls or
663	removal and release processes, Geochimica et Cosmochimica Acta, 57, 555-569,
664	https://doi.org/10.1016/0016-7037(93)90367-6, 1993.
665	Benitez-Nelson, C. R., Buesseler, K. O., and Crossin, G.: Upper ocean carbon export,
666	horizontal transport, and vertical eddy diffusivity in the southwestern Gulf of Maine,

- 667 Continental Shelf Research, 20, 707-736, https://doi.org/10.1016/S0278-4343(99)00093-X,
- 668 2000.
- Bentamy, A., and Croize-Fillon: Gridded surface wind fields from Metop/ASCAT
- 670 measurements, International Journal of Remote Sensing,
- 671 DOI:10.1080/01431161.2011.600348, 2010.
- Bewers, J., and Yeats, P.: Oceanic residence times of trace metals, Nature, 268, 595-598,
- 673 https://doi.org/10.1038/268595a0, 1977.
- Bhat, S., Krishnaswamy, S., Lal, D., and Moore, W.: ²³⁴Th/²³⁸U ratios in the ocean, Earth and
- Planetary Science Letters, 5, 483-491, https://doi.org/10.1016/S0012-821X(68)80083-4, 1968.
- Black, E. E., Buesseler, K. O., Pike, S. M., and Lam, P. J.: ²³⁴Th as a tracer of particulate
- export and remineralization in the southeastern tropical Pacific, Marine Chemistry, 201, 35-
- 678 50, https://doi.org/10.1016/j.marchem.2017.06.009, 2018.
- Black, E. E., Lam, P. J., Lee, J. M., and Buesseler, K. O.: Insights From the ²³⁸U ²³⁴Th
- Method Into the Coupling of Biological Export and the Cycling of Cadmium, Cobalt, and
- Manganese in the Southeast Pacific Ocean, Global Biogeochemical Cycles, 33, 15-36,
- 682 https://doi.org/10.1029/2018GB005985, 2019.
- Böning, P., Brumsack, H.-J., Böttcher, M. E., Schnetger, B., Kriete, C., Kallmeyer, J., and
- Borchers, S. L.: Geochemistry of Peruvian near-surface sediments, Geochimica et
- 685 Cosmochimica Acta, 68, 4429-4451, https://doi.org/10.1016/j.gca.2004.04.027, 2004.
- Buckingham, C. E., Lucas, N. S., Belcher, S. E., Rippeth, T. P., Grant, A. L. M., Le Sommer,
- J., Ajayi, A. O., and Naveira Garabato, A. C.: The Contribution of Surface and Submesoscale
- Processes to Turbulence in the Open Ocean Surface Boundary Layer, Journal of Advances in
- Modeling Earth Systems, 11, 4066-4094, https://doi.org/10.1029/2019MS001801, 2019.
- Buesseler, K., Ball, L., Andrews, J., Benitez-Nelson, C., Belastock, R., Chai, F., and Chao,
- Y:: Upper ocean export of particulate organic carbon in the Arabian Sea derived from

- thorium-234, Deep Sea Research Part II: Topical Studies in Oceanography, 45, 2461-2487,
- 693 https://doi.org/10.1016/S0967-0645(98)80022-2, 1998.
- Buesseler, K. O., Bacon, M. P., Cochran, J. K., and Livingston, H. D.: Carbon and nitrogen
- export during the JGOFS North Atlantic Bloom Experiment estimated from ²³⁴Th: ²³⁸U
- disequilibria, Deep Sea Research Part A. Oceanographic Research Papers, 39, 1115-1137,
- 697 https://doi.org/10.1016/0198-0149(92)90060-7, 1992.
- Buesseler, K. O., Andrews, J. A., Hartman, M. C., Belastock, R., and Chai, F.: Regional
- estimates of the export flux of particulate organic carbon derived from thorium-234 during the
- JGOFS EqPac program, Deep Sea Research Part II: Topical Studies in Oceanography, 42,
- 701 777-804, https://doi.org/10.1016/0967-0645(95)00043-P, 1995.
- Buesseler, K. O., Andrews, J., Pike, S. M., Charette, M. A., Goldson, L. E., Brzezinski, M. A.,
- and Lance, V.: Particle export during the southern ocean iron experiment (SOFeX),
- Total Limnology and Oceanography, 50, 311-327, https://doi.org/10.4319/lo.2005.50.1.0311, 2005.
- Buesseler, K. O., Benitez-Nelson, C. R., Moran, S., Burd, A., Charette, M., Cochran, J. K.,
- 706 Coppola, L., Fisher, N., Fowler, S., and Gardner, W.: An assessment of particulate organic
- carbon to thorium-234 ratios in the ocean and their impact on the application of ²³⁴Th as a
- 708 POC flux proxy, Marine Chemistry, 100, 213-233,
- 709 <u>https://doi.org/10.1016/j.marchem.2005.10.013</u>, 2006.
- Buesseler, K. O., and Boyd, P. W.: Shedding light on processes that control particle export
- and flux attenuation in the twilight zone of the open ocean, Limnology and Oceanography, 54,
- 712 1210-1232, https://doi.org/10.4319/lo.2009.54.4.1210, 2009.
- 713 Cai, P., Chen, W., Dai, M., Wan, Z., Wang, D., Li, Q., Tang, T., and Lv, D.: A high -
- resolution study of particle export in the southern South China Sea based on ²³⁴Th: ²³⁸U
- 715 disequilibrium, Journal of Geophysical Research: Oceans, 113,
- 716 https://doi.org/10.1029/2007JC004268, 2008.

