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Author´s response 

Dear editor: 

In the following lines you can find the answers to your comments. As we did a new deep revision of the text, 

we also have added an updated version of the answers to the reviewers. 

Regards, 

The Authors 

Editor comments: 

Comments to the Author: 

Dear authors, 

Thanks a lot for responding to the reviewer comments. Both reviewer found that this manuscript presents 

an interesting data set and makes a significant contribution in exploring factors of SOC storage in grasslands. 

However, both reviewer noted that there are several formal aspects, which can be clarified as outlined in 

your responses. However, the overall writing has to be improved considerably. 

We really appreciate the comments and suggestions the reviewers and you have done. The manuscript has 

definitively improved a lot. We have done an especial effort in improving the overall writtling.  

In addition to the reviewer, I have the following comments: 

1. In the Abstract make clear on how many sites your study is based on and to which depth samples have 

been taken. 

Changes done. (L 87) 

2. Take care that all abbreviations are explained properly. E.G. BRT might be known by statisticians but not 

by all soil scientists. 

We checked the remaining abbreviations in the text, and under our view they are well explained. In the case 

of BRT models, we added the following information. 

“We applied two different modelling procedures: Boosted Regression Trees (BRT) and General Linear 

Models (GLM). BRT is an automatic technique that combines insights from traditional statistical modelling 

and machine learning traditions (Elith et al., 2008). GLM allowed us to design a hypothesis-based modelling 

procedure, ensuring that only effects with biological meaning where included; whereas BRT provided 

information about the data that could be neglected, if only a GLM approach was followed.” (L331-336) 
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3. Tables. Explain all abbreviations (especially the not well known ones, e.g. TSIS). Tables and Figures 

should be self-explanatory 

We added abbreviation explaining in all table and figure captions, including supplementary material.  

4. Final model. Is it meaningful to include soil N? More than 90% of N are bound to soil organic matter and 

consequently N must correlate with C, at least their concentrations. Due to this inherent relationship, I would 

argue that N is a controlling factor. In the model you have used to explain stocks (whose estimate includes 

bulk density), but you have to provide the relation between C and N concentrations and then the reader may 

judge how meaningful soil N is. 

We agree with this comment at 90%, and we find it useful and interesting. We would say that although it is 

true that SOC and soil N must be correlated as they constitute soil organic matter, due to the wide range of 

conditions and the randomized sampling design of the PASTUS database, raw correlation between soil N 

and SOC was something discrete (r = 0.88; p-value = 0.001; R2 = 0.09) when comparing with other studies 

(i.e. Yan et al. 2020).  What our models proposes is that soil N modulates SOC response to certain drivers 

(grazing management and NDF). In other words, grazing management and NDF effects on SOC differ 

depending on soil N conditions. So soil N would not be completely a controlling factor, although is not as the 

rest of SOC predictors because of the reasons you exposed. 

To explain this, we modified the corresponding paragraph in the discussion section as follows:  

“A positive relationship between SOC and soil N was also expected, since most of the soil N is in combined 

form with organic matter (Cambardella and Elliott, 1994). However, in this case, due to the wide range of 

conditions and the randomized sampling design of the PASTUS database, the raw correlation between soil 

N and SOC was somehow discrete (r = 0.297; p-value = 0.001; R2 = 0.088), in comparison to other studies 

(i.e. Yan et al. 2020). However, the novelty revealed by our model is that soil N could modulate the effects 

of certain SOC drivers, including livestock type and herbage NDF.” (L 629-635) 

Could you so provide support that the final model indeed allows that many factors (e.g. by showing AIC)? 

We consider that the number of samples (128) is high enough for allowing the number of factors in the 

Combined Model. Additionally, as we explained in the manuscript, we did not use AIC in the modelling 

procedure, but the corrected version AICc, which penalizes much more the inclusion of additional terms, 

hence ensuring that new included factors contribute with really significant information (Burnham & Anderson 

2002; Burnham et al. 2011). As far as we know, AIC and AICc of the whole model do not give information 

about if the number of factors is appropriate, but about the information explained by the model in relation to 

other models. Anyway, AICc of the Combined model was -14.16466. Additionally, below this lines you can 

find a table showing AICc changes (ΔAICc) in the Combined model when removing each main variable or 
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interaction. Results for main variable effects show changes when removing the main effect and all the 

interactions using that variable. F test and p-value columns show the anova test between the Combined 

model and the model resulting of removing that variable or interaction. In this table you can appreciate how 

excluding any term implies an important information loss (ΔAICc > 2; (Burnham & Anderson 2002; Burnham 

et al. 2011)); and that those models are significantly different according to anova test between models. We 

decided not to include this table because we find it redundant with Table 3, which provides significance test 

for each model term and also the coefficients of the model. We could include them as supplementary material 

or even in the main document if you consider it necessary. 

Variable or interaction term ΔAICc F test p-value  
TSIS 26.58 9.26 0.000 *** 

Slope 4.89 4.65 0.012 * 

MAP 3.97 5.93 0.017 * 

Soil N 62.15 20.87 0.000 *** 

Log(C/N) 66.05 77.03 0.000 *** 

Grazing species 10.86 4.28 0.001 *** 

Grazing intensity 10.52 4.98 0.001 ** 

NDF 12.30 8.14 0.001 *** 

ADL/NH 10.65 5.79 0.001 ** 

Soil N x Grazing management 15.95 9.94 0.000 *** 

TSIS x Slope 6.31 8.03 0.006 ** 

Soil N x NDF 10.92 12.28 0.001 *** 

TSIS x Grazing species 5.29 4.83 0.010 ** 

Grazing species x ADL/NH 3.78 4.14 0.019 * 
 

5. How did you consider that factors are autocorrelated e.g. pH and Mg? 

We are not sure of understanding if this question refers to spatial autocorrelation or to correlations between 

variables. Anyway, as our response variable was not spatially autocorrelated according to Morans´s I test 

(z-score =  -1; p-value = 0.3), we do not consider that the fact that explanatory variables were autocorrelated 

or not could have any noticeable impact for modelling procedure. In other words, spatial autocorrelation 

could be a problem if it were presented by the response variable (soil organic carbon), not the explicative 

variables. Additionally, the randomnized sampling design of the PASTUS database probably reduced the 

possibility of having spatially autocorrelated variables. 

Concerning the correlations between explanatory variables, the randomized sampling design of the PASTUS 

database and the GLM modelling procedure were designed to reduce and control that issue. However, GLM 

procedure did not selected Mg or pH not because they were highly correlated with other variables, but 

because the effect they could have on soil organic carbon were surely included in other variables with more 

explanatory power. As BRT is a modelling procedure that includes explanatory variables regardless of the 
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information provided by other variables, we can detect that Mg and pH had some effects on soil organic 

carbon. To identify which concrete variable(s) produce pH and Mg displacement in the GLM procedure would 

imply an exhaustive exercise of forward-backward modelling. 

In the text, this is explained as follows: 

“Furthermore, BRT model provided some valuable information, identifying some relevant SOC drivers which 

were discarded during the GML modelling, like aboveground biomass, or soil silt and K (Fig. 2 and S8). The 

effects of those drivers were probably masked by the effects of other variables in our linear models (Yang 

et al., 2009), indicating that these factors were presumably pathways through which other variables drove 

SOC (de Vries et al., 2012). These variables, identified by BRT and discarded by GLM, should be considered 

as potential SOC drivers in further studies, particularly when more detailed and difficult to obtain biochemical 

variables, present in our database, are not available.” (L 473-476) 

We made several changes in the explanation of this point in the methods and discussion, and we truly 

believe now is clearer and more understandable than before. 

6. Table 1. Is it really meaningful to show what has been measured in which study but not showing the actual 

outcome of these studies? For instance SOC stocks, main controlling factors, etc. 

The aim of including that table was to highlight the wide variety of climate conditions that the PASTUS 

database contains and the different soil organic carbon drivers that includes. In a previous study about 

species richness done with dese database (Rodríguez et al. 2018), we get some criticism from certain 

journals because the argued that the range of study was “too regional”. This time, we really appreciate the 

recognition that both referees had done to the effort of compiling this amount of data.  

We added some of the information to the table. In the caption, we specified which studies considered other 

response variables instead of soil organic carbon (total carbon stocks, soil organic carbon concentration 

etc.). However, adding more information is not an easy task. Soil organic carbon ranges are difficult to 

summarize because each study considers different soil depths and there would be necessary an intensive 

work to get comparable values. We included the types of explanatory variables included in each study, but 

specific variables and effects and so heterogeneous that are difficult to include in a table, and could lead to 

the reader to misleading conclusions about these papers. 

7. Figure 2: Clarify that the relative importance is related to explained variance. 

The way that relative importance of explanatory variables is not exactly related with the concept of explained 

variance. According to Elith et al. (Elith et al. 2008): 
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“The measures are based on the number of times a variable is selected for splitting, weighted by the squared 

improvement to the model as a result of each split, and averaged over all trees (Friedman & Meulman 2003). 

The relative influence (or contribution) of each variable is scaled so that the sum adds to 100, with higher 

numbers indicating stronger influence on the response.” 

If you consider it appropriate, we can include this information on the methods, although we thing it could be 

a little bit excessive. In the caption of Fig. 2 we added: “Higher numbers indicate stronger influence on SOC 

stocks (Elith et al., 2008).” 

8. The explanation of interaction seems very speculative. 

We revised once again both the manuscript and the literature for making our discussion less speculative. 

Finding experimental studies to support our results is a difficult task because experimental studies assessing 

interactions between SOC drivers are not as frequent as one could expect. This is a problem that affects not 

only to SOC, but to soil properties in overall. For instance Rillig et al. (2019) revised 1228 experimental 

studies about global change drivers of diverse soil properties, published between the years 1957 and 2017, 

and they found that 80% looked just at the effects of one single factor and 19% at the interaction of two 

factors. This pattern did not changed over the time, so this shortage of experimental studies about 

interactions is also manifested in current publications. To make things less favourable, in the mentioned 

revision fertilization was one of the tested factors in more than half of the experiments assessing interaction 

effects, which suggest that natural or at least extensively managed grassland conditions are poorly 

represented in experimental studies. Being conscious of these limitations, we are convinced that of work will 

provide highly valuable information. Interaction experiments are expensive, since they require high sample 

sizes. Patterns observed in studies like ours can be useful to propose hypothesis to test instead of raising 

hypothesis blindly. 

We added some of this information in the discussion section: 

“Those results must be interpreted cautiously, because they are based on observational data, but can 

contribute to generate testable hypotheses for later studies about some complex and untested relationships 

between SOC and its drivers. Interaction experiments concerning soil properties are expensive and rare in 

the literature (Rillig et al., 2019).” (L 621-625) 

However, if after reading our revised manuscript you find that some parts of the discussion still need an 

improvement, we would be pleased of listening your suggestions. We find that our manuscript has improved 

a lot with this revision.   

9. Language should be carefully checked. It can be smoothed at many places. 
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We have intensively checked language. However no one of the authors is an English native speaker. Our 

institution has a language revision service, but tis August was closed because of COVID. If you still find that 

language has to be improved after this revision, we would be able to send it to that service as of September. 
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Referee 1 

Overall, the manuscript entitled ‘Interactions between biogeochemical and management factors explain soil 

organic carbon in Pyrenean grasslands’ would have potential to be of great interest for the readers of 

Biogeosciences Journal. It provides interesting results on the effect of different drivers on soil carbon stocks 

in Pyrenean grasslands. However, I have noticed some important points that need to be addressed before 

this manuscript can be considered for publication. 

Concerning the abstract, I think that the scope and objectives of the study need to be better defined. After 

reading it, we do not have a clear idea of what factors have been tested. I have the same feeling after reading 

the introduction. Overall, we understand that there are many factors which can influence soil C stocks at 

different scales, but it is difficult to understand what are the real objectives of the study. Is the objective to 

determine which factors influence the most the soil C stocks, is this analysis done for different scales? 

We have revised the abstract and the introduction sections, following your specific comments. Under our 

view, the scope and objectives are now more understandable. In a nutshell, the scope is to study the relative 

effects, including interaction effects, of geophysical and biochemical SOC drivers, and also to pinpoint how 

grazing management regulates the effects of other SOC controls. 

In the material and methods section, the main issue that I noticed concerns the statistical approach. It is not 

clear for me why two separate approaches were done. It adds a certain complexity to the article and it needs 

to be better presented according to the objectives for each approach. Are both the approaches really relevant 

for the paper? The links between the objectives and the chosen modelling approach needs to be better 

defined. Also, concerning the calculation of soil C stocks, it would have been appropriate to correct soil C 

stocks according to the equivalent soil mass approach to account for possible differences in bulk density 

values (Ellert and Bettany, 1995; Ellert et al., 2008). 

We explained in the specific comments why we think both statistical approaches are complementary and 

important. We revised the manuscript to emphasize and make clear this point. However, if our arguments 

neither convince nor the editors nor the referees, we are open to put the BTR model in supplementary 

material or even suppress it completely.  Note that although it has been argued that the usefulness of using 

both approaches was not clear, referee 1 made several specific questions about the differences between 

their results, precisely about the points we consider interesting. We also commented the point about fixed 

mass approach for calculating SOC stocks in the corresponding specific comment.  

Concerning results and discussion, even if the ideas are, overall, well supported by relevant references and 

the limits are underlined, I think that the organization will be improved after the clarification of the objectives 

and the corresponding analyses. Also I noticed repetitions of results in the ‘results’ section and in the 
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‘discussion’ section so I would suggest to group all the results and discussion in one section if the journal 

guidelines allow it. 

We think separate sections for results and discussion are important, since this is useful for separating the 

raw statistical results from results discussion and interpretations. We truly believe that the manuscript is 

going to be easier to read and understand if we maintain this structure. The statistical methods presented 

here could seem complex, and reading the results separately could help to their understanding since is the 

shortest and simplest section. Anyway, we followed your advice and we revised the manuscript to make it 

less repetitive. Your specific comments where greatly valuable for this task. The most important change is 

we suppressed the first paragraph in the discussion section, which was actually a summary of the result 

section. We also revised the paragraph about the modeling procedure, and we believe now is more clear. 

We think the rest of the subsection titles in the discussion were useful to structure the text. Under our view, 

every sub-section was justified. However, we grouped subsections 2-4 (Geophysical, biochemical and 

grazing management factors driving SOC stocks) as both referees asked us to reduce the number of 

sections. The idea is that first section gives an idea of the right way of interpreting the models. The second 

section answers the questions formulated at the end of the introduction; 1:  “what are the relative and 

interaction effects of the geophysical and biochemical SOC controls?” and 2: “How grazing management 

regulate the effects of other SOC drivers? Finally, we separated and revised the conclusion section following 

the indications of referee 2. 

Of course, if after this revision, the referees and the editor consider that results and discussion section must 

be combined, we could do it without a problem. 

Finally, it would be important that the manuscript be reviewed for the English. Some corrections might be 

necessary. 

We revised the English. 

In the next paragraph, I developed some detailed comments that will help the authors to improve the 

manuscript. 

 

L 53-54 “at small spatial scales” instead of “at detailed spatial scales”. 

Change done. (L 59) 

L 56-57 I am not sure that it is a good reason to do a study... What is the objective of the study by 

using this set of data?  
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To clarify this, we rewrote this sentence as follows: 

“Taking advantage of the high variety of environmental heterogeneity in the Pyrenees, we built a dataset (n 

= 128) that comprises a wide range of environmental and management conditions. This was used to 

understand the relationship between SOC stocks and their drivers considering multiple environments.” (L 

61) 

L 58 Do the authors have an explicative purpose or a predictive purpose? That is not clear for me, as they 

also use the ‘predictors’ term. 

The study has an explicative purpose. We have changed “predictors” by “drivers” or “factors” in all the text 

to avoid misinterpretations.  

L 59 This factor should be better defined. 

We specified it in the following way: 

“We found that temperature seasonality (difference between mean summer temperature and mean annual 

temperature; TSIS) was the most important geophysical driver of SOC in our study.” (L 65-66) 

L 65 I think that the coma is not necessary. 

The comma was removed. (L 71) 

L. 95-96 I think that these variables should be better described. Also "be" should be removed. 

These factors are not studied or they are not factors with a relevant impact in other studies?  

This phrase was rewritten as follows, to clarify that these factors were not even considered in these previous 

studies and the meaning of climate seasonality: 

“However, climate annual variations, represented by seasonality variables, are be commonly neglected 

when considering possible SOC drivers affecting SOC in broad-scale models, in spite of being some 

important factors for plant primary production or enzymatic activity of soil microorganisms.” (L 104 - 108) 

L.112 Same question than earlier: are they omitted because they do not impact the SOC stocks? 

The phrase was rewritten as follows: 

“However, these variables are commonly omitted as possible drivers of SOC in the broad-scale studies, 

especially in those studies focusing on predictive rather than explicative models” (L 122 - 125) 

L. 147 “focusing” instead of “focus” 

Change done. (L 123) 

L. 116 Overall, for the whole manuscript, the authors need to specify if it is SOC stock or concentration.  
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It is SOC stocks. That is now specified in multiple parts of the text. 

