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Abstract 50 

Grasslands are one of the major sinks of terrestrial soil organic carbon (SOC). 51 

Understanding how environmental and management factors drive SOC is challenging 52 

because they are scale-dependent, with large scale drivers affecting SOC both directly 53 

and through drivers working at detailed spatial scales. Here we addressed how regional, 54 

landscape and grazing management, soil properties and nutrients and herbage quality 55 

factors affect SOC in mountain grasslands in the Pyrenees. Taking advantage of the high 56 

variety of environmental heterogeneity in the Pyrenees, we fit a set of models with 57 

explicative purposes using data that comprise a wide range of environmental and 58 

management conditions. We found that temperature seasonality (TSIS) was the most 59 

important geophysical driver of SOC in our study. TSIS was positively related to SOC 60 

but only under certain local conditions: exposed hillsides, steep slopes and relatively 61 

highly grazed areas. High TSIS conditions probably are more favourable for plant 62 

biomass production, but landscape and grazing management factors buffer the 63 

accumulation of this biomass into SOC. Concerning biochemical SOC predictors, we 64 

obtained some surprising, interactive effects between grazer type, soil nutrients and 65 

herbage quality. Soil N was a crucial factor modulating effects of livestock species and 66 

neutral detergent fibre content of plant biomass and herbage recalcitrance effects varied 67 

depending on grazer species. These results highlight the gaps in the knowledge about 68 

SOC drivers in grassland under different environmental and management conditions, 69 

and they may serve to generate testable hypothesis in latter studies directed to climate 70 

change mitigation policies. 71 

Keywords 72 

SOC, semi-natural grasslands, grazing management, climate change, soil nutrients 73 
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Soil organic carbon (SOC) plays key roles in the terrestrial ecosystems (Lal, 75 

2004a). SOC enhances soil and water quality and biomass productivity, and has 76 

an important role in relation to climate change (Lal, 2004b). Although grasslands 77 

have small aboveground biomass compared to other ecosystems, their SOC 78 

stocks can be comparable to those in forest ecosystems (Berninger et al., 2015). 79 

This is due to their high root biomass and residues, which are a substantial 80 

carbon source and can contribute to water retention in soil. This creates 81 

favourable conditions for the accumulation of organic matter (Von Haden and 82 

Dornbush, 2014; Yang et al., 2018). These attributes, together with the high 83 

extent of grassland global cover, make grasslands store around 34% of the 84 

terrestrial carbon, mostly in their soils (White et al., 2000).  85 

SOC accumulation results from a complex equilibrium between primary 86 

production and organic matter decomposition which depends on multiple 87 

environmental factors such as climate, soil texture and nutrients or land 88 

management (Jenny, 1941; Schlesinger, 1977). Understanding how these 89 

environmental factors drive SOC is challenging because they are scale-90 

dependent and are disposed on a hierarchy of controls over SOC, so large scale 91 

drivers affect also those working at fine spatial scales (Fig. 1; Manning et al., 92 

2015). Climate is known to be the main SOC driver at broad (global and regional) 93 

scales;  mean annual precipitation (MAP) and mean temperature (MAT) being 94 

the most frequent climate indicators (Wiesmeier et al., 2019). However, climate 95 

seasonality variables are be commonly neglected drivers affecting SOC in broad-96 

scale models, in spite of being some important factors for plant primary 97 

production or enzymatic activity of soil microorganisms (Fernández-Alonso et al., 98 

2018; Garcia-Pausas et al., 2007; Puissant et al., 2018). Other regional and 99 
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landscape factors like bedrock or topography are also considered to be at the top 100 

of the hierarchy because they influence multiple geophysical and biochemical 101 

factors affecting SOC, including soil texture or water flow paths (Gray et al., 2015; 102 

Hobley et al., 2015). Next in the hierarchy after regional and landscape factors, 103 

are several soil geophysical properties, like pH and texture, which are controlled 104 

by climate, bedrock, and which affect SOC through both plant primary production 105 

and microbial activity and the capacity to stabilise the SOC (Deng et al., 2016; 106 

Xu et al., 2016a). Soil macro and micronutrients are in the next level of the 107 

hierarchy, as their abundance is determined by multiple factors, including climate, 108 

soil pH, water content or clay content (Hook and Burke, 2000; de Vries et al., 109 

2012). They play an essential role in primary production and herbage quality, and 110 

act as resources for microbes to mineralise SOC (Aerts and Chapin, 1999; 111 

Vitousek and Howarth, 1991). However, these variables are commonly omitted 112 

in the broad-scale SOC studies, especially if those focus on predictive models 113 

instead of explicative ones (Gray et al., 2015; Manning et al., 2015; Zhang et al., 114 

2018). This kind of variables are less frequently available and more difficult to 115 

measure than the other indicators used for SOC modelling (Manning et al., 2015). 116 

Moreover, the use of soil nutrients as SOC predictors in linear models can be 117 

challenging, as they are often so linked to SOC dynamics that their effect can 118 

mask the effect of other predictors at higher levels (Bing et al., 2016; Cleveland 119 

and Liptzin, 2007; Tipping et al., 2016). Vegetation represents another group of 120 

SOC predictors, affected by climate, topography and soil properties and nutrients 121 

(Fernández-Martínez et al., 2014; de Vries et al., 2012; Zhu et al., 2019). Plant 122 

biomass is the main input of organic carbon into the soil (Shipley and Parent, 123 

1991). However, plant litter quality can determine decomposition rates and 124 

https://doi.org/10.5194/bg-2020-63
Preprint. Discussion started: 17 March 2020
c© Author(s) 2020. CC BY 4.0 License.



