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Abstract 55 

Grasslands are one of the major sinks of terrestrial soil organic carbon (SOC). 56 

Understanding how environmental and management factors drive SOC is challenging 57 

because they are scale-dependent, with large-scale drivers affecting SOC both directly 58 

and through drivers working at small scales. Here we addressed how regional, landscape 59 

and grazing management, soil properties and nutrients, and herbage quality factors 60 

affect 20 cm depth SOC stocks in mountain grasslands in the Pyrenees. Taking 61 

advantage of the high variety of environmental heterogeneity in the Pyrenees, we built a 62 

dataset (n = 128) that comprises a wide range of environmental and management 63 

conditions. This was used to understand the relationship between SOC stocks and their 64 

drivers considering multiple environments. We found that temperature seasonality 65 

(difference between mean summer temperature and mean annual temperature; TSIS) 66 

was the most important geophysical driver of SOC in our study, depending on 67 

topography and management. TSIS effects on SOC increased in exposed hillsides, slopy 68 

areas, and relatively intensively grazed grasslands. Increased TSIS probably favours 69 

plant biomass production, particularly at high altitudes, but landscape and grazing 70 

management factors regulate the accumulation of this biomass into SOC. Concerning 71 

biochemical SOC drivers, we found unexpected interactive effects between grazer type, 72 

soil nutrients and herbage quality. Soil N was a crucial SOC driver as expected, but 73 

modulated by livestock species and neutral detergent fibre contentin plant biomass; 74 

herbage recalcitrance effects varied depending on grazer species. These results 75 

highlight the gaps in the knowledge about SOC drivers in grasslands under different 76 

environmental and management conditions. They may also serve to generate testable 77 

hypotheses in later/future studies directed to climate change mitigation policies. 78 

Keywords 79 

SOC, natural grasslands, grazer type; grazing management, herbage quality; climate 80 

change, soil nutrients; topography; temperature seasonality; TSIS 81 
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 82 

Introduction 83 

Soil organic carbon (SOC) is crucial for the functioning of terrestrial ecosystems 84 

(Lal, 2004a). SOC enhances soil and water quality and biomass productivity, and 85 

has an important role in relation to climate change (Lal, 2004b). Although 86 

grasslands have small aboveground biomass compared to other ecosystems, 87 

their SOC stocks can be comparable to those in forest ecosystems (Berninger et 88 

al., 2015). This is due to their high root biomass and residues, which are a 89 

substantial carbon source and can contribute to water retention in soil. This 90 

creates favourable conditions for the accumulation of organic matter (Von Haden 91 

and Dornbush, 2014; Yang et al., 2018). These attributes, together with the high 92 

extent of grassland global cover, make grasslands store around 34% of the 93 

terrestrial carbon, mostly in their soils (White et al., 2000).  94 

SOC accumulation results from a complex equilibrium between primary 95 

production and organic matter decomposition which depends on multiple 96 

environmental factors such as climate, soil texture and nutrients, or land 97 

management (Jenny, 1941; Schlesinger, 1977). Understanding how these scale-98 

dependent environmental factors drive SOC is challenging because large scale 99 

drivers affect also those working at fine spatial scales. This has been described 100 

as a hierarchy of controls over SOC (Fig. 1; Manning et al., 2015). 101 

Climate is known to be the main SOC driver at broad (global and regional) scales;  102 

mean annual precipitation (MAP) and mean temperature (MAT) being the most 103 

frequent climate indicators (Wiesmeier et al., 2019). However, climate annual 104 

variations represented by seasonality variables are commonly neglected when 105 
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considering possible SOC drivers in broad-scale models, in spite of being 106 

important drivers of plant primary production and enzymatic activity of soil 107 

microorganisms (Fernández-Alonso et al., 2018; Garcia-Pausas et al., 2007; 108 

Puissant et al., 2018). Other regional and landscape factors like bedrock or 109 

topography are also considered to be at the top of the hierarchy because they 110 

influence multiple geophysical and biochemical factors affecting SOC, including 111 

soil texture and water flow paths (Gray et al., 2015; Hobley et al., 2015). Next in 112 

the hierarchy after regional and landscape factors, are several soil geophysical 113 

properties, like pH and texture, which are controlled by climate, bedrock, and 114 

which affect SOC through both plant primary production and microbial activity 115 

and the capacity to stabilise the SOC (Deng et al., 2016; Xu et al., 2016a). 116 

Soil macro and micronutrients are in the next level of the hierarchy, as their 117 

abundance is determined by multiple factors, including climate, soil pH, water 118 

content or clay content (Hook and Burke, 2000; de Vries et al., 2012). They play 119 

an essential role in primary production and herbage quality, and act as resources 120 

for microbes to mineralise SOC (Aerts and Chapin, 1999; Vitousek and Howarth, 121 

1991). However, these variables are commonly omitted as possible drivers of 122 

SOC in the broad-scale studies, especially in those studies focusing on predictive 123 

rather than explicative models (Gray et al., 2015; Manning et al., 2015; Zhang et 124 

al., 2018). This kind of variables is less frequently available and more difficult to 125 

measure than the other indicators used for SOC modelling (Manning et al., 2015). 126 

Furthermore, the use of soil nutrients as SOC drivers in linear models can be 127 

challenging, as they are often strongly linked to SOC dynamics. This may mask 128 

the effect of other drivers acting at larger spatial scales (Bing et al., 2016; 129 

Cleveland and Liptzin, 2007; Tipping et al., 2016). 130 
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Vegetation represents another group of SOC drivers, affected by climate, 131 

topography and soil properties and nutrients (Fernández-Martínez et al., 2014; 132 

de Vries et al., 2012; Zhu et al., 2019). Plant biomass is the main input of organic 133 

carbon into the soil (Shipley and Parent, 1991). However, a not so frequently 134 

considered factor is plant litter quality, which can determine decomposition rates 135 

and patterns, and hence soil carbon sequestration (Ottoy et al., 2017; Yan et al., 136 

2018, 2019). 137 

In addition to these factors, livestock management effects on grassland SOC is 138 

a noteworthy issue since they are poorly understood (Wiesmeier et al., 2019). It 139 

is known that herbivores can affect SOC through different paths, such as 140 

regulating the quantity and quality of organic matter returned to soil (Bardgett and 141 

Wardle, 2003), or affecting soil respiration and nutrients by animal trampling or 142 

soil microbiota alteration (Lu et al., 2017). Several studies confirmed the 143 

interaction between grazing and other SOC drivers at diverse scales (Abdalla et 144 

al., 2018; Eze et al., 2018; Lu et al., 2015, 2017; Zhou et al., 2017). Hence, 145 

grazing management may be considered a SOC driver with effects at multiple 146 

levels of the driver hierarchy (Fig. 1), both affecting other SOC drivers and 147 

interacting with them. However, most of the studies investigating grazing effects 148 

on SOC focus on grazing intensity, in spite of evidence pointing to a greater role 149 

of grazer species in determining vegetation and SOC (Chang et al., 2018; 150 

Sebastia et al., 2008). 151 

In this study, our goal was to identify the main drivers of SOC stocks and their 152 

interactions in Pyrenean mountain grasslands. For this purpose, we considered 153 

a wide set of regional, landscape, soil geophysical and biochemical, and herbage 154 

quality factors, together with grazing management factors. Mountain grasslands 155 