L.127 What type of management do you consider? 

In our case (natural grasslands), we consider livestock management. However, according to the cited article 

(Wiesmeier et al., 2019), management effects on grassland SOC in general are poorly understood. We have 

rephrased the sentence:  

“In addition to these factors, livestock management effects on grassland SOC is …” to clarify that in this 

paper we only refer to livestock management, which is from far the main management done in natural 

grasslands.” (L 138). 

L. 136 And what was their conclusion in regards of your objectives? 

The conclusion in regards of our objectives was that grazing must be considered as a variable that can 

interact with many variables at multiple scales (as it is represented in Fig. 1). We reordered this paragraph 

and completed this particular sentence to clarify this point: 

“It is known that herbivores can affect SOC through different paths, such as regulating the quantity and 

quality of organic matter returned to soil (Bardgett and Wardle, 2003), or affecting soil respiration and 

nutrients by animal trampling or soil microbiota alteration (Lu et al., 2017). Several studies confirmed the 

interaction between grazing and other SOC drivers at diverse scales (Abdalla et al., 2018; Eze et al., 2018; 

Lu et al., 2015, 2017; Zhou et al., 2017). Hence, grazing management may be considered a SOC driver with 

effects at multiple levels of the driver hierarchy (Fig. 1), both affecting other SOC drivers and interacting with 

them. However, most of the studies investigating grazing effects on SOC focus on grazing intensity, in spite 

of evidence pointing to a greater role of grazer species in determining vegetation and SOC (Chang et al., 

2018; Sebastia et al., 2008).” (L 139-151) 

 L. 140 Among which drivers? There are many factors that can interact or be correlated together. We need 

to know which drivers will be tested. The authors should be clearer on the objectives of this study.  

We modified this paragraph as follows: 

“In this study, our goal was to identify the main drivers of SOC stocks and their interactions on Pyrenean 

mountain grasslands. For this purpose, we considered a wide set of regional, landscape, soil geophysical 

and biochemical and herbage quality factors, together with grazing management factors. Mountain 

grasslands comprise a wide range of all these conditions which make carbon stocks highly variable (Garcia-

Pausas et al., 2007, 2017). For this reason data analyzed here comprise a wide range of environmental 

conditions, comparable to studies on SOC developed at continental or even worldwide scales (Table 1). 

Additionally, we consider an exceptionally broad compilation of drivers (Table 1).  To deal with correlations 
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and interactions between SOC drivers, we developed an exhaustive modelling approach based on the 

controls over function hypothesis (de Vries et al., 2012).” (L 152 - 161) 

L. 141 To asses 

This sentence was changed and this word does not appear. 

151-153 Do the authors want to study the effects of various factors, their links between them, the importance 

of the factors...? 

We rewritten the questions as follows to put that point clear: 

“1) What are the relative and interaction effects of the geophysical and biochemical SOC controls? 2) How 

grazing management regulate the effects of other SOC drivers?” (L 170) 

L.175 grazer type instead of grazing management 

Change done 

L 189-190 Are the soil samples from the 4 quadrats composited to form one soil sample per depth for each 

grassland patch? 

Yes, they are. Following the advice of referee 2, we made many clarifications about sampling design, 

including a new supplementary figure (Fig. S2). 

L. 192-193 I think this paragraph should appear before...  

We appreciate this comment, and we also recon that this paragraph could appear at the beginning of the 

methods section. However, we still find clearer to explain first how the sampling was performed and second 

how the samples were processed in order to get the environmental variables.  

L. 194 There should be a coma between landscape and livestock 

Change done (L 216) 

L. 199 But you don’t speak of mean summer temperature before... 

We added MST where climate variables were introduced, in the second paragraph of the section 2.2: 

Regional and Landscape environmental drivers: 

“Regional variables included climate variables and bedrock. Climate variables were determined from 

Worldclim 2.0 (Fick and Hijmans, 2017). We selected Mean Annual Temperature (MAT), Mean Summer 

Temperature (MST), Mean Annual Precipitation (MAP) and Mean Summer Precipitation (MSP).” (L 218 - 

221) 

L. 200-201 How did you appreciate that? We need to have more details on this factor. 



12 
 

During preliminary modelling exercises, two climatic variables appeared repeatedly in all tested models, 

always significantly contributing to the models with coefficients of similar magnitude but opposite signs: mean 

annual precipitation and mean summer temperature. In those initial models, even when those two variables 

were included in interaction with other drivers, this pattern was maintained; that is, the interactions were of 

opposite sign and the coefficients of the interactions were similar in magnitude. In this way, this is how the 

TSIS index initially emerged. This index has been found a significant driver of different variables of interest 

in the PASTUS database, including SOC and plat diversity (Rodríguez et al. 2018). 

We added the following explanation: 

“The difference between mean annual and mean summer temperature emerged as a relevant explanatory 

factor of soil organic carbon stocks during previous modelling efforts by one of the co-authors (M-T. 

Sebastià). Later attempts to improve models by substituting this variable with other temperature indices from 

climatic databases (Fick and Hijmans, 2017) showed that, for the PASTUS database, this variable provided 

higher explanatory power than other temperature seasonality indices. Thus, we decided to keep it and here 

we name it Temperature Seasonality Index of Sebastià (TSIS from now on)” (L 2221-228). 

L. 218 For each patch considered? 

Those grasslands are usually managed communally, and the livestock type and units are based on the 

number of animals, and type, sent to graze a given area during the grazing season. The unit area is usually 

related to the municipalities, although this situation might change a little depending on the mountain range. 

Grazing in the high-altitude grasslands in the Pyrenees is usually free-range. 

L. 229 For determination of bulk density? 

Yes. We modified the sentence as follows to clarify this point:  

“To obtain bulk density, we air-dried and weighed the soil samples: we then sieved each sample to 2 mm to 

separate stones and gravels from the fine earth fraction. “ (L 242) 

L. 233-234 This sentence is not clear. 

We rephrased this sentence to clarify it: 

“We combined 0-10 and 10-20 cm values for obtaining the whole top 20 cm soil layer.” (L 247 - 248) 

L. 243 It should have been important to correct soil C stocks according to the equivalent soil mass approach. 

We decided to use a fixed depth approach for calculating SOC stocks due to the following reasons. First, 

the main advantage of fixed mass approaches is that they account and correct differences in bulk density 

due to temporal changes or when comparing different land uses (Haden et al. 2020). We do not consider 
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variations in time, and neither have contrasting management regimes, as mentioned in the title of Ellert & 

Bettany´s paper (1995). We highlight that in our work samples came from natural mountain grasslands, 

where grazing intensity is always low to moderate, and moreover, herbivore presence is seasonal. 

Therefore, we do not expect important changes in bulk density due to land use. Second, we always used 

the same methods in our samplings (so we could not take advantage of fixed mass approaches for correcting 

biases due to different probe diameters, as suggested by Sharma et al. (2020). Finally, fixed mass 

approaches often have more technical difficulties than fixed depth measures even in the most modern 

procedures (Haden et al. 2020). On the other hand, Rovira et al. (2015) proposed a fixed mass approach 

which, as expected, was found to deal properly with bulk density changes but not with stoniness differences. 

We did not find any other reference dealing with this point. 

To clarify this point, we added the following lines to the text: 

“Soil organic carbon (SOC) stocks in the upper 20 cm soil layer were then estimated taking into account the 

organic C concentration in the sample and its bulk density, and subtracting the coarse particle (> 2 mm) 

content, following García-Pausas et al. (2007). Despite recent studies suggesting that fixed mass SOC 

stocks estimates are preferable to fixed depth methods because they would be more robust to temporal and 

land use changes in bulk density (Ellert & Bettany 1995), we chose a fixed depth method for measuring SOC 

stocks. This decision was based on the fact that our work samples came from natural mountain grasslands, 

where grazing intensity is always low to moderate, and moreover, herbivore presence is seasonal. 

Therefore, we do not expect important changes in bulk density due to land use. Additionally fixed mass 

approaches  presented the disadvantages of implying more technical difficulties than fixed depth measures, 

even in the most modern procedures (Haden et al. 2020), and could not deal well with differences in 

stoniness.” (L 259 - 271) 

L. 249 What was the vegetation: grassland species etc. 

We added the following paragraph to provide that information: 

“Almost all of the plant species in the grasslands from the PASTUS database are perennial (Sebastià, 2004), 

and plant biodiversity is highly heterogeneous as are the environmental conditions (Rodríguez et al., 2018).” 

(L 185-187) 

As this is not bromatological information we added this paragraph in lines 209 - 211 where describing the 

sample site conditions.  

L. 267 The size of the police is not the same for all this paragraph. Does this paragraph of NIRS analysis 

refer to the analyses presented in the previous paragraph? It is not clear.  
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We changed some sentences in these paragraphs so now the relationship between these two methods is 

clear. Basically, bromatological analysis were done for training NIRS models and getting the remaining 

values using NIRS spectrum. (L 272) 

L. 293 Among which variables? 

Among SOC and all the considered drivers. To clarify, we modified the sentence as follows: 

“Including all SOC potential drivers, we fitted a model with BRT to identify the most important ones affecting 

SOC.” (L 340) 

L.301 “Firstly” instead of “First” 

Change done. (L 348) 

L. 306-307 What is this new set of variables?  

This is standard procedure, according to (Elith et al. 2008). As it is explained, it refers to the variables that 

improve BTR model performance, the model set showed in Fig. 2. 

L. 314-316 Why choosing these two models, on which hypothesis did you decide these two groups?  

The geophysical variables are those commonly used in the literature, and are the first source of variation 

according to the hierarchy of controls over function hypothesis (Manning et al., 2015). Choosing these two 

models allows us to discuss the effects of geophysical variables on SOC without deleting some effects 

because of the inclusion of other variables (especially soil nutrients) whose effects may include those of 

geophysical variables, because geophysical variables could act trough other variables at smaller spatial 

scales (in this case, the biochemical variables). We consider Geophysical Model is interesting for discussion, 

since it allow comparisons with previous literature. Additionally, we reported which terms of the Geophysical 

Model were substituted by the biochemical variables, which suggests that those effects could affect SOC 

trough biochemical variables, while the other effects probably acted trough other mechanisms too. Finally, 

we believe that Geophysical Model has interest for future studies aiming to predict SOC in similar 

environmental conditions. As we mentioned before, these studies usually use what we call here geophysical 

variables, because they are easy and cheap to measure or obtain (Manning et al., 2015). We modified the 

referred sentence as follows, to emphasize some of these points: 

“We built two models (Fig. S5), one model based only on geophysical drivers and grazing management 

(Geophysical Model), and another model including, in addition to the former drivers, the biochemical drivers: 

soil nutrients and herbage quality (Combined Model). With this approach we aimed to avoid ignoring 

significant effects of the geophysical variables, the original source of variation of SOC stocks according to 
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the hierarchy of controls over function hypothesis (Manning et al., 2015), by masking them with the inclusion 

of biochemical drivers.” (L 360 - 373). 

We also added the following modifications in the “Geophysical drivers driving SOC stocks” subsection of the 

discussion section to a better explanation of the usefulness of the Geophysical model: 

“Considering the difficulties of modelling SOC in a widely heterogeneous mountain environment (Garcia-

Pausas et al., 2017), the Geophysical Model provided important information about broad-scale and 

topographic SOC drivers in the Pyrenees. This information could be useful not only for a better 

understanding of SOC patterns in mountain grasslands, but also for future modelling studies aiming to 

predict SOC, since geophysical variables are easier and less expensive to acquire and measure compared 

to biochemical variables (Manning et al., 2015).” (L 484 – 490) 

L. 316-320 Maybe it should be more appropriate in the introduction...  

We think this is appropriate for the methods as it contributes to the understanding of the modeling procedure. 

However, we modified the last paragraph of the introduction, to specify these aspects too. In overall we 

believe that this important paragraph has been widely improved thanks to your comments and suggestions. 

This text is now as follows: 

“In this study, our goal was to identify the main drivers of SOC stocks and their interactions in Pyrenean 

mountain grasslands. For this purpose, we considered a wide set of regional, landscape, soil geophysical 

and biochemical, and herbage quality factors, together with grazing management factors. Mountain 

grasslands comprise a wide range of all these conditions, which make carbon stocks highly variable (Garcia-

Pausas et al., 2007, 2017). For this reason, data analysed here include a wide range of environmental 

conditions, comparable to studies on SOC developed at continental or even worldwide scales (Table 1). 

Additionally, we considered an exceptionally broad compilation of drivers (Table 1). To deal with correlations 

and interactions between SOC drivers, we developed an exhaustive modelling approach based on the 

controls over function hypothesis (de Vries et al., 2012). To facilitate the formulation of our specific questions 

to answer in this study, we classified SOC drivers into three main groups (Fig. 1): i) geophysical factors, 

which include regional and landscape factors and are supposed to be the first sources of variation, ii) 

biochemical factors, which include soil nutrients and herbage factors and could be conditioned by 

geophysical factors, and iii) grazing management factors, which could affect SOC through multiple 

interactions with the rest of the variables at multiple scales. In particular, the specific questions of this study 

are 1) What are the relative and interaction effects of the geophysical and biochemical SOC controls? 2) 

How does grazing management regulate the effects of other SOC drivers?” (L152 - 172) 
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L.374 Why there are not all the predictors described in the introduction in this model? Grazing management 

for example?  

Because they were discarded in the BTR modelling procedure. Note that three-based methods can have 

difficulties in modeling some functions (Elith et al. 2008). We answered about why using both methods three 

comments below. 

L.381 Why these two variables are not selected in the model?  

This point was discussed in the “Considerations about the modelling procedure” subsection inside the 

discussion section. “Furthermore, BRT model provided some valuable information, identifying some relevant 

SOC drivers which were discarded during the GML modelling, like aboveground biomass, or soil silt and K 

(Fig. 2 and S8). The effects of those drivers were probably masked by the effects of other variables in our 

linear models (Yang et al., 2009), indicating that these factors were presumably pathways through which 

other variables drove SOC (de Vries et al., 2012).” (L 473-478). 

Basically, multiple predictor variables can not only be correlated but also have true cause-effect relationships 

between them (i.e. precipitation and aboveground biomass), what means that in a linear model, some drivers 

could be discarded not because they have no effects on the response variable, but because their effects 

were already included in other variable. In other words, some variables, like aboveground biomass, soil K or 

silt were not included in the linear models probably because they were correlated with other drivers which 

were included in the models. The advantage of including BTR analysis is that we could detect some of these 

variables.  

L.411 Some repetition from the results section...  

We deleted this paragraph as it is repetitive.  

L.444-447 I wonder if the BRT model is really relevant for the manuscript. . . Also, Are you sure it is table 

S3??? 

It is table S5 (change done). To summarize, the BTR model is relevant insofar it provides information about 

the effects of the variables not included in the linear models due to correlation. Is this information relevant 

enough for the manuscript? We think it is. For instance, if BTR model were not included, one question a 

referee or regular reader would ask would be: “How can you explain that aboveground biomass was not 

included in your models?” “Does it means that aboveground biomass had no effects on SOC?” The answer 

is that aboveground biomass had effects on SOC, but in the GLMs these effects were masked by other 

variables which explain more variation than aboveground biomass, and probably affect SOC thought 

affecting aboveground biomass. Note that BRT model also is mentioned in the discussion of topography 

effects, as it provided information about potential paths through which topography would be exerting its 
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effects on SOC. However, as both referees have the similar questions about the BTR model, we would be 

opened to move it to supplementary materials or even suppress it you find that our explanations and the 

information provided by the model are not relevant enough for this manuscript. 

L. 487 SOC decrease with increase of slope 

Change done. (L 522) 

L.489 Not clear. . . 

To clarify this sentence, we changed it as follows: 

“In addition, SOC stocks decreased with increase of slope, which may be attributed to reduced carbon inputs 

and increased carbon losses induced by steeper slopes” (L 522 - 523) 

L.491 What I see is that SOC stocks are lower under low intensity of grazing for low values of TSIS. . . 

We changed the sentence as follows: 

“At low TSIS values, SOC stocks increased under moderate to high grazing pressure; this effect disappeared 

as TSIS values increased (Fig. 3D)” (L 527-528) 

L.494-499 It is not really clear. 

We changed some sentences in this paragraph to make it clear: 

“At low TSIS values, SOC stocks increased under moderate to high grazing pressure; this effect disappeared 

as TSIS values increased (Fig. 3D). Recent meta-analyses concluded that intensive grazing commonly has 

decreasing effects on SOC (Abdalla et al., 2018; Eze et al., 2018; Mcsherry and Ritchie, 2013). However, 

these effects were strongly context-specific, depending on other factors including climate and soil type 

vegetation (Abdalla et al., 2018; Eze et al., 2018; Mcsherry and Ritchie, 2013). Moreover, moderate grazing 

intensities can increase SOC inputs by dung deposition, and aboveground and root biomass production 

(Franzluebbers et al., 2000; Zeng et al., 2015). In our study, grazing intensity was relatively moderate (see 

methods), therefore in our study increasing stocking rates may increase soil carbon inputs in moderate 

seasonality locations by enhancing aboveground and belowground productivity.” (L 527 - 537) 

L.507 high soil water contents? 