7 
 

patterns, and hence soil carbon sequestration (Ottoy et al., 2017; Yan et al., 2018, 125 

2019). 126 

Apart from these factors, management effects on grassland SOC is a noteworthy 127 

issue since they are poorly understood (Wiesmeier et al., 2019). It is known that 128 

herbivores can affect SOC through different paths, such as regulating the quantity 129 

and quality of organic matter returned to soil (Bardgett and Wardle, 2003), or 130 

affecting soil respiration and nutrients by animal trampling or soil microbiota 131 

alteration (Lu et al., 2017). However, most of the studies investigating grazing 132 

effects on SOC focus on grazing intensity, in spite of evidence pointing to a 133 

greater role of grazer species in determining vegetation and SOC (Chang et al., 134 

2018; Sebastia et al., 2008). Moreover, several studies describing interactions of 135 

grazing with other SOC predictors at diverse scales have been published (Abdalla 136 

et al., 2018; Eze et al., 2018; Lu et al., 2015, 2017; Zhou et al., 2017). Hence, 137 

grazing management on grasslands may be considered a unique SOC driver, 138 

because it has effects at multiple levels of the driver hierarchy (Fig. 1).  139 

In this study, our goal was to identify the main drivers of SOC stocks in semi-140 

natural grasslands of the Pyrenees, asses the interactions between them and 141 

describe their relative importance. Mountain grasslands comprise a wide range 142 

of climatic, topographic, management and edaphic conditions that make carbon 143 

stocks highly variable (Garcia-Pausas et al., 2007, 2017). For this reason data 144 

analysed here comprise a wide range of environmental conditions, comparable 145 

to studies on SOC developed at continental or even worldwide scales (Table 1). 146 

Additionally, we consider an exceptionally broad compilation of predictors (Table 147 

1). In particular, the specific questions of this study are  1) how are the effects of 148 

the geophysical, widely used predictors located at the top of the hierarchy of 149 
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controls on SOC? 2) how are the effects of the biochemical, unfrequently used 150 

(soil nutrient and herbage), predictors on SOC? 3) Can grazing management 151 

regulate the effects of other SOC drivers located at different levels of the 152 

hierarchy of controls? 153 

Material & methods 154 

2.1 Location and sampling design 155 

The set of data used in this study has been extracted from the PASTUS Database 156 

(http://ecofun.ctfc.cat/?p=3538), which was compiled by the Laboratory of Functional 157 

Ecology and Global Change (ECOFUN) of the Forest Sciences Centre of Catalonia 158 

(CTFC) and the University of Lleida (UdL). We sourced a wealth of data of 128 grassland 159 

patches distributed across the Pyrenees (Fig.S1), and including topographical, 160 

climatological, soil, herbage and management variables. The sampled area 161 

encompasses a wide variety of temperate and cold-temperate climates, with different 162 

precipitation conditions, depending on altitude and geographical location from 163 

Mediterranean to Continental and Boreo-Alpine (de Lamo & Sebastià, 2006; Rodríguez 164 

et al., 2018; Table 1). 165 

Sampling in the PASTUS database was designed according to a stratified random 166 

scheme, where samples were selected at random within strata. This process was done 167 

using the software ArcMap 10 (ESRI, Redlands, CA, USA). The basis for randomization 168 

was the map of habitats of Catalonia 1:50000 (Carreras and Diego, 2006) for the Eastern 169 

and Central sectors, the map of habitats of Madres-Coronat 1:10000 (Penin, 1997) for 170 

the North-Eastern sector and the land use map of Navarra 1:25000 (Gobierno de 171 

Navarra, 2003) for the Western sectors. Four variables were initially considered for 172 

sampling stratification within each sector: altitude (< 1800 m; 1800-2300 m; > 2300 m), 173 

slope (0-20º; 20-30º; > 30º), macrotopography (mountain top/southern-facing slope; 174 

valley bottom/northern-facing slope) and grazing management (sheep grazing; cattle 175 
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grazing; mixed grazing). Accordingly, we determined a set of homogeneous grassland 176 

patches by crossing the stratification variable layers. Grassland patches were then listed 177 

by type and arranged within each list randomly to determine sampling priority. At least 178 

one to two replicates of each patch type were sampled. 179 

In each sampled grassland patch, a 10 x 10 m2 plot was systematically placed in the 180 

middle of each homogeneous grassland patch, including a particular plant community. 181 

Soils and vegetation were sampled inside this 100 m2 plot, and environmental variables 182 

assessed (see Rodríguez et al., (2018) for additional details about sampling design). 183 

Local variables were assessed inside the 100 m2 plots. Aboveground biomass was 184 

estimated from herbage cut at ground level in four 50 x 50 cm2 quadrats placed in a 2 x 185 

2 m2 subplot inside the 100 m2 plot. Herbage from two of the four quadrats were dried 186 

and sent to the laboratory for duplicated chemico-bromatological analysis. In addition, in 187 

each quadrat, a 20-cm depth soil core was extracted with a 5 x 5 cm probe after herbage 188 

was removed. The soil sample in the probe was separated into two soil layers: 0-10 and 189 

10-20 cm. 190 

2.2 Regional and landscape environmental drivers 191 

In order to investigate the relationship between soil organic carbon (SOC) and potential 192 

environmental drivers, 29 independent environmental variables were initially considered 193 

(Table S1). These variables were grouped into five sets: Regional, landscape: livestock 194 

management, soil nutrient stocks and herbage variables. 195 

Regional variables included climate variables and bedrock. Climate variables were 196 

determined from Worldclim 2.0 (Fick and Hijmans, 2017). We selected Mean Annual 197 

Temperature (MAT), Mean Annual Precipitation (MAP) and Mean Summer Precipitation 198 

(MSP). The difference between mean annual and mean summer temperature emerged  199 

as a relevant explanatory factor of soil organic carbon stocks during  previous modelling 200 

efforts by one of the co-authors (MTS). Latter  attempts to improve models by substituting 201 
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this variable by other  temperature indices in climatic databases (Fick and Hijmans, 2017) 202 

showed that, for the  PASTUS database, this variable provided higher explanatory power 203 

than  other temperature seasonality indices. Thus, we decided to keep it and here we 204 

name it Temperature Seasonality Index of Sebastià (TSIS from now on). 205 

Bedrock type was determined in the field and confirmed by the geographical maps 206 

mentioned above. Bedrock was categorized into three categories: basic (marls and 207 

calcareous rocks), acidic (mostly sandstones and slates) and heterogeneous. 208 

Landscape variables included topography and soil type variables. Topography variables 209 

included Slope, Aspect, Macrotopography and Microtopography. Slope and Aspect were 210 

determined in the field by clinometer and compass respectively. Macrotopography and 211 

