

6

- Effects of ²³⁸U variability and physical transport on water column
- 2 234Th downward fluxes in the coastal upwelling system off Peru
- 4 Ruifang C. Xie¹*, Frédéric A. C. Le Moigne², Insa Rapp¹, Jan Lüdke¹, Beat Gasser³, Marcus
- 5 Dengler¹, Volker Liebetrau¹, Eric P. Achterberg¹
- ¹GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel,
- 8 Germany
- 9 ²Mediterranean Institute of Oceanography (UM 110, MIO), CNRS, IRD, Aix Marseille
- 10 Université, Marseille, France
- ³IAEA Environment Laboratories, 4 Quai Antoine 1er, 98000 Monaco
- 12 Monaco

13

* corresponding author: rxie@geomar.de

Abstract

16 The eastern boundary region of the southeast Pacific Ocean hosts one of the world's most dynamic and productive upwelling systems with an associated oxygen minimum zone (OMZ). 17 The variability in downward export fluxes in this region, with strongly varying surface 18 19 productivity, upwelling intensities and water column oxygen content, is however poorly understood. Thorium-234 (234Th) is a powerful tracer to study the dynamics of export fluxes of 20 carbon and other elements, yet intense advection and diffusion in nearshore environments impact 21 the assessment of depth-integrated ²³⁴Th fluxes when not properly evaluated. Here we use ADCP 22 23 current velocities, satellite wind stress and in situ microstructure measurements to determine the magnitude of advective and diffusive fluxes over the entire ²³⁴Th flux budget at 25 stations from 24 11°S to 16°S in the Peruvian OMZ. Contrary to findings along the GEOTRACES P16 eastern 25 section, our results showed that weak surface wind stress during our cruises induced low 26 upwelling rates and minimal upwelling ²³⁴Th fluxes, whereas vertical diffusive ²³⁴Th fluxes were 27 important only at a few shallow shelf stations. Similarly, horizontal advective and diffusive ²³⁴Th 28 fluxes were negligible due to small alongshore ²³⁴Th gradients. Our data indicated a poor 29 correlation between seawater ²³⁸U activity and salinity. Assuming a linear relationship between 30 the two would lead to significant underestimations of the total ²³⁴Th flux by up to 40% in our 31 study. Proper evaluation of both physical transport and variability in ²³⁸U activity is thus crucial 32 in coastal ²³⁴Th flux studies. Finally, we showed large temporal variations on ²³⁴Th residence 33 times across the Peruvian upwelling zone, and cautioned future carbon export studies to take 34 35 these temporal changes into consideration while evaluating carbon export efficiency. **Keywords:** eastern tropical South Pacific, ²³⁴Th tracer, uranium-salinity correlation, physical 36 processes, residence time 37

39

1. Introduction

(Waples et al., 2006). In particular, ²³⁴Th has been extensively used to trace particle dynamics and 40 export fluxes, and to quantify the marine budgets of important macro- and micronutrients such as 41 42 carbon (C), nitrogen (N), phosphorus (P) and iron (Fe) (Bhat et al., 1968; Buesseler et al., 43 1992; Coale and Bruland, 1987; Lee et al., 1998; Le Moigne et al., 2013; Cochran and Masqué, 2003; Van Der Loeff et al., 2006; Black et al., 2019). ²³⁴Th has a relatively short half-life ($\tau_{1/2}$ = 44 24.1 days) that allows studies of biological and physical processes occurring on timescales of 45 days to weeks. Unlike its radioactive parent uranium-238 (238 U, $\tau_{1/2} = 4.47$ Ga) that is soluble in 46 seawater, ²³⁴Th is highly particle reactive and strongly scavenged by particles (Bhat et al., 1968). 47 Generally, a deficit of ²³⁴Th relative to ²³⁸U is observed in the surface ocean and reflects net 48 removal of ²³⁴Th due to particle sinking, whereas secular equilibrium between ²³⁴Th and ²³⁸U is 49 observed for intermediate and deep waters. Integrating this surface ²³⁴Th deficit with depth yields 50 the sinking flux of ²³⁴Th and, if elemental: ²³⁴Th ratios are known, the sinking flux of elements 51 52 such as C, N, P, and trace metals (Bhat et al., 1968; Buesseler et al., 1998; Buesseler et al., 1992; Coale and Bruland, 1987; Weinstein and Moran, 2005; Buesseler et al., 2006; Owens et al., 53 2015;Black et al., 2019). 54 Various ²³⁴Th models have been put forward to study adsorption/desorption, aggregation 55 and export, but single box models that assume negligible ²³⁴Th fluxes due to physical transport 56 are commonly used to calculate oceanic ²³⁴Th-derived particle fluxes (see detailed review by 57 Savoye et al., 2006). This assumption is typically appropriate in open ocean settings where ²³⁴Th 58 fluxes due to advection and diffusion are small relative to the downward fluxes of ²³⁴Th 59 associated with particle sinking. However, in upwelling regions such as the equatorial Pacific and 60

Isotopes of thorium (Th) are widely used as tracers for particle cycling in the oceans

Bacon et al., 1996; Buesseler et al., 1998; Buesseler et al., 1995; Dunne and Murray, 1999). For 62 example, in the equatorial Pacific, strong upwelling post El-Niño could account for ~50% of the 63 total ²³⁴Th fluxes (Bacon et al., 1996;Buesseler et al., 1995). Ignoring the upwelling term could 64 65 thus lead to an underestimation of ²³⁴Th fluxes by a factor of 2. Conversely, horizontal diffusion carrying recently upwelled, ²³⁴Th replete waters has been shown to balance the upwelled ²³⁴Th 66 fluxes in the central equatorial Pacific (Dunne and Murray, 1999). To the contrary, advective and 67 diffusive ²³⁴Th fluxes were minimal off the Crozet Islands in the Southern Ocean due to limited 68 horizontal ²³⁴Th gradients, long residence time of water masses, and low upwelling rates and 69 diffusivities (Morris et al., 2007). 70 The dynamic nature of coastal processes requires that physical terms be included in ²³⁴Th 71 flux calculation whenever possible. Accurate measurements of current velocities and diffusivities 72 are however challenging and thus direct observations of the effects of physical processes on ²³⁴Th 73 74 distributions in coastal regions are scarce. Limited studies have incorporated advection and diffusion in the nearshore zones of the Arabian Sea (Buesseler et al., 1998), Gulf of Maine 75 76 (Gustafsson et al., 1998; Benitez-Nelson et al., 2000), the South China Sea (Cai et al., 2008) and 77 Peruvian oxygen minimum zone (OMZ) (Black et al., 2018). In the Arabian Sea, coastal upwelling during a southwest monsoon could account for over 50% of the total ²³⁴Th flux 78 (Buesseler et al., 1998). Horizontal advection has been shown to be substantial in the Inner Cosco 79 Bay of the Gulf of Maine (Gustafsson et al., 1998), whereas offshore advection and diffusion are 80 only important in late summer (Benitez-Nelson et al., 2000). Therefore, the importance of 81 physical processes on the ²³⁴Th flux estimate is highly dependent on the seasonal and spatial 82 variability of the current velocities, diffusivities and ²³⁴Th gradients. In terms of the Peruvian 83 OMZ, Black et al. (2018) showed that coastal upwelling accounts for >50% of total ²³⁴Th fluxes 84

coastal systems, advective and diffusive ²³⁴Th fluxes may become increasingly important (e.g.,

105

106

at 12°S; however, how upwelling ²³⁴Th fluxes varies seasonally and spatially in this region is 85 unclear. 86 Another uncertainty in ²³⁴Th flux calculations in such region stems from variations on 87 dissolved ²³⁸U activities. Generally speaking, U behaves conservatively under open ocean oxic 88 conditions and is linearly correlated with salinity (Chen et al., 1986; Ku et al., 1977; Owens et al., 89 2011). However, numerous studies have shown that such correlation breaks down in various 90 91 marine environments including the tropical Atlantic (Owens et al., 2011), Mediterranean Sea (Schmidt and Reyss, 1991), and Arabian Sea (Rengarajan et al., 2003). Although it is generally 92 accepted that deviations from the linear ²³⁸U-S correlation will lead to differences in the final 93 calculated ²³⁴Th fluxes, there is currently little knowledge on how significant these differences 94 could be. 95 In this study, we report vertical profiles of ²³⁴Th and ²³⁸U along four transects 96 perpendicular to the coastline of Peru (i.e. shore-normal transects). We evaluate the ²³⁸U-S 97 correlation in low-oxygen waters and how deviations from this correlation impact final ²³⁴Th flux 98 estimates. We also assess the spatial and temporal importance of advection and diffusion on ²³⁴Th 99 100 flux estimates. 101 2. Sampling and methods 102 2.1 Seawater sampling and analysis 103

Meteor (Figure 1). Cruise M136 took place in austral autumn (April 11 to May 3, 2017) along

11°S and 16°S in the Peruvian OMZ during two cruises M136 and M138 on board the RV