To clarify, we changed the sentence as follows: 

“high MAP may inhibit decomposition if a shortage of oxygen supply occurs (Xu et al., 2016b).” (L 541) 

L.525 “which might be explained by” instead of “which is an indicator” 

Change done. 
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Referee 2 

General comments 

The manuscript aims to understand how environmental and management factors affect SOC in mountain 

grasslands. And fitted a set of models with explicative purposes using data that comprise a wide range of 

environmental and management conditions to find the most important driver of grassland SOC. The authors 

are to be commended on the framing of an interesting study, the collection of a reasonable set of ancillary 

environment and management data and soil data in what appears to be good quality piece of research. The 

workload of this article is very huge. 

However, too many sections and repetitive statements in this article. Be better structured and more concise 

to attract readers. 

Please, see our answers to referee 1 about the modifications in the text structure.  

Deep discussion and comparison of your work is needed in an international context. In discussion section, 

some discussion on the mechanism of environmental and management factors should be added. 

We would really appreciate it if you could specify more about which mechanisms need more discussion. 

Referee 1 found that discussion section was “overall, well supported by relevant references and the limits 

are underlined”. We recon you have a point concerning biochemical or management species effects on SOC: 

the mechanisms are not widely explained but, as we explain in the text, that is a difficult task since there are 

few publications addressing these issues. We revised the published works from this manuscript was sent to 

Biogeosciences until now and, under our view, no remarkable novelties have appeared in these topics. 

However, we found a bibliometric study which concluded that interaction experiments concerning soil 

properties are expensive and rare in the literature (Rillig et al., 2019). We would appreciate it if suggestions 

about ideas or publications we could omit were made in order to improve the manuscript.  

I suggest you add a conclusion section, a concise and clear conclusion will make your article more eye-

catching and let readers understand the conclusion of this article more quickly and easily. 

We separated the conclusions from the discussion section, and we changed that paragraph to make it as 

much clear and concise as possible, focusing on the main contributions of our manuscript to scientific 

knowledge.  

As the manuscript contains some uncertainties in description of the methods, results, and English writing, I 

suggest a moderate revision necessary before it can be acceptable for publication in this journal. 
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We corrected the uncertainties in the text. The specific comments of both reviewers were really helpful and 

we really appreciate them. 

Specific comments 

Line 75 “Soil organic carbon plays key roles in the terrestrial ecosystems.” It sounds strange. 

We rephrased this sentence as follows: 

“Soil organic carbon (SOC) is crucial for the functioning of terrestrial ecosystems.” (L 84) 

Line 179 At least one to two replicates of each patch type were sampled. What are the types of the patch? 

To clarify this point, we rephrase this sentence as follows: 

“Grassland patches were then listed by type and arranged within each list randomly to determine sampling 

priority. At least one to two replicates of each patch type defined by the stratification variables were sampled.” 

(L 199 - 201) 

Line 155 Not clear sampling design description. Showing a figure with sampling design would be helpful. 

Add a schematic of experimental design to make it clearer. 

We added figure S2, which illustrates sampling design.  

Line 192 The abbreviation for soil organic carbon had appeared in line 75, here only need to write SOC. 

Change done. (L 214) 

Line 193 There are 30 variables written in table S1, but here you have written 29 independent environmental 

variables. Are the two management variables belong to environmental variables? Please check these 

numbers. 

Change done. (L 215) 

Line 194 These variables were grouped into Regional, landscape, livestock management, 

soil nutrient stocks, and herbage variables? If so, replace “:” with “,”. 

Change done. (L 216) 

Line 201 MTS? 

M-T. Sebastià. We changed this to make it clear. (L 223) 

Line 220 Here used livestock stocking rates which measured as livestock units ha-1 to determine grazing 

intensity. But the feed intake of different types of livestock is different. For example, the intake of cattle is 
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higher than that of sheep. So, can’t simply use the livestock units/ha-1 as livestock stocking rates, you need 

use standard livestock unit. 

We used a standard transformation index where 8 small ruminants correspond to 1 big ruminant. This is 

standard and provided by the Catalan Government for the region. 

Line 314 Geophysical model based on geophysical predictors and grazing management? There haven’t 

grazing management in Figure S4. 

Now Figure S4 has grazing management. 

Line 371 Authors need to better describe statistics of SOC. 

We added some information about the statistics of SOC. However, we do not know what more to add apart 

of basic descriptive statistics we already show. We will really appreciate it if you could specify what statistics 

you miss in this part of the text. (L 420 - 423) 

Line 375 Generally, a part of the sample is used for modeling, and the other part is used for validation. 

Please describe clearly in here and in Line 279. 

Concerning the line 375 (now 425) (BRT model) we did not validate the whole model with a fraction of the 

dataset, because our BTR model was fitted by cross validation (CV; it is used to select the number of trees 

with the best performance). Note that according to Elith et al. (2008), results of this cross validation procedure 

are often very similar to those obtained with independent datasets. Additionally, note that each tree was 

actually fitted with 66% of the data (out of the bag fraction parameter), so our procedure properly dealt with 

stochasticity too. All these are standard methods explained by Elith et al. (2008), so we prefer just to refer 

to this publication instead of extending our methods section, and to focusing on other parts of the statistical 

procedure that need to be clearer as possible. However, if you think that some of the standard aspects of 

the BRT procedure deserves to be explained in our manuscript, we will follow your advice. 

We detailed the herbage-bromatological analysis (L 279 (Now 272) and so on). 130 samples where used 

for the validation of NIRS equations. 

Line 379 Silt in here, loam in fig.2. Use consistent terminology of silt, loam, etc? Use one, Please! 

Change done. Silt is now the only name used. 

Line 382 Why TSIS was the most relevant selected climate predictor? In figure 6s, Soil C/N has a higher 

relative importance. 

TSIS was the most relevant of the climate predictors (without considering other variable types). To clarify 

this point, we rephrased this sentence as follows: 
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“TSIS was the most relevant among the climate drivers considered.” (L 432) 

Line 383 Please confirm this sentence and the quoted figure. I didn’t find TSIS in figure S5 and S6. In table 

s1, TSIS described as MST-MAT. In figure s8, MMT also described as MST-MAT Use consistent terminology 

of MMT, TSIS, etc? Use one, Please! 

Change done. MMT is a previous nomenclature. TSIS is the proper one. 

Line 381 Aboveground biomass and silt had a high relative contribution in the final BRT model obtained, 

why not selected them in the linear models? 

This was also true for soil K and silt. This point was discussed in the “Considerations about the modelling 

procedure” subsection inside the discussion section. “Furthermore, BRT model provided some valuable 

information, identifying some relevant SOC drivers which were discarded during the GML modelling, like 

aboveground biomass, or soil silt and K (Fig. 2 and S8). The effects of those drivers were probably masked 

by the effects of other variables in our linear models (Yang et al., 2009), indicating that these factors were 

presumably pathways through which other variables drove SOC (de Vries et al., 2012). These variables, 

identified by BRT and discarded by GLM, should be considered as potential SOC drivers in further studies, 

particularly when more detailed and difficult to obtain biochemical variables, present in our database, are 

not available.” (L 473 - 481) 

Basically, as multiple predictor variables can not only be correlated but also have true cause-effect 

relationships between them (i.e. precipitation and aboveground biomass), what means that in a linear model, 

some drivers could be discarded not because they have no effects on the response variable, but because 

their effects were already included in other variable. In other words, some variables, like aboveground 

biomass, soil K or silt were not included in the linear models probably because they were correlated with 

other drivers which were included in the models. The advantage of including BTR analysis is that we could 

detect some of these variables. There is more about BTR models in some answers to referee 1. 

Line 1121 Please add the fitting equation in figure 3 and 4. It is hard to distinguish which trend line belongs 

to which grazing species or grazing intensity. You can distinguish by color, or add the legend. 

We changed all the plots to the main document to color plots, so lines and dots are more distinguishable 

than before. We also added the sentence “The estimates on Table 2-3 were those used to elaborate these 

plots.” so the equation values can be easily found. 

Line 25 in SUPPLEMENT Figure S1: points indicate sampling location, sampling location means the sample 

patches? Please add the legend of the points in this figure. 
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As we explained in the methods section, each sampling patch contains a sampling location, located in the 

middle of the grassland patch. Sampling location were added in the legend of this figure. As you suggested 

in some lines above, we added the figure S2 to clarify the sampling design, and the legend of the points in 

Fig. S1.  

Line 39 in SUPPLEMENT There is no reference of Figure S3 in the text. 

We added the reference in the “general linear models” subsection, in the material and methods section: 

“We designed and executed a modelling procedure based on general linear models (Legendre and 

Legendre, 1998) and a hierarchy of controls over function (Diaz et al., 2007; de Vries et al., 2012). We log-

transformed SOC using natural logarithm to prevent a breach of the normality assumption by the residuals 

of the models (Fig. S4).” (L 357; Fig. S3 is now S4) 
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Abstract 55 

Grasslands are one of the major sinks of terrestrial soil organic carbon (SOC). 56 

Understanding how environmental and management factors drive SOC is challenging 57 

because they are scale-dependent, with large-scale drivers affecting SOC both directly 58 

and through drivers working at small scales. Here we addressed how regional, landscape 59 

and grazing management, soil properties and nutrients, and herbage quality factors 60 

affect 20 cm depth SOC stocks in mountain grasslands in the Pyrenees. Taking 61 

advantage of the high variety of environmental heterogeneity in the Pyrenees, we built a 62 

dataset (n = 128) that comprises a wide range of environmental and management 63 

conditions. This was used to understand the relationship between SOC stocks and their 64 

drivers considering multiple environments. We found that temperature seasonality 65 

(difference between mean summer temperature and mean annual temperature; TSIS) 66 

was the most important geophysical driver of SOC in our study, depending on 67 

topography and management. TSIS effects on SOC increased in exposed hillsides, slopy 68 

areas, and relatively intensively grazed grasslands. Increased TSIS probably favours 69 

plant biomass production, particularly at high altitudes, but landscape and grazing 70 

management factors regulate the accumulation of this biomass into SOC. Concerning 71 

biochemical SOC drivers, we found unexpected interactive effects between grazer type, 72 

soil nutrients and herbage quality. Soil N was a crucial SOC driver as expected, but 73 

modulated by livestock species and neutral detergent fibre contentin plant biomass; 74 

herbage recalcitrance effects varied depending on grazer species. These results 75 

highlight the gaps in the knowledge about SOC drivers in grasslands under different 76 

environmental and management conditions. They may also serve to generate testable 77 

hypotheses in later/future studies directed to climate change mitigation policies. 78 

Keywords 79 

SOC, natural grasslands, grazer type; grazing management, herbage quality; climate 80 

change, soil nutrients; topography; temperature seasonality; TSIS 81 

Antonio
Nota adhesiva
Editor: 1. In the Abstract make clear on how many sites your study is based on and to which depth samples have been taken.

Changes done. (L 63)



Antonio
Nota adhesiva
Rev. 1: L 53-54 “at small spatial scales” instead of “at detailed spatial scales”.

Change done. (L 59)

L 56-57 I am not sure that it is a good reason to do a study... What is the objective of the study by

using this set of data? 

To clarify this, we rewrote this sentence as follows:

“Taking advantage of the high variety of environmental heterogeneity in the Pyrenees, we built a dataset (n = 128) that comprises a wide range of environmental and management conditions. This was used to understand the relationship between SOC stocks and their drivers considering multiple environments.” (L 61)

L 58 Do the authors have an explicative purpose or a predictive purpose? That is not clear for me, as they also use the ‘predictors’ term.

The study has an explicative purpose. We have changed “predictors” by “drivers” or “factors” in all the text to avoid misinterpretations. 

L 59 This factor should be better deﬁned.

We specified it in the following way:

“We found that temperature seasonality (difference between mean summer temperature and mean annual temperature; TSIS) was the most important geophysical driver of SOC in our study.” (L 65-66)

L 65 I think that the coma is not necessary.

The comma was removed. (L 71)



Antonio
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Antonio
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Resaltar
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Resaltar
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 82 

Introduction 83 

Soil organic carbon (SOC) is crucial for the functioning of terrestrial ecosystems 84 

(Lal, 2004a). SOC enhances soil and water quality and biomass productivity, and 85 

has an important role in relation to climate change (Lal, 2004b). Although 86 

grasslands have small aboveground biomass compared to other ecosystems, 87 

their SOC stocks can be comparable to those in forest ecosystems (Berninger et 88 

al., 2015). This is due to their high root biomass and residues, which are a 89 

substantial carbon source and can contribute to water retention in soil. This 90 

creates favourable conditions for the accumulation of organic matter (Von Haden 91 

and Dornbush, 2014; Yang et al., 2018). These attributes, together with the high 92 

extent of grassland global cover, make grasslands store around 34% of the 93 

terrestrial carbon, mostly in their soils (White et al., 2000).  94 

SOC accumulation results from a complex equilibrium between primary 95 

production and organic matter decomposition which depends on multiple 96 

environmental factors such as climate, soil texture and nutrients, or land 97 

management (Jenny, 1941; Schlesinger, 1977). Understanding how these scale-98 

dependent environmental factors drive SOC is challenging because large scale 99 

drivers affect also those working at fine spatial scales. This has been described 100 

as a hierarchy of controls over SOC (Fig. 1; Manning et al., 2015). 101 

Climate is known to be the main SOC driver at broad (global and regional) scales;  102 

mean annual precipitation (MAP) and mean temperature (MAT) being the most 103 

frequent climate indicators (Wiesmeier et al., 2019). However, climate annual 104 

variations represented by seasonality variables are commonly neglected when 105 

Antonio
Resaltar

Antonio
Resaltar

Antonio
Resaltar

Antonio
Resaltar

Antonio
Nota adhesiva
Rev. 2 Line 75 “Soil organic carbon plays key roles in the terrestrial ecosystems.” It sounds strange.

We rephrased this sentence as follows:

“Soil organic carbon (SOC) is crucial for the functioning of terrestrial ecosystems.” (L 84)
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considering possible SOC drivers in broad-scale models, in spite of being 106 

important drivers of plant primary production and enzymatic activity of soil 107 

microorganisms (Fernández-Alonso et al., 2018; Garcia-Pausas et al., 2007; 108 

Puissant et al., 2018). Other regional and landscape factors like bedrock or 109 

topography are also considered to be at the top of the hierarchy because they 110 

influence multiple geophysical and biochemical factors affecting SOC, including 111 

soil texture and water flow paths (Gray et al., 2015; Hobley et al., 2015). Next in 112 

the hierarchy after regional and landscape factors, are several soil geophysical 113 

properties, like pH and texture, which are controlled by climate, bedrock, and 114 

which affect SOC through both plant primary production and microbial activity 115 

and the capacity to stabilise the SOC (Deng et al., 2016; Xu et al., 2016a). 116 

Soil macro and micronutrients are in the next level of the hierarchy, as their 117 

abundance is determined by multiple factors, including climate, soil pH, water 118 

content or clay content (Hook and Burke, 2000; de Vries et al., 2012). They play 119 

an essential role in primary production and herbage quality, and act as resources 120 

for microbes to mineralise SOC (Aerts and Chapin, 1999; Vitousek and Howarth, 121 

1991). However, these variables are commonly omitted as possible drivers of 122 

SOC in the broad-scale studies, especially in those studies focusing on predictive 123 

rather than explicative models (Gray et al., 2015; Manning et al., 2015; Zhang et 124 

al., 2018). This kind of variables is less frequently available and more difficult to 125 

measure than the other indicators used for SOC modelling (Manning et al., 2015). 126 

Furthermore, the use of soil nutrients as SOC drivers in linear models can be 127 

challenging, as they are often strongly linked to SOC dynamics. This may mask 128 

the effect of other drivers acting at larger spatial scales (Bing et al., 2016; 129 

Cleveland and Liptzin, 2007; Tipping et al., 2016). 130 

Antonio
Nota adhesiva
Rev.1: L. 95-96 I think that these variables should be better described. Also "be" should be removed.

These factors are not studied or they are not factors with a relevant impact in other studies? 

This phrase was rewritten as follows, to clarify that these factors were not even considered in these previous studies and the meaning of climate seasonality:

“However, climate annual variations, represented by seasonality variables, are be commonly neglected when considering possible SOC drivers affecting SOC in broad-scale models, in spite of being some important factors for plant primary production or enzymatic activity of soil microorganisms.” (L 104 - 108)



Antonio
Nota adhesiva
Rev. 1: “However, these variables are commonly omitted as possible drivers of SOC in the broad-scale studies, especially in those studies focusing on predictive rather than explicative models” (L 122 - 125)

L. 147 “focusing” instead of “focus”

Change done. (L 123)

L. 116 Overall, for the whole manuscript, the authors need to specify if it is SOC stock or concentration. 

It is SOC stocks. That is now specified in multiple parts of the text.