- 717 Charette, M. A., Moran, S. B., Pike, S. M., and Smith, J. N.: Investigating the carbon cycle in
- 718 the Gulf of Maine using the natural tracer thorium 234, Journal of Geophysical Research:
- 719 Oceans, 106, 11553-11579, https://doi.org/10.1029/1999JC000277, 2001.
- 720 Charette, M. A., Gonneea, M. E., Morris, P. J., Statham, P., Fones, G., Planquette, H., Salter,
- 721 I., and Garabato, A. N.: Radium isotopes as tracers of iron sources fueling a Southern Ocean
- phytoplankton bloom, Deep Sea Research Part II: Topical Studies in Oceanography, 54, 1989-
- 723 1998, https://doi.org/10.1016/j.dsr2.2007.06.003, 2007.
- Chen, J., Edwards, R. L., and Wasserburg, G. J.: ²³⁸U, ²³⁴U and ²³²Th in seawater, Earth and
- 725 Planetary Science Letters, 80, 241-251, https://doi.org/10.1016/0012-821X(86)90108-1, 1986.
- Coale, K. H., and Bruland, K. W.: ²³⁴Th: ²³⁸U disequilibria within the California Current 1,
- 727 Limnology and Oceanography, 30, 22-33, https://doi.org/10.4319/lo.1985.30.1.0022, 1985.
- Coale, K. H., and Bruland, K. W.: Oceanic stratified euphotic zone as elucidated by ²³⁴Th:
- 729 ²³⁸U disequilibria 1, Limnology and Oceanography, 32, 189-200,
- 730 https://doi.org/10.4319/lo.1987.32.1.0189, 1987.
- 731 Cochran, J., and Masqué, P.: Short-lived U/Th series radionuclides in the ocean: tracers for
- scavenging rates, export fluxes and particle dynamics, Reviews in Mineralogy and
- 733 geochemistry, 52, 461-492, https://doi.org/10.2113/0520461, 2003.
- Dengler, M., and Sommer, S.: Coupled benthic and pelagic oxygen, nutrient and trace metal
- cycling, ventilation and carbon degradation in the oxygen minimum zone of the Peruvian
- 736 continental margin (SFB 754): Cruise No. M 136 11.04.–03.05. 2017 Callao (Peru)–Callao
- 737 Solute-Flux Peru I, METEOR-Berichte, DOI: 10.3289/CR_M136, 2017, 2017.
- Dunne, J. P., and Murray, J. W.: Sensitivity of ²³⁴Th export to physical processes in the
- central equatorial Pacific, Deep Sea Research Part I: Oceanographic Research Papers, 46,
- 740 831-854, https://doi.org/10.1016/S0967-0637(98)00098-3, 1999.

- 741 Echevin, V. M., Colas, F., Espinoza-Morriberon, D., Anculle, T., Vasquez, L., and Gutierrez,
- D.: Forcings and evolution of the 2017 coastal El Niño off Northern Peru and Ecuador,
- 743 Frontiers in Marine Science, 5, 367, https://doi.org/10.3389/fmars.2018.00367, 2018.
- Fischer, J., Brandt, P., Dengler, M., Müller, M., and Symonds, D.: Surveying the upper ocean
- with the Ocean Surveyor: a new phased array Doppler current profiler, Journal of
- Atmospheric and Oceanic Technology, 20, 742-751, https://doi.org/10.1175/1520-
- 747 <u>0426(2003)20</u><742:STUOWT>2.0.CO;2, 2003.
- Garreaud, R. D.: A plausible atmospheric trigger for the 2017 coastal El Niño, International
- Journal of Climatology, 38, e1296-e1302, https://doi.org/10.1002/joc.5426, 2018.
- 750 Gregg, M., D'Asaro, E., Riley, J., and Kunze, E.: Mixing efficiency in the ocean, Annual
- 751 review of marine science, 10, 443-473, DOI: 10.1146/annurev-marine-121916-063643, 2018.
- Gustafsson, Ö., Buesseler, K. O., Rockwell Geyer, W., Bradley Moran, S., and Gschwend, P.
- 753 M.: An assessment of the relative importance of horizontal and vertical transport of particle-
- reactive chemicals in the coastal ocean, Continental Shelf Research, 18, 805-829,
- 755 <u>https://doi.org/10.1016/S0278-4343(98)00015-6</u>, 1998.
- Hahn, J., Brandt, P., Greatbatch, R. J., Krahmann, G., and Körtzinger, A.: Oxygen variance
- and meridional oxygen supply in the Tropical North East Atlantic oxygen minimum zone,
- 758 Climate dynamics, 43, 2999-3024, https://doi.org/10.1007/s00382-014-2065-0, 2014.
- Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., and Quartly, G. D.: A
- reduced estimate of the strength of the ocean's biological carbon pump, Geophysical Research
- 761 Letters, 38, DOI: 10.1029/2011gl046735, 2011.
- Kadko, D.: Upwelling and primary production during the US GEOTRACES East Pacific
- 763 Zonal Transect, Global Biogeochemical Cycles, 31, 218-232,
- 764 https://doi.org/10.1002/2016GB005554, 2017.