Seawater samples were collected at 25 stations along 4 shore-normal transects between

two main transects at 12°S and 14°S. Two stations from M136 (stations 458 and 495) were 107 reoccupied within a week (repeat stations 508 and 516, respectively) to evaluate the steady-state 108 assumption in the ²³⁴Th flux calculation. The surface sample of the repeat station 508 was 109 missing so only results from repeat stations 495 and 516 (occupation interval 1.5 days) were 110 compared and discussed in terms of the non-steady state model (session 3.2). ²³⁴Th sampling 111 during cruise M138 was carried out in austral winter (June 1 to July 4, 2017) and focused on four 112 shore-normal transects at 11°S, 12°S, 14°S and 16°S. 113 At each station, a stainless-steel rosette with Niskin bottles (Ocean Test Equipment[®]) was 114 deployed for sampling of total ²³⁴Th in unfiltered seawater and dissolved ²³⁸U (0.2 μm pore size, 115 Acropak® polycarbonate membrane). Each ²³⁸U sample was acidified to pH ~1.6 at sea. High 116 vertical resolution sampling was performed in the upper 200 m where most of the biological 117 activity occurs; additional depths were sampled down to 600 m, or 50 m above the seafloor. Deep 118 119 seawater at 1000 m, 1500 m, and 2000 m was sampled at three stations to determine the absolute 120 β counting efficiency. Salinity, temperature, oxygen concentrations and fluorescence data (Table S1) were derived from the sensors (Seabird Electronics® 9plus system) mounted on the CTD 121 frame (Krahmann, 2018; Lüdke et al., in review 2019). 122 Sample collection and subsequent chemical processing and analysis for total ²³⁴Th 123 followed protocols by Pike et al. (2005) and SCOR Working Group RiO5 cookbook 124 (https://cmer.whoi.edu/). Briefly, a ²³⁰Th yield tracer (1 dpm) was added to each sample before 125 126 Th was extracted with MnO₂ precipitates. Precipitates were filtered onto 25 mm quartz microfiber filters (Whatman® QMA, 2.2 μm nominal pore size) and dried overnight at 50°C, after which they 127 were counted at sea on a Risø[®] low-lever beta GM multicounter until uncertainty was below 3%, 128 and again 6 months later at home laboratory for background ²³⁴Th activities. After the second 129 beta counting, filters were digested in an 8M HNO₃/10% H₂O₂ solution (Carl Roth[®], trace metal 130

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

grade). 10 dpm of ²²⁹Th was added to each sample at the beginning of digestion to achieve a 1:1 atom ratio between ²²⁹Th: ²³⁰Th. Digested samples were diluted in 2.5% HNO₃/0.01% HF mixture and ²²⁹Th/²³⁰Th ratios were measured using an ICP-MS (ThermoFisher® Element XR) to determine the chemistry yield and final ²³⁴Th activities. The average yield was calculated to be 97% ± 6% (n = 247). For a subset of samples (marked in Table S1) whose analysis failed during initial ICP-MS measurement, anion chromatography (Biorad® AG1x8, 100 - 200 mesh, Poly-Prep columns) was performed to remove Mn from the sample matrix before another ICP-MS analysis. This subset of samples also included three samples (marked in Table S1) whose initial ICP-MS measurement was successful, to test whether anion chromatography affects final ICP-MS results. Identical ²²⁹Th/²³⁰Th ratios were measured for samples with and without column chromatography (see Table S1 footnotes for details). Samples of dissolved ²³⁸U were diluted 20 times in 1N HNO₃ at home laboratory and spiked with an appropriate amount of ²³⁶U spike to achieve ²³⁶U:²³⁸U ~ 1:1. Ratios of ²³⁶U:²³⁸U were analyzed by ICP-MS (ThermoFisher Element XR) and activities of ²³⁸U were calculated using isotope dilution. Seawater certified reference materials (CRMs), CASS-6 and NASS-7, and the International Association for the Physical Sciences of the Oceans (IAPSO) standard seawater were analyzed routinely for uranium concentrations.

2.2 Flux calculation

Assuming a one box model, the temporal change of ²³⁴Th activities is balanced by production from ²³⁸U, radioactive decay of ²³⁴Th, removal of ²³⁴Th onto sinking particles, and transport into or out of the box by advection and diffusion (Bhat et al., 1968; Savoye et al., 2006; and references therein):

$$\frac{\partial A_{Th}}{\partial t} = \lambda (A_U - A_{Th}) - P + V \tag{1}$$

where A_U and A_{Th} are respectively the activities of dissolved ²³⁸U and total ²³⁴Th, λ is the decay constant of ²³⁴Th, P is the net removal flux of ²³⁴Th, and V is the sum of advective and diffusive fluxes. At times when repeat sampling is not possible within adequate cruise timeframe, steady state conditions are generally assumed, i.e. $\frac{\partial A_{Th}}{\partial t} = 0$. In this case, Eq. (1) is simplified into:

$$P = \int_0^z \lambda (A_U - A_{Th}) dz + V \tag{2}$$

The vertical flux of ²³⁴Th, P (dpm/m²/d), is integrated to the depth of interest. Earlier studies generally used arbitrarily fixed depths (e.g., the base of mixed layer, or ML) for ²³⁴Th and POC flux estimates (Bacon et al., 1996;Buesseler et al., 1992). Recent studies emphasized the need to normalize POC flux to the depth of euphotic zone (EZ), which separates the particle production layer in the surface from the flux attenuation layer below (Black et al., 2018;Buesseler and Boyd, 2009;Rosengard et al., 2015). In the open ocean, the depth of EZ is generally similar to ML depth. For the purpose of this study, the slight difference of the exact depth chosen (ML vs. EZ) was of little relevance to the significance of physical processes and ²³⁸U variability.

2.3 Quantification of the physical fluxes

171 The physical term V in Eq. (2) is expressed as following:

$$V = \int_0^z \left(\omega \frac{\partial^2 Th}{\partial z} - u \frac{\partial^2 Th}{\partial z} - v \frac{\partial^2 Th}{\partial z} \right) dz + \int_0^z \left(k_x \frac{\partial^2 Th}{\partial x^2} + k_y \frac{\partial^2 Th}{\partial y^2} - k_z \frac{\partial^2 Th}{\partial z^2} \right) dz \tag{3}$$

where ω is the upwelling rate (m s⁻¹), u and v respectively the zonal and meridional 173 current velocities, and k_x , k_y , and k_z diffusivities (m² s⁻¹) on the zonal, meridional and vertical 174 175 directions, respectively. 176 Upwelling velocities at stations within 60 nautical miles of the coast, where upwelling is 177 the most significant, were estimated from monthly wind stress following Steinfeldt et al. (2015). Daily wind stress from Metop/ASCAT scatterometer with a spatial resolution of 0.25° (Bentamy 178 179 and Croize-Fillon, 2010) was obtained from the Centre de Recherche et d'Exploitation Satellitaire (CERSAT), at IFREMER, Plouzané (France). Zonal and meridional current velocities derived 180 from vessel mount acoustic doppler current profiler (VmADCP) (Lüdke et al., in review 2019) 181 were applied in Eq. (3) to assess horizontal advective fluxes. The top 30 m surface layer for 182 M136 and top 50 m for M138 were considered; these depths correspond to 5-20 m below the base 183 of the ML during each cruise. Zonal and meridional current velocities for each station were 184 185 averaged over 5 days before and after station occupation. These current velocities were further averaged over a 10 km radian at stations closest to shore (St. 353, 428, 458, 475, 508, 904, and 186 907) and over a 50 km radian at the rest of the stations. 187 Average vertical diffusivity for both shallow (bottom depth < 500 m) and deep stations 188 (bottom depth > 500 m) were calculated using in situ microstructure profiler measurements from 189 cruises M136 (Thomsen and Lüdke, 2018) and M137 (unpublished data; May 6 - 29, 2017) 190 (Figure S1), and stratification derived from CTD profiles following the methodology described in 191 192 Fischer et al. (2013). In situ microstructure measurements during cruise M138 are not available but there were little variations amongst individual microstructure profiles during both M136 and 193

M137 despite drastic change in the intensities of the poleward Peru Chile Undercurrent (Lüdke et

al., in review 2019). It thus appears appropriate to apply this average vertical diffusivity to stations during M138.

Horizontal diffusivity, or eddy diffusivity, was not measured during the cruises. Surface eddy diffusivities in the North Atlantic OMZ were estimated to be on the order of a few 1000 m² s⁻¹ that decrease exponentially with depth (Hahn et al., 2014). Similar magnitude of eddy diffusivities was estimated for the ETSP based on surface drifter data and satellite altimetry (Abernathey and Marshall, 2013;Zhurbas and Oh, 2004). We thus consider an eddy diffusivity of 1000 m² s⁻¹ as a good approximate in this study for the evaluation of horizontal diffusive ²³⁴Th fluxes. Applying this eddy diffusivity and horizontal ²³⁴Th gradient in Eq. (3) would a yield maximum horizontal diffusive ²³⁴Th flux of 10 dpm m⁻² d⁻¹ (see section 3.2 for how horizontal ²³⁴Th gradient was calculated), which is insignificant (<1% of total ²³⁴Th flux) at all stations. We thus ignore this horizontal diffusive term in the following discussion.