Microtopography were determined visually in the field. Macrotopography differenciated 212 

exposed from protected positions. Mountain top and south-facing slopes were identified 213 

as exposed positions and valley bottoms and north-facing slopes as protected positions. 214 

Microtopography considered three positions: convexities, concavities and smooth areas. 215 

Soil type variables are described in section 2.4. 216 

2.3 Livestock management variables 217 

Regarding livestock management variables, detailed surveys were carried out among 218 

farmers, shepherds and land managers. Two management variables were considered: 219 

Grazing intensity and Grazer type. Grazing intensity was determined estimating livestock 220 

stocking rates measured as livestock units ha-1 (LU ha-1), and treated as a semi-221 

quantitative variable with three categories (Sebastià et al. 2008): low (1; lower than 0.2 222 

LU ha-1), medium (2; between 0.2-0.4 LU ha-1) and high (3; above 0.4 LU ha-1). Grazer 223 

type was categorized into three main types: sheep grazing, cattle grazing and mixed 224 

grazing. Mixed grazing included associations comprising small and big livestock species, 225 

mainly sheep and cattle, and more rarely horses. Sheep flocks always included some 226 

goats. 227 
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2.4 Soil sampling and physicochemical analysis 228 

Soil samples were air-dried and weighted. Each sample was sieved to 2 mm to separate 229 

stones and gravels from the fine earth fraction; the fine fraction was sent to the laboratory 230 

for physicochemical analysis. Standard physicochemical soil analyses were performed 231 

in the upper 0-10 cm soil layer of all grasslands. Some analyses were also performed on 232 

samples from the 10-20 cm soil layer, including: soil organic carbon, total nitrogen. For 233 

those variables, we later calculated values for the whole top 20 cm soil layer. 234 

All soil physicochemical analyses were performed on the fine earth, according to 235 

standard soil analysis methods. Textural classes were determined by the Bouyoucos 236 

method (Bouyoucos, 1936). Soil pH (measured in water), total organic carbon (TOC) 237 

total nitrogen (TN), Calcium content (Ca), Extractable phosphorus (P), magnesium (Mg) 238 

and potassium (K) were measured on air dried samples (Schöning et al., 2013; Solly et 239 

al., 2014). Soil carbonates were determined using the Bernard calcimeter. Total carbon 240 

and nitrogen (N) contents of the fine earth was determined by elemental auto-analyser. 241 

The organic C fraction was determined by subtracting inorganic C in the carbonates from 242 

the total C. Soil organic carbon (SOC) stocks in the upper 20 cm soil layer were then 243 

estimated taking into account the organic C concentration in the sample and its bulk 244 

density, and subtracting the coarse particle (> 2 mm) content, following García-Pausas 245 

et al. (2007). Available phosphorus (P) was extracted by the Olsen method (Olsen, 1954) 246 

Ca, Mg and K were extracted by ammonium acetate (Simard, 1993) and measured by 247 

flame Atomic absorption Spectroscopy (AAS) (David, 1960)).  248 

2.5 Herbage chemical and bromatological analysis 249 

A total of two hundred samples were chemical and bromatological analysed by NIRS 250 

(near infrared reflectance spectroscopy). All four herbage samples of each plot were 251 

oven-dried at 60ºC to constant weight. Two of the samples was sent to the laboratory. 252 

Dried samples were ground to pass a 1 mm stainless steel screen (Cyclotec 1093 253 
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Sample mill, Tecator, Sweden) and stored at 4ºC until it was needed for use. To develop 254 

NIRS equations (see below) subsamples were analysed in duplicate. Procedures 255 

described by AOAC were used to determine dry matter (DM) and ash content or mineral 256 

matter (MM). Crude protein (CP) was determined by the Kjeldhal procedure (N x 6.25) 257 

using a Kjeltec Auto 1030 Analyser (Tecator, Sweden). Samples were analysed 258 

sequentially for neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid 259 

detergent lignin (ADL) in accordance with the method described Van Soest et al. (1991) 260 

using the Ankom 200 Fibre Analyser incubator (Ankom, USA). The fibre analysis were 261 

determined on an ash-free basis and without alpha amylase. We calculated two 262 

additional herbage quality indexes often used in the bibliography: NDF/CP and ADL/HN 263 

(Stockmann et al., 2013). For each subsample the C and N content were determined by 264 

the Dumas dry combustion method,  using an Elemental Analyzer EA1108 (Carlo Erba, 265 

Milan, Italy). 266 

2.6 NIRS analysis 267 

NIRS data were recorded from 1,100 to 2,500 nm using a FOSS NIRSystem 5000 268 

scanning monochromator (Hillerød, Denmark). Separate calibration equations 269 

were generated for grassland samples. Reflectance (R) data were collected in 270 

duplicate every 2 nm. A WinISI III (v. 1.6) software (FOSS, Denmark) was 271 

employed for spectra data analysis and development of chemometric models. 272 

Prior to calibration, log 1/R spectra were corrected for the effects of scatter using 273 

the standard normal variate (SNV), detrend (DT) and multiple scatter correction 274 

(MSC) and transformed into first or second derivative using different gap size 275 