- Kaufman, A., Li, Y.-H., and Turekian, K. K.: The removal rates of ²³⁴Th and ²²⁸Th from
- waters of the New York Bight, Earth and Planetary Science Letters, 54, 385-392,
- 767 https://doi.org/10.1016/0012-821X(81)90054-6, 1981.
- Keeling, R. F., and Garcia, H. E.: The change in oceanic O₂ inventory associated with recent
- 769 global warming, Proceedings of the National Academy of Sciences, 99, 7848-7853, DOI:
- 770 10.1073/pnas.122154899, 2002.
- Kim, G., Hussain, N., and Church, T. M.: How accurate are the ²³⁴Th based particulate
- residence times in the ocean?, Geophysical research letters, 26, 619-622,
- 773 https://doi.org/10.1029/1999GL900037, 1999.
- Ku, T.-L., Knauss, K. G., and Mathieu, G. G.: Uranium in open ocean: concentration and
- isotopic composition, Deep Sea Research, 24, 1005-1017, https://doi.org/10.1016/0146-
- 776 6291(77)90571-9, 1977.
- Law, C., Martin, A., Liddicoat, M., Watson, A., Richards, K., and Woodward, E.: A
- Lagrangian SF6 tracer study of an anticyclonic eddy in the North Atlantic: Patch evolution,
- vertical mixing and nutrient supply to the mixed layer, Deep Sea Research Part II: Topical
- 780 Studies in Oceanography, 48, 705-724, https://doi.org/10.1016/S0967-0645(00)00112-0,
- 781 2001.
- Le Moigne, F. A. C., Henson, S. A., Sanders, R. J., and Madsen, E.: Global database of
- surface ocean particulate organic carbon export fluxes diagnosed from the ²³⁴Th technique,
- 784 Earth Syst. Sci. Data, 5, 295-304, https://doi.org/10.5194/essd-5-295-2013, 2013.
- Lee, C., Murray, D., Barber, R., Buesseler, K., Dymond, J., Hedges, J., Honjo, S., Manganini,
- S., Marra, J., and Moser, C.: Particulate organic carbon fluxes: compilation of results from the
- 1995 US JGOFS Arabian Sea process study: By the Arabian Sea carbon flux group, Deep Sea
- Research Part II: Topical Studies in Oceanography, 45, 2489-2501,
- 789 https://doi.org/10.1016/S0967-0645(98)00079-4, 1998.

- Lüdke, J., Dengler, M., Sommer, S., Clemens, D., Thomsen, S., Krahmann, G., Dale, A. W.,
- Achterberg, E. P., and Visbeck, M.: Influence of intraseasonal eastern boundary circulation
- variability on hydrography and biogeochemistry off Peru, Ocean Sci. Discuss., 2019, 1-31,
- 793 https://doi.org/10.5194/os-2019-93, in review 2020.
- McDougall, T., Feistel, R., Millero, F., Jackett, D., Wright, D., King, B., Marion, G., Chen,
- 795 C., Spitzer, P., and Seitz, S.: The International Thermodynamic Equation Of Seawater 2010
- 796 (TEOS-10): Calculation and Use of Thermodynamic Properties, Global Ship-based Repeat
- 797 Hydrography Manual, IOCCP Report No, 14, 2009.
- McKee, B. A., DeMaster, D. J., and Nittrouer, C. A.: Uranium geochemistry on the Amazon
- shelf: Evidence for uranium release from bottom sediments, Geochimica et Cosmochimica
- 800 Acta, 51, 2779-2786, https://doi.org/10.1016/0016-7037(87)90157-8, 1987.
- 801 Morris, P. J., Sanders, R., Turnewitsch, R., and Thomalla, S.: ²³⁴Th-derived particulate
- organic carbon export from an island-induced phytoplankton bloom in the Southern Ocean,
- Deep Sea Research Part II: Topical Studies in Oceanography, 54, 2208-2232,
- 804 https://doi.org/10.1016/j.dsr2.2007.06.002, 2007.
- Murray, J. W., Downs, J. N., Strom, S., Wei, C.-L., and Jannasch, H. W.: Nutrient
- assimilation, export production and ²³⁴Th scavenging in the eastern equatorial Pacific, Deep
- Sea Research Part A. Oceanographic Research Papers, 36, 1471-1489,
- 808 https://doi.org/10.1016/0198-0149(89)90052-6, 1989.
- Nameroff, T., Balistrieri, L., and Murray, J.: Suboxic trace metal geochemistry in the eastern
- 810 tropical North Pacific, Geochimica et Cosmochimica Acta, 66, 1139-1158,
- 811 https://doi.org/10.1016/S0016-7037(01)00843-2, 2002.
- Noffke, A., Hensen, C., Sommer, S., Scholz, F., Bohlen, L., Mosch, T., Graco, M., and
- Wallmann, K.: Benthic iron and phosphorus fluxes across the Peruvian oxygen minimum
- zone, Limnology and Oceanography, 57, 851-867, https://doi.org/10.4319/lo.2012.57.3.0851,
- 815 2012.

- 816 Osborn, T.: Estimates of the local rate of vertical diffusion from dissipation measurements,
- Journal of physical oceanography, 10, 83-89, https://doi.org/10.1175/1520-
- 818 0485(1980)010<0083:EOTLRO>2.0.CO;2, 1980.
- Owens, S., Buesseler, K., and Sims, K.: Re-evaluating the ²³⁸U-salinity relationship in
- seawater: Implications for the ²³⁸U–²³⁴Th disequilibrium method, Marine Chemistry, 127, 31-
- 39, https://doi.org/10.1016/j.marchem.2011.07.005, 2011.
- Owens, S. A., Pike, S., and Buesseler, K. O.: Thorium-234 as a tracer of particle dynamics
- and upper ocean export in the Atlantic Ocean, Deep Sea Research Part II: Topical Studies in
- Oceanography, 116, 42-59, http://dx.doi.org/10.1016/j.dsr2.2014.11.010, 2015.
- Peng, Q., Xie, S.-P., Wang, D., Zheng, X.-T., and Zhang, H.: Coupled ocean-atmosphere
- dynamics of the 2017 extreme coastal El Niño, Nature Communications, 10, 298, DOI:
- 827 10.1038/s41467-018-08258-8, 2019.
- Pike, S., Buesseler, K., Andrews, J., and Savoye, N.: Quantification of ²³⁴Th recovery in small
- volume sea water samples by inductively coupled plasma-mass spectrometry, Journal of
- 830 Radioanalytical and Nuclear Chemistry, 263, 355-360, https://doi.org/10.1007/s10967-005-
- 831 <u>0594-z</u>, 2005.
- Puigcorbé, V., Masqué, P., and Le Moigne, F. A. C.: Global database of ratios of particulate
- organic carbon to thorium-234 in the ocean: improving estimates of the biological carbon
- pump, Earth Syst. Sci. Data, 12, 1267-1285, DOI: 10.5194/essd-12-1267-2020, 2020.
- Rapp, I., Schlosser, C., Menzel Barraqueta, J. L., Wenzel, B., Lüdke, J., Scholten, J., Gasser,
- B., Reichert, P., Gledhill, M., Dengler, M., and Achterberg, E. P.: Controls on redox-sensitive
- trace metals in the Mauritanian oxygen minimum zone, Biogeosciences, 16, 4157-4182, DOI:
- 838 10.5194/bg-16-4157-2019, 2019.
- Rengarajan, R., Sarin, M., and Krishnaswami, S.: Uranium in the Arabian Sea: role of
- denitrification in controlling its distribution, Oceanologica acta, 26, 687-693,
- 841 <u>https://doi.org/10.1016/j.oceact.2003.05.001</u>, 2003.