8 
 

comprise a wide range of all these conditions, which make carbon stocks highly 156 

variable (Garcia-Pausas et al., 2007, 2017). For this reason, data analysed here 157 

include a wide range of environmental conditions, comparable to studies on SOC 158 

developed at continental or even worldwide scales (Table 1). Additionally, we 159 

considered an exceptionally broad compilation of drivers (Table 1). To deal with 160 

correlations and interactions between SOC drivers, we developed an exhaustive 161 

modelling approach based on the controls over function hypothesis (de Vries et 162 

al., 2012). To facilitate the formulation of our specific questions to answer in this 163 

study, we classified SOC drivers into three main groups (Fig. 1): i) geophysical 164 

factors, which include regional and landscape factors and are supposed to be the 165 

first sources of variation, ii) biochemical factors, which include soil nutrients and 166 

herbage factors and could be conditioned by geophysical factors, and iii) grazing 167 

management factors, which could affect SOC through multiple interactions with 168 

the rest of the variables at multiple scales. In particular, the specific questions of 169 

this study are 1) What are the relative and interaction effects of the geophysical 170 

and biochemical SOC controls? 2) How does grazing management regulate the 171 

effects of other SOC drivers? 172 

Material & methods 173 

2.1 Location and sampling design 174 

The set of data used in this study has been extracted from the PASTUS Database 175 

(http://ecofun.ctfc.cat/?p=3538), which was compiled by the Laboratory of Functional 176 

Ecology and Global Change (ECOFUN) of the Forest Sciences Centre of Catalonia 177 

(CTFC) and the University of Lleida (UdL). We sourced a wealth of data of 128 grassland 178 

patches distributed across the Pyrenees (Fig. S1), and including topographical, climate, 179 

soil, herbage and management variables. The elaboration of the PASTUS Database 180 
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concerning this study is summarised in Fig. S2). The sampled area encompasses a wide 181 

variety of temperate and cold-temperate climates, with different precipitation conditions, 182 

depending on altitude and geographical location from Mediterranean to Continental and 183 

Boreo-Alpine environments (de Lamo & Sebastià, 2006; Rodríguez et al., 2018; Table 184 

1). Almost all of the plant species in the grasslands from the PASTUS database are 185 

perennial (Sebastià, 2004), and plant diversity is highly heterogeneous as are the 186 

environmental conditions (Rodríguez et al., 2018). 187 

Sampling in the PASTUS database was designed according to a stratified random 188 

scheme, where samples were selected at random within strata. This process was done 189 

using the software ArcMap 10 (ESRI, Redlands, CA, USA). The basis for randomization 190 

was the map of habitats of Catalonia 1:50000 (Carreras and Diego, 2006) for the Eastern 191 

and Central sectors of the Pyrenees, the map of habitats of Madres-Coronat 1:10000 192 

(Penin, 1997) for the North-Eastern sector and the land use map of Navarra 1:25000 193 

(Gobierno de Navarra, 2003) for the Western sectors. Four variables were initially 194 

considered for sampling stratification within each sector: altitude (< 1800 m; 1800-2300 195 

m; > 2300 m), slope (0-20º; 20-30º; > 30º), macrotopography (mountain top/southern-196 

facing slope; valley bottom/northern-facing slope) and grazer type (sheep; cattle; mixed). 197 

Accordingly, we determined a set of homogeneous grassland patches by crossing the 198 

stratification variable layers. Grassland patches were then listed by type and arranged 199 

within each list randomly to determine sampling priority. At least one to two replicates of 200 

each patch type defined by the stratification variables were sampled. 201 

In each sampled grassland patch, a 10 x 10 m2 plot was systematically placed in the 202 

middle of each homogeneous grassland patch, including a particular plant community. 203 

We collected soil and vegetation samples, and assessed environmental variables within 204 

each 100 m2 plot (see Rodríguez et al., (2018) for additional details about sampling 205 

design). Local variables were assessed inside the 100 m2 plots. Aboveground biomass 206 

was estimated from herbage cut at ground level in four 50 x 50 cm2 quadrats placed in a 207 
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2 x 2 m2 subplot inside the 100 m2 plot. Herbage from two of the four quadrats were dried 208 

and sent to the laboratory for duplicated chemico-bromatological analysis. In addition, in 209 

each quadrat, a 20-cm depth soil core was extracted with a 5 x 5 cm probe after herbage 210 

was removed. The soil sample in the probe was separated into two soil layers: 0-10 and 211 

10-20 cm. 212 

2.2 Regional and landscape environmental drivers 213 

In order to investigate the relationship between SOC and potential environmental drivers, 214 

30 independent environmental variables were initially considered (Table S1). These 215 

variables were grouped into five sets: regional, landscape, livestock management, soil 216 

nutrient stocks, and herbage variables. 217 

Regional variables included climate variables and bedrock. Climate variables were 218 

determined from Worldclim 2.0 (Fick and Hijmans, 2017). We selected Mean Annual 219 

Temperature (MAT), Mean Summer Temperature (MST), Mean Annual Precipitation 220 

(MAP) and Mean Summer Precipitation (MSP). The difference between mean annual 221 

and mean summer temperature emerged as a relevant explanatory factor of soil organic 222 

carbon stocks during previous modelling efforts by one of the co-authors (M-T. Sebastià). 223 

Later attempts to improve models by substituting this variable with other temperature 224 

indices from climatic databases (Fick and Hijmans, 2017) showed that, for the  PASTUS 225 

database, this variable provided higher explanatory power than other temperature 226 

seasonality indices. Thus, we decided to keep it and here we name it Temperature 227 

Seasonality Index of Sebastià (TSIS from now on). 228 

Bedrock type was determined in the field and confirmed by the geographical maps 229 

mentioned above. Bedrock was categorized into three categories: basic (marls and 230 

calcareous rocks), acidic (mostly sandstones and slates) and heterogeneous. 231 

Landscape variables included topography and soil type variables. Topography variables 232 

included Slope, Aspect, Macrotopography and Microtopography. Slope and Aspect were 233 



11 
 

determined in the field by clinometer and compass respectively. Macrotopography and 234 

microtopography were determined visually in the field. Preliminary modelling efforts 235 

suggested the reduction of the four macrotopographical positions initially identified in the 236 

field into two: Mountain top and south-facing slopes were classified as exposed positions 237 

and valley bottoms and north-facing slopes as protected macrotopographical positions. 238 

Microtopography included three positions: convexities, concavities and smooth areas. 239 

Soil type variables are described in the following. 240 

2.3 Soil physicochemical analysis 241 

To obtain bulk density, we air-dried and weighed the soil samples: we then sieved each 242 

sample to 2 mm to separate stones and gravels from the fine earth fraction. The fine 243 

fraction was sent to the laboratory for further physicochemical analysis. Standard 244 

physicochemical soil analyses were performed in the upper 0-10 cm soil layer of all 245 

grasslands. Some analyses were also performed on samples from the 10-20 cm soil 246 

layer, including soil organic carbon and total nitrogen. For those variables, we combined 247 

0-10 and 10-20 cm values to obtain the whole top 20 cm soil layer. 248 

All soil physicochemical analyses were performed on the fine earth, according to 249 

standard soil analysis methods. Textural classes were determined by the Bouyoucos 250 

method (Bouyoucos, 1936). Soil pH (measured in water), total organic carbon (TOC) 251 

total nitrogen (TN), Calcium content (Ca), Extractable phosphorus (P), magnesium (Mg) 252 

and potassium (K) were measured on air-dried samples (Schöning et al., 2013; Solly et 253 

al., 2014). Soil carbonates were determined using the Bernard calcimeter. Total carbon 254 

and nitrogen (N) contents of the fine earth were determined by elemental auto-analyser. 255 

The organic C fraction was determined by subtracting inorganic C in the carbonates from 256 

the total C. Available phosphorus (P) was extracted by the Olsen method (Olsen, 1954) 257 

Ca, Mg and K were extracted by ammonium acetate (Simard, 1993) and measured by 258 

flame Atomic Absorption Spectroscopy (AAS) (David, 1960)). Soil organic carbon (SOC) 259 

stocks in the upper 20 cm soil layer were then estimated taking into account the organic 260 
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C concentration in the sample and its bulk density, and subtracting the coarse particle (> 261 