(nm) and smoothing interval. For each sample, the mean of the spectra from the 276 

two lectures were used. Modified partial least square (MPLS) was the regression 277 

method used for calibration development and cross validation was undertaken 278 

using the standard methodology in the NIRS software program. The performance 279 
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of the model was determined by the following statistical tools: standard error of 280 

calibration (SEC), standard error of cross validation (SECV); coefficient of 281 

determination for calibration (R2) and cross validation (rcv
2); the ratio of 282 

performance to deviation (RPD) described as the ratio of standard deviation for 283 

the validation samples to the standard error of cross validation (RPD=SD/SECV) 284 

should ideally be at least three; and the range error ratio (RER=Range/SECV) 285 

described as the ratio of the range in the reference data to the SECV should be 286 

at least 10 (Williams and Sobering, 1996; Williams et al., 2014). 287 

2.7 Statistical analyses 288 

We applied two different modelling procedures, Boosted Regression Trees (BTR) and 289 

General Linear Models (GLM). All the statistical analyses were performed with the 290 

software R ver. 3.4.3  (R Core Team, 2017), at 95% significance level when appropriate. 291 

Boosted regression trees global model 292 

We fitted a model with BRT to identify the most important variables affecting SOC. BRT 293 

uses two algorithms: regression trees are from the classification and regression tree 294 

(decision tree) group of models, and boosting builds and combines a collection of models 295 

(Elith et al., 2008). We chose this method because BRT can handle multiple variables 296 

better than other techniques as GLM, and can detect automatically curvilinear 297 

relationships and interactions, ignoring non-informative ones. We used the gbm and 298 

dismo packages (Greenwell et al., 2019; Hijmans et al., 2017), which provide several 299 

functions to fit these models. 300 

First, we fitted a model with all the predictors (Table S1), configured with 15 folds, a 301 

Gaussian distribution of the error, a tree complexity of 5, a learning.rate of 0.005, a 302 

bag.fraction of 0.666, and 5 minimum observations by node. Secondly, we reduced the 303 

number of predictors by the method described in Elith et al., (2008). We estimated the 304 
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change in the model´s predictive deviance dropping one by one each predictor 305 

(supporting information), and re-fitted the model with the set of variables which actually 306 

improved model performance Fig. S2). We checked the relative importance of the 307 

predictors and the shape and size of the effects by partial effect plots. 308 

General linear models 309 

We designed and executed a modelling procedure based on general linear models 310 

(Legendre and Legendre, 1998) and a hierarchy of controls over function (Diaz et al., 311 

2007; de Vries et al., 2012). We log-transformed SOC using natural logarithm to prevent 312 

a breach of the normality assumption by the residuals of the models. We built two models 313 

(Fig. S4), one model only based on geophysical predictors and grazing management 314 

(Geophysical Model), and another model by adding to the former the biochemical 315 

predictors: soil nutrients and herbage quality predictors (Combined Model). We 316 

considered that the geophysical factors that potentially affect SOC were regional and 317 

landscape (topography and soil type predictors), as they have been widely used in 318 

previous studies to model and predict SOC from landscape to continental scales 319 

(Manning et al., 2015; Wiesmeier et al., 2019). In addition to soil nutrients and herbage 320 

variables, we included again the livestock management variables in the Combined Model 321 

and looked for interactions involving these variables and biochemical predictors of SOC. 322 

For model building (Fig. S4A), we added predictor groups following a sequential order. 323 

For fitting the geophysical model, we started adding regional, landscape and grazing 324 

management predictors, and subsequently included soil properties. Afterwards, we 325 

sequentially included soil nutrients and herbage predictors to obtain the Full Model. We 326 

added Management variables from the beginning of the modelling process and re-327 

included the discarded ones in each step to guarantee the detection of interactions 328 

between Management variables and the rest of the predictors. Each time we added a 329 

set of predictors, we first considered their main effects and some quadratic terms which 330 
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were found by preliminary analyses with the scatterplot.matrix function in the R package 331 

car (Fox et al., 2018); afterwards we included possible level 2 interactions between all 332 

the selected predictors. 333 

At every step we selected several candidate terms by a semi-automatic procedure (Fig. 334 

S4C) using a genetic algorithm included in the R package glmulti (Calcagno, 2015). We 335 

used SOC as response variable at the first step, and the residuals of the previous model 336 

in the remaining steps (Fig. S4B). This semi-automatic process began by obtaining a 337 

best subset of models using the corrected Akaike information criterion (AICc), 338 

appropriate when n/k is less than 40, being the sample size and k the number of 339 

parameters in the most complex model (Symonds and Moussalli, 2011). We selected the 340 

best model and its equivalents obtained by the genetic algorithm, which were those 341 

within 2 Akaike information criterion-corrected (ΔAICc) values of the best model, as a 342 

ΔAICc < 2 indicates that the candidate model is almost as good as the best model 343 

(Burnham and Anderson, 2002). 344 

For this set of models, we built averaged models using the MUMIn package (Barton, 345 

2015). We calculated partial standardized coefficients, obtained by multiplying the 346 

unstandardized coefficient in the model by the partial standard deviation of the variable, 347 

which is a function of the standard deviation of the variable, the sample size, the number 348 

of variables in the model and the variance inflation factor of the variable (Barton, 2015). 349 

We selected all the variables with significant effects (alone or in interaction with each 350 

other) in the conditional average model, which was preferred over the full average model 351 

because we wanted to avoid excessive shrinkage effects at this moment of the modelling 352 

procedure (Grueber et al., 2011).  353 

Then, we added these terms to the consolidated model, and made a selection through a 354 

backward forward procedure. We used several methods to compare and determine the 355 

final model, including the AICc, the adjusted determination coefficient R2 (Radj
2) and 356 

model comparison techniques with the “anova()” function in R, using Chi-square tests to 357 
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test whether the reduction in the residual sum of squares was statistically significant. 358 

Once we had the final model we assessed the significance of each term by removing it 359 

and performing an F test. For estimating the significance of the main effects we also 360 

removed the interaction terms in which they were involved, to avoid transferring the 361 

effects of the main terms to the interaction terms (de Vries et al., 2012). We estimated 362 

the variance explained by the models through the adjusted determination coefficient R2 363 