3. Results and discussion

The vertical profiles of 238 U and 234 Th activities are shown in Figure 2 and tabulated in Table S1. Data from station 508 were reported in Figure 2 and Table S1 but excluded in the following discussion, because the surface sample from this station was missing, which prevents any flux calculation. Also tabulated in Table S1 are temperature, salinity and concentrations of oxygen and fluorescence derived from the CTD sensors. Uranium concentrations of CRMs and the IAPSO standard seawater are reported in Table S2. Average U concentrations of both CASS-6 (2.77 \pm 0.04 ng g⁻¹, 1SD, n = 5) and NASS-7 (2.86 \pm 0.05 ng/g, 1SD, n = 5) measured in this study agree well with certified values (2.86 \pm 0.42 ng g⁻¹ and 2.81 \pm 0.16 ng g⁻¹, respectively). Average 238 U concentrations measured in our IAPSO standard seawater (OSIL batch P156) (3.24)

 \pm 0.06 ng g⁻¹, 1SD) is slightly higher than that reported in Owens et al. (2011) (3.11 \pm 0.03 ng g⁻¹, 218 1SD, OSIL P149), and may reflect slight differences in U concentrations between different OSIL 219 batches. 220 221 Activities of ²³⁸U showed small to negligible variations (< 6% of the profile mean) with depth. All stations showed large ²³⁴Th deficits in surface waters with ²³⁴Th/²³⁸U ratios as low as 222 0.25 (Figure 2). ²³⁴Th at all stations generally reached equilibrium with ²³⁸U at depths between 30 223 m and 250 m. At St. 912, deficits of ²³⁴Th extended beyond 600 m depth. The equilibrium depths 224 did not vary as a function of depths of either mixed layer or the upper oxic-anoxic interface, nor 225 the magnitude of surface fluorescence concentrations (Table 1). The following stations (St. 428, 226 879, 898, 906, 907, 915, 919) displayed a secondary ²³⁴Th deficit below the equilibrium depth, 227 indicative of ²³⁴Th removal processes. A small ²³⁴Th excess at depth was only observed for St. 228 559. 229 In the following sections, we assessed the effects of seawater ²³⁸U variability and physical 230 transport on ²³⁴Th flux estimates. 231 232 3.1 Lack of linear ²³⁸U – salinity correlation in the Peruvian OMZ 233 Water column ²³⁸U and salinity displayed poor linear correlation across the entire 234 Peruvian OMZ regardless of seawater oxygen concentrations (Figure 3a-b). The general 235 236 consensus is that U behaves conservatively in oxic seawater in the open ocean and early observations have shown that ²³⁸U activities can be calculated from salinity based on a simple 237 238 linear correlation between the two (e.g. Chen et al., 1986; Ku et al., 1977). Recent compilations in Van Der Loeff et al. (2006) and Owens et al. (2011) further demonstrated that the majority of 239

uranium data points in the global seawater dataset follow a linear correlation with seawater 240 241 salinity. The ²³⁸U-salinity formulations from either Chen et al. (1986) or Owens et al. (2011) are thus generally appropriate for open ocean conditions and have been widely used in ²³⁴Th flux 242 studies. However, this linear ²³⁸U-salinity correlation breaks down in the Peruvian OMZ. 243 Furthermore, the measured ²³⁸U activities in this study correlated poorly with those 244 245 calculated from salinity using the Owens formulation (Table S2, Figure 3c), with the former significantly higher than the projected values and differences up to 10%. This observation is in 246 247 contrast to earlier studies in low oxygen waters where soluble U(VI) was reduced to insoluble 248 U(IV) in suboxic/anoxic waters and removed from seawater (Rengarajan et al., 2003; Anderson et al., 1989). The consequence of this notable difference in ²³⁸U to ²³⁴Th flux according to Eq. (2) is 249 neither linear nor straightforward, because the vertical gradients of both ²³⁸U and ²³⁴Th strongly 250 affects the impacts of ²³⁸U variations on ²³⁴Th fluxes. In this study, ²³⁴Th fluxes at 100 m derived 251 from S-based ²³⁸U lead to significant underestimation of ²³⁴Th fluxes by an average of 20% and 252 as high as 40% (Table 2). These differences in ²³⁴Th fluxes will have direct consequences for 253 ²³⁴Th derived elemental fluxes such as C, N, P and trace metals. 254 Deviations from the linear ²³⁸U-S correlation have been reported for shelf-estuary 255 systems, where the behavior of dissolved U is highly variable with both removal and additions 256 from sediments and settling particles (see detailed reviws in Cochran, 1992; Moore, 257 1992; Swarzenski et al., 2003). For example, Swarzenski et al. (2004) observed U removal on the 258 Amazon shelf when salinity dropped below 12, whereas McKee et al. (1987) found significant U 259 260 enrichment on the shelf at higher salinity (S > 10) that was attributed to remobilization of riverine sediments and subsequent desorption of U from ferric-oxyhydroxides. These findings agree with 261

previous observations made during incubation experiments where sedimentary U was released to

ambient fluid upon reduction of ferromanganese oxides (Barnes and Cochran, 1993). The 263 Peruvian upwelling zone is not an estuary system nor directly influenced by major rivers. 264 However, Fe reduction and release from the Peruvian shelf sediments (Noffke et al., 2012;Scholz 265 et al., 2014) could release additional U to overlying waters similar to that observed over the 266 Amazon River shelf. 267 268 Alternatively, the enhanced dissolved U concentrations in our study could be related to the El Niño Costero of 2017 (Echevin et al., 2018; Garreaud, 2018), which had developed rapidly 269 and unexpectedly in January, and disappeared by May 2017 during cruise M136. The El Niño 270 271 Costero had caused extreme impacts in Northern Peru with strong rainfall, severe flooding and landslides, which could deliver considerable amounts of dissolved and particulate U to our study 272 273 area. 274 It is thus important to note that U concentrations in coastal systems are highly sensitive to weather conditions such as extreme rainfall and flooding, and bottom water oxygen 275 concentrations, variability of which is expected to intensify with future climate change (Shepherd 276 et al., 2017). Relatively minor variations in dissolved ²³⁸U could account for substantial 277 overestimation/underestimation of the depth-integrated ²³⁴Th fluxes. We thus encourage future 278 ²³⁴Th flux studies in such environments to include seawater ²³⁸U analysis. 279 280 3.2 Dynamic advective and diffusive ²³⁴Th fluxes 281 The relative importance of ²³⁴Th fluxes due to advection and diffusion were assessed here 282 assuming steady state conditions, which assume negligible temporal ²³⁴Th variability. But how 283 valid is this assumption in the Peruvian upwelling zone? Repeat stations 495 and 516 show

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

substantial temporal variations in ²³⁴Th activities at each sampled depth in the top 200 m, while temperature and salinity profiles confirmed that similar water masses were sampled during both occupations (Figure 4). Particularly, the surface ²³⁴Th deficit was more intense at St. 495 $(^{234}\text{Th}/^{238}\text{U} = 0.44)$ compared to St. 516 $(^{234}\text{Th}/^{238}\text{U} = 0.73)$. Correspondingly, ^{234}Th fluxes decreased substantially from St. 495 to St. 516. At 100 m, the difference in ²³⁴Th fluxes between these two stations was $\sim 30\%$ (3200 ± 90 dpm m⁻² d⁻¹ at St. 495 and 2240 ± 110 dpm m⁻² d⁻¹ at St. 516). At 200 m where ²³⁴Th resumed equilibrium with ²³⁸U at both stations, ²³⁴Th flux difference was $\sim 25\%$ (4510 ± 220 dpm m⁻² d⁻¹ at St. 495 and 3455 ± 200 dpm m⁻² d⁻¹ at St. 516). Taking the non-steady state term in Eq. (1) into consideration increased total ²³⁴Th at St. 516 by 40% to 3110 \pm 1870 dpm m⁻² d⁻¹ at 100 m (or 45% to 5040 \pm 2290 dpm m⁻² d⁻¹ at 200 m), which is indistinguishable within error from fluxes at St. 495. However, the large errors associated with the non-steady state calculation prevent a meaningful application of this model in the current study (also see discussion in Resplandy et al, 2012). As estimation of the physical fluxes is independent of the models chosen between steady and non-steady states, the following discussion regarding physical effects on the ²³⁴Th flux estimates is based on the steady state model only. The significance of advection and diffusion in the total ²³⁴Th flux budget highly depends on the upwelling rate, current velocity, vertical diffusivity, and ²³⁴Th gradient on the horizontal and vertical directions. At nearshore stations, upwelling rates at the base of the mixed layer, derived from surface wind stress, ranged from a mere 1.3×10^{-7} m s⁻¹ to 9.7×10^{-6} m s⁻¹, whereas upwelling rates at offshore stations were on the order of 10⁻¹⁰ m s⁻¹ to 10⁻⁸ m s⁻¹ and essentially negligible. As a result, upwelled ²³⁴Th fluxes were only significant at stations closest to shore; these stations were 428, 883-12 and 904-16 whose upwelled ²³⁴Th fluxes accounted for 10%,

11% and 25% of the total ²³⁴Th fluxes, respectively. Upwelled ²³⁴Th fluxes were insignificant at the rest of the stations.

Similarly, vertical diffusivities, shown as running mean over 20 m in Figure S1, were an order of magnitude higher at shallow stations compared to those at deep stations. Within the 27 m to 33 m layer at offshore stations, vertical diffusivities decrease exponentially by an order of magnitude within a few meters; below this depth, vertical diffusivities remained relatively stable. This is not surprising as wind-driven turbulent is most significant at the ocean surface (Buckingham et al., 2019). In this study, the sampling depths immediately below the ML were generally 30 m and 60 m. A few high vertical diffusivity values around 30 m at deep stations were unlikely representative for the 30 m – 60 m water column layer. We thus opted to only apply vertical diffusivities below 33 m at deep stations. Taken together, vertical diffusive ²³⁴Th fluxes at all deep stations appeared to be trivial in the total ²³⁴Th flux budget (Figure 5). However, at shallow stations 428, 458, and 883-12, vertical diffusive ²³⁴Th fluxes made up 37%, 14%, and 21% of total ²³⁴Th fluxes, respectively.