2 mm) content, following García-Pausas et al. (2007). Despite recent studies suggesting 262 

that fixed mass SOC stocks estimates are preferable to fixed depth methods because 263 

they would be more robust to temporal and land use changes in bulk density (Ellert & 264 

Bettany 1995), we chose a fixed depth method for measuring SOC stocks. This decision 265 

was based on the fact that our work samples came from natural mountain grasslands, 266 

where grazing intensity is always low to moderate, and moreover, herbivore presence is 267 

seasonal. Therefore, we do not expect important changes in bulk density due to land 268 

use. Additionally fixed mass approaches  presented the disadvantages of implying more 269 

technical difficulties than fixed depth measures, even in the most modern procedures 270 

(Haden et al. 2020), and could not deal well with differences in stoniness. 271 

2.4 Herbage chemical and bromatological analysis, and NIRS analysis 272 

All four herbage samples per plot were oven-dried at 60ºC to constant weight to 273 

determine aboveground biomass and converted into g m-2. Two out of the four samples 274 

were sent to the laboratory for herbage quality analysis. Dried samples were ground to 275 

pass a 1 mm stainless steel screen (Cyclotec 1093 Sample mill, Tecator, Sweden) and 276 

stored at 4ºC until it was needed for use. 277 

To develop NIRS prediction models, a random subset of 130 samples was used and 278 

analysed in duplicate according to the reference methods mentioned further. Procedures 279 

described by AOAC were used to determine dry matter (DM) and ash content or mineral 280 

matter (MM). Crude protein (CP) was determined by the Kjeldhal procedure (N x 6.25) 281 

using a Kjeltec Auto 1030 Analyser (Tecator, Sweden). Samples were analysed 282 

sequentially for neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid 283 

detergent lignin (ADL) in accordance with the method described Van Soest et al. (1991) 284 

using the Ankom 200 Fibre Analyser incubator (Ankom, USA). The fibre analysis were 285 

determined on an ash-free basis and without alpha amylase. We calculated two 286 

additional herbage quality indexes often used in the bibliography: NDF/CP and ADL/NH 287 
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(Stockmann et al., 2013). For each subsample the C and N content (CH and NH )were 288 

determined by the Dumas dry combustion method,  using an Elemental Analyzer EA1108 289 

(Carlo Erba, Milan, Italy). 290 

Afterwards, a total of two hundred herbage samples were scanned as described below 291 

to collect their NIRS spectra. We estimated chemical and bromatological variables 292 

according to the equations derived from the previous calibrations on the initial 130 293 

random samples. 294 

NIRS data were recorded from 1,100 to 2,500 nm using a FOSS NIRSystem 5000 295 

scanning monochromator (Hillerød, Denmark). Separate calibration equations were 296 

generated for grassland samples. Reflectance (R) data were collected in duplicate every 297 

2 nm. A WinISI III (v. 1.6) software (FOSS, Denmark) was employed for spectra data 298 

analysis and development of chemometric models. Prior to calibration, log 1/R spectra 299 

were corrected for the effects of scatter using the standard normal variate (SNV), detrend 300 

(DT) and multiple scatter correction (MSC) and transformed into first or second derivative 301 

using different gap size (nm) and smoothing interval. For each sample, the mean of the 302 

spectra from the two lectures were used. Modified partial least square (MPLS) was the 303 

regression method used for calibration development and cross validation was 304 

undertaken using the standard methodology in the NIRS software program. The 305 

performance of the model was determined by the following statistical tools: standard 306 

error of calibration (SEC), standard error of cross validation (SECV); coefficient of 307 

determination for calibration (R2) and cross validation (rcv
2); the ratio of performance to 308 

deviation (RPD) described as the ratio of standard deviation for the validation samples 309 

to the standard error of cross validation (RPD=SD/SECV) should ideally be at least three; 310 

and the range error ratio (RER=Range/SECV) described as the ratio of the range in the 311 

reference data to the SECV should be at least 10 (Williams and Sobering, 1996; Williams 312 

et al., 2014). 313 

2.5 Livestock management variables 314 
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The management variables (grazer type) initially used for sampling stratification were 315 

determined from records available in the municipalities of the study area. Once the 316 

specific grassland patches to be sampled were determined, we carried out a detailed 317 

analysis of the management where the patches were located. To this effect, we carried 318 

out detailed surveys among farmers, shepherds and land managers. Sometimes the 319 

information collected was modified according to visual records in the field (e.g., cattle 320 

and/or cattle dung found in supposedly ungrazed areas). Information from municipalities 321 

was usually the most imprecise. 322 

We considered two management variables: Grazing intensity and Grazer type. Grazing 323 

intensity was determined estimating livestock stocking rates measured as livestock units 324 

ha-1 (LU ha-1), and treated as a semi-quantitative variable with three categories (): low 325 

(1; lower than 0.2 LU ha-1), medium (2; between 0.2-0.4 LU ha-1) and high (3; above 0.4 326 

LU ha-1). Grazer type was categorised into three main types: sheep, cattle and mixed. 327 

Mixed grazing included associations comprising small and big livestock species, mainly 328 

sheep and cattle, and more rarely horses. Sheep flocks always included some goats. 329 

2.7 Statistical analyses 330 

We applied two different modelling procedures: Boosted Regression Trees (BRT) and 331 

General Linear Models (GLM). BRT is an automatic technique that combines insights 332 

from traditional statistical modelling and machine learning traditions (Elith et al., 2008). 333 

GLM allowed us to design a hypothesis-based modelling procedure, ensuring that only 334 

effects with biological meaning where included; whereas BRT provided information about 335 

the data that could be neglected, if only a GLM approach was followed. 336 

All the statistical analyses were performed with the software R ver. 3.4.3  (R Core Team, 337 

2017), at 95% significance level when appropriate. 338 

Boosted regression trees global model 339 
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Including all SOC potential drivers, we fitted a model with BRT to identify the most 340 

important variables affecting SOC. BRT uses two algorithms: regression trees and 341 

boosting. Regression trees are from the decision tree group of models, and boosting 342 

builds and combines a collection of models (Elith et al., 2008). We chose this method 343 

because BRT can handle multiple variables better than other techniques as GLM, and 344 

can detect automatically curvilinear relationships and interactions, ignoring non-345 

informative ones. We used the gbm and dismo packages (Greenwell et al., 2019; 346 

Hijmans et al., 2017), which provide several functions to fit these models. 347 

Firstly, we fitted a model with all the drivers (Table S1), configured with 15 folds, a 348 

Gaussian distribution of the error, a tree complexity of 5, a learning.rate of 0.005, a 349 

bag.fraction of 0.666, and 5 minimum observations by node. Secondly, we reduced the 350 

number of drivers by the method described in Elith et al., (2008). We estimated the 351 

change in the model´s predictive deviance dropping one by one each driver, and re-fitted 352 

the model with the set of variables which actually improved model performance (Fig. S3). 353 

We checked the relative importance of the drivers and the shape and size of the effects 354 

by partial effect plots.  355 

General linear models 356 

We designed and executed a modelling procedure based on general linear models 357 

(Legendre and Legendre, 1998) and a hierarchy of controls over function (Díaz et al., 358 

2007; de Vries et al., 2012). We log-transformed SOC using natural logarithm to prevent 359 

a breach of the normality assumption by the residuals of the models (Fig. S4). We built 360 

two models (Fig. S5), one model based only on geophysical drivers and grazing 361 

management (Geophysical Model), and another model including, in addition to the 362 

former drivers, the biochemical drivers: soil nutrients and herbage quality (Combined 363 

Model). With this approach we aimed to avoid ignoring significant effects of the 364 

geophysical variables, the original source of variation of SOC stocks according to the 365 