(Radj
2). 364 

Finally, we estimated the importance of the terms of each model by the lmg method in 365 

the relaimpo package (Grömping, 2006), and drew partial effect plots making predictions 366 

with the R package emmeans (Lenth et al., 2019). 367 

 368 

  369 
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Results 370 

SOC stocks of the upper 20 cm layer ranged between 2.6 and 23 kg m-2, with a 371 

median and a mean value of 9.1 and 9.6 kg m-2 respectively. Minimum, maximum, 372 

median and mean values of the continuous predictors are shown in Table S2. 373 

Relative importance of SOC predictors 374 

The final BRT global model achieved a good goodness of fit, with a cross-375 

validated correlation value of 0.52% and an explained deviance of 88.31%. The 376 

most important variables explaining SOC stocks (Fig. 2) were soil N (18.3 %), soil 377 

C/N (14.4%) and Clay (13 %) although other variables such as Aboveground 378 

biomass (7.3%), ADL (6.4%) or Silt (6.1%) were also relevant for explaining SOC 379 

storage. Two of the most important variables in the BRT model, Aboveground 380 

biomass and Silt, were not selected in the linear models (Tables 2 & 3). Although 381 

accounting for a lower importance value than the previous variables (5%), TSIS 382 

was the most relevant selected climate predictor. This variable was also relevant 383 

in both linear models (Fig. S5), especially in the Geophysical Model, where TSIS 384 

was the most important variable, not only as main effect, but in interaction with 385 

other variables (lmg: 4 – 10%). Soil nutrient and herbage variables were also 386 

important according to the Combined linear model (Fig. S6), but in this case we 387 

identified that many of these effects occurred in interaction between these two 388 

predictors with grazer type. 389 

Geophysical effects on SOC stocks 390 

The Geophysical Model (Table 2) explained 34 % of the total variance (R2
Adj). 391 

Overall, SOC stocks increased with TSIS under certain conditions: exposed 392 
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hillsides, high slopes and low stocking rates (Fig. 3A, 3B & 3D). On the other 393 

hand, Clay had a positive relationship with SOC under low MAP values (Fig. 3C), 394 

which turned into negative at high MAP values (Fig. 6C).  395 

Soil nutrient and herbage effects on SOC 396 

Adding nutrient and herbage predictors in the previous geophysical model to build 397 

the Combined model (Table 3) increased the total variance (R2
Adj) up to 61%. 398 

Macrotopography and Clay effects described by the Geophysical model were 399 

removed by the new model terms included. SOC increased with C/N (Fig 4A). 400 

Soil nitrogen modulated the effects of livestock type and NDF on SOC. Cattle 401 

grazed grasslands stored more SOC than mixed and sheep grazed grasslands 402 

under low soil N conditions, whereas the opposite occurred at high soil N levels 403 

(Fig. 3B). NDF had negative effects on SOC at high soil N values but had no 404 

effect under low soil N levels Fig. 4C). Finally, herbage ADL/NH had positive 405 

effects on SOC under mixed and sheep grazing regimes, but there was no effect 406 

under cattle management (Fig. 4D).  407 

Discussion 408 

Regional, landscape, management, soil and herbage factors drove SOC stocks 409 

in grasslands of the Pyrenees with multiple interactions. The BRT model identified 410 

soil N and C/N, texture and herbage variables as the most important predictor 411 

groups (Fig. 2), TSIS being the most important climate variable. Both linear 412 

models followed a hierarchy of controls over function approach to ensure a 413 

unique effect of each driver on SOC. Hence, some variables selected in the BRT 414 

model, like aboveground biomass, silt or soil K were not included in these models 415 

(Tables 2 & 3). The geophysical model showed how some climate variables (TSIS 416 
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and MAP) interacted with landscape (macrotopography and slope), soil clay 417 

content and grazing intensity (Fig. 3). Whereas, the Combined Model provided 418 

information on how herbage quality effects on SOC (NDF and ADL/NH) varied 419 

depending on soil N and grazing species, and on how grazer species had 420 

different effects depending on soil N content (Fig. 4). 421 

 422 

Considerations about the modelling procedure 423 

As a regression tree machine learning technique, the BTR model identified a set 424 

of SOC predictors (Fig. 2) avoiding some of the linear model disadvantages, like 425 

guarding against the elimination of good predictors correlated to others or 426 

automatically modelling non-linear effects (Cutler et al., 2007; Elith et al., 2008). 427 

Thus, the BRT model included some SOC predictors, like a positive logarithmic-428 

like effect of aboveground biomass or soil K on SOC (Fig. S7), which could be 429 

masked by the effects of other variables in our linear models (Yang et al., 2009). 430 

However, most of the variables selected and their effects were generally 431 

consistent with those explained by the linear models (Fig. 3, 4, S7). 432 

Consequently, we preferred  to focus on the results from the linear models 433 

because our approximation allowed us to build models under a hierarchy of 434 

controls over function hypothesis (Manning et al., 2015). Hence, although we 435 

could not establish the causal links between SOC predictors (Grace, 2006; Grace 436 

and Bollen, 2005), we guaranteed that geophysical drivers included in the first 437 

model were not the single common cause of variation of both biotic factors 438 

included in the second model and SOC (de Vries et al., 2012). In that case, soil 439 

nutrient and herbage quality predictors could not be added to the model as 440 
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significant terms, as was the case with aboveground biomass. In addition, our 441 

modelling approach allowed us to select biologically meaningful interactions 442 

(Manning et al., 2015; de Vries et al., 2012), which cannot be done with a fully 443 

automatic approach like BRT. Additionally, our sequenced modelling procedure 444 

looking for the primary sources of variation, together with the stratified sampling 445 

design, lead us to select a set of lowly correlated predictors for our linear models 446 