While calculation of the vertical ²³⁴Th gradient is straightforward, the same is hardly true for the determination of horizontal ²³⁴Th gradient. Mean ²³⁴Th in the top layer of the water column is highly variable amongst stations (Table 3, Figure 6), and likely reflect variations occurring at small temporal and spatial scales in the Peruvian OMZ. Quantification of the horizontal ²³⁴Th gradient between individual stations thus may not be adequate to evaluate large scale advection and eddy diffusion across the study area. On a larger spatial scale, alongshore ²³⁴Th gradients at nearshore stations for M138 are fairly consistent, ranging from 1.5 x 10⁻⁶ dpm L⁻¹ m⁻¹ to 1.7 x 10⁻⁶ dpm L⁻¹ m⁻¹, with a slightly stronger gradient in the north compared to the south. The net difference in alongshore ²³⁴Th gradient is merely 2 x 10⁻⁷ dpm L⁻¹ m⁻¹. A slightly

smaller alongshore ²³⁴Th gradient of 4.8 x 10⁻⁷ dpm L⁻¹ m⁻¹ was observed for M136. The magnitude of the net difference in alongshore ²³⁴Th gradient during M136 cannot be adequately quantified, due to smaller spatial sampling coverage. Judging on the similarity in the spatial distributions of mean ²³⁴Th between cruises M136 and M138, it is reasonable to assume that net difference in alongshore ²³⁴Th gradient remained similar during both cruises. Correspondingly, average alongshore current velocities (Lüdke et al., in review 2019) for the surface layer varied from 0.06 m/s to 0.34 m/s. At the peripheral of a freshly-formed anticyclonic eddy (St. 915-1), alongshore current velocities could be as high as 0.53 m/s. Taking the mean alongshore velocity of 0.2 m/s, the resulting net horizontal advective ²³⁴Th flux is ~ 50 dpm m⁻² d⁻¹, a mere 3-9% of the total ²³⁴Th fluxes and thus insignificant for the ²³⁴Th flux budget.

Our findings are in reasonable agreement with those from the GEOTRACES GP16 eastern section along 12°S from Peru to Tahiti, in which Black et al. (2018) quantified both horizontal and vertical advective ²³⁴Th fluxes. Horizontal advective fluxes for the upper 30 m water column estimated during GP16 were ~180 dpm m⁻² d⁻¹ for all nearshore and offshore stations, similar in magnitude to those estimated in our study. Upwelling fluxes along GP16 eastern section was suggested to account for 50% to 80% of total ²³⁴Th fluxes at the base of the euphotic zone (at similar depths or slightly deeper than ML depths in the current study) (Black et al., 2018). Total ²³⁴Th fluxes along the GP16 eastern section, ranging from 4000 to 5000 dpm m⁻² d⁻¹ at the base of the euphotic zone, were much higher than those in our study (560 to 1900 dpm m⁻² d⁻¹ at the base of the ML). This difference could be related to the period of sampling (austral autumn and winter 2017 in our study *vs.* austral summer 2013 for the GP16 section). We note that the estimated vertical mixing rates based on ⁷Be isotope at the base of the euphotic zone along the GP16 section (Kadko, 2017) were at least an order of magnitude higher than the upwelling rates at the base of the ML at nearby stations in our study. This difference could stem from different

methods used to estimate upwelling rates, and may also reflect the dynamic upwelling system off Peru in which upwelling rates vary greatly seasonally and interannually. During cruise M136 and M138, upwelling favorable easterly winds off Peru were weak, resulting in negligible coastal upwelling. Coastal upwelling in the same general area was also suggested to be negligible in austral summer 2013 during cruise M92 due to nominal surface wind stress (Thomsen et al., 2016). Results from studies conducted in the same year (October to December 2013, Kadko, 2017; December 2012, Steinfeldt et al., 2015) indicate that seasonal upwelling rates vary drastically in the Peruvian upwelling zone. The seasonal dynamics of coastal upwelling off Peru are similar to those seen in the Arabian Sea, where large upwelled ²³⁴Th fluxes only occurred during mid-late southwest monsoon at stations close to shore (Buesseler et al., 1998). Our findings lend further support to earlier studies that advection and diffusion are seasonally important for ²³⁴Th fluxes in regions with high upwelling velocities and diffusivities such as the equatorial Pacific (Bacon et al., 1996;Buesseler et al., 1995;Dunne and Murray, 1999) and coastal sites such as the Arabian Sea (Buesseler et al., 1998) and offshore Peru (Black et al., 2018; this study).

3.3 Residence time of ²³⁴Th in the Peruvian OMZ

Residence time of total 234 Th represents a combination of the time required for the partition of dissolved 234 Th onto particulate matter and that for particle removal. In this study, residence time of total 234 Th in the surface layer (top 30 m during M136 and top 50 m during M138) varied from 20 days at shallow stations to 95 days at deep stations (mean $\tau = 51 \pm 23$ days, 1SD, n = 24; Table 3). These values were similar to those estimated within the California Current (Coale and Bruland, 1985) and the residence times of particulate organic carbon (POC)

and nitrogen (PON) (Murray et al., 1989), but were much longer than predicted in nearshore shelf waters where residence times of total 234 Th were on the order of a few days (Kaufman et al., 1981;Kim et al., 1999; and references therein). The longer residence times estimated in our study could reflect a combination of weak surface 234 Th deficits (234 Th = 0.63 to 1.82 dpm/L) (Figure 2) and low export fluxes (800 to 2000 dpm m $^{-2}$ d $^{-1}$, Figure 5). Nearshore seawater samples during GP16 (Black et al., 2018) featured similar surface 234 Th deficits (234 Th = 0.63 to 1.33 dpm/L) but much higher downward 234 Th fluxes (4000 to 5000 dpm m $^{-2}$ d $^{-1}$) as a result of strong upwelling, implying that residence times of total 234 Th in the Peruvian OMZ during GP16 occupation would be 3 – 6 times shorter. Indeed, a quick re-assessment of the GP16 data predicted a shorter residence time of total 234 Th of 5 – 23 days within the euphotic zone of the coastal Peruvian OMZ.

These temporal variations on the residence times of total ²³⁴Th have important implications for the estimation of POC fluxes and quantification of carbon export efficiency. Firstly, seasonal changes in Th residence times reflect variations in particle removal over different integrated timescales. For example, POC produced in surface waters during GP16 (austral summer 2013) (Black et al., 2018) would have been exported out of the euphotic zone 3-6 times faster than it did during austral autumn 2017 (this study). Secondly, to properly evaluate carbon export efficiency, surface net primary production (NPP) should be averaged over a similar timescale as the residence time of total ²³⁴Th during station occupation. Applying a 16-day averaged NPP for export efficiency estimate (Black et al., 2018;Henson et al., 2011) would likely not be appropriate in the current study in which total ²³⁴Th fluxes integrated timescales of several weeks. ²³⁴Th residence times should thus be properly quantified in coastal studies before deriving export efficiencies over varying NPP integration timescales.

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

4. Conclusions and implications for coastal ²³⁴Th flux studies

Advection and diffusion are important in coastal and upwelling regions with respect to ²³⁴Th export fluxes (Bacon et al., 1996;Buesseler et al., 1995;Dunne and Murray, 1999;Buesseler et al., 1998). Our findings show that their significance is subject to the seasonal variability of the current and upwelling velocities, diffusivities and ²³⁴Th gradients, and should be evaluated on a case-to-case basis. Advective fluxes are perhaps the most straightforward to estimate as current velocities can be obtained routinely from shipboard ADCP measurements and upwelling rates calculated from satellite wind stress (Steinfeldt et al., 2015;Bacon et al., 1996). Horizontal and vertical velocities derived from general ocean circulation models also provide a good first order estimate for advective ²³⁴Th fluxes; this approach has been successfully demonstrated in a few studies (Buesseler et al., 1995; Buesseler et al., 1998). In addition, the anthropogenic SF₆ tracer and radium isotopes, widely used to quantify nutrient and Fe fluxes (Charette et al., 2007; Law et al., 2001), could be used independently to constrain horizontal and vertical exchange rates of ²³⁴Th (Morris et al., 2007; Charette et al., 2007; Buesseler et al., 2005). When in situ microstructure measurements are available (this study), vertical diffusivity can be directly calculated to estimate the vertical diffusive ²³⁴Th fluxes. Yet, microstructure analysis is not a routine measurement on oceanographic cruises. Earlier studies in the equatorial Pacific and the Gulf of Maine have shown that general ocean circulation models and a simple assumption on dissipation coefficients could provide a robust estimate on vertical and horizontal diffusivities (Benitez-Nelson et al., 2000; Gustafsson et al., 1998; Charette et al., 2001). Therefore, the calculation of physical fluxes is possible, though challenging, and ²³⁴Th fluxes due to physical

processes should be carefully considered when conducting research in a coastal and upwelling systems.

A striking finding in this study is that the assumption of a linear ²³⁸U-S correlation could lead to one of the largest errors in ²³⁴Th flux estimates. In our study, using the S-based ²³⁸U activities resulted in significant underestimation of total ²³⁴Th fluxes by as much as 40%. Because the translation of ²³⁸U activities to ²³⁴Th fluxes is not linear, larger differences between measured and S-based ²³⁸U do not necessarily contribute to greater overestimation or underestimation of ²³⁴Th fluxes. For example, moderate difference of 3-6% in ²³⁸U throughout the upper 100 m at station 898 lead to 40% difference in final ²³⁴Th flux, while a 5-9% difference in ²³⁸U at station 906 only resulted in 16% ²³⁴Th flux difference (Table 2, S2). We would thus stress the importance of ²³⁸U measurements in future ²³⁴Th flux studies particularly in coastal and shelf regions.