16 
 

hierarchy of controls over function hypothesis (Manning et al., 2015), by masking them 366 

with the inclusion of biochemical drivers. We considered that the geophysical factors that 367 

potentially affect SOC were regional and landscape (topography and soil type drivers), 368 

as they have been widely used in previous studies to model and predict SOC from 369 

landscape to continental scales (Manning et al., 2015; Wiesmeier et al., 2019). In 370 

addition to soil nutrients and herbage variables, we included again the livestock 371 

management variables in the Combined Model and looked for interactions involving 372 

these variables and biochemical drivers of SOC. 373 

For model building (Fig. S5A), we added driver groups following a sequential order. For 374 

fitting the Geophysical Model, we started adding regional, landscape and grazing 375 

management drivers, and subsequently included soil properties. Afterwards, we 376 

sequentially included soil nutrients and herbage drivers to obtain the Combined Model. 377 

We added Management variables from the beginning of the modelling process and re-378 

included the discarded ones in each step to guarantee the detection of interactions 379 

between Management variables and the rest of the drivers. Each time we added a set of 380 

drivers, we first considered their main effects and some quadratic terms which were 381 

found by preliminary analyses with the scatterplot.matrix function in the R package car 382 

(Fox et al., 2018); afterwards we included possible level 2 interactions between all the 383 

selected drivers. 384 

At every step we selected several candidate terms by a semi-automatic procedure (Fig. 385 

S5C) using a genetic algorithm included in the R package glmulti (Calcagno, 2015). We 386 

used SOC as response variable at the first step, and the residuals of the previous model 387 

in the remaining steps (Fig. S5B). This semi-automatic process began by obtaining a 388 

best subset of models using the corrected Akaike information criterion (AICc), 389 

appropriate when n/k is less than 40, n being the sample size and k the number of 390 

parameters in the most complex model (Symonds and Moussalli, 2011). We selected the 391 

best model and its equivalents obtained by the genetic algorithm, which were those 392 
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within 2 Akaike information criterion-corrected (ΔAICc) values of the best model, as a 393 

ΔAICc < 2 indicates that the candidate model is almost as good as the best model 394 

(Burnham and Anderson, 2002). 395 

For this set of models, we built averaged models using the MUMIn package (Barton, 396 

2015). We calculated partial standardized coefficients, obtained by multiplying the 397 

unstandardized coefficient in the model by the partial standard deviation of the variable, 398 

which is a function of the standard deviation of the variable, the sample size, the number 399 

of variables in the model and the variance inflation factor of the variable (Barton, 2015). 400 

We selected all the variables with significant effects (alone or in interaction with each 401 

other) in the conditional average model, which was preferred over the full average model 402 

because we wanted to avoid excessive shrinkage effects at this moment of the modelling 403 

procedure (Grueber et al., 2011).  404 

Then, we added these terms to the consolidated model, and made a selection through a 405 

backward forward procedure. We used several methods to compare and determine the 406 

final model, including the AICc, the adjusted determination coefficient R2 (Radj
2) and 407 

model comparison techniques with the “anova()” function in R, using Chi-square tests to 408 

test whether the reduction in the residual sum of squares was statistically significant. 409 

Once we had the final model we assessed the significance of each term by removing it 410 

and performing an F test. For estimating the significance of the main effects we also 411 

removed the interaction terms in which they were involved, to avoid transferring the 412 

effects of the main terms to the interaction terms (de Vries et al., 2012). We estimated 413 

the variance explained by the models through the adjusted determination coefficient R2 414 

(Radj
2). 415 

Finally, we estimated the importance of the terms of each model by the lmg method in 416 

the relaimpo package (Grömping, 2006), and drew partial effect plots making predictions 417 

with the R package emmeans (Lenth et al., 2019). 418 



18 
 

Results 419 

SOC stocks of the upper 20 cm layer ranged between 2.6 and 23 kg m-2, with a median 420 

and a mean value of 9.1 and 9.6 kg m-2 respectively. Standard deviation of the mean 421 

was 3.15 ( n= 125). Minimum, maximum, median and mean values of the continuous 422 

drivers are shown in Table S2. 423 

3.1 Relative importance of SOC stocks drivers 424 

The final BRT global model achieved a good goodness of fit, with a cross-validated 425 

correlation value of 48% and an explained deviance of 88.31%. The most important 426 

variables explaining SOC stocks (Fig. 2) were soil N (18.3 %), soil C/N (14.4%) and Clay 427 

(13%) although other variables such as aboveground biomass (7.3%), ADL (6.4%) or silt 428 

(6.1%) were also relevant for explaining SOC storage. Three important variables in the 429 

BRT model, aboveground biomass, silt and soil K, were not selected in the linear models 430 

(Tables 2 & 3). Although accounting for a lower importance value than the previous 431 

variables (5%), TSIS was the most relevant among the climate drivers considered. TSIS 432 

was also noticeably important in both linear models (Fig. S6), especially in the 433 

Geophysical Model, not only as main effect, but in interaction with other variables (lmg: 434 

4-10%). According to the Combined linear model, soil nutrient and herbage variables 435 

were other important SOC stocks drivers(Fig. S7), but many of these effects occurred in 436 

interaction with grazer type. 437 

3.2 Geophysical, biochemical and grazing management effects on SOC stocks 438 

The Geophysical Model (Table 2) explained 34% of the total variance (R2
Adj). Overall, 439 

SOC stocks increased with TSIS under certain conditions: exposed hillsides, high slopes 440 

and low stocking rates (Fig. 3A, 3B & 3D). On the other hand, Clay had a positive 441 

relationship with SOC under low MAP values (Fig. 3C), which turned into negative at 442 

high MAP values.  443 



19 
 

Adding nutrient and herbage variables to the previous Geophysical Model to build the 444 

Combined model (Table 3) increased the total variance (R2
Adj) up to 61%. 445 

Macrotopography, and Clay effects described by the Geophysical model were removed 446 

by the new model terms included. SOC increased with C/N (Fig 4A). Soil nitrogen 447 

modulated the effects of livestock type and NDF on SOC. Cattle-grazed grasslands 448 

stored more SOC than mixed and sheep grazed grasslands under low soil N conditions, 449 

whereas the reverse occurred at high soil N levels (Fig. 3B). NDF had negative effects 450 

on SOC stocks at high soil N values but had no effect under low soil N levels Fig. 4C). 451 

Finally, herbage ADL/NH had positive effects on SOC under mixed and sheep grazing 452 

regimes, but there was no effect under cattle management (Fig. 4D).  453 

Discussion 454 

3.1 Considerations about the modelling procedure 455 

Unsurprisingly, the SOC drivers selected and their main effects in both of the modelling 456 

approaches (BRT and GLMs) were highly congruent (Figs. 2-4; S8). Consequently, we 457 

preferred to focus on the results from the linear models because this approximation 458 

allowed us to build models under a hierarchy of controls over function hypothesis 459 

(Manning et al., 2015). Hence, although it is not possible to unequivocally establish the 460 

causal links between SOC drivers (Grace, 2006; Grace and Bollen, 2005), with our GLMs 461 

procedure we guarantee that the effects of the biochemical variables added in the 462 

Complete Model on SOC stocks have not been exclusively induced  by geophysical 463 

drivers (de Vries et al., 2012). If this was the case, soil nutrient and herbage quality 464 

drivers wouldn’t have entered the Complete Model as significant terms. This happened 465 

with aboveground biomass, which is assumed to be a very important SOC driver, and 466 

indeed aboveground biomass was relevant in the BRT model, but in the GLM was 467 

substituted by other, more meaningful, variables. In addition, our GLM modelling 468 

approach enabled us the selection of biologically meaningful interactions (Manning et 469 
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al., 2015; de Vries et al., 2012), which cannot be done with a fully automatic approach 470 

like BRT. This GLM sequenced modelling procedure, looking for the primary sources of 471 

variation, together with the stratified sampling design, is useful as it led us to select a set 472 

of lowly correlated drivers for our linear models (Table S5). Furthermore, BRT model 473 

provided some valuable information, identifying some relevant SOC drivers which were 474 

discarded during the GML modelling, like aboveground biomass, or soil silt and K (Fig. 475 