Antonio
Resaltar
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Resaltar
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Vegetation represents another group of SOC drivers, affected by climate, 131 

topography and soil properties and nutrients (Fernández-Martínez et al., 2014; 132 

de Vries et al., 2012; Zhu et al., 2019). Plant biomass is the main input of organic 133 

carbon into the soil (Shipley and Parent, 1991). However, a not so frequently 134 

considered factor is plant litter quality, which can determine decomposition rates 135 

and patterns, and hence soil carbon sequestration (Ottoy et al., 2017; Yan et al., 136 

2018, 2019). 137 

In addition to these factors, livestock management effects on grassland SOC is 138 

a noteworthy issue since they are poorly understood (Wiesmeier et al., 2019). It 139 

is known that herbivores can affect SOC through different paths, such as 140 

regulating the quantity and quality of organic matter returned to soil (Bardgett and 141 

Wardle, 2003), or affecting soil respiration and nutrients by animal trampling or 142 

soil microbiota alteration (Lu et al., 2017). Several studies confirmed the 143 

interaction between grazing and other SOC drivers at diverse scales (Abdalla et 144 

al., 2018; Eze et al., 2018; Lu et al., 2015, 2017; Zhou et al., 2017). Hence, 145 

grazing management may be considered a SOC driver with effects at multiple 146 

levels of the driver hierarchy (Fig. 1), both affecting other SOC drivers and 147 

interacting with them. However, most of the studies investigating grazing effects 148 

on SOC focus on grazing intensity, in spite of evidence pointing to a greater role 149 

of grazer species in determining vegetation and SOC (Chang et al., 2018; 150 

Sebastia et al., 2008). 151 

In this study, our goal was to identify the main drivers of SOC stocks and their 152 

interactions in Pyrenean mountain grasslands. For this purpose, we considered 153 

a wide set of regional, landscape, soil geophysical and biochemical, and herbage 154 

quality factors, together with grazing management factors. Mountain grasslands 155 

Antonio
Nota adhesiva
Rev. 1: 



L. 136 And what was their conclusion in regards of your objectives?

The conclusion in regards of our objectives was that grazing must be considered as a variable that can interact with many variables at multiple scales (as it is represented in Fig. 1). We reordered this paragraph and completed this particular sentence to clarify this point:

“It is known that herbivores can affect SOC through different paths, such as regulating the quantity and quality of organic matter returned to soil (Bardgett and Wardle, 2003), or affecting soil respiration and nutrients by animal trampling or soil microbiota alteration (Lu et al., 2017). Several studies confirmed the interaction between grazing and other SOC drivers at diverse scales (Abdalla et al., 2018; Eze et al., 2018; Lu et al., 2015, 2017; Zhou et al., 2017). Hence, grazing management may be considered a SOC driver with effects at multiple levels of the driver hierarchy (Fig. 1), both affecting other SOC drivers and interacting with them. However, most of the studies investigating grazing effects on SOC focus on grazing intensity, in spite of evidence pointing to a greater role of grazer species in determining vegetation and SOC (Chang et al., 2018; Sebastia et al., 2008).” (L 139-151)



Antonio
Nota adhesiva
Rev. 1: L. 316-320 Maybe it should be more appropriate in the introduction... 

We think this is appropriate for the methods as it contributes to the understanding of the modeling procedure. However, we modified the last paragraph of the introduction, to specify these aspects too. In overall we believe that this important paragraph has been widely improved thanks to your comments and suggestions. This text is now as follows:

“In this study, our goal was to identify the main drivers of SOC stocks and their interactions in Pyrenean mountain grasslands. For this purpose, we considered a wide set of regional, landscape, soil geophysical and biochemical, and herbage quality factors, together with grazing management factors. Mountain grasslands comprise a wide range of all these conditions, which make carbon stocks highly variable (Garcia-Pausas et al., 2007, 2017). For this reason, data analysed here include a wide range of environmental conditions, comparable to studies on SOC developed at continental or even worldwide scales (Table 1). Additionally, we considered an exceptionally broad compilation of drivers (Table 1). To deal with correlations and interactions between SOC drivers, we developed an exhaustive modelling approach based on the controls over function hypothesis (de Vries et al., 2012). To facilitate the formulation of our specific questions to answer in this study, we classified SOC drivers into three main groups (Fig. 1): i) geophysical factors, which include regional and landscape factors and are supposed to be the first sources of variation, ii) biochemical factors, which include soil nutrients and herbage factors and could be conditioned by geophysical factors, and iii) grazing management factors, which could affect SOC through multiple interactions with the rest of the variables at multiple scales. In particular, the specific questions of this study are 1) What are the relative and interaction effects of the geophysical and biochemical SOC controls? 2) How does grazing management regulate the effects of other SOC drivers?” (L152 - 172)
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comprise a wide range of all these conditions, which make carbon stocks highly 156 

variable (Garcia-Pausas et al., 2007, 2017). For this reason, data analysed here 157 

include a wide range of environmental conditions, comparable to studies on SOC 158 

developed at continental or even worldwide scales (Table 1). Additionally, we 159 

considered an exceptionally broad compilation of drivers (Table 1). To deal with 160 

correlations and interactions between SOC drivers, we developed an exhaustive 161 

modelling approach based on the controls over function hypothesis (de Vries et 162 

al., 2012). To facilitate the formulation of our specific questions to answer in this 163 

study, we classified SOC drivers into three main groups (Fig. 1): i) geophysical 164 

factors, which include regional and landscape factors and are supposed to be the 165 

first sources of variation, ii) biochemical factors, which include soil nutrients and 166 

herbage factors and could be conditioned by geophysical factors, and iii) grazing 167 

management factors, which could affect SOC through multiple interactions with 168 

the rest of the variables at multiple scales. In particular, the specific questions of 169 

this study are 1) What are the relative and interaction effects of the geophysical 170 

and biochemical SOC controls? 2) How does grazing management regulate the 171 

effects of other SOC drivers? 172 

Material & methods 173 

2.1 Location and sampling design 174 

The set of data used in this study has been extracted from the PASTUS Database 175 

(http://ecofun.ctfc.cat/?p=3538), which was compiled by the Laboratory of Functional 176 

Ecology and Global Change (ECOFUN) of the Forest Sciences Centre of Catalonia 177 

(CTFC) and the University of Lleida (UdL). We sourced a wealth of data of 128 grassland 178 

patches distributed across the Pyrenees (Fig. S1), and including topographical, climate, 179 

soil, herbage and management variables. The elaboration of the PASTUS Database 180 

Antonio
Nota adhesiva
Rev. 1: 151-153 Do the authors want to study the effects of various factors, their links between them, the importance of the factors...?

We rewritten the questions as follows to put that point clear:

“1) What are the relative and interaction effects of the geophysical and biochemical SOC controls? 2) How grazing management regulate the effects of other SOC drivers?” (L 170)



Antonio
Resaltar



9 
 

concerning this study is summarised in Fig. S2). The sampled area encompasses a wide 181 

variety of temperate and cold-temperate climates, with different precipitation conditions, 182 

depending on altitude and geographical location from Mediterranean to Continental and 183 

Boreo-Alpine environments (de Lamo & Sebastià, 2006; Rodríguez et al., 2018; Table 184 

1). Almost all of the plant species in the grasslands from the PASTUS database are 185 

perennial (Sebastià, 2004), and plant diversity is highly heterogeneous as are the 186 

environmental conditions (Rodríguez et al., 2018). 187 

Sampling in the PASTUS database was designed according to a stratified random 188 

scheme, where samples were selected at random within strata. This process was done 189 

using the software ArcMap 10 (ESRI, Redlands, CA, USA). The basis for randomization 190 

was the map of habitats of Catalonia 1:50000 (Carreras and Diego, 2006) for the Eastern 191 

and Central sectors of the Pyrenees, the map of habitats of Madres-Coronat 1:10000 192 

(Penin, 1997) for the North-Eastern sector and the land use map of Navarra 1:25000 193 

(Gobierno de Navarra, 2003) for the Western sectors. Four variables were initially 194 

considered for sampling stratification within each sector: altitude (< 1800 m; 1800-2300 195 

m; > 2300 m), slope (0-20º; 20-30º; > 30º), macrotopography (mountain top/southern-196 

facing slope; valley bottom/northern-facing slope) and grazer type (sheep; cattle; mixed). 197 

Accordingly, we determined a set of homogeneous grassland patches by crossing the 198 

stratification variable layers. Grassland patches were then listed by type and arranged 199 

within each list randomly to determine sampling priority. At least one to two replicates of 200 

each patch type defined by the stratification variables were sampled. 201 

In each sampled grassland patch, a 10 x 10 m2 plot was systematically placed in the 202 

middle of each homogeneous grassland patch, including a particular plant community. 203 

We collected soil and vegetation samples, and assessed environmental variables within 204 

each 100 m2 plot (see Rodríguez et al., (2018) for additional details about sampling 205 

design). Local variables were assessed inside the 100 m2 plots. Aboveground biomass 206 

was estimated from herbage cut at ground level in four 50 x 50 cm2 quadrats placed in a 207 

Antonio
Nota adhesiva
Rev. 1: L. 249 What was the vegetation: grassland species etc.

We added the following paragraph to provide that information:

“Almost all of the plant species in the grasslands from the PASTUS database are perennial (Sebastià, 2004), and plant biodiversity is highly heterogeneous as are the environmental conditions (Rodríguez et al., 2018).” (L 185-187)

As this is not bromatological information we added this paragraph in lines 185 - 187 where describing the sample site conditions. 
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Nota adhesiva
Rev. 2Line 179 At least one to two replicates of each patch type were sampled. What are the types of the patch?

To clarify this point, we rephrase this sentence as follows:

“Grassland patches were then listed by type and arranged within each list randomly to determine sampling priority. At least one to two replicates of each patch type defined by the stratification variables were sampled.” (L 199 - 201)
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2 x 2 m2 subplot inside the 100 m2 plot. Herbage from two of the four quadrats were dried 208 

and sent to the laboratory for duplicated chemico-bromatological analysis. In addition, in 209 

each quadrat, a 20-cm depth soil core was extracted with a 5 x 5 cm probe after herbage 210 

was removed. The soil sample in the probe was separated into two soil layers: 0-10 and 211 

10-20 cm. 212 

2.2 Regional and landscape environmental drivers 213 

In order to investigate the relationship between SOC and potential environmental drivers, 214 

30 independent environmental variables were initially considered (Table S1). These 215 

variables were grouped into five sets: regional, landscape, livestock management, soil 216 

nutrient stocks, and herbage variables. 217 

Regional variables included climate variables and bedrock. Climate variables were 218 

determined from Worldclim 2.0 (Fick and Hijmans, 2017). We selected Mean Annual 219 

Temperature (MAT), Mean Summer Temperature (MST), Mean Annual Precipitation 220 

(MAP) and Mean Summer Precipitation (MSP). The difference between mean annual 221 

and mean summer temperature emerged as a relevant explanatory factor of soil organic 222 

carbon stocks during previous modelling efforts by one of the co-authors (M-T. Sebastià). 223 

Later attempts to improve models by substituting this variable with other temperature 224 

indices from climatic databases (Fick and Hijmans, 2017) showed that, for the  PASTUS 225 

database, this variable provided higher explanatory power than other temperature 226 

seasonality indices. Thus, we decided to keep it and here we name it Temperature 227 

Seasonality Index of Sebastià (TSIS from now on). 228 

Bedrock type was determined in the field and confirmed by the geographical maps 229 

mentioned above. Bedrock was categorized into three categories: basic (marls and 230 

calcareous rocks), acidic (mostly sandstones and slates) and heterogeneous. 231 

Landscape variables included topography and soil type variables. Topography variables 232 

included Slope, Aspect, Macrotopography and Microtopography. Slope and Aspect were 233 

Antonio
Nota adhesiva
Rev. 1: L. 192-193 I think this paragraph should appear before... 

We appreciate this comment, and we also recon that this paragraph could appear at the beginning of the methods section. However, we still find clearer to explain first how the sampling was performed and second how the samples were processed in order to get the environmental variables. 





L. 194 There should be a coma between landscape and livestock

Change done (L 216)



Antonio
Nota adhesiva
Rev. 2 Line 192 The abbreviation for soil organic carbon had appeared in line 75, here only need to write SOC.

Change done. (L 214)

Line 193 There are 30 variables written in table S1, but here you have written 29 independent environmental variables. Are the two management variables belong to environmental variables? Please check these numbers.

Change done. (L 215)
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Antonio
Nota adhesiva
Line 194 These variables were grouped into Regional, landscape, livestock management,

soil nutrient stocks, and herbage variables? If so, replace “:” with “,”.

Change done. (L 216)

NOTE: I have just realise that i did not made this change. I will introduce it in the next revision before the publication.

Antonio
Nota adhesiva
Rev. 2 Line 201 MTS?

M-T. Sebastià. We changed this to make it clear. (L 223)
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determined in the field by clinometer and compass respectively. Macrotopography and 234 

microtopography were determined visually in the field. Preliminary modelling efforts 235 

suggested the reduction of the four macrotopographical positions initially identified in the 236 

field into two: Mountain top and south-facing slopes were classified as exposed positions 237 

and valley bottoms and north-facing slopes as protected macrotopographical positions. 238 

Microtopography included three positions: convexities, concavities and smooth areas. 239 

Soil type variables are described in the following. 240 

2.3 Soil physicochemical analysis 241 

To obtain bulk density, we air-dried and weighed the soil samples: we then sieved each 242 

sample to 2 mm to separate stones and gravels from the fine earth fraction. The fine 243 

fraction was sent to the laboratory for further physicochemical analysis. Standard 244 

physicochemical soil analyses were performed in the upper 0-10 cm soil layer of all 245 

grasslands. Some analyses were also performed on samples from the 10-20 cm soil 246 

layer, including soil organic carbon and total nitrogen. For those variables, we combined 247 

0-10 and 10-20 cm values to obtain the whole top 20 cm soil layer. 248 

All soil physicochemical analyses were performed on the fine earth, according to 249 

standard soil analysis methods. Textural classes were determined by the Bouyoucos 250 

method (Bouyoucos, 1936). Soil pH (measured in water), total organic carbon (TOC) 251 

total nitrogen (TN), Calcium content (Ca), Extractable phosphorus (P), magnesium (Mg) 252 

and potassium (K) were measured on air-dried samples (Schöning et al., 2013; Solly et 253 

al., 2014). Soil carbonates were determined using the Bernard calcimeter. Total carbon 254 

and nitrogen (N) contents of the fine earth were determined by elemental auto-analyser. 255 

The organic C fraction was determined by subtracting inorganic C in the carbonates from 256 

the total C. Available phosphorus (P) was extracted by the Olsen method (Olsen, 1954) 257 

Ca, Mg and K were extracted by ammonium acetate (Simard, 1993) and measured by 258 

flame Atomic Absorption Spectroscopy (AAS) (David, 1960)). Soil organic carbon (SOC) 259 

stocks in the upper 20 cm soil layer were then estimated taking into account the organic 260 

Antonio
Nota adhesiva
Rev.1: L. 229 For determination of bulk density?

Yes. We modified the sentence as follows to clarify this point: 

“To obtain bulk density, we air-dried and weighed the soil samples: we then sieved each sample to 2 mm to separate stones and gravels from the fine earth fraction. “ (L 242)



Antonio
Nota adhesiva
Rev.1: L. 233-234 This sentence is not clear.

We rephrased this sentence to clarify it:

“We combined 0-10 and 10-20 cm values for obtaining the whole top 20 cm soil layer.” (L 247 - 248)



Antonio
Nota adhesiva
Rev. 1 L. 243 It should have been important to correct soil C stocks according to the equivalent soil mass approach.

We decided to use a fixed depth approach for calculating SOC stocks due to the following reasons. First, the main advantage of fixed mass approaches is that they account and correct differences in bulk density due to temporal changes or when comparing different land uses (Haden et al. 2020). We do not consider variations in time, and neither have contrasting management regimes, as mentioned in the title of Ellert & Bettany´s paper (1995). We highlight that in our work samples came from natural mountain grasslands, where grazing intensity is always low to moderate, and moreover, herbivore presence is seasonal. Therefore, we do not expect important changes in bulk density due to land use. Second, we always used the same methods in our samplings (so we could not take advantage of fixed mass approaches for correcting biases due to different probe diameters, as suggested by Sharma et al. (2020). Finally, fixed mass approaches often have more technical difficulties than fixed depth measures even in the most modern procedures (Haden et al. 2020). On the other hand, Rovira et al. (2015) proposed a fixed mass approach which, as expected, was found to deal properly with bulk density changes but not with stoniness differences. We did not find any other reference dealing with this point.