Finally, our study showed that the residence times of total ²³⁴Th in the Peruvian nearshore waters varied seasonally. Tropical OMZs are important hotpots for carbon sequestration from the atmosphere and enhanced sedimentary carbon preservation (Arthur et al., 1998;Suess et al., 1987). These OMZs are projected to intensify as a result of future climate change (Keeling and Garcia, 2002;Schmidtko et al., 2017;Stramma et al., 2008). Future studies should take into consideration the large temporal variations of the residence times of total ²³⁴Th in order to properly evaluates how carbon biogeochemical cycles and carbon export efficiency in these OMZs will respond to continuing ocean deoxygenation,

Data availability

Data are available in supplementary tables and will be archived in Pangea upon 444 publication of the article. 445 446 **Author contribution** 447 RCX, FACLM and EAP designed the study. RCX carried out sampling, on-board beta 448 counting of ²³⁴Th, and drafted the manuscript. IR conducted ²³⁴Th and ²³⁸U analyses at home 449 laboratory. JL computed current velocities and vertical diffusivities respectively from VmADCP 450 451 and microstructure profiler data. All co-authors had a chance to review the manuscript and 452 contributed to discussion and interpretation of the data presented. 453 **Competing interests** 454 The authors declare that they have no conflict of interest. 455 456 Acknowledgements 457 458 We thank the crew and science party on board M136 and M138 for their help in sample collection and instrument operation. Thank you to SiaoJean Ko, Dominik Jasinski, André Mutzberg and 459 Mario Esposito for their laboratory assistance. The project, cruises, IR, JL and RCX were funded 460 by the German SFB 754 program ('Climate-Biogeochemistry Interactions in the Tropical 461 Ocean'), and FACLM by a DFG Fellowship of the Excellence Cluster "The Future Ocean" 462

(CP1403). This manuscript benefited from stimulating discussions at the BIARRITZ ('bridging

- international activity and related research into the twilight zone') workshop held in Southampton,
- 465 UK in 2019.

466	References
467 468	Abernathey, R. P., and Marshall, J.: Global surface eddy diffusivities derived from satellite
469	altimetry, Journal of Geophysical Research: Oceans, 118, 901-916,
470	https://doi.org/10.1002/jgrc.20066, 2013.
471	Anderson, R. F., Fleisher, M. Q., and LeHuray, A. P.: Concentration, oxidation state, and
472	particulate flux of uranium in the Black Sea, Geochimica et Cosmochimica Acta, 53, 2215-2224,
473	https://doi.org/10.1016/0016-7037(89)90345-1, 1989.
474	Arthur, M. A., Dean, W. E., and Laarkamp, K.: Organic carbon accumulation and preservation in
475	surface sediments on the Peru margin, Chemical Geology, 152, 273-286,
476	https://doi.org/10.1016/S0009-2541(98)00120-X, 1998.
477	Bacon, M., Cochran, J., Hirschberg, D., Hammar, T., and Fleer, A.: Export flux of carbon at the
478	equator during the EqPac time-series cruises estimated from 234Th measurements, Deep Sea
479	Research Part II: Topical Studies in Oceanography, 43, 1133-1153, https://doi.org/10.1016/0967-
480	<u>0645(96)00016-1</u> , 1996.
481	Barnes, C. E., and Cochran, J. K.: Uranium geochemistry in estuarine sediments: Controls on
482	removal and release processes, Geochimica et Cosmochimica Acta, 57, 555-569,
483	https://doi.org/10.1016/0016-7037(93)90367-6, 1993.
484	Benitez-Nelson, C. R., Buesseler, K. O., and Crossin, G.: Upper ocean carbon export, horizontal
485	transport, and vertical eddy diffusivity in the southwestern Gulf of Maine, Continental Shelf
486	Research, 20, 707-736, https://doi.org/10.1016/S0278-4343(99)00093-X , 2000.
487	Bentamy, A., and Croize-Fillon: Gridded surface wind fields from Metop/ASCAT measurements,
488	International Journal of Remote Sensing, doi:10.1080/01431161.2011.600348, 2010.
489	Bhat, S., Krishnaswamy, S., Lal, D., and Moore, W.: 234Th/238U ratios in the ocean, Earth and
490	Planetary Science Letters, 5, 483-491, 1968.

- 491 Black, E. E., Buesseler, K. O., Pike, S. M., and Lam, P. J.: 234Th as a tracer of particulate export
- 492 and remineralization in the southeastern tropical Pacific, Marine Chemistry, 201, 35-50,
- 493 <u>https://doi.org/10.1016/j.marchem.2017.06.009</u>, 2018.
- 494 Black, E. E., Lam, P. J., Lee, J. M., and Buesseler, K. O.: Insights From the 238U 234Th
- Method Into the Coupling of Biological Export and the Cycling of Cadmium, Cobalt, and
- 496 Manganese in the Southeast Pacific Ocean, Global Biogeochemical Cycles, 33, 15-36,
- 497 <u>https://doi.org/10.1029/2018GB005985</u>, 2019.
- 498 Buckingham, C. E., Lucas, N. S., Belcher, S. E., Rippeth, T. P., Grant, A. L. M., Le Sommer, J.,
- 499 Ajayi, A. O., and Naveira Garabato, A. C.: The Contribution of Surface and Submesoscale
- 500 Processes to Turbulence in the Open Ocean Surface Boundary Layer, Journal of Advances in
- 501 Modeling Earth Systems, 11, 4066-4094, https://doi.org/10.1029/2019MS001801, 2019.
- Buesseler, K., Ball, L., Andrews, J., Benitez-Nelson, C., Belastock, R., Chai, F., and Chao, Y.:
- 503 Upper ocean export of particulate organic carbon in the Arabian Sea derived from thorium-234,
- Deep Sea Research Part II: Topical Studies in Oceanography, 45, 2461-2487,
- 505 https://doi.org/10.1016/S0967-0645(98)80022-2, 1998.
- 506 Buesseler, K. O., Bacon, M. P., Cochran, J. K., and Livingston, H. D.: Carbon and nitrogen
- 507 export during the JGOFS North Atlantic Bloom Experiment estimated from 234Th: 238U
- 508 disequilibria, Deep Sea Research Part A. Oceanographic Research Papers, 39, 1115-1137,
- 509 https://doi.org/10.1016/0198-0149(92)90060-7, 1992.
- 510 Buesseler, K. O., Andrews, J. A., Hartman, M. C., Belastock, R., and Chai, F.: Regional estimates
- 511 of the export flux of particulate organic carbon derived from thorium-234 during the JGOFS
- 512 EqPac program, Deep Sea Research Part II: Topical Studies in Oceanography, 42, 777-804,
- 513 https://doi.org/10.1016/0967-0645(95)00043-P, 1995.

- Buesseler, K. O., Andrews, J., Pike, S. M., Charette, M. A., Goldson, L. E., Brzezinski, M. A.,
- and Lance, V.: Particle export during the southern ocean iron experiment (SOFeX), Limnology
- and Oceanography, 50, 311-327, https://doi.org/10.4319/lo.2005.50.1.0311, 2005.
- 517 Buesseler, K. O., Benitez-Nelson, C. R., Moran, S., Burd, A., Charette, M., Cochran, J. K.,
- 518 Coppola, L., Fisher, N., Fowler, S., and Gardner, W.: An assessment of particulate organic carbon
- 519 to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux
- 520 proxy, Marine Chemistry, 100, 213-233, https://doi.org/10.1016/j.marchem.2005.10.013, 2006.
- 521 Buesseler, K. O., and Boyd, P. W.: Shedding light on processes that control particle export and
- 522 flux attenuation in the twilight zone of the open ocean, Limnology and Oceanography, 54, 1210-
- 523 1232, https://doi.org/10.4319/lo.2009.54.4.1210, 2009.
- Cai, P., Chen, W., Dai, M., Wan, Z., Wang, D., Li, Q., Tang, T., and Lv, D.: A high resolution
- 525 study of particle export in the southern South China Sea based on 234Th: 238U disequilibrium,
- Journal of Geophysical Research: Oceans, 113, 2008.
- 527 Charette, M. A., Moran, S. B., Pike, S. M., and Smith, J. N.: Investigating the carbon cycle in the
- 528 Gulf of Maine using the natural tracer thorium 234, Journal of Geophysical Research: Oceans,
- 529 106, 11553-11579, https://doi.org/10.1029/1999JC000277, 2001.
- Charette, M. A., Gonneea, M. E., Morris, P. J., Statham, P., Fones, G., Planquette, H., Salter, I.,
- and Garabato, A. N.: Radium isotopes as tracers of iron sources fueling a Southern Ocean
- 532 phytoplankton bloom, Deep Sea Research Part II: Topical Studies in Oceanography, 54, 1989-
- 533 1998, https://doi.org/10.1016/j.dsr2.2007.06.003, 2007.
- Chen, J., Edwards, R. L., and Wasserburg, G. J.: 238U, 234U and 232Th in seawater, Earth and
- 535 Planetary Science Letters, 80, 241-251, https://doi.org/10.1016/0012-821X(86)90108-1, 1986.
- 536 Coale, K. H., and Bruland, K. W.: 234Th: 238U disequilibria within the California Current 1,
- 537 Limnology and Oceanography, 30, 22-33, https://doi.org/10.4319/lo.1985.30.1.0022, 1985.