2 and S8). The effects of those drivers were probably masked by the effects of other 476 

variables in our linear models (Yang et al., 2009), indicating that these factors were 477 

presumably pathways through which other variables drove SOC (de Vries et al., 2012). 478 

These variables, identified by BRT and discarded by GLM, should be considered as 479 

potential SOC drivers in further studies, particularly when more detailed and difficult to 480 

obtain biochemical variables, present in our database, are not available. 481 

3.2 Geophysical, biochemical and grazing management factors driving SOC 482 

stocks 483 

Considering the difficulties of modelling SOC in a widely heterogeneous mountain 484 

environment (Garcia-Pausas et al., 2017), the Geophysical Model provided important 485 

information about broad-scale and topographic SOC drivers in the Pyrenees. This 486 

information could be useful not only for a better understanding of SOC patterns in 487 

mountain grasslands, but also for future modelling studies aiming to predict SOC, since 488 

geophysical variables are easier and less expensive to acquire and measure compared 489 

to biochemical variables (Manning et al., 2015). 490 

Most studies on soil carbon usually pinpoint mean temperature and precipitation as the 491 

most important climate drivers of SOC (Hobley et al., 2015; Manning et al., 2015; 492 

Wiesmeier et al., 2019). Climate regulates large-scale patterns of aboveground net 493 

primary production (Chapin et al., 1987). In our study, temperature seasonality (TSIS) 494 

was a key driver of SOC, modulated by macrotopography, slope and grazing intensity 495 

(Table 2; Fig. 3). The highest variation of TSIS in our database, that is, the broadest 496 
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temperature seasonality, occurred in cold environments, as compared to mild climates 497 

(Fig. S9). In mountain grasslands, cold climates imply a short phenological period of 498 

development for plants (Gómez, 2008). Hence, the positive effect of TSIS on SOC could 499 

be associated with a higher biomass accumulation in cold locations with more favourable 500 

temperatures during summer, this fact reducing geophysical stress for plants and 501 

broadening their growth period (Garcia-Pausas et al., 2007; Kikvidze et al., 2005). This 502 

increase in soil organic matter inputs during summer would overcome an eventual 503 

increase of soil organic matter decomposition rates related to high temperatures 504 

(Sanderman et al., 2003) which in those cold environments with contrasted temperature 505 

seasonality would not occur. 506 

The interactive effects of TSIS on SOC stocks with macrotopography and slope illustrate 507 

the capacity of landscape factors to modulate macroclimate effects on soil (Hook and 508 

Burke, 2000). Induced microclimate changes are often the explanation for the effects of 509 

topography in SOC (Lozano-García et al., 2016). In our case, SOC stocks increased with 510 

temperature seasonality, particularly in exposed locations, including south-facing 511 

hillsides and hillside tops (Fig. 3A; Table 2). In protected locations, including shady 512 

hillsides and valley bottoms, the hypothesized positive effect of increased TSIS values 513 

on plant productivity could be mitigated due to reduced solar radiation, long snow-514 

covered periods and freezing episodes (Garcia-Pausas et al., 2007; López-Moreno et 515 

al., 2013). Additionally, differences in SOC between exposed and protected sites may 516 

also occur through other mechanisms, for instance the alteration of soil physico-chemical 517 

properties (Zhang et al., 2018), or differences in vegetation (Sebastià, 2004). Since we 518 

used a hierarchy of controls approach (Manning et al., 2015), these indirect 519 

topographical effects on SOC stocks could be behind the exclusion in the linear models 520 

of some drivers selected in the BRT model, like silt or pH (Figs. 2 & 3). In addition, SOC 521 

stocks decreased with increase of slope, which may be attributed to reduced carbon 522 

inputs and increased carbon losses induced by steeper slopes (Yuan et al., 2019 and 523 
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refferences therein). However, we found that increased temperature seasonality (TSIS) 524 

values partly compensated negative slope effects on SOC. 525 

The effect of temperature seasonality on SOC stocks was also modified by grazing 526 

management. At low TSIS values, SOC stocks increased under moderate to high grazing 527 

pressure; this effect disappeared as TSIS values increased (Fig. 3D). Recent meta-528 

analyses concluded that intensive grazing commonly has decreasing effects on SOC 529 

(Abdalla et al., 2018; Eze et al., 2018; Mcsherry and Ritchie, 2013). However, these 530 

effects were strongly context-specific, depending on other factors including climate and 531 

soil type vegetation (Abdalla et al., 2018; Eze et al., 2018; Mcsherry and Ritchie, 2013). 532 

Moreover, moderate grazing intensities can increase SOC inputs by dung deposition, 533 

and aboveground and root biomass production (Franzluebbers et al., 2000; Zeng et al., 534 

2015). In our study, grazing intensity was relatively moderate (see methods), therefore 535 

in our study increasing stocking rates may increase soil carbon inputs in moderate 536 

seasonality locations by enhancing aboveground and belowground productivity. 537 

Soil texture also showed interactive effects on SOC stocks with climatic variables. In 538 

particular, clay effects on SOC stocks became negative as MAP values increased, (Fig. 539 

3C; Table 2). Both MAP and clay content are widely assumed to be positively correlated 540 

to SOC (Wiesmeier et al., 2019) but high soil water content caused by high MAP may 541 

inhibit decomposition if a shortage of oxygen supply occurs (Xu et al., 2016b). 542 

Furthermore, fine texture soils could be waterlogged frequently, leading to inhibition of 543 

root growth and soil C allocation belowground (Mcsherry and Ritchie, 2013). 544 

3.2 Geophysical, biochemical and grazing management factors driving SOC 545 

stocks 546 

Considering the difficulties of modelling SOC in a widely heterogeneous mountain 547 

environment (Garcia-Pausas et al., 2017), the Geophysical Model provided important 548 

information about SOC drivers in the Pyrenees. This information could be useful not only 549 
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for a better understanding of SOC patterns in mountain grasslands, but also for future 550 

modelling studies aiming to predict SOC, since geophysical  variables are easier and 551 

less expensive to acquire and measure compared to biochemical ones (Manning et al., 552 

2015).  553 

TSIS was a key driver of SOC with a varying effect depending on macrotopography, 554 

slope and grazing intensity (Table 2; Fig. 3). This result contrasts with most of the 555 

previous studies addressing soil carbon, which usually pinpoint mean temperature and 556 

precipitation as the most important climate drivers of SOC (Hobley et al., 2015; Manning 557 

et al., 2015; Wiesmeier et al., 2019). Climate regulates large-scale patterns of 558 

aboveground net primary production (Chapin et al., 1987). In the case of mountain 559 

grasslands, cold climates imply a short phenological period of development for plants 560 

(Gómez, 2008). Cold Sites characterised by low mean temperatures presented a wider 561 

spectrum of TSIS values than warm sites, presenting both the lowest and the highest 562 

TSIS values (Fig. S9). Hence, the positive effect of TSIS on SOC could be associated 563 

with a higher biomass accumulation in cold locations with more favourable temperatures 564 

during summer, this fact reducing geophysical stress for plants and broadening their 565 

growth period (Garcia-Pausas et al., 2007; Kikvidze et al., 2005). This rise in soil organic 566 

matter inputs during summer would overcome an eventual increase of soil organic matter 567 

decomposition rates due to high temperatures (Sanderman et al., 2003), which could 568 

even be diminished if microbial biomass decreases as a result of soil moisture reduction 569 

(Puissant et al., 2018). 570 

The interactions of TSIS with macrotopography and slope illustrate the capacity of 571 

landscape factors to modulate macroclimate effects on soil (Hook and Burke, 2000). 572 