(Table S3). 447 

 448 

Geophysical predictors driving SOC 449 

Considering the difficulties of modelling SOC in a widely heterogeneous mountain 450 

environment (Garcia-Pausas et al., 2017), the Geophysical model provided 451 

important information about SOC drivers in the Pyrenees. TSIS was a key 452 

predictor of SOC with a varying effect depending on macrotopography, slope and 453 

grazing intensity (Table 2). This result contrasts with most of the previous studies 454 

addressing soil carbon in mountain grasslands, which usually pinpoint mean 455 

temperature and precipitation as the most important climate drivers of SOC 456 

(Hobley et al., 2015; Manning et al., 2015; Wiesmeier et al., 2019). Overall, the 457 

TSIS effect on SOC was positive under certain conditions. Sites characterised by 458 

low mean temperatures presented a wider spectrum of TSIS values than warm 459 

sites (Fig. S8). Considering that climate regulates large scale patterns of 460 

aboveground net primary production (Chapin et al., 1987), a positive effect of 461 

TSIS on SOC could be associated with higher biomass accumulation in cold 462 

locations with more favourable temperatures during summer, this fact reducing 463 

geophysical stress for plants (Garcia-Pausas et al., 2007; Kikvidze et al., 2005). 464 
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This plant biomass accumulation during summer would overcome an eventual 465 

increase of soil organic matter decomposition rates due to high temperatures 466 

(Sanderman et al., 2003), which could even be diminished if microbial biomass 467 

decreases as a result of soil moisture reduction (Puissant et al., 2018). 468 

The interactions of TSIS with macrotopography and slope illustrate the capacity 469 

of landscape factors to modulate macroclimate effects on soil (Hook and Burke, 470 

2000). Induced microclimate changes are often the explanation for the effects of 471 

topography in SOC (Lozano-García et al., 2016). In our case, SOC stocks 472 

increased with temperature seasonality particularly at mountain exposed areas 473 

(Fig. 3A; Table 2). In protected sites, located in shady slopes and valley bottoms, 474 

the hypothesized positive effect of high TSIS values on productivity could be 475 

mitigated due to lower solar radiation, longer snow-covered periods and freezing 476 

episodes (Garcia-Pausas et al., 2007; López-Moreno et al., 2013). Conversely, 477 

negative effects of low TSIS values on productivity could be compensated thanks 478 

to more humid conditions in protected than in exposed sites (Garcia-Pausas et 479 

al., 2007). Additionally, it is important to take into account that differences in SOC 480 

between exposed and protected sites may also occur through other mechanisms, 481 

for instance the alteration of soil physico-chemical properties like pH, soil texture 482 

or stoniness (Zhang et al., 2018) or differences in vegetation (Sebastià, 2004). 483 

Since we used a hierarchy of controls approach (Manning et al., 2015), these 484 

topography indirect effects could be behind the exclusion on the linear models of 485 

some predictors selected in the BRT model, like silt or pH (Figs. 2 & 3).  486 

In addition, high TSIS values compensated SOC decrease in steep slopes, 487 

probably due to reduced carbon inputs and increased carbon losses induced by 488 

high soil erosion (Yuan et al., 2019 and refferences therein). The decrease in 489 
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SOC stocks under low TSIS values were also compensated by grazing pressure 490 

increase (Fig 3D). Recent meta-analyses conclude that grazing has a commonly 491 

decreasing, but strongly context-specific effect on SOC, depending on other 492 

factors like climate, soil type vegetation or grazing intensity (Abdalla et al., 2018; 493 

Eze et al., 2018; Mcsherry and Ritchie, 2013). Particularly, light and medium 494 

grazing intensities can increase SOC inputs by dung deposition and promoting 495 

aboveground and root biomass production (Franzluebbers et al., 2000; Zeng et 496 

al., 2015). Considering that in our semi-natural grasslands all grazing intensities 497 

are relatively low (see methods), our medium and high stock rates may increase 498 

soil carbon inputs in low seasonality locations by enhancing productivity. 499 

Interestingly, clay content and precipitation presented interacting effects on SOC 500 

(Fig. 3C; Table 2). Both MAP and clay content are widely assumed to be 501 

positively correlated to SOC (Wiesmeier et al., 2019). High MAP would increase 502 

SOC inputs by promoting plant productivity (Author et al., 2000; Hobley et al., 503 

2015). Clay positive effects are often attributed to a larger contact surface of soil 504 

particles (Kennedy et al., 2002), the absorption of negatively charged organic 505 

matter, high soil water retention and the exclusion of decomposer organisms due 506 

to their low pore size (Krull et al., 2001). In our study, high water contents may  507 

inhibit decomposition if a shortage of oxygen supply occurs (Xu et al., 2016b). 508 

However, as MAP values increased, clay effect on SOC became negative. To 509 

explain low SOC values at high MAP and high clay content, McSherry and 510 

Rithchie (2013) hypothesized that finer texture soils could be waterlogged more 511 

frequently, leading to inhibition of root growth and soil C allocation belowground. 512 

Biochemical predictors driving SOC 513 
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Adding soil nutrient and herbage predictors to our modelling procedure implied 514 

the substitution of the terms including clay content and macrotopography by the 515 

newly  added terms (Tables 2 & 3), highlighting the importance of indirect effects 516 

of these variables on SOC through other small scale predictors (Leifeld et al., 517 

2015; Xu et al., 2016b; Zhu et al., 2019). In this case, we obtained a complex 518 

model with some surprising, less frequently tested effects involving interactions 519 

between graze type, soil nutrients and herbage quality variables (Table 3, Fig 4). 520 

Although our interpretations have limitations because our models were based on 521 

observational data, they can still provide some hints about some of the most 522 

complex and unknown relationships between SOC and its drivers. In can also 523 

contribute to generate testable hypotheses in latter studies. 524 

As expected, SOC increased with the C/N ratio (Fig 4A), which is an indicator of 525 

the difficulty of soil organic matter decomposition by soil microbes, decreasing 526 

decomposition rates of SOC with increasing  soil C/N (Wanyama et al., 2019; Xu 527 

et al., 2016b). Conversely, total soil N conditioned livestock type effect on SOC 528 

in a surprising way. Cattle grazed grasslands stored more SOC than mixed and 529 

sheep grazed ones under low soil N conditions, whereas the opposite occurred 530 

at high soil N content (Fig. 4B). Chang et al. (2018) found that in a N poor semi-531 

arid grassland, sheep decreased SOC content in comparison to cattle due to 532 

vegetation changes caused by their feeding preference for highly palatable forbs, 533 

promoting less palatable grasses which supported less root biomass. A shift 534 

towards higher grass biomass with sheep grazing was also found in the Pyrenees 535 