- Resplandy, L., Martin, A. P., Le Moigne, F., Martin, P., Aquilina, A., Mémery, L., Lévy, M.,
- and Sanders, R.: How does dynamical spatial variability impact ²³⁴Th-derived estimates of
- organic export?, Deep Sea Research Part I: Oceanographic Research Papers, 68, 24-45,
- 845 https://doi.org/10.1016/j.dsr.2012.05.015, 2012.
- Roquet, F., Madec, G., McDougall, T. J., and Barker, P. M.: Accurate polynomial expressions
- for the density and specific volume of seawater using the TEOS-10 standard, Ocean
- 848 Modelling, 90, 29-43, https://doi.org/10.1016/j.ocemod.2015.04.002, 2015.
- Rosengard, S. Z., Lam, P. J., Balch, W. M., Auro, M. E., Pike, S., Drapeau, D., and Bowler,
- 850 B.: Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt,
- 851 DOI:10.5194/bg-12-3953-2015, 2015.
- Santschi, P., Murray, J. W., Baskaran, M., Benitez-Nelson, C. R., Guo, L., Hung, C.-C.,
- Lamborg, C., Moran, S., Passow, U., and Roy-Barman, M.: Thorium speciation in seawater,
- Marine Chemistry, 100, 250-268, https://doi.org/10.1016/j.marchem.2005.10.024, 2006.
- Savoye, N., Benitez-Nelson, C., Burd, A. B., Cochran, J. K., Charette, M., Buesseler, K. O.,
- Jackson, G. A., Roy-Barman, M., Schmidt, S., and Elskens, M.: ²³⁴Th sorption and export
- models in the water column: a review, Marine Chemistry, 100, 234-249,
- 858 https://doi.org/10.1016/j.marchem.2005.10.014, 2006.
- Schafstall, J., Dengler, M., Brandt, P., and Bange, H.: Tidal induced mixing and diapycnal
- nutrient fluxes in the Mauritanian upwelling region, Journal of Geophysical Research:
- 861 Oceans, 115, https://doi.org/10.1029/2009jc005940, 2010, 2010.
- Schmidt, S., and Reyss, J.: Uranium concentrations of Mediterranean seawater with high
- salinities, Comptes Rendus de l'Academie des Sciences. Serie 2, 312, 479-484, 1991.
- 864 Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic oxygen content
- during the past five decades, Nature, 542, 335, DOI: 10.1038/nature21399, 2017.
- Scholz, F., Hensen, C., Noffke, A., Rohde, A., Liebetrau, V., and Wallmann, K.: Early
- diagenesis of redox-sensitive trace metals in the Peru upwelling area-response to ENSO-

- related oxygen fluctuations in the water column, Geochimica et Cosmochimica Acta, 75,
- 869 7257-7276, DOI: 10.1016/j.gca.2011.08.007, 2011.
- Scholz, F., McManus, J., Mix, A. C., Hensen, C., and Schneider, R. R.: The impact of ocean
- deoxygenation on iron release from continental margin sediments, Nature Geosci, 7, 433-437,
- 872 https://doi.org/10.1038/ngeo2162, 2014.
- 873 Shepherd, J. G., Brewer, P. G., Oschlies, A., and Watson, A. J.: Ocean ventilation and
- deoxygenation in a warming world: introduction and overview, Philosophical Transactions of
- the Royal Society A: Mathematical, Physical and Engineering Sciences, 375, 20170240,
- 876 DOI:10.1098/rsta.2017.0240, 2017.
- 877 Smith, S. D.: Coefficients for sea surface wind stress, heat flux, and wind profiles as a
- function of wind speed and temperature, Journal of Geophysical Research: Oceans, 93,
- 879 15467-15472, https://doi.org/10.1029/JC093iC12p15467, 1988.
- Steinfeldt, R., Sültenfuß, J., Dengler, M., Fischer, T., and Rhein, M.: Coastal upwelling off
- Peru and Mauritania inferred from helium isotope disequilibrium, Biogeosciences, 12, 7519-
- 882 7533, https://doi.org/10.5194/bg-12-7519-2015, 2015.
- 883 Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding oxygen-minimum
- zones in the tropical oceans, science, 320, 655-658, DOI: 10.1126/science.1153847, 2008.
- 885 Suess, E., Kulm, L., and Killingley, J.: Coastal upwelling and a history of organic-rich
- mudstone deposition off Peru, Geological Society, London, Special Publications, 26, 181-197,
- https://doi.org/10.1144/GSL.SP.1987.026.01.11, 1987.
- 888 Swarzenski, P., Campbell, P., Porcelli, D., and McKee, B.: The estuarine chemistry and
- isotope systematics of ^{234,238}U in the Amazon and Fly Rivers, Continental Shelf Research, 24,
- 890 2357-2372, https://doi.org/10.1016/j.csr.2004.07.025, 2004.
- Thomsen, S., Kanzow, T., Krahmann, G., Greatbatch, R. J., Dengler, M., and Lavik, G.: The
- 892 formation of a subsurface anticyclonic eddy in the Peru Chile Undercurrent and its impact