Induced microclimate changes are often the explanation for the effects of topography in 573 

SOC (Lozano-García et al., 2016). In our case, SOC stocks increased with temperature 574 

seasonality, particularly at mountain-exposed areas (Fig. 3A; Table 2). In protected sites, 575 

located in shady slopes and valley bottoms, the hypothesized positive effect of high TSIS 576 
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values on plant productivity could be mitigated due to lower solar radiation, longer snow-577 

covered periods and freezing episodes (Garcia-Pausas et al., 2007; López-Moreno et 578 

al., 2013). Conversely, negative effects of low TSIS values on plant productivity could be 579 

compensated thanks to the more humid conditions in protected sites compared to the 580 

exposed sites (Garcia-Pausas et al., 2007). Additionally, it is important to take into 581 

account that differences in SOC between exposed and protected sites may also occur 582 

through other mechanisms, for instance the alteration of soil physico-chemical properties 583 

like pH, soil texture or stoniness (Zhang et al., 2018), or differences in vegetation 584 

(Sebastià, 2004). Since we used a hierarchy of controls approach (Manning et al., 2015), 585 

these topography indirect effects on SOC stocks could be behind the exclusion in the 586 

linear models of some drivers selected in the BRT model, like silt or pH (Figs. 2 & 3).  587 

In addition, high TSIS values compensated SOC stocks decrease with a greater slope, 588 

which may be attributed to reduced carbon inputs and increased carbon losses induced 589 

by steeper slopes (Yuan et al., 2019 and refferences therein). Increases in grazing 590 

pressure elevated SOC stocks under low TSIS values (Fig. 3D). This was a surprising 591 

result according to recent meta-analyses, which concluded that grazing has commonly 592 

decreasing effects on SOC (Abdalla et al., 2018; Eze et al., 2018; Mcsherry and Ritchie, 593 

2013). However these effects were strongly context-specific, depending on other factors 594 

like climate and soil type vegetation (Abdalla et al., 2018; Eze et al., 2018; Mcsherry and 595 

Ritchie, 2013). Moreover, light and medium grazing intensities can increase SOC inputs 596 

by dung deposition and promoting aboveground and root biomass production 597 

(Franzluebbers et al., 2000; Zeng et al., 2015). Considering that in our natural grasslands 598 

all grazing intensities are relatively low (see methods), our medium and high stock rates 599 

may increase soil carbon inputs in low seasonality locations by enhancing aboveground 600 

and belowground productivity. 601 

Interestingly, clay content and precipitation presented interacting effects on SOC (Fig. 602 

3C; Table 2). Both MAP and clay content are widely assumed to be positively correlated 603 
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to SOC (Wiesmeier et al., 2019). High MAP would increase SOC inputs by promoting 604 

plant productivity (Author et al., 2000; Hobley et al., 2015). Clay positive effects are often 605 

attributed to a larger contact surface of soil particles (Kennedy et al., 2002), the 606 

absorption of negatively charged organic matter, high soil water retention and the 607 

exclusion of decomposer organisms due to their low pore size (Krull et al., 2001). In our 608 

study, high soil water contents caused by high MAP may  inhibit decomposition if a 609 

shortage of oxygen supply occurs (Xu et al., 2016b). However, as MAP values increased, 610 

clay effect on SOC became negative. To explain low SOC values at high MAP and high 611 

clay content, McSherry and Rithchie (2013) hypothesized that finer texture soils could 612 

be waterlogged more frequently, leading to inhibition of root growth and soil C allocation 613 

belowground. 614 

The addition of soil nutrient and herbage variables to our Geophysical Model implied 615 

substitution of terms, including clay content and macrotopography, by newly added 616 

variables (Tables 2 & 3). This highlights the importance of indirect effects of these 617 

variables on SOC through other small scale drivers (Leifeld et al., 2015; Xu et al., 2016b; 618 

Zhu et al., 2019). The Combined Model was complex and included unfrequently tested 619 

effects involving interactions between grazer type, soil nutrients and herbage quality 620 

variables (Table 3, Fig 4). Those results must be interpreted cautiously, because they 621 

are based on observational data, but can contribute to generate testable hypotheses for 622 

later studies about some complex and untested relationships between SOC and its 623 

drivers. Interaction experiments concerning soil properties are expensive and rare in the 624 

literature (Rillig et al., 2019). 625 

For this reason, SOC increased with the C/N ratio (Fig 4A), which may be explained by 626 

the difficulty of soil organic matter decomposition by soil microbes, decreasing 627 

decomposition rates of SOC with increasing soil C/N (Wanyama et al., 2019; Xu et al., 628 

2016b). A positive relationship between SOC and soil N was also expected, since most 629 

of the soil N is in combined form with organic matter (Cambardella and Elliott, 1994). 630 
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However, in this case, due to the wide range of conditions and the randomized sampling 631 

design of the PASTUS database, the raw correlation between soil N and SOC was 632 

somehow discrete (r = 0.297; p-value = 0.001; R2 = 0.088), in comparison to other studies 633 

(i.e. Yan et al. 2020). However, the novelty revealed by our model is that soil N could 634 

modulate the effects of certain SOC drivers, including livestock type and herbage NDF. 635 

Cattle-grazed grasslands stored more SOC than mixed- and sheep-grazed grasslands, 636 

but only under low soil N conditions (Fig. 4B). Chang et al. (2018) found that in a N poor 637 

semi-arid grassland, sheep decreased SOC content in comparison to cattle due to 638 

vegetation changes caused by their feeding preference for highly palatable forbs 639 

(Sebastia et al., 2008), thus promoting less palatable grasses which supported less root 640 

biomass. In overall, under low soil N conditions, palatable plants are expected to 641 

contribute to SOC inputs through the stimulation of C allocation in forb roots (Ågren and 642 

Franklin, 2003; Warembourg et al., 2003) and the increase in the overall plant 643 

productivity due to legume atmospheric N fixation (Van Der Heijden et al., 2008). 644 

However, these processes could decline under high soil N contents. For instance, 645 

legume atmospheric N fixation could be reduced since it requires additional energy in 646 

comparison to nitrogen acquisition from the soil (Ibañez et al., 2020; Minchin and Witty, 647 

2005). Additionally, sheep selective feeding habits could shift plant leaf traits in the 648 

community towards nutrient-conservative leaf traits, which commonly induce fungal-649 

based soil food webs, with slow nutrient–cycling and high SOC storage due to low 650 

decomposition rates (Orwin et al., 2010). 651 

Additionally, grasslands with mixed grazed regimes stored even more SOC than sheep-652 

grazed grasslands under high soil N conditions (Fig. 4B, Table 3). This result emphasises 653 

that mixed livestock assemblages deserve particular attention, because mixed grazing 654 

can affect plant composition distinctly from single grazing species regimes, and alter 655 

traveling and trampling behaviour of grazing animals (Aldezabal et al., 2019; Chang et 656 

al., 2018; Liu et al., 2015).  657 
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NDF was negatively related to SOC at high soil N values (Fig 4C). NDF proportion 658 

represents the amount of structural compounds on litter, and hence is inversely related 659 

to non-structural compounds content (Goering and Van Soest, 1970).  The latter are the 660 

main source of organic matter formation at the early stages of decomposition, and they 661 

are incorporated into microbial biomass in a highly efficient way (Cotrufo et al., 2013). 662 

However, if microbial necromass was recycled by microbes before its incorporation to 663 

mineral-associated organic matter (Córdova et al., 2018), it could be respired and 664 

mineralized instead of stored. Thus, our model suggests that incorporation of labile and 665 

fast metabolized non-organic compounds to soil organic matter could be a pathway of 666 