(Sebastia et al., 2008). Conversely, in our study mixed grazing increased SOC, 536 

probably through effects on soil environment and decomposition processes. Our 537 

results suggested that those processes could vary depending on soil conditions.  538 
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Negative effects of sheep grazing on SOC through their selective feeding could 539 

occur mostly in poor N soils (Fig 4B). Under such conditions, palatable plants 540 

could produce higher SOC inputs, since plant productivity is more reliant on the 541 

ability of fixing atmospheric N of legumes (Van Der Heijden et al., 2008) and the 542 

exceptional capacity of forbs to allocate C in roots is especially stimulated (Ågren 543 

and Franklin, 2003; Warembourg et al., 2003). However, these processes could 544 

be different under different soil N conditions, although the concrete mechanisms 545 

are hard to suggest, since livestock type may affect SOC content not only through 546 

changes in plant composition, but other differences in certain features of livestock 547 

assemblages, like trampling, faeces deposition patterns or  effects on plant 548 

regrowth, which could promote differences in soil respiration and/or plant 549 

productivity (Aldezabal et al., 2019; Chang et al., 2018; Liu et al., 2018), resulting 550 

in different SOC levels under different grazers. Grasslands with mixed grazed 551 

regimes stored even more SOC than sheep grazed ones under high soil N 552 

conditions (Fig. 4B, Table 3). This result emphasises that mixed livestock 553 

assemblages deserve particular attention as they can affect plant composition 554 

distinctly from single grazing species regimes or alter traveling and trampling 555 

behaviours of grazing animals (Chang et al., 2018; Liu et al., 2015).  556 

Model terms involving herbage predictors could represent both biochemical and 557 

physical pathways of litter incorporation to soil organic matter (Cottrufo 2015). In 558 

our model, NDF was negatively related to SOC at high N values (Fig 4C). NDF 559 

proportion represents the amount of structural compounds on litter, and hence is 560 

inversely related to non-structural compounds content (Goering and Van Soest, 561 

1970).  The latter are the main source of organic matter formation at the early 562 

stages of decomposition, and they are incorporated into microbial biomass in a 563 
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highly efficient way (Cotrufo et al., 2013). However, if microbial necromass is 564 

recycled by microbes before its incorporation to mineral-associated organic 565 

matter, it could be respired and mineralized instead of stored (Córdova et al., 566 

2018). Thus, our model suggested that incorporation of labile and fast 567 

metabolized non-organic compounds to soil organic matter could be a pathway 568 

of SOC allocation at high soil N in Pyrenean grasslands. At low soil N conditions, 569 

induced changes in microbial composition or priming effects (De Deyn et al., 570 

2008; Fontaine et al., 2007; Wild et al., 2019; Yan et al., 2018) may disable SOC 571 

accumulation trough this biochemical pathway. 572 

 573 

On the other hand, the ADL/NH ratio was positively related to SOC in sheep and 574 

mixed grazed grasslands (Fig. 4D). The ADL/NH ratio is a commonly used 575 

indicator for the resistance of litter to degradation, particularly at later stages of 576 

decomposition (Taylor et al., 1989). Hence, the increase of SOC with ADL/NH 577 

could be related to the physical pathway of soil organic matter incorporation, 578 

forming coarse particulate organic matter (Cotrufo et al., 2015). Moreover, our 579 

model suggests that this pathway would be inhibited under cattle grazing, 580 

presumably because of their less selective diet and higher digestive efficiency 581 

than sheep (Rosenthal et al., 2012; Sebastià et al., 2008). Since lignin content is 582 

inversely related to plant palatability (Moore and Jung, 2001), plants with high 583 

lignin content will be avoided with greater probability under sheep-based 584 

management regimes (Wang et al., 2018), and that would promote differences in 585 

recalcitrant litter mineralization rates. Additionally, lower diet selectivity and 586 

higher digestive efficiency of cattle compared with sheep, can result into less 587 
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recalcitrant faeces (Wang et al., 2018), which could explain also SOC differences 588 

between grazer types at high ADL/NH conditions. 589 

Implications of livestock effects on SOC  590 

One key point of our results is that they highlight the need for a deeper research 591 

effort in disentangling not only grazing intensity but grazer type effects on 592 

grassland soil organic carbon and nutrient cycling under different environmental 593 

circumstances. Our results concerning interactions between grazer type and 594 

herbage quality provide some evidence of grazing effects not only through 595 

alterations of plant communities that were reported by previous studies in the 596 

region (Canals and Sebastià, 2000; Sebastià et al., 2008),but also through 597 

interactions with them. Although grazing effects were not the most important 598 

factors affecting SOC stocks, this is by far the easiest component to manipulate 599 

in order to increase or maintain SOC in soils and face climate change (Komac et 600 

al., 2014). Despite the need of a precise knowledge on the effects of different 601 

land uses on ecosystems for climate change mitigation (Lo et al., 2015)  studies 602 

addressing grazer type effects on SOC are scarce (i.e. Zhou et al., 2017; Chang 603 

et al., 2018). Considering our results, we would suggest to carry out more 604 

experiments testing the effects of livestock type on SOC under different soil 605 

fertility conditions and plant communities with contrasting herbage quality 606 

parameters. 607 

To conclude, we showed how a combination of regional, landscape, 608 

management, soil properties, soil nutrients and herbage factors might drive SOC 609 

stocks in the Pyrenees. Among all the regional and landscape scale factors, a 610 

seasonality variable, TSIS seemed to be the most decisive, although interacting 611 
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with some topographical drivers and grazing intensity. To our knowledge, this is 612 

the first time these factors were combined together with soil nutrients and 613 

herbage quality factors to model SOC. Soil N was a crucial factor modulating the 614 

effect of livestock species and NDF, and herbage recalcitrance effect on SOC 615 

varied depending on grazer species. Our study highlight the need to expand 616 

knowledge about grassland SOC drivers under different conditions, specially 617 

grazing, as this is the most easily tractable factor affecting SOC and it has other 618 

advantages like preventing the accumulation of aboveground C and reducing the 619 

risk of forest fires (Nunes and Lourenço, 2017). We provided the basis to 620 

generate new testable hypothesis for latter studies that may be useful to design 621 

improved policies to palliate climate change. 622 
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Table captions 1045 