- 538 Coale, K. H., and Bruland, K. W.: Oceanic stratified euphotic zone as elucidated by 234Th: 238U
- disequilibria 1, Limnology and Oceanography, 32, 189-200,
- 540 <u>https://doi.org/10.4319/lo.1987.32.1.0189</u>, 1987.
- Cochran, J.: The oceanic chemistry of the uranium-and thorium-series nuclides, in: Uranium-
- series disequilibrium: applications to earth, marine, and environmental sciences. 2. ed, 1992.
- Cochran, J., and Masqué, P.: Short-lived U/Th series radionuclides in the ocean: tracers for
- scavenging rates, export fluxes and particle dynamics, Reviews in Mineralogy and geochemistry,
- 545 52, 461-492, https://doi.org/10.2113/0520461, 2003.
- 546 Dunne, J. P., and Murray, J. W.: Sensitivity of 234Th export to physical processes in the central
- 547 equatorial Pacific, Deep Sea Research Part I: Oceanographic Research Papers, 46, 831-854,
- 548 https://doi.org/10.1016/S0967-0637(98)00098-3, 1999.
- 549 Echevin, V. M., Colas, F., Espinoza-Morriberon, D., Anculle, T., Vasquez, L., and Gutierrez, D.:
- 550 Forcings and evolution of the 2017 coastal El Niño off Northern Peru and Ecuador, Frontiers in
- 551 Marine Science, 5, 367, https://doi.org/10.3389/fmars.2018.00367, 2018.
- 552 Fischer, T., Banyte, D., Brandt, P., Dengler, M., Krahmann, G., Tanhua, T., and Visbeck, M.:
- 553 Diapycnal oxygen supply to the tropical North Atlantic oxygen minimum zone, Biogeosciences,
- 554 10, 5079-5093, https://doi.org/10.5194/bg-10-5079-2013, 2013.
- Garreaud, R. D.: A plausible atmospheric trigger for the 2017 coastal El Niño, International
- 556 Journal of Climatology, 38, e1296-e1302, https://doi.org/10.1002/joc.5426, 2018.
- 557 Gustafsson, Ö., Buesseler, K. O., Rockwell Geyer, W., Bradley Moran, S., and Gschwend, P. M.:
- An assessment of the relative importance of horizontal and vertical transport of particle-reactive
- chemicals in the coastal ocean, Continental Shelf Research, 18, 805-829,
- 560 https://doi.org/10.1016/S0278-4343(98)00015-6, 1998.

- 561 Hahn, J., Brandt, P., Greatbatch, R. J., Krahmann, G., and Körtzinger, A.: Oxygen variance and
- 562 meridional oxygen supply in the Tropical North East Atlantic oxygen minimum zone, Climate
- 563 dynamics, 43, 2999-3024, https://doi.org/10.1007/s00382-014-2065-0, 2014.
- Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., and Quartly, G. D.: A
- reduced estimate of the strength of the ocean's biological carbon pump, Geophysical Research
- 566 Letters, 38, 10.1029/2011gl046735, 2011.
- Kadko, D.: Upwelling and primary production during the US GEOTRACES East Pacific Zonal
- 568 Transect, Global Biogeochemical Cycles, 31, 218-232, https://doi.org/10.1002/2016GB005554,
- 569 2017.
- 570 Kaufman, A., Li, Y.-H., and Turekian, K. K.: The removal rates of 234Th and 228Th from waters
- of the New York Bight, Earth and Planetary Science Letters, 54, 385-392,
- 572 https://doi.org/10.1016/0012-821X(81)90054-6, 1981.
- 573 Keeling, R. F., and Garcia, H. E.: The change in oceanic O2 inventory associated with recent
- global warming, Proceedings of the National Academy of Sciences, 99, 7848-7853,
- 575 10.1073/pnas.122154899, 2002.
- 576 Kim, G., Hussain, N., and Church, T. M.: How accurate are the 234Th based particulate residence
- times in the ocean?, Geophysical research letters, 26, 619-622,
- 578 <u>https://doi.org/10.1029/1999GL900037</u>, 1999.
- 579 Ku, T.-L., Knauss, K. G., and Mathieu, G. G.: Uranium in open ocean: concentration and isotopic
- 580 composition, Deep Sea Research, 24, 1005-1017, https://doi.org/10.1016/0146-6291(77)90571-9,
- 581 1977.
- Law, C., Martin, A., Liddicoat, M., Watson, A., Richards, K., and Woodward, E.: A Lagrangian
- 583 SF6 tracer study of an anticyclonic eddy in the North Atlantic: Patch evolution, vertical mixing

- and nutrient supply to the mixed layer, Deep Sea Research Part II: Topical Studies in
- Oceanography, 48, 705-724, https://doi.org/10.1016/S0967-0645(00)00112-0, 2001.
- 586 Le Moigne, F. A. C., Henson, S. A., Sanders, R. J., and Madsen, E.: Global database of surface
- ocean particulate organic carbon export fluxes diagnosed from the </sup>234</sup>Th
- 588 technique, Earth Syst. Sci. Data, 5, 295-304, https://doi.org/10.5194/essd-5-295-2013, 2013.
- 589 Lee, C., Murray, D., Barber, R., Buesseler, K., Dymond, J., Hedges, J., Honjo, S., Manganini, S.,
- 590 Marra, J., and Moser, C.: Particulate organic carbon fluxes: compilation of results from the 1995
- 591 US JGOFS Arabian Sea process study: By the Arabian Sea carbon flux group, Deep Sea
- Research Part II: Topical Studies in Oceanography, 45, 2489-2501,
- 593 https://doi.org/10.1016/S0967-0645(98)00079-4, 1998.
- Lüdke, J., Dengler, M., Sommer, S., Clemens, D., Thomsen, S., Krahmann, G., Dale, A. W.,
- 595 Achterberg, E. P., and Visbeck, M.: Influence of intraseasonal eastern boundary circulation
- 596 variability on hydrography and biogeochemistry off Peru, Ocean Sci. Discuss., 2019, 1-31,
- 597 <u>https://doi.org/10.5194/os-2019-93</u>, in review 2019.
- 598 McKee, B. A., DeMaster, D. J., and Nittrouer, C. A.: Uranium geochemistry on the Amazon
- 599 shelf: evidence for uranium release from bottom sediments, Geochimica et Cosmochimica Acta,
- 51, 2779-2786, https://doi.org/10.1016/0016-7037(87)90157-8, 1987.
- Moore, W.: Radionuclides of the uranium and thorium decay series in the estuarine environment,
- 602 in: Uranium-series disequilibrium: applications to earth, marine, and environmental sciences. 2.
- 603 ed, 1992.
- Morris, P. J., Sanders, R., Turnewitsch, R., and Thomalla, S.: 234Th-derived particulate organic
- 605 carbon export from an island-induced phytoplankton bloom in the Southern Ocean, Deep Sea
- Research Part II: Topical Studies in Oceanography, 54, 2208-2232,
- 607 https://doi.org/10.1016/j.dsr2.2007.06.002, 2007.

- 608 Murray, J. W., Downs, J. N., Strom, S., Wei, C.-L., and Jannasch, H. W.: Nutrient assimilation,
- 609 export production and 234Th scavenging in the eastern equatorial Pacific, Deep Sea Research
- Part A. Oceanographic Research Papers, 36, 1471-1489, https://doi.org/10.1016/0198-
- 611 0149(89)90052-6, 1989.
- 612 Noffke, A., Hensen, C., Sommer, S., Scholz, F., Bohlen, L., Mosch, T., Graco, M., and
- Wallmann, K.: Benthic iron and phosphorus fluxes across the Peruvian oxygen minimum zone,
- 614 Limnology and Oceanography, 57, 851-867, https://doi.org/10.4319/lo.2012.57.3.0851, 2012.
- 615 Owens, S., Buesseler, K., and Sims, K.: Re-evaluating the 238U-salinity relationship in seawater:
- 616 Implications for the 238U–234Th disequilibrium method, Marine Chemistry, 127, 31-39,
- 617 https://doi.org/10.1016/j.marchem.2011.07.005, 2011.
- 618 Owens, S. A., Pike, S., and Buesseler, K. O.: Thorium-234 as a tracer of particle dynamics and
- 619 upper ocean export in the Atlantic Ocean, Deep Sea Research Part II: Topical Studies in
- Oceanography, 116, 42-59, http://dx.doi.org/10.1016/j.dsr2.2014.11.010, 2015.
- Pike, S., Buesseler, K., Andrews, J., and Savoye, N.: Quantification of 234 Th recovery in small
- 622 volume sea water samples by inductively coupled plasma-mass spectrometry, Journal of
- 623 Radioanalytical and Nuclear Chemistry, 263, 355-360, https://doi.org/10.1007/s10967-005-0594-
- 624 <u>z</u>, 2005.
- 625 Rengarajan, R., Sarin, M., and Krishnaswami, S.: Uranium in the Arabian Sea: role of
- denitrification in controlling its distribution, Oceanologica acta, 26, 687-693,
- 627 https://doi.org/10.1016/j.oceact.2003.05.001, 2003.
- Rosengard, S. Z., Lam, P. J., Balch, W. M., Auro, M. E., Pike, S., Drapeau, D., and Bowler, B.:
- 629 Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt,
- 630 doi:10.5194/bg-12-3953-2015, 2015.