To clarify this point, we added the following lines to the text:

“Soil organic carbon (SOC) stocks in the upper 20 cm soil layer were then estimated taking into account the organic C concentration in the sample and its bulk density, and subtracting the coarse particle (> 2 mm) content, following García-Pausas et al. (2007). Despite recent studies suggesting that fixed mass SOC stocks estimates are preferable to fixed depth methods because they would be more robust to temporal and land use changes in bulk density (Ellert & Bettany 1995), we chose a fixed depth method for measuring SOC stocks. This decision was based on the fact that our work samples came from natural mountain grasslands, where grazing intensity is always low to moderate, and moreover, herbivore presence is seasonal. Therefore, we do not expect important changes in bulk density due to land use. Additionally fixed mass approaches  presented the disadvantages of implying more technical difficulties than fixed depth measures, even in the most modern procedures (Haden et al. 2020), and could not deal well with differences in stoniness.” (L 259 - 271)
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C concentration in the sample and its bulk density, and subtracting the coarse particle (> 261 

2 mm) content, following García-Pausas et al. (2007). Despite recent studies suggesting 262 

that fixed mass SOC stocks estimates are preferable to fixed depth methods because 263 

they would be more robust to temporal and land use changes in bulk density (Ellert & 264 

Bettany 1995), we chose a fixed depth method for measuring SOC stocks. This decision 265 

was based on the fact that our work samples came from natural mountain grasslands, 266 

where grazing intensity is always low to moderate, and moreover, herbivore presence is 267 

seasonal. Therefore, we do not expect important changes in bulk density due to land 268 

use. Additionally fixed mass approaches  presented the disadvantages of implying more 269 

technical difficulties than fixed depth measures, even in the most modern procedures 270 

(Haden et al. 2020), and could not deal well with differences in stoniness. 271 

2.4 Herbage chemical and bromatological analysis, and NIRS analysis 272 

All four herbage samples per plot were oven-dried at 60ºC to constant weight to 273 

determine aboveground biomass and converted into g m-2. Two out of the four samples 274 

were sent to the laboratory for herbage quality analysis. Dried samples were ground to 275 

pass a 1 mm stainless steel screen (Cyclotec 1093 Sample mill, Tecator, Sweden) and 276 

stored at 4ºC until it was needed for use. 277 

To develop NIRS prediction models, a random subset of 130 samples was used and 278 

analysed in duplicate according to the reference methods mentioned further. Procedures 279 

described by AOAC were used to determine dry matter (DM) and ash content or mineral 280 

matter (MM). Crude protein (CP) was determined by the Kjeldhal procedure (N x 6.25) 281 

using a Kjeltec Auto 1030 Analyser (Tecator, Sweden). Samples were analysed 282 

sequentially for neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid 283 

detergent lignin (ADL) in accordance with the method described Van Soest et al. (1991) 284 

using the Ankom 200 Fibre Analyser incubator (Ankom, USA). The fibre analysis were 285 

determined on an ash-free basis and without alpha amylase. We calculated two 286 

additional herbage quality indexes often used in the bibliography: NDF/CP and ADL/NH 287 

Antonio
Nota adhesiva
Rev. 1 L. 267 The size of the police is not the same for all this paragraph. Does this paragraph of NIRS analysis refer to the analyses presented in the previous paragraph? It is not clear. 

We changed some sentences in these paragraphs so now the relationship between these two methods is clear. Basically, bromatological analysis were done for training NIRS models and getting the remaining values using NIRS spectrum. (L 272)



Antonio
Nota adhesiva
Rev 2

Line 375 Generally, a part of the sample is used for modeling, and the other part is used for validation. Please describe clearly in here and in Line 279.

We detailed the herbage-bromatological analysis (L 279 (Now 272) and so on). 130 samples where used for the validation of NIRS equations.

Antonio
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(Stockmann et al., 2013). For each subsample the C and N content (CH and NH )were 288 

determined by the Dumas dry combustion method,  using an Elemental Analyzer EA1108 289 

(Carlo Erba, Milan, Italy). 290 

Afterwards, a total of two hundred herbage samples were scanned as described below 291 

to collect their NIRS spectra. We estimated chemical and bromatological variables 292 

according to the equations derived from the previous calibrations on the initial 130 293 

random samples. 294 

NIRS data were recorded from 1,100 to 2,500 nm using a FOSS NIRSystem 5000 295 

scanning monochromator (Hillerød, Denmark). Separate calibration equations were 296 

generated for grassland samples. Reflectance (R) data were collected in duplicate every 297 

2 nm. A WinISI III (v. 1.6) software (FOSS, Denmark) was employed for spectra data 298 

analysis and development of chemometric models. Prior to calibration, log 1/R spectra 299 

were corrected for the effects of scatter using the standard normal variate (SNV), detrend 300 

(DT) and multiple scatter correction (MSC) and transformed into first or second derivative 301 

using different gap size (nm) and smoothing interval. For each sample, the mean of the 302 

spectra from the two lectures were used. Modified partial least square (MPLS) was the 303 

regression method used for calibration development and cross validation was 304 

undertaken using the standard methodology in the NIRS software program. The 305 

performance of the model was determined by the following statistical tools: standard 306 

error of calibration (SEC), standard error of cross validation (SECV); coefficient of 307 

determination for calibration (R2) and cross validation (rcv
2); the ratio of performance to 308 

deviation (RPD) described as the ratio of standard deviation for the validation samples 309 

to the standard error of cross validation (RPD=SD/SECV) should ideally be at least three; 310 

and the range error ratio (RER=Range/SECV) described as the ratio of the range in the 311 

reference data to the SECV should be at least 10 (Williams and Sobering, 1996; Williams 312 

et al., 2014). 313 

2.5 Livestock management variables 314 

Antonio
Resaltar
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The management variables (grazer type) initially used for sampling stratification were 315 

determined from records available in the municipalities of the study area. Once the 316 

specific grassland patches to be sampled were determined, we carried out a detailed 317 

analysis of the management where the patches were located. To this effect, we carried 318 

out detailed surveys among farmers, shepherds and land managers. Sometimes the 319 

information collected was modified according to visual records in the field (e.g., cattle 320 

and/or cattle dung found in supposedly ungrazed areas). Information from municipalities 321 

was usually the most imprecise. 322 

We considered two management variables: Grazing intensity and Grazer type. Grazing 323 

intensity was determined estimating livestock stocking rates measured as livestock units 324 

ha-1 (LU ha-1), and treated as a semi-quantitative variable with three categories (): low 325 

(1; lower than 0.2 LU ha-1), medium (2; between 0.2-0.4 LU ha-1) and high (3; above 0.4 326 

LU ha-1). Grazer type was categorised into three main types: sheep, cattle and mixed. 327 

Mixed grazing included associations comprising small and big livestock species, mainly 328 

sheep and cattle, and more rarely horses. Sheep flocks always included some goats. 329 

2.7 Statistical analyses 330 

We applied two different modelling procedures: Boosted Regression Trees (BRT) and 331 

General Linear Models (GLM). BRT is an automatic technique that combines insights 332 

from traditional statistical modelling and machine learning traditions (Elith et al., 2008). 333 

GLM allowed us to design a hypothesis-based modelling procedure, ensuring that only 334 

effects with biological meaning where included; whereas BRT provided information about 335 

the data that could be neglected, if only a GLM approach was followed. 336 

All the statistical analyses were performed with the software R ver. 3.4.3  (R Core Team, 337 

2017), at 95% significance level when appropriate. 338 

Boosted regression trees global model 339 

Antonio
Nota adhesiva
Editor: 2. Take care that all abbreviations are explained properly. E.G. BRT might be known by statisticians but not by all soil scientists.

We checked the remaining abbreviations in the text, and under our view they are well explained. In the case of BRT models, we added the following information.

“We applied two different modelling procedures: Boosted Regression Trees (BRT) and General Linear Models (GLM). BRT is an automatic technique that combines insights from traditional statistical modelling and machine learning traditions (Elith et al., 2008). GLM allowed us to design a hypothesis-based modelling procedure, ensuring that only effects with biological meaning where included; whereas BRT provided information about the data that could be neglected, if only a GLM approach was followed.” (L331-336)



Antonio
Nota adhesiva
Rev. 1: L. 218 For each patch considered?

Those grasslands are usually managed communally, and the livestock type and units are based on the number of animals, and type, sent to graze a given area during the grazing season. The unit area is usually related to the municipalities, although this situation might change a little depending on the mountain range. Grazing in the high-altitude grasslands in the Pyrenees is usually free-range.



Antonio
Nota adhesiva
Rev. 2: Line 220 Here used livestock stocking rates which measured as livestock units ha-1 to determine grazing intensity. But the feed intake of different types of livestock is different. For example, the intake of cattle is higher than that of sheep. So, can’t simply use the livestock units/ha-1 as livestock stocking rates, you need use standard livestock unit.

We used a standard transformation index where 8 small ruminants correspond to 1 big ruminant. This is standard and provided by the Catalan Government for the region.
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Including all SOC potential drivers, we fitted a model with BRT to identify the most 340 

important variables affecting SOC. BRT uses two algorithms: regression trees and 341 

boosting. Regression trees are from the decision tree group of models, and boosting 342 

builds and combines a collection of models (Elith et al., 2008). We chose this method 343 

because BRT can handle multiple variables better than other techniques as GLM, and 344 

can detect automatically curvilinear relationships and interactions, ignoring non-345 

informative ones. We used the gbm and dismo packages (Greenwell et al., 2019; 346 

Hijmans et al., 2017), which provide several functions to fit these models. 347 

Firstly, we fitted a model with all the drivers (Table S1), configured with 15 folds, a 348 

Gaussian distribution of the error, a tree complexity of 5, a learning.rate of 0.005, a 349 

bag.fraction of 0.666, and 5 minimum observations by node. Secondly, we reduced the 350 

number of drivers by the method described in Elith et al., (2008). We estimated the 351 

change in the model´s predictive deviance dropping one by one each driver, and re-fitted 352 

the model with the set of variables which actually improved model performance (Fig. S3). 353 

We checked the relative importance of the drivers and the shape and size of the effects 354 

by partial effect plots.  355 

General linear models 356 

We designed and executed a modelling procedure based on general linear models 357 

(Legendre and Legendre, 1998) and a hierarchy of controls over function (Díaz et al., 358 

2007; de Vries et al., 2012). We log-transformed SOC using natural logarithm to prevent 359 

a breach of the normality assumption by the residuals of the models (Fig. S4). We built 360 

two models (Fig. S5), one model based only on geophysical drivers and grazing 361 

management (Geophysical Model), and another model including, in addition to the 362 

former drivers, the biochemical drivers: soil nutrients and herbage quality (Combined 363 

Model). With this approach we aimed to avoid ignoring significant effects of the 364 

geophysical variables, the original source of variation of SOC stocks according to the 365 

Antonio
Nota adhesiva
Rev. 1: L. 293 Among which variables?

Among SOC and all the considered drivers. To clarify, we modified the sentence as follows:

“Including all SOC potential drivers, we fitted a model with BRT to identify the most important ones affecting SOC.” (L 340)
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Nota adhesiva
Rev. 1 L.301 “Firstly” instead of “First”

Change done. (L 348)
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Nota adhesiva
Rev.1: L. 314-316 Why choosing these two models, on which hypothesis did you decide these two groups? 

The geophysical variables are those commonly used in the literature, and are the first source of variation according to the hierarchy of controls over function hypothesis (Manning et al., 2015). Choosing these two models allows us to discuss the effects of geophysical variables on SOC without deleting some effects because of the inclusion of other variables (especially soil nutrients) whose effects may include those of geophysical variables, because geophysical variables could act trough other variables at smaller spatial scales (in this case, the biochemical variables). We consider Geophysical Model is interesting for discussion, since it allow comparisons with previous literature. Additionally, we reported which terms of the Geophysical Model were substituted by the biochemical variables, which suggests that those effects could affect SOC trough biochemical variables, while the other effects probably acted trough other mechanisms too. Finally, we believe that Geophysical Model has interest for future studies aiming to predict SOC in similar environmental conditions. As we mentioned before, these studies usually use what we call here geophysical variables, because they are easy and cheap to measure or obtain (Manning et al., 2015). We modified the referred sentence as follows, to emphasize some of these points:

“We built two models (Fig. S5), one model based only on geophysical drivers and grazing management (Geophysical Model), and another model including, in addition to the former drivers, the biochemical drivers: soil nutrients and herbage quality (Combined Model). With this approach we aimed to avoid ignoring significant effects of the geophysical variables, the original source of variation of SOC stocks according to the hierarchy of controls over function hypothesis (Manning et al., 2015), by masking them with the inclusion of biochemical drivers.” (L 360 - 373).

We also added the following modifications in the “Geophysical drivers driving SOC stocks” subsection of the discussion section to a better explanation of the usefulness of the Geophysical model:

“Considering the difficulties of modelling SOC in a widely heterogeneous mountain environment (Garcia-Pausas et al., 2017), the Geophysical Model provided important information about broad-scale and topographic SOC drivers in the Pyrenees. This information could be useful not only for a better understanding of SOC patterns in mountain grasslands, but also for future modelling studies aiming to predict SOC, since geophysical variables are easier and less expensive to acquire and measure compared to biochemical variables (Manning et al., 2015).” (L 484 – 490)
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Nota adhesiva
Rev. 2: Line 39 in SUPPLEMENT There is no reference of Figure S3 in the text.

We added the reference in the “general linear models” subsection, in the material and methods section:

“We designed and executed a modelling procedure based on general linear models (Legendre and Legendre, 1998) and a hierarchy of controls over function (Diaz et al., 2007; de Vries et al., 2012). We log-transformed SOC using natural logarithm to prevent a breach of the normality assumption by the residuals of the models (Fig. S4).” (L 357; Fig. S3 is now S4)
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hierarchy of controls over function hypothesis (Manning et al., 2015), by masking them 366 

with the inclusion of biochemical drivers. We considered that the geophysical factors that 367 

potentially affect SOC were regional and landscape (topography and soil type drivers), 368 

as they have been widely used in previous studies to model and predict SOC from 369 

landscape to continental scales (Manning et al., 2015; Wiesmeier et al., 2019). In 370 

addition to soil nutrients and herbage variables, we included again the livestock 371 

management variables in the Combined Model and looked for interactions involving 372 

these variables and biochemical drivers of SOC. 373 

For model building (Fig. S5A), we added driver groups following a sequential order. For 374 

fitting the Geophysical Model, we started adding regional, landscape and grazing 375 

management drivers, and subsequently included soil properties. Afterwards, we 376 

sequentially included soil nutrients and herbage drivers to obtain the Combined Model. 377 

We added Management variables from the beginning of the modelling process and re-378 

included the discarded ones in each step to guarantee the detection of interactions 379 

between Management variables and the rest of the drivers. Each time we added a set of 380 

drivers, we first considered their main effects and some quadratic terms which were 381 

found by preliminary analyses with the scatterplot.matrix function in the R package car 382 

(Fox et al., 2018); afterwards we included possible level 2 interactions between all the 383 

selected drivers. 384 

At every step we selected several candidate terms by a semi-automatic procedure (Fig. 385 

S5C) using a genetic algorithm included in the R package glmulti (Calcagno, 2015). We 386 

used SOC as response variable at the first step, and the residuals of the previous model 387 

in the remaining steps (Fig. S5B). This semi-automatic process began by obtaining a 388 

best subset of models using the corrected Akaike information criterion (AICc), 389 

appropriate when n/k is less than 40, n being the sample size and k the number of 390 

parameters in the most complex model (Symonds and Moussalli, 2011). We selected the 391 

best model and its equivalents obtained by the genetic algorithm, which were those 392 
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within 2 Akaike information criterion-corrected (ΔAICc) values of the best model, as a 393 

ΔAICc < 2 indicates that the candidate model is almost as good as the best model 394 

(Burnham and Anderson, 2002). 395 

For this set of models, we built averaged models using the MUMIn package (Barton, 396 

2015). We calculated partial standardized coefficients, obtained by multiplying the 397 

unstandardized coefficient in the model by the partial standard deviation of the variable, 398 

which is a function of the standard deviation of the variable, the sample size, the number 399 

of variables in the model and the variance inflation factor of the variable (Barton, 2015). 400 

We selected all the variables with significant effects (alone or in interaction with each 401 

other) in the conditional average model, which was preferred over the full average model 402 

because we wanted to avoid excessive shrinkage effects at this moment of the modelling 403 

procedure (Grueber et al., 2011).  404 

Then, we added these terms to the consolidated model, and made a selection through a 405 

backward forward procedure. We used several methods to compare and determine the 406 

final model, including the AICc, the adjusted determination coefficient R2 (Radj
2) and 407 

model comparison techniques with the “anova()” function in R, using Chi-square tests to 408 

test whether the reduction in the residual sum of squares was statistically significant. 409 

Once we had the final model we assessed the significance of each term by removing it 410 

and performing an F test. For estimating the significance of the main effects we also 411 

removed the interaction terms in which they were involved, to avoid transferring the 412 

effects of the main terms to the interaction terms (de Vries et al., 2012). We estimated 413 

the variance explained by the models through the adjusted determination coefficient R2 414 

(Radj
2). 415 

Finally, we estimated the importance of the terms of each model by the lmg method in 416 

the relaimpo package (Grömping, 2006), and drew partial effect plots making predictions 417 

with the R package emmeans (Lenth et al., 2019). 418 
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Results 419 