- on the near coastal salinity, oxygen, and nutrient distributions, Journal of Geophysical
- 894 Research: Oceans, 121, 476-501, https://doi.org/10.1002/2015JC010878, 2016.
- Van Der Loeff, M. R., Sarin, M. M., Baskaran, M., Benitez-Nelson, C., Buesseler, K. O.,
- Charette, M., Dai, M., Gustafsson, Ö., Masque, P., and Morris, P. J.: A review of present
- techniques and methodological advances in analyzing ²³⁴Th in aquatic systems, Marine
- 898 Chemistry, 100, 190-212, https://doi.org/10.1016/j.marchem.2005.10.012, 2006.
- Waples, J. T., Benitez-Nelson, C., Savoye, N., van der Loeff, M. R., Baskaran, M., and
- 900 Gustafsson, Ö.: An introduction to the application and future use of ²³⁴Th in aquatic systems,
- 901 Marine Chemistry, 100, 166-189, https://doi.org/10.1016/j.marchem.2005.10.011, 2006.
- Weinstein, S. E., and Moran, S. B.: Vertical flux of particulate Al, Fe, Pb, and Ba from the
- 903 upper ocean estimated from ²³⁴Th/²³⁸U disequilibria, Deep Sea Research Part I:
- 904 Oceanographic Research Papers, 52, 1477-1488, https://doi.org/10.1016/j.dsr.2005.03.008,
- 905 2005.
- 306 Xie, R. C., Le Moigne, F. A. C., Rapp, I., Lüdke, J., Gasser, B., Degnler, M., Liebetrau, V.,
- and Achterberg, E. P.: Activities of total 234Th and dissolved 238U during cruises M136 and
- 908 M138 from the Peruvian Oxygen Minimum Zone., PANGAEA,
- 909 https://doi.org/10.1594/PANGAEA.921917, 2020.
- 210 Zhurbas, V., and Oh, I. S.: Drifter derived maps of lateral diffusivity in the Pacific and
- Atlantic oceans in relation to surface circulation patterns, Journal of Geophysical Research:
- 912 Oceans, 109, https://doi.org/10.1029/2003JC002241, 2004.
- 213 Zimmerman, J. T. F.: Mixing and flushing of tidal embayments in the western Dutch Wadden
- 914 Sea part I: Distribution of salinity and calculation of mixing time scales, Netherlands Journal
- of Sea Research, 10, 149-191, https://doi.org/10.1016/0077-7579(76)90013-2, 1976.

916

918 Figure captions919 Figure 1. Maps

Figure 1. Maps showing (a) locations of each station from M136 (white squares) and M138

(grey circles) and (B) monthly-averaged current field in the top 15 m from April 16 to May

921 15, 2017 derived from altimetry measurements (http://marine.copernicus.eu/; product ID:

MULTIOBS_GLO-PHY_REP_015_004). Color boxes in (a) schematically divide the four

shelf-offshore transects. Map (a) was created with Ocean Data View (Schlitzer, 2014). The

white box in (b) highlights our study area.

925

926

927

928

929

930

931

920

922

923

924

Figure 2. Profiles of ²³⁸U (black) and ²³⁴Th (orange squares – M136; orange circles – M138)

along with concentrations of oxygen (grey) and fluorescence (green). Profiles are organized

by cruises, transects, and distance to shore from left to right and top to bottom, indicated by

east (E) to west (W) arrows. Error bars for both ²³⁸U and ²³⁴Th are indicated. Red dashed lines

indicate the depth of the mixed layer. The start of the oxygen deficient zone is where oxygen

diminishes. Bottom depths are indicated for stations whose bottom depths are shallower than

932 600 m.

933

934

935

Figure 3. Shelf-offshore distributions of ²³⁴Th/²³⁸U along the four studied transects, as shown

in Figure 1, for M136 (left) and M138 (right). White dots denote station location.

936

937

Figure 4. Distributions of averaged ²³⁴Th activities during M136 (a, top 30 m) and M138 (b,

938 top 50 m).

939

Figure 5. Profiles of temperature (solid lines) and salinity (dashed lines) for (a) repeated stations 458 (purple) and 508 (yellow), and (d) 495 (blue) and 516 (orange); (b) and (c) respectively profiles for stations 458 and 508 of ²³⁸U (black), ²³⁴Th (color squares), and concentrations of oxygen (grey) and fluorescence (green). (e) and (f) respectively profiles for stations 495and 516 of ²³⁸U (black), ²³⁴Th (color squares), and concentrations of oxygen (grey) and fluorescence (green).

Figure 6. Bar charts of 234 Th fluxes due to production and decay (blue), upwelling (orange), and vertical diffusion (grey) for the depths at 5-20 m below the ML (top) and 100 m below sea surface (bottom). Color boxes corresponds to individual transects in Figure 1. Within each transect stations from west (offshore) to east (nearshore) are listed from left to right. Error bars (1SE) are indicated.