- 631 Savoye, N., Benitez-Nelson, C., Burd, A. B., Cochran, J. K., Charette, M., Buesseler, K. O.,
- 632 Jackson, G. A., Roy-Barman, M., Schmidt, S., and Elskens, M.: 234Th sorption and export
- models in the water column: a review, Marine Chemistry, 100, 234-249,
- 634 <u>https://doi.org/10.1016/j.marchem.2005.10.014</u>, 2006.
- 635 Schmidt, S., and Reyss, J.: Uranium concentrations of Mediterranean seawater with high
- 636 salinities, Comptes Rendus de l'Academie des Sciences. Serie 2, 312, 479-484, 1991.
- 637 Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic oxygen content during
- the past five decades, Nature, 542, 335, 10.1038/nature21399, 2017.
- 639 Scholz, F., McManus, J., Mix, A. C., Hensen, C., and Schneider, R. R.: The impact of ocean
- 640 deoxygenation on iron release from continental margin sediments, Nature Geosci, 7, 433-437,
- 641 https://doi.org/10.1038/ngeo2162, 2014.
- 642 Steinfeldt, R., Sültenfuß, J., Dengler, M., Fischer, T., and Rhein, M.: Coastal upwelling off Peru
- and Mauritania inferred from helium isotope disequilibrium, Biogeosciences, 12, 7519-7533,
- 644 <u>https://doi.org/10.5194/bg-12-7519-2015</u>, 2015.
- 645 Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding oxygen-minimum zones
- in the tropical oceans, science, 320, 655-658, 2008.
- 647 Suess, E., Kulm, L., and Killingley, J.: Coastal upwelling and a history of organic-rich mudstone
- deposition off Peru, Geological Society, London, Special Publications, 26, 181-197, 1987.
- 649 Swarzenski, P., Campbell, P., Porcelli, D., and McKee, B.: The estuarine chemistry and isotope
- 650 systematics of 234,238 U in the Amazon and Fly Rivers, Continental Shelf Research, 24, 2357-
- 651 2372, https://doi.org/10.1016/j.csr.2004.07.025, 2004.
- 652 Swarzenski, P. W., Porcelli, D., Andersson, P. S., and Smoak, J. M.: The behavior of U-and Th-
- 653 series nuclides in the estuarine environment, Reviews in Mineralogy and Geochemistry, 52, 577-
- 654 606, https://doi.org/10.2113/0520577, 2003.

Thomsen, S., Kanzow, T., Krahmann, G., Greatbatch, R. J., Dengler, M., and Lavik, G.: The 655 formation of a subsurface anticyclonic eddy in the Peru - Chile Undercurrent and its impact on 656 the near - coastal salinity, oxygen, and nutrient distributions, Journal of Geophysical Research: 657 Oceans, 121, 476-501, https://doi.org/10.1002/2015JC010878, 2016. 658 Van Der Loeff, M. R., Sarin, M. M., Baskaran, M., Benitez-Nelson, C., Buesseler, K. O., 659 Charette, M., Dai, M., Gustafsson, Ö., Masque, P., and Morris, P. J.: A review of present 660 techniques and methodological advances in analyzing 234Th in aquatic systems, Marine 661 Chemistry, 100, 190-212, https://doi.org/10.1016/j.marchem.2005.10.012, 2006. 662 Waples, J. T., Benitez-Nelson, C., Savoye, N., van der Loeff, M. R., Baskaran, M., and 663 Gustafsson, Ö.: An introduction to the application and future use of 234Th in aquatic systems, 664 665 Marine Chemistry, 100, 166-189, https://doi.org/10.1016/j.marchem.2005.10.011, 2006. Weinstein, S. E., and Moran, S. B.: Vertical flux of particulate Al, Fe, Pb, and Ba from the upper 666 ocean estimated from 234Th/238U disequilibria, Deep Sea Research Part I: Oceanographic 667 Research Papers, 52, 1477-1488, https://doi.org/10.1016/j.dsr.2005.03.008, 2005. 668 Zhurbas, V., and Oh, I. S.: Drifter - derived maps of lateral diffusivity in the Pacific and Atlantic 669 670 oceans in relation to surface circulation patterns, Journal of Geophysical Research: Oceans, 109, https://doi.org/10.1029/2003JC002241, 2004. 671 672

Figure captions 674 675 Figure 1. Map showing locations of each station from M136 (white squares) and M138 (grey 676 circles). Color boxes schematically divide the four shore-normal transects. This map was created 677 with Ocean Data View (Schlitzer, 2014). 678 Figure 2. Profiles of ²³⁸U (black) and ²³⁴Th (orange squares – M136; orange circles –M138) along 679 with concentrations of oxygen (grey) and fluorescence (green). Profiles are organized by cruises, 680 681 transects, and distance to shore from left to right and top to bottom. 682 Figure 3. Cross plots of measured ²³⁸U activities vs. salinity for M136 (a) and M138 (b), showing 683 poor linear relationship between ²³⁸U and salinity. (c) shows a direct comparison between 684 measured and salinity-based ²³⁸U to further highlight the large difference between the two. The 685 solid blue line indicates the 1:1 ratio between measured and projected ²³⁸U. Blue dashed lines 686 indicate the ± errors reported in Owens et al. (2011). 687 688 689 Figure 4. Profiles of repeated stations for (a) temperature (solid lines) and salinity (dashed lines) for St. 495 (blue) and St. 516 (orange); (b) and (c) profiles of ²³⁸U (black), ²³⁴Th (color squares), 690 and concentrations of oxygen (grey) and fluorescence (green). 691 692 Figure 5. Bar charts of ²³⁴Th fluxes due to production and decay (blue), upwelling (orange), and 693 vertical diffusion (grey) for the base of the ML (top) and 100 m (bottom). Color boxes 694

695	corresponds to individual transects in Figure 1. Within each transect stations from west (offshore)
696	to east (nearshore) are listed from left to right. Error bars (1SE) were indicated.
697	
698	Figure 6. Distributions of averaged ²³⁴ Th activities during M136 (a, top 30 m) and M138 (b, top
699	50 m).

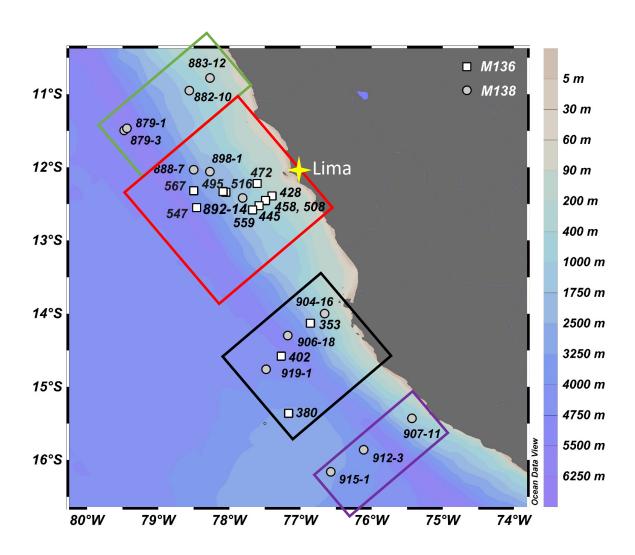
								234	²³⁴ Th flux at the base of the MI	e base of the	a ML			²³⁴ TI	²³⁴ Th flux at 100 m	u	
			Mix														
			layer	er oxycline		Equilibrium	_	Production and					Production				
Cruise	se Stati	Station Cast			≢	depth	Depth	decay	Upwelling	Diffusion	Final flux	1 SD	and decay	Upwelling	Diffusion	Final flux	1SD
			Ε		µg L⁻¹	Ε	Ε	dpm m² d¹	dpm m ⁻² d ⁻¹	dpm m ⁻² d ⁻¹	dpm m ⁻² d ⁻¹	dpm m² d¹	dpm m ⁻² d ⁻¹				
M136		3 1	1 25		1.20	100	30	206	52		923	69	1422	-14	2	1410	189
M13		0	1 26		0.87	80	30	1145	0		1105	54	1637	0	-1	1637	132
M13		2 1	1 24		7.51	100	30	808	0	-75	732	64	1234	0	2	1236	111
M13	16 428	8	1 10		4.11	30	30	983	-128	•	1348	129	1772	33	-390	1415	256
M13		5 1	1 17		2.07	100	30	820	-10		826	99	1621	53	9	1681	165
M13		8	1 5		1.61	100	30	1012	-18		1155	117	2101	-11	145	2235	238
M13		2	1 11		7.41	200	40	1887	15	-29	1872	77	3315	-12	63	3366	233
M13		5 1	1 18		1.13	200	30	1149	1	-19	1130	20	3195	2	5-	3192	88
M13		6 1	1 16		3.77	200	30	614	0	П	615	49	2229	2	4	2227	109
M13		7	1 22		1.28	150	30	791	0	85	877	61	2510	0	-15	2495	118
M13		9 1	1 20		1.70	85	20	623	ĸ	-67	559	117	854	4	2	852	120
M136		7	1 21		2.40	150	30	1593	0	-23	1570	52	3011	0	-11	3000	98
M13					2.24	200	09	1249	0	-16	1266	91	1702	0	τ̈́	1697	111
M13	882				2.68	150	20	1321	-2	16	1331	63	2264	19	-12	2272	82
M13					1.31	250	30	683	-84	-159	758	108	1782	31	-121	1692	179
M13					1.59	150	20	1364	0	-120	1244	62	1813	0	4	1809	98
M13					1.05	100	09	1395	33	-118	1309	72	1743	ę-	1	1741	66
M138	868 81		1 38		1.42	09	20	1099	0	-19	1080	104	1091	0	0	1091	125
M13	8 904				3.63	150	20	812	275	0	1087	9/	2643	0	6-	2634	79
M13					1.73	200	40	1796	0	4	1799	41	3100	0	-1	3100	77
M13					1.29	09	09	1594	-88	13	1518	147	1787	29	-5	1853	140
M13	8 912				2.75	>600	20	1960	0	-79	1881	43	2975	0	6-	2972	78
M13		5 1			3.51	200	40	1628	0	22	1650	38	2752	0	0	2752	93
M13					4.46	150	30	1316	С	49	1365	32	3249	C	œ	3241	82