SOC allocation at high soil N in Pyrenean grasslands. 667 

On the other hand, the ADL/NH ratio was positively related to SOC in sheep and mixed 668 

grazed grasslands (Fig. 4D). The ADL/NH ratio is a commonly used indicator for the 669 

resistance of litter to degradation, particularly at later stages of decomposition (Taylor et 670 

al., 1989). Hence, the increase of SOC stocks with ADL/NH should be related to the 671 

physical pathway of soil organic matter incorporation, forming coarse particulate organic 672 

matter (Cotrufo et al., 2015). Moreover, our model suggests that this pathway would be 673 

inhibited under cattle grazing, presumably because of their higher digestive efficiency, 674 

and thus less recalcitrant faeces (Wang et al., 2018); and their less selective diet 675 

compared to sheep, as the latter would avoid plants with high lignin content, promoting 676 

recalcitrant litter (Rosenthal et al., 2012; Sebastià et al., 2008). 677 

Our results concerning interactions between grazer type and herbage quality provide 678 

some evidence of grazing effects not only through alterations of plant communities that 679 

were reported by previous studies in the region (Canals and Sebastià, 2000; Sebastià et 680 

al., 2008), but also through interactions with them. Although grazing effects were not the 681 

most important factors affecting SOC stocks, this is by far the easiest component to 682 

manipulate in order to increase or maintain SOC in soils and face climate change (Komac 683 

et al., 2014). Considering our results, we suggest conducting more experiments to 684 
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investigate grazer type effects on SOC under different soil nutrient conditions, and within 685 

plant communities with contrasting herbage quality parameters. Grazing management 686 

also has other advantages such as preventing the accumulation of aboveground C, and 687 

reducing the risk of forest fires (Nunes and Lourenço, 2017). 688 

One key point of our results is that reinforce the idea that grazer type might be at least 689 

as important as grazing intensity in regulating grassland ecosystem dynamics (Tóth et 690 

al., 2018), and highlight the need for a more thorough research effort in disentangling 691 

not only grazing intensity but also grazer type effects on grassland soil organic carbon 692 

and nutrient cycling, under different environmental circumstances. Complete Model 693 

provided some evidence supporting that grazing may affect SOC not only through 694 

alterations of plant communities (Canals and Sebastià, 2000; Sebastià et al., 2008), but 695 

also through interactions with them. Although grazing effects were not the most important 696 

factors affecting SOC stocks, this is by far the easiest component to manipulate in order 697 

to increase or maintain SOC in soils and face climate change (Komac et al., 2014). 698 

Despite the need of a precise knowledge on the effects of different land uses on 699 

ecosystems for climate change mitigation (Lo et al., 2015), studies addressing grazer 700 

type effects on SOC are scarce (i.e. Zhou et al., 2017; Chang et al., 2018). Considering 701 

our results, we suggest conducting more experiments which investigate grazer type 702 

effects on SOC under different soil nutrient conditions, and within plant communities with 703 

contrasting herbage quality parameters. 704 

Conclusion 705 

The models presented here show a series of novel broad-scale and local patterns 706 

concerning SOC stocks and their geophysical, biochemical and grazing management 707 

drivers. Factors driving SOC stocks often interacted in complex ways, within and 708 

between spatio-temporal scales. Temperature seasonality (TSIS) was the most critical 709 

geophysical factor, affecting SOC through interactions with topographical drivers and 710 

grazing intensity. This illustrates how not only climate mean annual conditions should be 711 
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considered when modelling SOC drivers, but also seasonal patterns. Concerning 712 

biochemical factors, we found that the expected positive effect of soil N was modulated 713 

by livestock species and herbage NDF; and herbage recalcitrance effects on SOC varied 714 

depending on grazer type. Overall, we found a number of interactions highlighting the 715 

need to expand knowledge on grassland SOC drivers under different conditions, 716 

specially grazing. The latter is the most easily tractable factor affecting SOC. In 717 

conclusion, we provided valuable information for further studies dealing with SOC 718 

predictions at broad several scales, and laid out the basis to generate new testable 719 

hypotheses for future studies, which may be useful for designing improved policies to 720 

palliate climate change. 721 
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Table captions 1108 

Table 1: Considered factors affecting SOC stocks in some recent studies. V: the study 1109 

considers this variable type; -: the study does not consider this variable type. 1110 

Table 2: Results of the Geophysical Model for soil organic carbon (R2
Adj = 0.34). 1111 

Table 3: Results of the Combined model for soil organic carbon (R2
Adj = 0.61). 1112 

Figure captions 1113 

Figure 1: Conceptual scheme used in this work to investigate potential environmental 1114 

drivers with SOC. We assume that drivers may affect soil organic carbon (SOC) both 1115 

directly or hierarchically through another driver. Interactions between factors acting at 1116 

different scales and belonging to different categories could also drive SOC. Grazing 1117 

management has a special status because it may be acting at different scales, landscape 1118 

and local. 1119 

Figure 2: Relative contributions (%) of driver variables in the final BRT model obtained. 1120 

Soil N: soil nitrogen; Soil C/N: soil carbon to nitrogen ratio, Clay: clay content; Abiom: 1121 

aboveground biomass; ADL: acid-detergent lignin; Loam: loam content; K: soil 1122 

potassium; TSIS: temperature seasonality; NDF: neutro detergent fibre; pH: soil pH; CH: 1123 

carbon in the herbage; Mg: soil magnesium; Slope: terrain slope; MAP: mean annual 1124 

precipitation; ADF: acid detergent fibre. See Table S1 for more details about variables. 1125 

Figure 3: Relationship between SOC, and regional and landscape scale factors in the 1126 

Geophysical Model. In A) solid lines and circles represent exposed hillsides, and dotted 1127 

lines and triangles indicate protected hillsides. In D) solid lines and circles indicate low 1128 

grazing intensity, dotted lines and triangles indicate medium grazing management 1129 

intensity and dashed lines and squares indicate high grazing management intensity. In 1130 

A-D line and plane values are predictions of the model across the corresponding 1131 
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predictors´ range according to estimated marginal means. Grey areas around regression 1132 

lines indicate standard errors. In A) and D) points indicate actual values. 1133 

Figure 4. The relationship between SOC, and biochemical and herbage factors in the 1134 

Combined model. In B) and D) solid lines and circle points represent cattle-grazing, 1135 

dashed lines and square points indicate sheep-grazing, and dotted lines and triangle 1136 

points indicate mixed-grazing. In A-D line and plane values are predictions of the model 1137 

across the corresponding predictors´ range according to estimated marginal means. In 1138 

A-D line and plane values are predictions of the model across the corresponding 1139 

predictors´ range according to estimate marginal means.  Grey spectrum indicate 95% 1140 

confidence intervals. In A) and D) points indicate actual values.  1141 
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Tables 1142 

Table 1: Considered factors affecting SOC stocks in some recent studies. V: the study 1143 
considers this variable type; -: the study does not consider this variable type. 1144 

1: It considers SOC concentrations 1145 
2: It considers total carbon stocks 1146 
3: It considers total carbon stocks and its fractions.  1147 

 1148 
 1149 
*Fertilizer effects. 1150 
** Only aboveground and/or belowground biomass index. 1151 