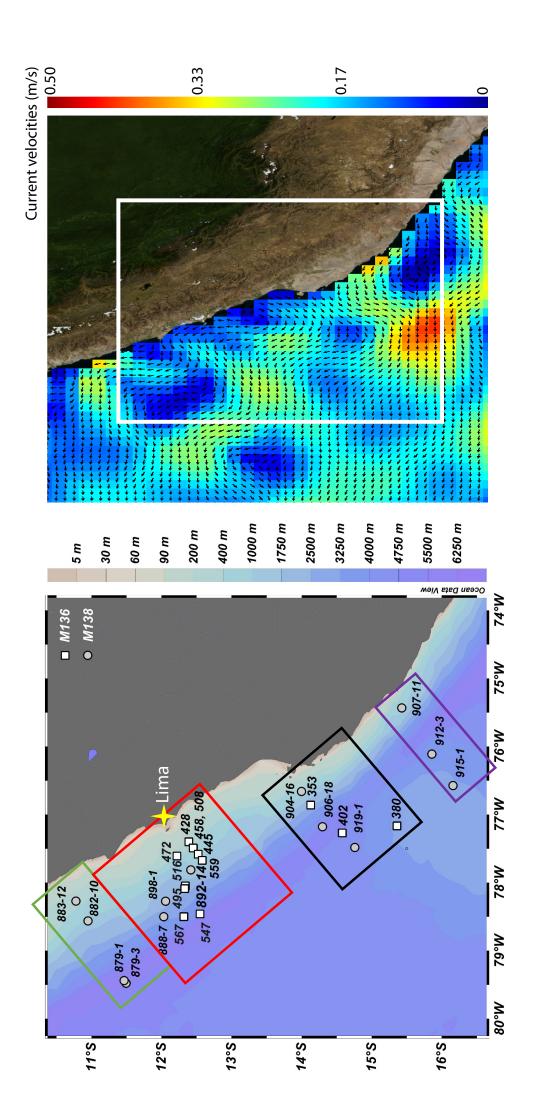
Figure 7. Cross plots of measured ²³⁸U activities vs. salinity for M136 (a) and M138 (b), showing poor linear relationship between ²³⁸U and salinity. (c) shows a direct comparison between measured and salinity-based ²³⁸U to further highlight the large difference between the two. The solid blue line indicates the 1:1 ratio between measured and projected ²³⁸U. Blue dashed lines indicate the ± errors reported in Owens et al. (2011). Error bars for measured ²³⁸U activities are smaller than symbols.

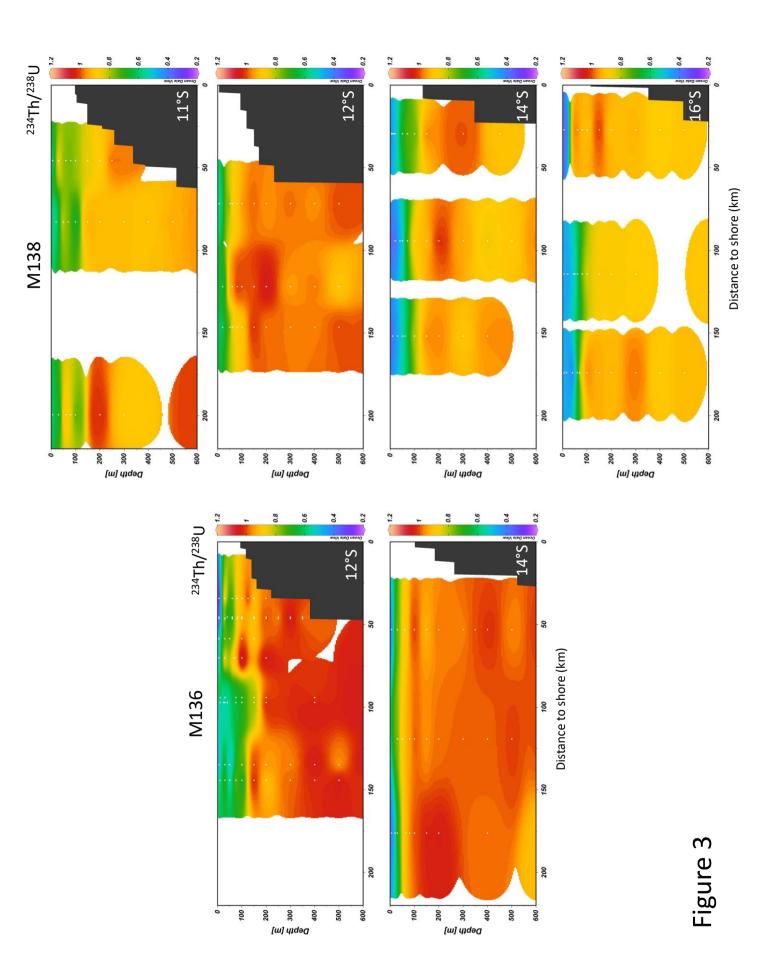
Table 1. 234 Th fluxes due to production and decay, upwelling and vertical diffusion below the mixed layer and at 100 m. Horizontal advective fluxes were not quantified at 100 m. Refer to text for details.