SOC stocks of the upper 20 cm layer ranged between 2.6 and 23 kg m-2, with a median 420 

and a mean value of 9.1 and 9.6 kg m-2 respectively. Standard deviation of the mean 421 

was 3.15 ( n= 125). Minimum, maximum, median and mean values of the continuous 422 

drivers are shown in Table S2. 423 

3.1 Relative importance of SOC stocks drivers 424 

The final BRT global model achieved a good goodness of fit, with a cross-validated 425 

correlation value of 48% and an explained deviance of 88.31%. The most important 426 

variables explaining SOC stocks (Fig. 2) were soil N (18.3 %), soil C/N (14.4%) and Clay 427 

(13%) although other variables such as aboveground biomass (7.3%), ADL (6.4%) or silt 428 

(6.1%) were also relevant for explaining SOC storage. Three important variables in the 429 

BRT model, aboveground biomass, silt and soil K, were not selected in the linear models 430 

(Tables 2 & 3). Although accounting for a lower importance value than the previous 431 

variables (5%), TSIS was the most relevant among the climate drivers considered. TSIS 432 

was also noticeably important in both linear models (Fig. S6), especially in the 433 

Geophysical Model, not only as main effect, but in interaction with other variables (lmg: 434 

4-10%). According to the Combined linear model, soil nutrient and herbage variables 435 

were other important SOC stocks drivers(Fig. S7), but many of these effects occurred in 436 

interaction with grazer type. 437 

3.2 Geophysical, biochemical and grazing management effects on SOC stocks 438 

The Geophysical Model (Table 2) explained 34% of the total variance (R2
Adj). Overall, 439 

SOC stocks increased with TSIS under certain conditions: exposed hillsides, high slopes 440 

and low stocking rates (Fig. 3A, 3B & 3D). On the other hand, Clay had a positive 441 

relationship with SOC under low MAP values (Fig. 3C), which turned into negative at 442 

high MAP values.  443 
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Adding nutrient and herbage variables to the previous Geophysical Model to build the 444 

Combined model (Table 3) increased the total variance (R2
Adj) up to 61%. 445 

Macrotopography, and Clay effects described by the Geophysical model were removed 446 

by the new model terms included. SOC increased with C/N (Fig 4A). Soil nitrogen 447 

modulated the effects of livestock type and NDF on SOC. Cattle-grazed grasslands 448 

stored more SOC than mixed and sheep grazed grasslands under low soil N conditions, 449 

whereas the reverse occurred at high soil N levels (Fig. 3B). NDF had negative effects 450 

on SOC stocks at high soil N values but had no effect under low soil N levels Fig. 4C). 451 

Finally, herbage ADL/NH had positive effects on SOC under mixed and sheep grazing 452 

regimes, but there was no effect under cattle management (Fig. 4D).  453 

Discussion 454 

3.1 Considerations about the modelling procedure 455 

Unsurprisingly, the SOC drivers selected and their main effects in both of the modelling 456 

approaches (BRT and GLMs) were highly congruent (Figs. 2-4; S8). Consequently, we 457 

preferred to focus on the results from the linear models because this approximation 458 

allowed us to build models under a hierarchy of controls over function hypothesis 459 

(Manning et al., 2015). Hence, although it is not possible to unequivocally establish the 460 

causal links between SOC drivers (Grace, 2006; Grace and Bollen, 2005), with our GLMs 461 

procedure we guarantee that the effects of the biochemical variables added in the 462 

Complete Model on SOC stocks have not been exclusively induced  by geophysical 463 

drivers (de Vries et al., 2012). If this was the case, soil nutrient and herbage quality 464 

drivers wouldn’t have entered the Complete Model as significant terms. This happened 465 

with aboveground biomass, which is assumed to be a very important SOC driver, and 466 

indeed aboveground biomass was relevant in the BRT model, but in the GLM was 467 

substituted by other, more meaningful, variables. In addition, our GLM modelling 468 

approach enabled us the selection of biologically meaningful interactions (Manning et 469 
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al., 2015; de Vries et al., 2012), which cannot be done with a fully automatic approach 470 

like BRT. This GLM sequenced modelling procedure, looking for the primary sources of 471 

variation, together with the stratified sampling design, is useful as it led us to select a set 472 

of lowly correlated drivers for our linear models (Table S5). Furthermore, BRT model 473 

provided some valuable information, identifying some relevant SOC drivers which were 474 

discarded during the GML modelling, like aboveground biomass, or soil silt and K (Fig. 475 

2 and S8). The effects of those drivers were probably masked by the effects of other 476 

variables in our linear models (Yang et al., 2009), indicating that these factors were 477 

presumably pathways through which other variables drove SOC (de Vries et al., 2012). 478 

These variables, identified by BRT and discarded by GLM, should be considered as 479 

potential SOC drivers in further studies, particularly when more detailed and difficult to 480 

obtain biochemical variables, present in our database, are not available. 481 

3.2 Geophysical, biochemical and grazing management factors driving SOC 482 

stocks 483 

Considering the difficulties of modelling SOC in a widely heterogeneous mountain 484 

environment (Garcia-Pausas et al., 2017), the Geophysical Model provided important 485 

information about broad-scale and topographic SOC drivers in the Pyrenees. This 486 

information could be useful not only for a better understanding of SOC patterns in 487 

mountain grasslands, but also for future modelling studies aiming to predict SOC, since 488 

geophysical variables are easier and less expensive to acquire and measure compared 489 

to biochemical variables (Manning et al., 2015). 490 

Most studies on soil carbon usually pinpoint mean temperature and precipitation as the 491 

most important climate drivers of SOC (Hobley et al., 2015; Manning et al., 2015; 492 

Wiesmeier et al., 2019). Climate regulates large-scale patterns of aboveground net 493 

primary production (Chapin et al., 1987). In our study, temperature seasonality (TSIS) 494 

was a key driver of SOC, modulated by macrotopography, slope and grazing intensity 495 

(Table 2; Fig. 3). The highest variation of TSIS in our database, that is, the broadest 496 
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21 
 

temperature seasonality, occurred in cold environments, as compared to mild climates 497 

(Fig. S9). In mountain grasslands, cold climates imply a short phenological period of 498 

development for plants (Gómez, 2008). Hence, the positive effect of TSIS on SOC could 499 

be associated with a higher biomass accumulation in cold locations with more favourable 500 

temperatures during summer, this fact reducing geophysical stress for plants and 501 

broadening their growth period (Garcia-Pausas et al., 2007; Kikvidze et al., 2005). This 502 

increase in soil organic matter inputs during summer would overcome an eventual 503 

increase of soil organic matter decomposition rates related to high temperatures 504 

(Sanderman et al., 2003) which in those cold environments with contrasted temperature 505 

seasonality would not occur. 506 

The interactive effects of TSIS on SOC stocks with macrotopography and slope illustrate 507 

the capacity of landscape factors to modulate macroclimate effects on soil (Hook and 508 

Burke, 2000). Induced microclimate changes are often the explanation for the effects of 509 

topography in SOC (Lozano-García et al., 2016). In our case, SOC stocks increased with 510 

temperature seasonality, particularly in exposed locations, including south-facing 511 

hillsides and hillside tops (Fig. 3A; Table 2). In protected locations, including shady 512 

hillsides and valley bottoms, the hypothesized positive effect of increased TSIS values 513 

on plant productivity could be mitigated due to reduced solar radiation, long snow-514 

covered periods and freezing episodes (Garcia-Pausas et al., 2007; López-Moreno et 515 

al., 2013). Additionally, differences in SOC between exposed and protected sites may 516 

also occur through other mechanisms, for instance the alteration of soil physico-chemical 517 

properties (Zhang et al., 2018), or differences in vegetation (Sebastià, 2004). Since we 518 

used a hierarchy of controls approach (Manning et al., 2015), these indirect 519 

topographical effects on SOC stocks could be behind the exclusion in the linear models 520 

of some drivers selected in the BRT model, like silt or pH (Figs. 2 & 3). In addition, SOC 521 

stocks decreased with increase of slope, which may be attributed to reduced carbon 522 

inputs and increased carbon losses induced by steeper slopes (Yuan et al., 2019 and 523 
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refferences therein). However, we found that increased temperature seasonality (TSIS) 524 

values partly compensated negative slope effects on SOC. 525 

The effect of temperature seasonality on SOC stocks was also modified by grazing 526 

management. At low TSIS values, SOC stocks increased under moderate to high grazing 527 

pressure; this effect disappeared as TSIS values increased (Fig. 3D). Recent meta-528 

analyses concluded that intensive grazing commonly has decreasing effects on SOC 529 

(Abdalla et al., 2018; Eze et al., 2018; Mcsherry and Ritchie, 2013). However, these 530 

effects were strongly context-specific, depending on other factors including climate and 531 

soil type vegetation (Abdalla et al., 2018; Eze et al., 2018; Mcsherry and Ritchie, 2013). 532 

Moreover, moderate grazing intensities can increase SOC inputs by dung deposition, 533 

and aboveground and root biomass production (Franzluebbers et al., 2000; Zeng et al., 534 

2015). In our study, grazing intensity was relatively moderate (see methods), therefore 535 

in our study increasing stocking rates may increase soil carbon inputs in moderate 536 

seasonality locations by enhancing aboveground and belowground productivity. 537 

Soil texture also showed interactive effects on SOC stocks with climatic variables. In 538 

particular, clay effects on SOC stocks became negative as MAP values increased, (Fig. 539 

3C; Table 2). Both MAP and clay content are widely assumed to be positively correlated 540 

to SOC (Wiesmeier et al., 2019) but high soil water content caused by high MAP may 541 

inhibit decomposition if a shortage of oxygen supply occurs (Xu et al., 2016b). 542 

Furthermore, fine texture soils could be waterlogged frequently, leading to inhibition of 543 

root growth and soil C allocation belowground (Mcsherry and Ritchie, 2013). 544 

3.2 Geophysical, biochemical and grazing management factors driving SOC 545 

stocks 546 

Considering the difficulties of modelling SOC in a widely heterogeneous mountain 547 

environment (Garcia-Pausas et al., 2017), the Geophysical Model provided important 548 

information about SOC drivers in the Pyrenees. This information could be useful not only 549 
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for a better understanding of SOC patterns in mountain grasslands, but also for future 550 

modelling studies aiming to predict SOC, since geophysical  variables are easier and 551 

less expensive to acquire and measure compared to biochemical ones (Manning et al., 552 

2015).  553 

TSIS was a key driver of SOC with a varying effect depending on macrotopography, 554 

slope and grazing intensity (Table 2; Fig. 3). This result contrasts with most of the 555 

previous studies addressing soil carbon, which usually pinpoint mean temperature and 556 

precipitation as the most important climate drivers of SOC (Hobley et al., 2015; Manning 557 

et al., 2015; Wiesmeier et al., 2019). Climate regulates large-scale patterns of 558 

aboveground net primary production (Chapin et al., 1987). In the case of mountain 559 

grasslands, cold climates imply a short phenological period of development for plants 560 

(Gómez, 2008). Cold Sites characterised by low mean temperatures presented a wider 561 

spectrum of TSIS values than warm sites, presenting both the lowest and the highest 562 

TSIS values (Fig. S9). Hence, the positive effect of TSIS on SOC could be associated 563 

with a higher biomass accumulation in cold locations with more favourable temperatures 564 

during summer, this fact reducing geophysical stress for plants and broadening their 565 

growth period (Garcia-Pausas et al., 2007; Kikvidze et al., 2005). This rise in soil organic 566 

matter inputs during summer would overcome an eventual increase of soil organic matter 567 

decomposition rates due to high temperatures (Sanderman et al., 2003), which could 568 

even be diminished if microbial biomass decreases as a result of soil moisture reduction 569 

(Puissant et al., 2018). 570 

The interactions of TSIS with macrotopography and slope illustrate the capacity of 571 

landscape factors to modulate macroclimate effects on soil (Hook and Burke, 2000). 572 

Induced microclimate changes are often the explanation for the effects of topography in 573 

SOC (Lozano-García et al., 2016). In our case, SOC stocks increased with temperature 574 

seasonality, particularly at mountain-exposed areas (Fig. 3A; Table 2). In protected sites, 575 

located in shady slopes and valley bottoms, the hypothesized positive effect of high TSIS 576 



24 
 

values on plant productivity could be mitigated due to lower solar radiation, longer snow-577 

covered periods and freezing episodes (Garcia-Pausas et al., 2007; López-Moreno et 578 

al., 2013). Conversely, negative effects of low TSIS values on plant productivity could be 579 

compensated thanks to the more humid conditions in protected sites compared to the 580 

exposed sites (Garcia-Pausas et al., 2007). Additionally, it is important to take into 581 

account that differences in SOC between exposed and protected sites may also occur 582 

through other mechanisms, for instance the alteration of soil physico-chemical properties 583 

like pH, soil texture or stoniness (Zhang et al., 2018), or differences in vegetation 584 

(Sebastià, 2004). Since we used a hierarchy of controls approach (Manning et al., 2015), 585 

these topography indirect effects on SOC stocks could be behind the exclusion in the 586 

linear models of some drivers selected in the BRT model, like silt or pH (Figs. 2 & 3).  587 

In addition, high TSIS values compensated SOC stocks decrease with a greater slope, 588 

which may be attributed to reduced carbon inputs and increased carbon losses induced 589 

by steeper slopes (Yuan et al., 2019 and refferences therein). Increases in grazing 590 

pressure elevated SOC stocks under low TSIS values (Fig. 3D). This was a surprising 591 

result according to recent meta-analyses, which concluded that grazing has commonly 592 

decreasing effects on SOC (Abdalla et al., 2018; Eze et al., 2018; Mcsherry and Ritchie, 593 

2013). However these effects were strongly context-specific, depending on other factors 594 

like climate and soil type vegetation (Abdalla et al., 2018; Eze et al., 2018; Mcsherry and 595 

Ritchie, 2013). Moreover, light and medium grazing intensities can increase SOC inputs 596 

by dung deposition and promoting aboveground and root biomass production 597 

(Franzluebbers et al., 2000; Zeng et al., 2015). Considering that in our natural grasslands 598 

all grazing intensities are relatively low (see methods), our medium and high stock rates 599 

may increase soil carbon inputs in low seasonality locations by enhancing aboveground 600 

and belowground productivity. 601 

Interestingly, clay content and precipitation presented interacting effects on SOC (Fig. 602 

3C; Table 2). Both MAP and clay content are widely assumed to be positively correlated 603 
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to SOC (Wiesmeier et al., 2019). High MAP would increase SOC inputs by promoting 604 

plant productivity (Author et al., 2000; Hobley et al., 2015). Clay positive effects are often 605 

attributed to a larger contact surface of soil particles (Kennedy et al., 2002), the 606 

absorption of negatively charged organic matter, high soil water retention and the 607 

exclusion of decomposer organisms due to their low pore size (Krull et al., 2001). In our 608 

study, high soil water contents caused by high MAP may  inhibit decomposition if a 609 

shortage of oxygen supply occurs (Xu et al., 2016b). However, as MAP values increased, 610 

clay effect on SOC became negative. To explain low SOC values at high MAP and high 611 

clay content, McSherry and Rithchie (2013) hypothesized that finer texture soils could 612 

be waterlogged more frequently, leading to inhibition of root growth and soil C allocation 613 

belowground. 614 

The addition of soil nutrient and herbage variables to our Geophysical Model implied 615 

substitution of terms, including clay content and macrotopography, by newly added 616 

variables (Tables 2 & 3). This highlights the importance of indirect effects of these 617 

variables on SOC through other small scale drivers (Leifeld et al., 2015; Xu et al., 2016b; 618 

Zhu et al., 2019). The Combined Model was complex and included unfrequently tested 619 

effects involving interactions between grazer type, soil nutrients and herbage quality 620 

variables (Table 3, Fig 4). Those results must be interpreted cautiously, because they 621 

are based on observational data, but can contribute to generate testable hypotheses for 622 

later studies about some complex and untested relationships between SOC and its 623 

drivers. Interaction experiments concerning soil properties are expensive and rare in the 624 

literature (Rillig et al., 2019). 625 

For this reason, SOC increased with the C/N ratio (Fig 4A), which may be explained by 626 

the difficulty of soil organic matter decomposition by soil microbes, decreasing 627 

decomposition rates of SOC with increasing soil C/N (Wanyama et al., 2019; Xu et al., 628 

2016b). A positive relationship between SOC and soil N was also expected, since most 629 

of the soil N is in combined form with organic matter (Cambardella and Elliott, 1994). 630 
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However, in this case, due to the wide range of conditions and the randomized sampling 631 

design of the PASTUS database, the raw correlation between soil N and SOC was 632 

somehow discrete (r = 0.297; p-value = 0.001; R2 = 0.088), in comparison to other studies 633 

(i.e. Yan et al. 2020). However, the novelty revealed by our model is that soil N could 634 

modulate the effects of certain SOC drivers, including livestock type and herbage NDF. 635 