Table 2. Comparison of 234 Th fluxes at 100 m calculated with measured 238 U activities and those with salinity-based 238 U.

	ies and thos		²³⁴ Th fluxes	at 100 m*	
Cruise	Station	Cast	measured	predicted	Difference
			dpm m ⁻² d ⁻¹	dpm m ⁻² d ⁻¹	%
M136	353	1	1422	1320	8
M136	380	1	1637	1304	26
M136	402	1	1234	865	43
M136	428	1	1772	1443	23
M136	445	1	1621	1365	19
M136	458	1	2101	1859	13
M136	472	1	3315	3073	8
M136	495	1	3195	3058	4
M136	516	1	2229	2140	4
M136	547	1	2510	2313	9
M136	559	1	854	751	14
M136	567	1	3011	2879	5
M138	879	3	1702	1515	12
M138	882	10	2264	1875	21
M138	883	12	1782	1352	32
M138	888	7	1813	1441	26
M138	892	14	1743	1257	39
M138	898	1	1091	770	42
M138	904	16	2643	2280	16
M138	906	18	3100	2673	16
M138	907	11	1787	1308	37
M138	912	3	2975	2572	16
M138	915	1	2752	2380	16
M138	919	1	3249	2862	14

 $^{^{\}ast}$ For comparison purposes, we only report here $^{234}\!\text{Th}$ fluxes due to radioactive production and decay.

Table 3. Residence time of total 234 Th in the surface layers of Peruvian OMZ.


			Average ²³⁴ Th in	
Cruise	Station	Cast	the surface layer*	Residence time
			dpm L ⁻¹	days
M136	353	1	1.48	46
M136	380	1	1.35	35
M136	402	1	1.64	61
M136	428	1	1.57	35
M136	445	1	1.64	61
M136	458	1	1.45	38
M136	472	1	0.93	20
M136	495	1	1.20	31
M136	516	1	1.74	85
M136	547	1	1.67	63
M136	559	1	1.75	94
M136	567	1	1.41	45
M138	879	3	1.59	75
M138	882	10	1.81	69
M138	883	12	1.87	74
M138	888	7	1.68	67
M138	892	14	1.69	65
M138	898	1	1.66	92
M138	904	16	1.32	24
M138	906	18	1.15	25
M138	907	11	1.04	41
M138	912	3	1.25	33
M138	915	1	1.16	28
M138	919	1	1.17	26

 $^{^{\}ast}$ Here 'surface layer' refers to the top 30 m during M136 and top 50 m during M138.

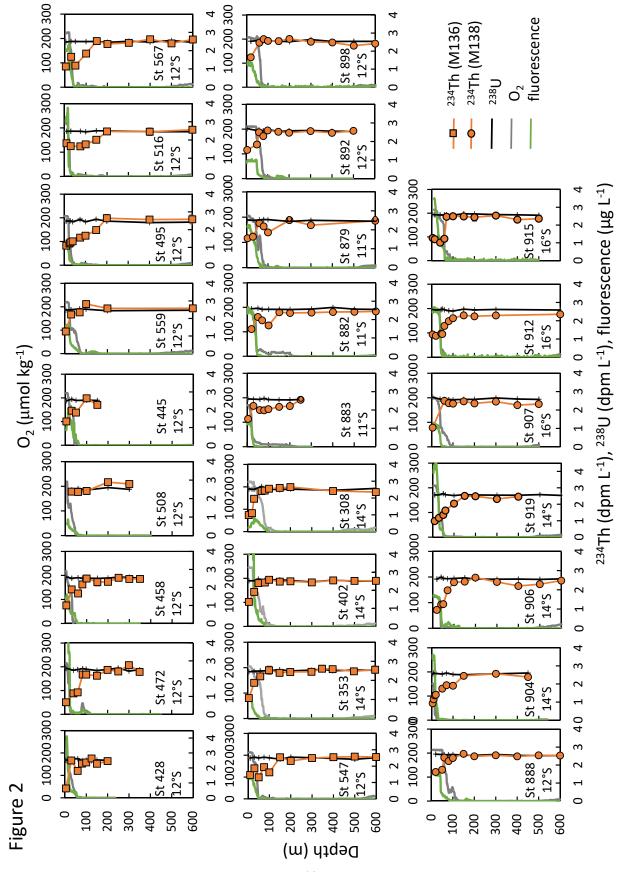
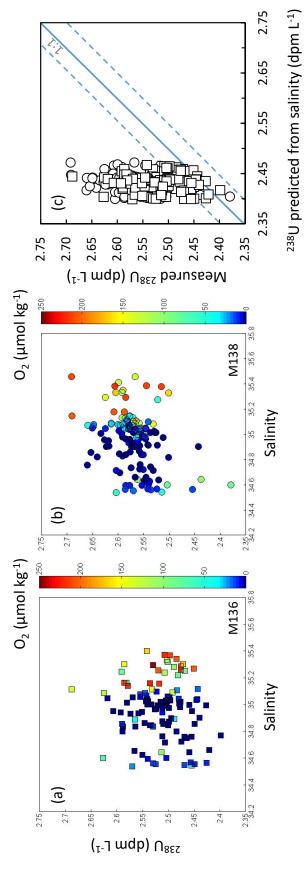


Figure 1



igure 3-

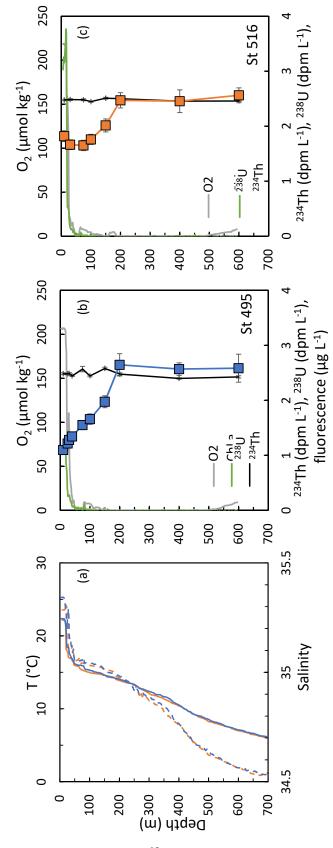
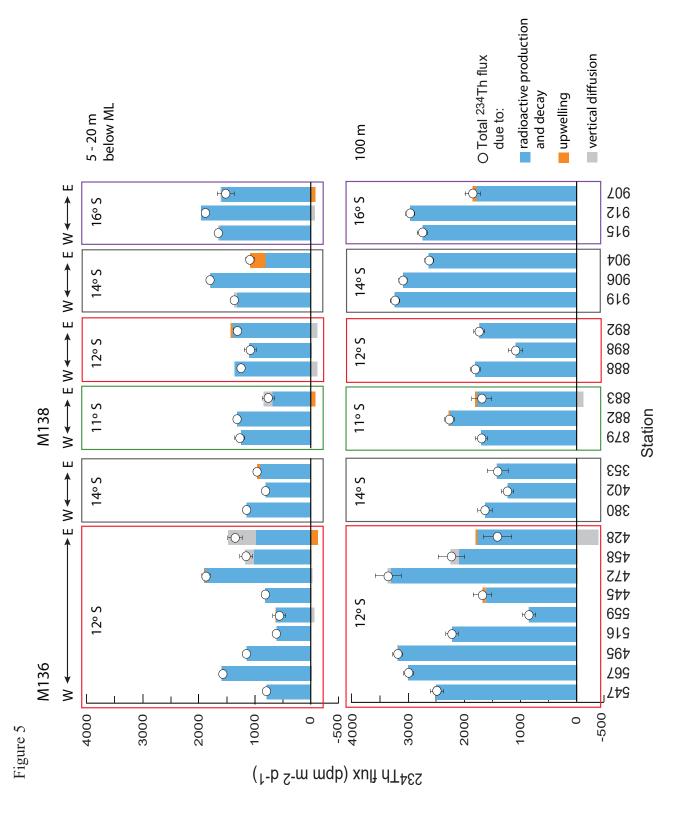



Figure 4

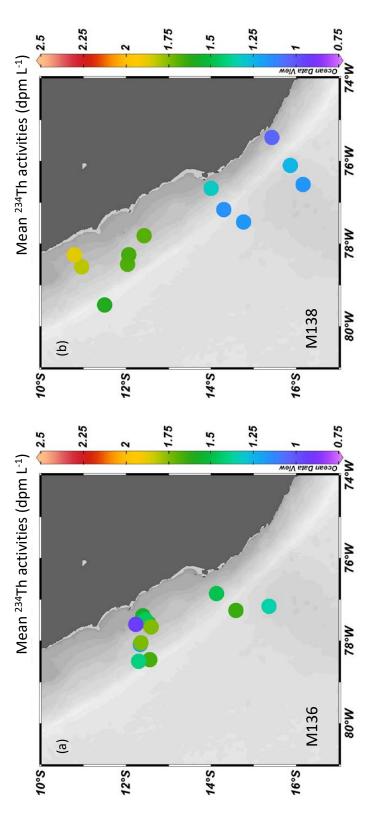


Figure 6