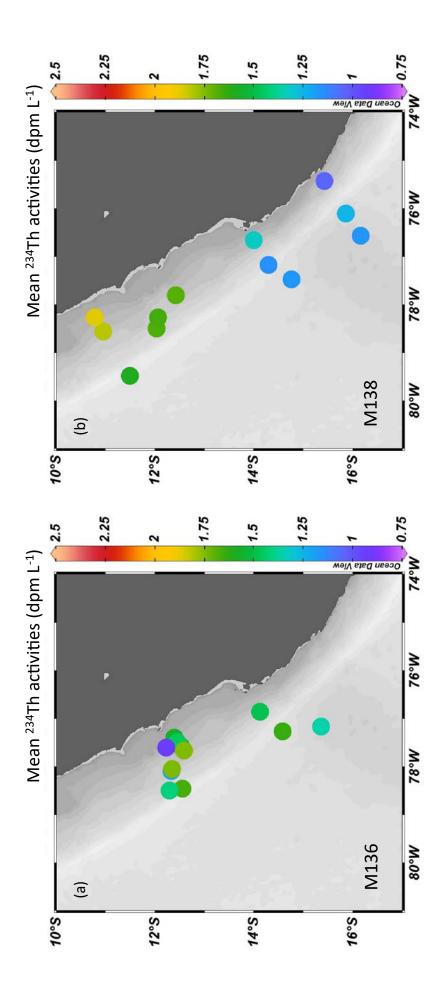
								23	²³⁴ Th flux at the base of the ML	base of the	ML			²³⁴ Th	²³⁴ Th flux at 100 m	_	
			Mixed	Upper													
			layer	oxycline	Maximum	Equilibrium	_	Production and	_				Production				
Cruise	Station Cast	Cast	depth	depth	fluorescence	depth	Depth	decay	Upwelling	Diffusion		1 SD	and decay	Upwelling	Diffusion	Final flux	1 SD
			Ε	٤	µg L⁻¹	Ε	٤	$dpm\;m^{\text{-2}}d^{\text{-1}}$	$dpm\;m^{\text{-2}}d^{\text{-1}}$	$\mathrm{dpm}\ \mathrm{m}^{\text{-2}}\ \mathrm{d}^{\text{-1}}$	$\mathrm{dpm}\ \mathrm{m}^{\text{-2}}\mathrm{d}^{\text{-1}}$	dpm m ⁻² d ⁻¹	dpm m ⁻² d ⁻¹	$dpm\ m^{\text{-2}}\ d^{\text{-1}}$	$\mathrm{dpm}\;\mathrm{m}^{\text{-2}}\mathrm{d}^{\text{-1}}$	dpm m ⁻² d ⁻¹	dpm m ⁻² d ⁻¹
M136	353	1	25	102	1.20	100	30	206	52	-36		69		-14	2	1410	189
M136	380	1	26	129	0.87	80	30	1145	0	-41	1105	54	1637	0	ᅻ	1637	132
M136	402	1	24	129	7.51	100	30	808	0	-75	732	64	1234	0	2	1236	111
M136	428	-	10	9/	4.11	30	30	983	-128	493	1348	129	1772	33	-390	1415	256
M136	445	-	17	64	2.07	100	30	820	-10	16	826	99	1621	53	9	1681	165
M136	458	-	5	55	1.61	100	30	1012	-18	161	1155	117	2101	-11	145	2235	238
M136	472	-	==	29	7.41	200	40	1887	15	-29	1872	77	3315	-12	63	3366	233
M136	495	-	18	20	1.13	200	30	1149	1	-19	1130	20	3195	2	5-	3192	68
M136	516	-	16	45	3.77	200	30	614	0	Н	615	49	2229	2	4	2227	109
M136	547	-	22	48	1.28	150	30	791	0	85	877	61	2510	0	-15	2495	118
M136	559	1	20	79	1.70	85	50	623	က	-67	559	117	854	4-	2	852	120
M136	267	-	21	50	2.40	150	30	1593	0	-23	1570	52	3011	0	-11	3000	98
M138	879	m	43	93	2.24	200	09	1249	0	-16	1266	91	1702	0	-ç-	1697	111
M138	882	10	39	211	2.68	150	20	1321	-7	16	1331	63	2264	19	-12	2272	82
M138	883	12	10	220	1.31	250	30	683	-84	-159	758	108	1782	31	-121	1692	179
M138	888	7	41	127	1.59	150	20	1364	0	-120	1244	62	1813	0	4	1809	98
M138	892	14	47	128	1.05	100	09	1395	33	-118	1309	72	1743	₆ -	1	1741	66
M138	868	1	38	101	1.42	09	20	1099	0	-19	1080	104	1091	0	0	1091	125
M138	904	16	12	72	3.63	150	70	812	275	0	1087	9/	2643	0	6-	2634	79
M138	906	18	32	81	1.73	200	40	1796	0	4	1799	41	3100	0	-1	3100	77
M138	907	11	31	100	1.29	09	09	1594	-88	13	1518	147	1787	29	-2	1853	140
M138	912	m	37	20	2.75	>600	20	1960	0	-79	1881	43	2975	0	κ'n	2972	78
M138	915	1	56	66	3.51	200	40	1628	0	22	1650	38	2752	0	0	2752	93
M138	919	1	19	79	4.46	150	30	1316	0	49	1365	32	3249	0	φ	3241	85

Table 2. Comparison of 234 Th fluxes at 100 m calculated with measured 238 U activities and those with salinity-based 238 U.

-	ies and thos		²³⁴ Th fluxes	at 100 m*	
Cruise	Station	Cast	measured	predicted	Difference
			dpm m ⁻² d ⁻¹	dpm m ⁻² d ⁻¹	%
M136	353	1	1422	1320	8
M136	380	1	1637	1304	26
M136	402	1	1234	865	43
M136	428	1	1772	1443	23
M136	445	1	1621	1365	19
M136	458	1	2101	1859	13
M136	472	1	3315	3073	8
M136	495	1	3195	3058	4
M136	516	1	2229	2140	4
M136	547	1	2510	2313	9
M136	559	1	854	751	14
M136	567	1	3011	2879	5
M138	879	3	1702	1515	12
M138	882	10	2264	1875	21
M138	883	12	1782	1352	32
M138	888	7	1813	1441	26
M138	892	14	1743	1257	39
M138	898	1	1091	770	42
M138	904	16	2643	2280	16
M138	906	18	3100	2673	16
M138	907	11	1787	1308	37
M138	912	3	2975	2572	16
M138	915	1	2752	2380	16
M138	919	1	3249	2862	14


 $^{^{\}ast}$ For comparison purposes, we only report here $^{234}\!\text{Th}$ fluxes due to radioactive production and decay.