Cattle-grazed grasslands stored more SOC than mixed- and sheep-grazed grasslands, 636 

but only under low soil N conditions (Fig. 4B). Chang et al. (2018) found that in a N poor 637 

semi-arid grassland, sheep decreased SOC content in comparison to cattle due to 638 

vegetation changes caused by their feeding preference for highly palatable forbs 639 

(Sebastia et al., 2008), thus promoting less palatable grasses which supported less root 640 

biomass. In overall, under low soil N conditions, palatable plants are expected to 641 

contribute to SOC inputs through the stimulation of C allocation in forb roots (Ågren and 642 

Franklin, 2003; Warembourg et al., 2003) and the increase in the overall plant 643 

productivity due to legume atmospheric N fixation (Van Der Heijden et al., 2008). 644 

However, these processes could decline under high soil N contents. For instance, 645 

legume atmospheric N fixation could be reduced since it requires additional energy in 646 

comparison to nitrogen acquisition from the soil (Ibañez et al., 2020; Minchin and Witty, 647 

2005). Additionally, sheep selective feeding habits could shift plant leaf traits in the 648 

community towards nutrient-conservative leaf traits, which commonly induce fungal-649 

based soil food webs, with slow nutrient–cycling and high SOC storage due to low 650 

decomposition rates (Orwin et al., 2010). 651 

Additionally, grasslands with mixed grazed regimes stored even more SOC than sheep-652 

grazed grasslands under high soil N conditions (Fig. 4B, Table 3). This result emphasises 653 

that mixed livestock assemblages deserve particular attention, because mixed grazing 654 

can affect plant composition distinctly from single grazing species regimes, and alter 655 

traveling and trampling behaviour of grazing animals (Aldezabal et al., 2019; Chang et 656 

al., 2018; Liu et al., 2015).  657 
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NDF was negatively related to SOC at high soil N values (Fig 4C). NDF proportion 658 

represents the amount of structural compounds on litter, and hence is inversely related 659 

to non-structural compounds content (Goering and Van Soest, 1970).  The latter are the 660 

main source of organic matter formation at the early stages of decomposition, and they 661 

are incorporated into microbial biomass in a highly efficient way (Cotrufo et al., 2013). 662 

However, if microbial necromass was recycled by microbes before its incorporation to 663 

mineral-associated organic matter (Córdova et al., 2018), it could be respired and 664 

mineralized instead of stored. Thus, our model suggests that incorporation of labile and 665 

fast metabolized non-organic compounds to soil organic matter could be a pathway of 666 

SOC allocation at high soil N in Pyrenean grasslands. 667 

On the other hand, the ADL/NH ratio was positively related to SOC in sheep and mixed 668 

grazed grasslands (Fig. 4D). The ADL/NH ratio is a commonly used indicator for the 669 

resistance of litter to degradation, particularly at later stages of decomposition (Taylor et 670 

al., 1989). Hence, the increase of SOC stocks with ADL/NH should be related to the 671 

physical pathway of soil organic matter incorporation, forming coarse particulate organic 672 

matter (Cotrufo et al., 2015). Moreover, our model suggests that this pathway would be 673 

inhibited under cattle grazing, presumably because of their higher digestive efficiency, 674 

and thus less recalcitrant faeces (Wang et al., 2018); and their less selective diet 675 

compared to sheep, as the latter would avoid plants with high lignin content, promoting 676 

recalcitrant litter (Rosenthal et al., 2012; Sebastià et al., 2008). 677 

Our results concerning interactions between grazer type and herbage quality provide 678 

some evidence of grazing effects not only through alterations of plant communities that 679 

were reported by previous studies in the region (Canals and Sebastià, 2000; Sebastià et 680 

al., 2008), but also through interactions with them. Although grazing effects were not the 681 

most important factors affecting SOC stocks, this is by far the easiest component to 682 

manipulate in order to increase or maintain SOC in soils and face climate change (Komac 683 

et al., 2014). Considering our results, we suggest conducting more experiments to 684 
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investigate grazer type effects on SOC under different soil nutrient conditions, and within 685 

plant communities with contrasting herbage quality parameters. Grazing management 686 

also has other advantages such as preventing the accumulation of aboveground C, and 687 

reducing the risk of forest fires (Nunes and Lourenço, 2017). 688 

One key point of our results is that reinforce the idea that grazer type might be at least 689 

as important as grazing intensity in regulating grassland ecosystem dynamics (Tóth et 690 

al., 2018), and highlight the need for a more thorough research effort in disentangling 691 

not only grazing intensity but also grazer type effects on grassland soil organic carbon 692 

and nutrient cycling, under different environmental circumstances. Complete Model 693 

provided some evidence supporting that grazing may affect SOC not only through 694 

alterations of plant communities (Canals and Sebastià, 2000; Sebastià et al., 2008), but 695 

also through interactions with them. Although grazing effects were not the most important 696 

factors affecting SOC stocks, this is by far the easiest component to manipulate in order 697 

to increase or maintain SOC in soils and face climate change (Komac et al., 2014). 698 

Despite the need of a precise knowledge on the effects of different land uses on 699 

ecosystems for climate change mitigation (Lo et al., 2015), studies addressing grazer 700 

type effects on SOC are scarce (i.e. Zhou et al., 2017; Chang et al., 2018). Considering 701 

our results, we suggest conducting more experiments which investigate grazer type 702 

effects on SOC under different soil nutrient conditions, and within plant communities with 703 

contrasting herbage quality parameters. 704 

Conclusion 705 

The models presented here show a series of novel broad-scale and local patterns 706 

concerning SOC stocks and their geophysical, biochemical and grazing management 707 

drivers. Factors driving SOC stocks often interacted in complex ways, within and 708 

between spatio-temporal scales. Temperature seasonality (TSIS) was the most critical 709 

geophysical factor, affecting SOC through interactions with topographical drivers and 710 

grazing intensity. This illustrates how not only climate mean annual conditions should be 711 
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considered when modelling SOC drivers, but also seasonal patterns. Concerning 712 

biochemical factors, we found that the expected positive effect of soil N was modulated 713 

by livestock species and herbage NDF; and herbage recalcitrance effects on SOC varied 714 

depending on grazer type. Overall, we found a number of interactions highlighting the 715 

need to expand knowledge on grassland SOC drivers under different conditions, 716 

specially grazing. The latter is the most easily tractable factor affecting SOC. In 717 

conclusion, we provided valuable information for further studies dealing with SOC 718 

predictions at broad several scales, and laid out the basis to generate new testable 719 

hypotheses for future studies, which may be useful for designing improved policies to 720 

palliate climate change. 721 
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Table captions 1108 

Table 1: Considered factors affecting SOC stocks in some recent studies. V: the study 1109 

considers this variable type; -: the study does not consider this variable type. 1110 

Table 2: Results of the Geophysical Model for soil organic carbon (R2
Adj = 0.34). 1111 

Table 3: Results of the Combined model for soil organic carbon (R2
Adj = 0.61). 1112 

Figure captions 1113 

Figure 1: Conceptual scheme used in this work to investigate potential environmental 1114 

drivers with SOC. We assume that drivers may affect soil organic carbon (SOC) both 1115 

directly or hierarchically through another driver. Interactions between factors acting at 1116 

different scales and belonging to different categories could also drive SOC. Grazing 1117 

management has a special status because it may be acting at different scales, landscape 1118 

and local. 1119 

Figure 2: Relative contributions (%) of driver variables in the final BRT model obtained. 1120 

Soil N: soil nitrogen; Soil C/N: soil carbon to nitrogen ratio, Clay: clay content; Abiom: 1121 

aboveground biomass; ADL: acid-detergent lignin; Loam: loam content; K: soil 1122 

potassium; TSIS: temperature seasonality; NDF: neutro detergent fibre; pH: soil pH; CH: 1123 

carbon in the herbage; Mg: soil magnesium; Slope: terrain slope; MAP: mean annual 1124 

precipitation; ADF: acid detergent fibre. See Table S1 for more details about variables. 1125 

Figure 3: Relationship between SOC, and regional and landscape scale factors in the 1126 

Geophysical Model. In A) solid lines and circles represent exposed hillsides, and dotted 1127 

lines and triangles indicate protected hillsides. In D) solid lines and circles indicate low 1128 

grazing intensity, dotted lines and triangles indicate medium grazing management 1129 

intensity and dashed lines and squares indicate high grazing management intensity. In 1130 

A-D line and plane values are predictions of the model across the corresponding 1131 

Antonio
Nota adhesiva
Editor: 3. Tables. Explain all abbreviations (especially the not well known ones, e.g. TSIS). Tables and Figures should be self-explanatory

We added abbreviation explaining in all table and figure captions, including supplementary material. 
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predictors´ range according to estimated marginal means. Grey areas around regression 1132 

lines indicate standard errors. In A) and D) points indicate actual values. 1133 

Figure 4. The relationship between SOC, and biochemical and herbage factors in the 1134 

Combined model. In B) and D) solid lines and circle points represent cattle-grazing, 1135 

dashed lines and square points indicate sheep-grazing, and dotted lines and triangle 1136 

points indicate mixed-grazing. In A-D line and plane values are predictions of the model 1137 

across the corresponding predictors´ range according to estimated marginal means. In 1138 

A-D line and plane values are predictions of the model across the corresponding 1139 

predictors´ range according to estimate marginal means.  Grey spectrum indicate 95% 1140 

confidence intervals. In A) and D) points indicate actual values.  1141 
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Tables 1142 

Table 1: Considered factors affecting SOC stocks in some recent studies. V: the study 1143 
considers this variable type; -: the study does not consider this variable type. 1144 

1: It considers SOC concentrations 1145 
2: It considers total carbon stocks 1146 
3: It considers total carbon stocks and its fractions.  1147 

 1148 
 1149 
*Fertilizer effects. 1150 
** Only aboveground and/or belowground biomass index. 1151 

1152 

Article Location LAT (º) LONG (º) MAP (mm) MAT (°C) Topography 
and bedrock 

Grazing 
Managem
ent 

Soil 
propert
ies 

Soil 
nutrie
nts 

Her
bag
e 

Present 
study 

Pyrenees 42.14 – 43.3 -1.22 – 2.26 964 – 1586  1.1 – 9.9 V V V V V 

Duarte-
guardia et al., 
2019 

Worldwide -51.72 – 80.23 -163.95 – 158.25 65 – 5115 -21.2 – 30 V - V - V** 

Abdalla et al., 
2018 

Worldwide -45.85 – 51 -114 – 120.7 150 – 1650 0 – 21 - V V - V 

Eze et al., 
2018 

Worldwide -44 – 65 -121 – 175 120 – 2000 -4.8 – 26.8 - V V V* V** 

Peri et al., 
20181 

South 
Patagonia 

- 52 – -45 -73.5 – 65.5 139 – 865 4.2 – 11 V V - - V 

Zhang et al., 
2018 

Northern 
China 

103.5 – 124.16 32.5 – 42.5 500 – 1000 8 – 14 V V V - - 

Zhao et al., 
2017 

Mongolia 41.95 – 53.93  108.28- 116.2 150 – 400 -1.3 – 2.1 - V V - V 

Zhou et al., 
20172 

Worldwide -42.1 – 52.3 -121 – 175 200 – 600 0 – 10 - V - - X 

Deng et al., 
2016 

Eastern 
China 

28.71 – 30.45 120.87 – 122.43 940 – 1720 16.86 – 18.57 V - V - X 

Gray et al., 
2015 

Eastern 
Australia 

-16.7 – -43.5 -31.8 – -28.7  500 – 2000 10 – 30 V X X - V 

Lu et al., 2017 Qinghai-
Tibetan 
Plateau  

27 – 32 83 – 108 37 – 718 -4.04 – 6.3 - V X - - 

Chang et al., 
20151 

Tibet Not Reported Not Reported 397 – 1910 1.7 – 15.5 V - - - V 

Manning et 
al. 20153 

England 50.77– 54.58 -4.43 – 0.87 596 – 3191 6.5 – 10.9 - V V - V 

McSherry & 
Ritzie 2013 

Worldwide Not reported Not reported 180 – 950  Not reported - V V - V 

Garcia-Pausas 
et al. 2007 

Pyrenees -7 – 2.2 42.5 – 42.9 1416 – 
1904 

-0.7 – 5 V - V - - 

Antonio
Nota adhesiva
Editor:6. Table 1. Is it really meaningful to show what has been measured in which study but not showing the actual outcome of these studies? For instance SOC stocks, main controlling factors, etc.

The aim of including that table was to highlight the wide variety of climate conditions that the PASTUS database contains and the different soil organic carbon drivers that includes. In a previous study about species richness done with dese database (Rodríguez et al. 2018), we get some criticism from certain journals because the argued that the range of study was “too regional”. This time, we really appreciate the recognition that both referees had done to the effort of compiling this amount of data. 

We added some of the information to the table. In the caption, we specified which studies considered other response variables instead of soil organic carbon (total carbon stocks, soil organic carbon concentration etc.). However, adding more information is not an easy task. Soil organic carbon ranges are difficult to summarize because each study considers different soil depths and there would be necessary an intensive work to get comparable values. We included the types of explanatory variables included in each study, but specific variables and effects and so heterogeneous that are difficult to include in a table, and could lead to the reader to misleading conclusions about these papers.
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 1153 

Table 2: Results of the Geophysical Model for soil organic carbon (R2
Adj = 0.34). MAP: mean 1154 

annual precipitation; TSIS: temperature seasonality; Slope: terrain slope; Exposed: Exposed 1155 
position according to Macrotopography; Clay: clay content; Low and medium intensity: Low and 1156 
medium Grazing intensity. 1157 

Model term Estimate SE t-value P-value  

Intercept -0.525 1.802 -0.291 0.771  

Climate variables      

MAP 0.003 0.001 4.560 <0.001 *** 

TSIS -0.098 0.228 -0.429 0.669  

Topography variables      

Slope -0.339 0.095 -3.569 0.001 *** 

Exposed -3.130 0.936 -3.344 0.001 ** 

Soil type variables      

Clay 0.121 0.027 4.500 <0.001 *** 

Management variables      

Low intensity -5.013 1.196 -4.192 <0.001 *** 

Medium intensity 2.012 1.168 1.722 0.088  

Interactions 
     

TSIS x Exposed 0.417 0.124 3.358 0.001 ** 

TSIS x Slope 0.044 0.013 3.452 0.001 *** 

MAP x Clay 0.000 0.000 -4.637 <0.001 *** 

TSIS x Low intensity 0.655 0.159 4.110 <0.001 *** 

TSIS x Medium intensity -0.262 0.156 -1.684 0.095  

 1158 

  1159 



51 
 

Table 3: Results of the Combined model for soil organic carbon (R2
Adj = 0.61). MAP: mean 1160 

annual precipitation; TSIS: mean summer temperature minus mean annual temperature; Slope: 1161 
terrain slope; Cattle and Mixed: Cattle and mixed management according to grazing species; 1162 
Low and medium intensity: Low and medium intensity according to Grazing intensity; Soil C/N: 1163 
soil carbon to nitrogen ratio; soil N: soil nitrogen; NDF: neutro-detergent fibre; ADL/NH: acid-1164 
detergent lignin to nitrogen in the herbage ratio.  1165 

Model term Estimate SE t-value P-value  

Intercept -0.290 1.458 -0.199 0.843  

Climate variables      

MAP -0.001 0.000 -2.434 0.017 * 

TSIS -0.004 0.181 -0.022 0.982  

Topography variables      

Slope -0.225 0.078 -2.868 0.005 ** 

Management variables      

Cattle 0.487 0.101 4.834 <0.001 *** 

Mixed -0.289 0.093 -3.106 0.002 ** 

Low intensity -3.249 1.014 -3.204 0.002 ** 

Medium intensity 1.666 1.073 1.553 0.123  

Soil nutrient variables      

Log(Soil C/N) 0.665 0.076 8.777 <0.001 *** 

Soil N 3.302 0.617 5.349 <0.001 *** 

Herbage variables      

NDF 0.014 0.006 2.525 0.013 * 

Herbage ADL/NH 0.026 0.009 2.987 0.003 ** 

Interactions between 
variable types 

     

TSIS x Slope 0.030 0.010 2.833 0.006 ** 

TSIS x Low intensity 0.423 0.136 3.104 0.002 ** 

TSIS x Medium intensity -0.214 0.143 -1.495 0.138  

Soil N x Cattle grazing -0.736 0.168 -4.380 <0.001 *** 

Soil N x Mixed grazing 0.493 0.175 2.813 0.006 ** 

Soil N x NDF -0.039 0.011 -3.505 0.001 *** 

Cattle x Herbage 
ADL/NH 

-0.030 0.010 -2.872 0.005 ** 

Mixed x Herbage 
ADL/NH 

0.014 0.011 1.252 0.213  

  1166 
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Figures 1167 

 1168 

Figure 1: Conceptual scheme used in this work to investigate potential 1169 

environmental drivers with SOC. We assume that drivers may affect soil organic 1170 

carbon (SOC) both directly or hierarchically through another driver. Interactions 1171 

between factors acting at different scales and belonging to different categories 1172 

could also drive SOC. Grazing management has a special status because it may 1173 

be acting at different scales, landscape and local. 1174 

 1175 

  1176 
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Figure 2: Relative contributions (%) of driver variables in the final BRT model 1177 

obtained. Soil N: soil nitrogen; Soil C/N: soil carbon to nitrogen ratio, Clay: clay 1178 

content; Abiom: aboveground biomass; ADL: acid-detergent lignin; Loam: loam 1179 

content; K: soil potassium; TSIS: temperature seasonality; NDF: neutro detergent 1180 

fibre; pH: soil pH; CH: carbon in the herbage; Mg: soil magnesium; Slope: terrain 1181 

slope; MAP: mean annual precipitation; ADF: acid detergent fibre. See Table S1 1182 

for more details about variables.1183 

Antonio
Nota adhesiva
Editor: 7. Figure 2: Clarify that the relative importance is related to explained variance.