1152 

Article Location LAT (º) LONG (º) MAP (mm) MAT (°C) Topography 
and bedrock 

Grazing 
Managem
ent 

Soil 
propert
ies 

Soil 
nutrie
nts 

Her
bag
e 

Present 
study 

Pyrenees 42.14 – 43.3 -1.22 – 2.26 964 – 1586  1.1 – 9.9 V V V V V 

Duarte-
guardia et al., 
2019 

Worldwide -51.72 – 80.23 -163.95 – 158.25 65 – 5115 -21.2 – 30 V - V - V** 

Abdalla et al., 
2018 

Worldwide -45.85 – 51 -114 – 120.7 150 – 1650 0 – 21 - V V - V 

Eze et al., 
2018 

Worldwide -44 – 65 -121 – 175 120 – 2000 -4.8 – 26.8 - V V V* V** 

Peri et al., 
20181 

South 
Patagonia 

- 52 – -45 -73.5 – 65.5 139 – 865 4.2 – 11 V V - - V 

Zhang et al., 
2018 

Northern 
China 

103.5 – 124.16 32.5 – 42.5 500 – 1000 8 – 14 V V V - - 

Zhao et al., 
2017 

Mongolia 41.95 – 53.93  108.28- 116.2 150 – 400 -1.3 – 2.1 - V V - V 

Zhou et al., 
20172 

Worldwide -42.1 – 52.3 -121 – 175 200 – 600 0 – 10 - V - - X 

Deng et al., 
2016 

Eastern 
China 

28.71 – 30.45 120.87 – 122.43 940 – 1720 16.86 – 18.57 V - V - X 

Gray et al., 
2015 

Eastern 
Australia 

-16.7 – -43.5 -31.8 – -28.7  500 – 2000 10 – 30 V X X - V 

Lu et al., 2017 Qinghai-
Tibetan 
Plateau  

27 – 32 83 – 108 37 – 718 -4.04 – 6.3 - V X - - 

Chang et al., 
20151 

Tibet Not Reported Not Reported 397 – 1910 1.7 – 15.5 V - - - V 

Manning et 
al. 20153 

England 50.77– 54.58 -4.43 – 0.87 596 – 3191 6.5 – 10.9 - V V - V 

McSherry & 
Ritzie 2013 

Worldwide Not reported Not reported 180 – 950  Not reported - V V - V 

Garcia-Pausas 
et al. 2007 

Pyrenees -7 – 2.2 42.5 – 42.9 1416 – 
1904 

-0.7 – 5 V - V - - 
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 1153 

Table 2: Results of the Geophysical Model for soil organic carbon (R2
Adj = 0.34). MAP: mean 1154 

annual precipitation; TSIS: temperature seasonality; Slope: terrain slope; Exposed: Exposed 1155 
position according to Macrotopography; Clay: clay content; Low and medium intensity: Low and 1156 
medium Grazing intensity. 1157 

Model term Estimate SE t-value P-value  

Intercept -0.525 1.802 -0.291 0.771  

Climate variables      

MAP 0.003 0.001 4.560 <0.001 *** 

TSIS -0.098 0.228 -0.429 0.669  

Topography variables      

Slope -0.339 0.095 -3.569 0.001 *** 

Exposed -3.130 0.936 -3.344 0.001 ** 

Soil type variables      

Clay 0.121 0.027 4.500 <0.001 *** 

Management variables      

Low intensity -5.013 1.196 -4.192 <0.001 *** 

Medium intensity 2.012 1.168 1.722 0.088  

Interactions 
     

TSIS x Exposed 0.417 0.124 3.358 0.001 ** 

TSIS x Slope 0.044 0.013 3.452 0.001 *** 

MAP x Clay 0.000 0.000 -4.637 <0.001 *** 

TSIS x Low intensity 0.655 0.159 4.110 <0.001 *** 

TSIS x Medium intensity -0.262 0.156 -1.684 0.095  

 1158 

  1159 



51 
 

Table 3: Results of the Combined model for soil organic carbon (R2
Adj = 0.61). MAP: mean 1160 

annual precipitation; TSIS: mean summer temperature minus mean annual temperature; Slope: 1161 
terrain slope; Cattle and Mixed: Cattle and mixed management according to grazing species; 1162 
Low and medium intensity: Low and medium intensity according to Grazing intensity; Soil C/N: 1163 
soil carbon to nitrogen ratio; soil N: soil nitrogen; NDF: neutro-detergent fibre; ADL/NH: acid-1164 
detergent lignin to nitrogen in the herbage ratio.  1165 

Model term Estimate SE t-value P-value  

Intercept -0.290 1.458 -0.199 0.843  

Climate variables      

MAP -0.001 0.000 -2.434 0.017 * 

TSIS -0.004 0.181 -0.022 0.982  

Topography variables      

Slope -0.225 0.078 -2.868 0.005 ** 

Management variables      

Cattle 0.487 0.101 4.834 <0.001 *** 

Mixed -0.289 0.093 -3.106 0.002 ** 

Low intensity -3.249 1.014 -3.204 0.002 ** 

Medium intensity 1.666 1.073 1.553 0.123  

Soil nutrient variables      

Log(Soil C/N) 0.665 0.076 8.777 <0.001 *** 

Soil N 3.302 0.617 5.349 <0.001 *** 

Herbage variables      

NDF 0.014 0.006 2.525 0.013 * 

Herbage ADL/NH 0.026 0.009 2.987 0.003 ** 

Interactions between 
variable types 

     

TSIS x Slope 0.030 0.010 2.833 0.006 ** 

TSIS x Low intensity 0.423 0.136 3.104 0.002 ** 

TSIS x Medium intensity -0.214 0.143 -1.495 0.138  

Soil N x Cattle grazing -0.736 0.168 -4.380 <0.001 *** 

Soil N x Mixed grazing 0.493 0.175 2.813 0.006 ** 

Soil N x NDF -0.039 0.011 -3.505 0.001 *** 

Cattle x Herbage 
ADL/NH 

-0.030 0.010 -2.872 0.005 ** 

Mixed x Herbage 
ADL/NH 

0.014 0.011 1.252 0.213  

  1166 
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Figures 1167 

 1168 

Figure 1: Conceptual scheme used in this work to investigate potential 1169 

environmental drivers with SOC. We assume that drivers may affect soil organic 1170 

carbon (SOC) both directly or hierarchically through another driver. Interactions 1171 

between factors acting at different scales and belonging to different categories 1172 

could also drive SOC. Grazing management has a special status because it may 1173 

be acting at different scales, landscape and local. 1174 

 1175 

  1176 
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Figure 2: Relative contributions (%) of driver variables in the final BRT model 1177 

obtained. Soil N: soil nitrogen; Soil C/N: soil carbon to nitrogen ratio, Clay: clay 1178 

content; Abiom: aboveground biomass; ADL: acid-detergent lignin; Loam: loam 1179 

content; K: soil potassium; TSIS: temperature seasonality; NDF: neutro detergent 1180 

fibre; pH: soil pH; CH: carbon in the herbage; Mg: soil magnesium; Slope: terrain 1181 

slope; MAP: mean annual precipitation; ADF: acid detergent fibre. See Table S1 1182 

for more details about variables.1183 



54 
 

Figure 3: Relationship between SOC, and regional and landscape scale factors 1184 

in the Geophysical Model. In A) solid lines and circles represent exposed 1185 

hillsides, and dotted lines and triangles indicate protected hillsides. In D) solid 1186 

lines and circles indicate low grazing intensity, dotted lines and triangles indicate 1187 

medium grazing management intensity and dashed lines and squares indicate 1188 

high grazing management intensity. In A-D line and plane values are predictions 1189 

of the model across the corresponding predictors´ range according to estimated 1190 

marginal means. Grey areas around regression lines indicate standard errors. In 1191 

A) and D) points indicate actual values.  1192 
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 1193 

 1194 

 1195 

Figure 4. The relationship between SOC, and biochemical and herbage factors in the 1196 

Combined model. In B) and D) solid lines and circle points represent cattle-grazing, 1197 

dashed lines and square points indicate sheep-grazing, and dotted lines and triangle 1198 

points indicate mixed-grazing. In A-D line and plane values are predictions of the model 1199 

across the corresponding predictors´ range according to estimated marginal means. In 1200 

A-D line and plane values are predictions of the model across the corresponding 1201 

predictors´ range according to estimate marginal means.  Grey spectrum indicate 95% 1202 

confidence intervals. In A) and D) points indicate actual values. 1203 