Table 3. Residence time of total ²³⁴Th in the top layers of Peruvian OM7


OMZ.			224	
			Average 234Th in	
Cruise	Station	Cast	the top layer*	Residence time
			dpm L ⁻¹	days
M136	353	1	1.48	46
M136	380	1	1.35	35
M136	402	1	1.64	61
M136	428	1	1.57	35
M136	445	1	1.64	61
M136	458	1	1.45	38
M136	472	1	0.93	20
M136	495	1	1.20	31
M136	516	1	1.74	85
M136	547	1	1.67	63
M136	559	1	1.75	94
M136	567	1	1.41	45
M138	879	3	1.59	75
M138	882	10	1.81	69
M138	883	12	1.87	74
M138	888	7	1.68	67
M138	892	14	1.69	65
M138	898	1	1.66	92
M138	904	16	1.32	24
M138	906	18	1.15	25
M138	907	11	1.04	41
M138	912	3	1.25	33
M138	915	1	1.16	28
M138	919	1	1.17	26

 $^{^{\}ast}$ Here 'the top layer' refers to the top 30 m during M136 and top 50 m during M138.

Figure 1

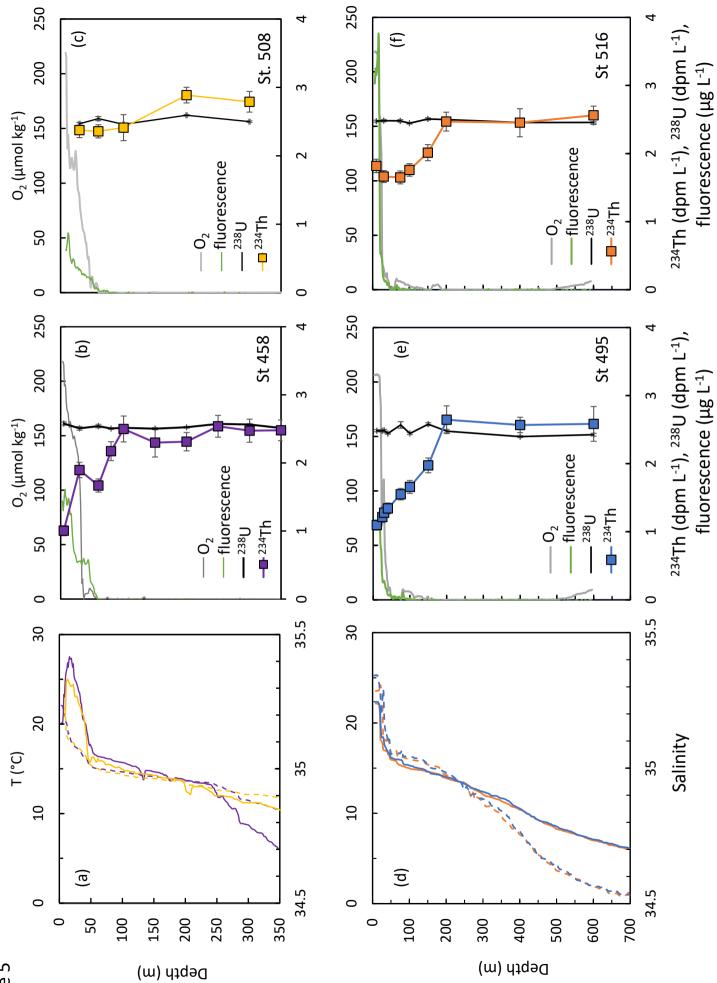
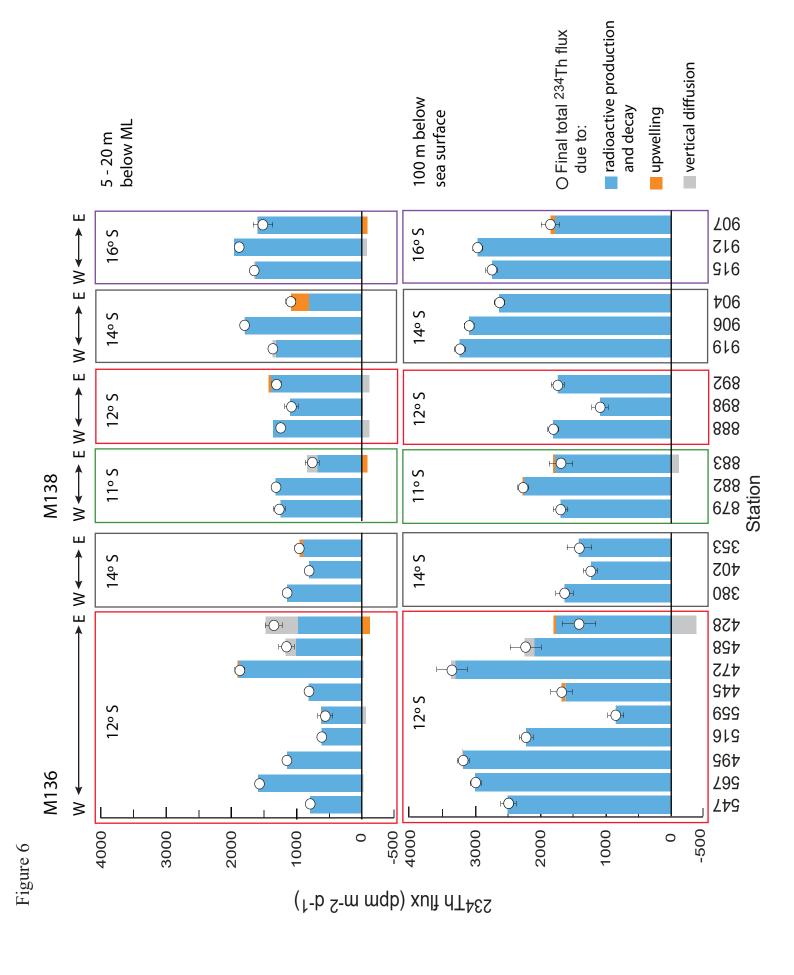



Figure 5

igure.