The way that relative importance of explanatory variables is not exactly related with the concept of explained variance. According to Elith et al. (Elith et al. 2008):

“The measures are based on the number of times a variable is selected for splitting, weighted by the squared improvement to the model as a result of each split, and averaged over all trees (Friedman & Meulman 2003). The relative influence (or contribution) of each variable is scaled so that the sum adds to 100, with higher numbers indicating stronger influence on the response.”

If you consider it appropriate, we can include this information on the methods, although we thing it could be a little bit excessive. In the caption of Fig. 2 we added: “Higher numbers indicate stronger influence on SOC stocks (Elith et al., 2008).”



Antonio
Nota adhesiva
Rev. 2 Line 379 Silt in here, loam in ﬁg.2. Use consistent terminology of silt, loam, etc? Use one, Please!

Change done. Silt is now the only name used.



Antonio
Nota adhesiva
Line 379 Silt in here, loam in ﬁg.2. Use consistent terminology of silt, loam, etc? Use one, Please!

Change done. Silt is now the only name used.



Antonio
Reemplazar
Silt: silt content

Antonio
Tachar
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Figure 3: Relationship between SOC, and regional and landscape scale factors 1184 

in the Geophysical Model. In A) solid lines and circles represent exposed 1185 

hillsides, and dotted lines and triangles indicate protected hillsides. In D) solid 1186 

lines and circles indicate low grazing intensity, dotted lines and triangles indicate 1187 

medium grazing management intensity and dashed lines and squares indicate 1188 

high grazing management intensity. In A-D line and plane values are predictions 1189 

of the model across the corresponding predictors´ range according to estimated 1190 

marginal means. Grey areas around regression lines indicate standard errors. In 1191 

A) and D) points indicate actual values.  1192 

Antonio
Nota adhesiva
Rev. 2 Line 1121 Please add the ﬁtting equation in ﬁgure 3 and 4. It is hard to distinguish which trend line belongs to which grazing species or grazing intensity. You can distinguish by color, or add the legend.

We changed all the plots to the main document to color plots, so lines and dots are more distinguishable than before. We also added the sentence “The estimates on Table 2-3 were those used to elaborate these plots.” so the equation values can be easily found.
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 1193 

 1194 

 1195 

Figure 4. The relationship between SOC, and biochemical and herbage factors in the 1196 

Combined model. In B) and D) solid lines and circle points represent cattle-grazing, 1197 

dashed lines and square points indicate sheep-grazing, and dotted lines and triangle 1198 

points indicate mixed-grazing. In A-D line and plane values are predictions of the model 1199 

across the corresponding predictors´ range according to estimated marginal means. In 1200 

A-D line and plane values are predictions of the model across the corresponding 1201 

predictors´ range according to estimate marginal means.  Grey spectrum indicate 95% 1202 

confidence intervals. In A) and D) points indicate actual values. 1203 
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Supplementary material 1 

Table S1: Variables considered in this study. 2 

Variable Description 

Regional variables  

Climate variables  

MAP Mean Annual Precipitation, mm. 

MSP Mean Summer Precipitation, mm. 

MAT Mean Annual Temperature, ºC. 

MST Mean Summer Temperature, ºC. 

TSIS MST-MAT. 

Bedrock 
3 cathegories : Basic (marls and calcareous rocks), Acidic (mostly sandstones and 

slates) or Mixed. 

Landscape variables  

Topographical variables  

Slope Pendent, º. 

Aspect Cos(º) 

Macrotopography Protected; north-facing slopes; Exposed, south-facing slopes. 

Microtopography Flat areas, convexities or mounds, and concavities, convexities  or smooth areas. 

Soil type variables  

Sand10 Percentage of sands in the 10 cm upper layer (%).  

Clay Percentage of clays in the 10 cm upper layer (%).  

Loam Percentage of loams in the 10 cm upper layer (%).  

pH pH value in soil 10 cm upper layer. 

Management variables  

Management Grazer type : Cattle, Sheep, Mixed 

Grazing 
Grazing intensity, (units of big grazer (UBG ha-1) low (1; lower than 0.2 UBG ha-1), 

medium (2; between 0.2-0.4 UBG ha-1) and high (3; up to 0.4 UBG ha-1). 



2 
 

Soil nutrient variables  

Soil N N in soil 20 cm upper layer. (%). 

C/N Soil C/N ratio 

P10 Cations of P10 in soil 10 cm upper layer. (ppm). 

K10 Cations of K10 in soil 10 cm upper layer. (ppm). 

Herbage  

Abiom Avoveground biomass in g/m2 

ADL Lignin concentration by the acid detergent lingin method (%/DM). 

ADF Fiber concentration by the acid detergent fiber method (%/DM). 

NDF Fiber concentration by the neutro detergent fiber method (%/DM). 

NH Nitrogen in the herbage (%/DM). 

CH Carbon in the herbage (%/DM) 

CH/NH CH/NH 

ADL/NH ADL/NH 

NDF/CP NDF/CP (CP: crude protein) 

SOC20 Soil Organic Carbon stocks in the 20 cm upper layer (kg m-2). 

 3 

 4 

Table S2: Minimum, maximum, median and mean values of the continuous predictors of this 5 

study. Units are shown in Table S1. MAT: mean annual temperature; MST: mean summer 6 

temperature; TSIS: mean summer temperature minus mean annual temperature; MAP: mean 7 

annual precipitation; MSP: mean summer precipitation; Slope: terrain slope; Aspect:; Sand: sand 8 

content; Loam: loam content; Clay: clay content; pH: soil pH; Soil N: soil nitrogen; Soil P: soil 9 

phosphorus; Soil C/N: soil carbon to nitrogen ratio; Soil Mg: soil magnesium; Soil K: soil 10 

potassium; NDF: neutro-detergent fibre; ADF: acid-detergent fibre; ADL: acid-detergent lignin; 11 

NH: nitrogen in the herbage; CH: carbon in the herbage; CH/NH: carbon to nitrogen ratio in the 12 
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herbage; Abiom: aboveground biomass; NDF/CP: neutro-detergent fibre to crude protein ratio;  13 

ADL/NH: acid-detergent lignin to nitrogen in the herbage ratio. 14 

 
Minimum Maximum Median Mean 

MAT 1.08 9.90 4.72 4.96 

MST 7.88 16.93 12.23 12.47 

TSIS 6.80 7.80 7.58 7.51 

MAP 964 1586 1252 1242.91 

MSP 169.00 258.00 235.00 228.90 

Slope 0.00 35.00 16.50 16.88 

Aspect 1.00 3.00 1.84 2.05 

Sand 3.10 72.20 32.80 32.67 

Loam 13.60 73.50 38.60 39.80 

Clay 2.90 68.60 27.25 27.53 

pH 3.90 7.80 5.47 5.74 

Soil N 0.11 1.10 0.46 0.47 

Soil P 4.00 54.00 11.00 12.98 

Soil C/N 4.13 41.60 12.47 13.39 

Soil Mg 2.89 5.99 4.99 4.92 

Soil K 3.40 6.84 4.99 5.03 

NDF 31.20 78.90 52.45 52.08 

ADF 17.70 46.60 29.55 30.07 

ADL 1.16 12.72 6.32 6.63 

NH 0.48 3.03 1.66 1.63 

CH 22.60 49.10 45.15 44.53 

CH/NH 13.90 97.20 26.60 31.14 
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Abiom 64.52 1224 308.32 341.91 

NDF/CP 2.15 17.20 4.77 5.71 

ADL/NH 0.50 14.02 3.92 4.78 

 15 

  16 
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Table S3: Chemical composition of herbage samples used for NIRS calibration. DM: dry matter; 17 

MM: mineral matter or ash content; CP: crude protein; NDF: neutro-detergent fibre; ADF: acid-18 

detergent fibre; ADL: acid-detergent lignin; NH: nitrogen in the herbage; CH: carbon in the 19 

herbage. 20 

Parameter, % N Min. Max. Mean SD 

DM 67 91.60 96.73 93.48 1.39 

MM (Ash) 67 3.58 19.73 10.10 3.98 

CP 67 5.50 14.67 9.29 1.90 

NDF 67 36.82 73.11 55.42 9.27 

ADF 67 21.95 41.97 30.00 4.70 

ADL 67 3.35 12.52 6.18 2.08 

NH 55 0.75 2.10 1.44 0.31 

CH 55 36.83 51.13 45.10 2.99 

 21 

Table S4: Calibration and cross validation statistics for predicting the chemical composition 22 

parameters in herbage samples by NIRS analysis. DM: dry matter; MM: mineral matter or ash 23 

content; CP: crude protein; NDF: neutro-detergent fibre; ADF: acid-detergent fibre; ADL: acid-24 

detergent lignin; NH: nitrogen in the herbage; CH: carbon in the herbage. 25 

Parameter Matha 

treatment 

Scatterb 

correction 

R2 r2 SEC SECV RPD 

DM 2,4,4,1 DT 0.92 0.85 0.392 0.539 2.58 

Ash 2,4,4,1 MSC 0.83 0.70 1.583 0.830 4.80 

CP 2,4,4,1 SNV 0.97 0.94 0.331 0.451 4.21 

NDF 2,4,4,1 DT 0.83 0.72 3.756 4.728 1.96 
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ADF 2,4,4,1 DT 0.81 0.70 2.031 2.548 1.84 

ADL 2,4,4,1 MSC 0.80 0.66 0.900 1.178 1.77 

N 2,4,4,1 MSC 0.97 0.95 0.055 0.068 4.56 

C 2,4,4,1 MSC 0.97 0.95 0.422 0.581 5.15 

aDesignations: derivate order, gap, first smoothing, and second smoothing; bStandard Normal 26 

Variance (SNV), Detrend (DT) and Multiplicative Scattering Correction (MSC) transformations. 27 

R2 = coefficient of determination for calibration. r2 = coefficient of determination for cross 28 

validation. SEC = standard error of calibration. SECV = standard error of cross validation. RPD = ratio 29 

of performance to deviation (RPD=SD/SECV). 30 

 31 

 32 

Table S5: Variance inflation values for the continuous predictors included in the GLMs. Values 33 

under 5 are considered non-problematic (Heiberger, 2017). MAP: mean annual precipitation; 34 

TSIS: mean summer temperature minus mean annual temperature; Slope: terrain slope; Clay: 35 

clay content; Soil C/N: soil carbon to nitrogen ratio; soil N: soil nitrogen; NDF: neutro-36 

detergent fibre; ADL/NH: acid-detergent lignin to nitrogen in the herbage ratio. 37 

Predictor MAP MMT Slope Clay Log(soil 

C/N) 

Soil 

N 

NDF ADL/NH 

Geophysical 

model 

1.26 1.16 1.27 1.22 - - - - 

Complete 

model 

- 1.26 1.32 - 1.58 1.82 1.32 1.67 

  38 
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 39 

 40 

Figure S1: Map of the study area. Points indicate sampling locations. 41 

  42 

Antonio
Nota adhesiva
Rev. 2: Line 25 in SUPPLEMENT Figure S1: points indicate sampling location, sampling location means the sample patches? Please add the legend of the points in this ﬁgure.

As we explained in the methods section, each sampling patch contains a sampling location, located in the middle of the grassland patch. Sampling location were added in the legend of this figure. As you suggested in some lines above, we added the figure S2 to clarify the sampling design, and the legend of the points in Fig. S1. 
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Figure S2: Scheme of the sampling procedure for building the PASTUS database   43 

Antonio
Nota adhesiva
Rev. 1: L 189-190 Are the soil samples from the 4 quadrats composited to form one soil sample per depth for each grassland patch?

Yes, they are. Following the advice of referee 2, we made many clarifications about sampling design, including a new supplementary figure (Fig. S2).



Antonio
Nota adhesiva
Rev. 2: Line 155 Not clear sampling design description. Showing a ﬁgure with sampling design would be helpful. Add a schematic of experimental design to make it clearer.

We added figure S2, which illustrates sampling design. 
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Figure S3: Changes in the predictive deviance of BRT models by backward removal of its 44 

predictors. The solid line indicates the mean change in predictive deviance, and the dotted line 45 

the standard error, calculated over the 10 folds of the cross-validation.  Solid vertical line 46 

indicates the variables removed for the second fit. Dotted vertical line indicates minimum 47 

change in predictive deviance. Dotted horizontal line indicates mean change in predictive 48 

deviance. 49 

  50 
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 51 

 52 

 53 

 54 

 55 

Figure S4: Histogram and normal Q-Q plot of A) SOC and B) log(SOC). Result of Shapiro Wilk W 56 

test result were W = 0.948; p-value < 0.001 and W = 0.99; p-value = 0.18 respectively. SOC: soil 57 

organic carbon. 58 

  59 

Antonio
Nota adhesiva
Rev. 2: Line 39 in SUPPLEMENT There is no reference of Figure S3 in the text.

We added the reference in the “general linear models” subsection, in the material and methods section:

“We designed and executed a modelling procedure based on general linear models (Legendre and Legendre, 1998) and a hierarchy of controls over function (Diaz et al., 2007; de Vries et al., 2012). We log-transformed SOC using natural logarithm to prevent a breach of the normality assumption by the residuals of the models (Fig. S4).” (L 357; Fig. S3 is now S4)
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 60 

 61 

 62 

Figure S5: Linear modelling procedure. A) Variables introduced in each step. The first linear 63 

model (Geophysical model) is fitted until Step 2 and the second linear model (Complete 64 

Model) is fitted until Step 4. B) For selecting the candidate predictor terms on each step, 65 

residuals of the model obtained in the previous step are used as response variables in C. C) 66 

Procedure to select candidate terms on each step. First, genetic algorithm was used to obtain a 67 

set of best models. Second, these models were averaged and the significant terms were 68 

selected as candidates for backward forward selection in the main/consolidated model. 69 

 70 

  71 

Antonio
Nota adhesiva
Rev. 2: Line 314 Geophysical model based on geophysical predictors and grazing management? There haven’t grazing management in Figure S4.

Now Figure S5 has grazing management.
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72 

Figure S6: Relative contributions of variable groups in the linear model explaining Soil Organic 73 

Carbon, using regional, landscape and management predictors.  MAP: mean annual 74 

precipitation; TSIS: mean summer temperature minus mean annual temperature; Slope: 75 

terrain slope; Exposed: Exposed position according to Macrotopography; Clay: clay content; 76 

Low and medium intensity: Low and medium intensity according to Grazing intensity. 77 

 78 
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79 

Figure S7: Relative contributions of variable groups in the linear model explaining Soil Organic 80 

Carbon using regional, landscape, management and biochemical predictors.  MAP: mean 81 

annual precipitation; TSIS: mean summer temperature minus mean annual temperature; 82 

Slope: terrain slope; Cattle and Mixed: Cattle and mixed management according to grazing 83 

species; Low and medium intensity: Low and medium intensity according to Grazing intensity; 84 

Soil C/N: soil carbon to nitrogen ratio; soil N: soil nitrogen; NDF: neutro-detergent fibre; 85 

ADL/NH: acid-detergent lignin to nitrogen in the herbage ratio. 86 

  87 
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 88 

Figure S8: Partial dependence plots for the 15 selected predictors in the BRT model. Y axes are 89 

centred to have zero mean over data distribution. Values (solid lines) are predictions of the 90 

model across the predictor´s range maintaining the rest of the predictors at their average 91 

values. Grey areas around prediction lines indicate 95% bootstrap confidence intervals. Soil N: 92 

soil nitrogen; Soil C/N: soil carbon to nitrogen ratio, Clay: clay content; Abiom: aboveground 93 
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biomass; ADL: acid-detergent lignin; Silt: silt content; K: soil potassium; TSIS: mean summer 94 

temperature minus mean annual temperature; NDF: neutro-detergent fibre; pH: soil pH; CH: 95 

carbon in the herbage; Mg: soil magnesium; Slope: terrain slope; MAP: mean annual 96 

precipitation; ADF: acid detergent fibre. See Table S1 for more details about variables. 97 

98 
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 99 

Figure S9: Pairwise Pearson´s correlations between climate variables. MST: mean summer 100 

temperature; MWT: mean winter temperature; MAT: mean annual temperature; TSIS: inter-101 

annual seasonality measured as MST-MAT. 102 
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