Table 1: Considered factors affecting SOC in some recent studies. V: the study considers this variable type; X: the 1046 

study does not consider this variable type. 1047 

Table 2: Results of the geophysical model for soil organic carbon (R2
Adj = 0.34). 1048 

Table 3: Results of the Combined model for soil organic carbon (R2
Adj = 0.61). 1049 

Figure captions 1050 

Figure 1: Conceptual scheme used in this work to relate potential environmental drivers with 1051 

SOC. We assume that drivers may affect soil organic carbon (SOC) both directly or hierarchically 1052 

through other driver. Interactions between factors from different types could also drive SOC. 1053 

Grazing management has a special location as may act through different paths and interact with 1054 

factors at different scales.  1055 

Figure 2: Relative contributions (%) of predictor variables in the final BRT model obtained. Soil 1056 

N: soil nitrogen; Soil C/N: soil carbon to nitrogen ratio, Clay: clay content; Abiom: aboveground 1057 

biomass; ADL: acid-detergent lignin; Loam: loam content; K: soil potassium; TSIS: mean 1058 

summer temperature minus mean annual temperature; NDF: neutro detergent fibre; pH: soil 1059 

pH; CH: carbon in the herbage; Mg: soil magnesium; Slope: terrain slope; MAP: mean annual 1060 

precipitation; ADF: acid detergent fibre. See Table S1 for more details about variables 1061 

Figure 3. The relationship between SOC and regional and landscape scale factors in the 1062 

Geophysical model. In A) solid lines and circles represent exposed hillsides, and dotted lines and 1063 

triangles indicate protected hillsides. In D) solid lines and circles indicate low grazing 1064 

management intensity, dotted lines and triangles indicate medium grazing management 1065 

intensity and dashed lines and squares indicate high grazing management intensity. In A-D line 1066 

and plane values are predictions of the model across the corresponding predictors´ range 1067 
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according to estimate marginal means. Grey areas around regression lines indicate standard 1068 

errors. In A) and D) points indicate actual values. 1069 

Figure 4. The relationship between SOC and biochemical and herbage factors in the Combined 1070 

model. In B) and D) solid lines and circle points represent cattle-grazing, dashed lines and 1071 

square points indicate sheep-grazing and dotted lines and triangle points indicate mixed-1072 

grazing. In A-D line and plane values are predictions of the model across the corresponding 1073 

predictors´ range according to estimate marginal means. In A-D line and plane values are 1074 

predictions of the model across the corresponding predictors´ range according to estimate 1075 

marginal means.  Grey spectrum indicate 95% confidence intervals. In A) and D) points indicate 1076 

actual values. 1077 

1078 
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Tables 1080 

Table 1: Considered factors affecting SOC in some recent studies. V: the study considers this variable type; X: the 1081 
study does not consider this variable type. 1082 

*Fertilizer effects.1083 
** Only aboveground and/or belowground biomass index1084 

Article Location LAT (º) LONG (º) MAP (mm) MAT (°C) Topography 
and bedrock 

Grazing 
Managem
ent 

Soil 
propert
ies 

Soil 
nutrie
nts 

Her
bag
e 

Present 
study 

Pyrenees 42.14 – 43.3 -1.22 – 2.26 964 – 1586 1.1 – 9.9 V V V V V 

Duarte-
guardia et al., 
2019 

Worldwide -51.72 – 80.23 -163.95 – 158.25 65 – 5115 -21.2 – 30 V X V X V** 

Abdalla et al., 
2018 

Worldwide -45.85 – 51 -114 – 120.7 150 – 1650 0 – 21 X V V X V 

Eze et al., 
2018 

Worldwide -44 – 65 -121 – 175 120 – 2000 -4.8 – 26.8 X V V V* V** 

Peri et al., 
2018 

South 
Patagonia 

- 52 – -45 -73.5 – 65.5 139 – 865 4.2 – 11 V V X X V 

Zhang et al., 
2018 

Northern 
China 

103.5 – 124.16 32.5 – 42.5 500 – 1000 8 – 14 V V V X X 

Zhao et al., 
2017 

Mongolia 41.95 – 53.93 108.28- 116.2 150 – 400 -1.3 – 2.1 X V V X V 

Zhou et al., 
2017 

Worldwide -42.1 – 52.3 -121 – 175 200 – 600 0 – 10 X V X X X 

Deng et al., 
2016 

Eastern 
China 

28.71 – 30.45 120.87 – 122.43 940 – 1720 16.86 – 18.57 V X V X X 

Gray et al., 
2015 

Eastern 
Australia 

-16.7 – -43.5 -31.8 – -28.7  500 – 2000 10 – 30 V X X X V 

Lu et al., 2017 Qinghai-
Tibetan 
Plateau 

27 – 32 83 – 108 37 – 718 -4.04 – 6.3 X V X X X 

Chang et al., 
2015 

Tibet Not Reported Not Reported 397 – 1910 1.7 – 15.5 V X X X V 

Manning et 
al. 2015 

England 50.77– 54.58 -4.43 – 0.87 596 – 3191 6.5 – 10.9 X V V X V 

McSherry & 
Ritzie 2013 

Worldwide Not reported Not reported 180 – 950 Not reported X V V X V 

Garcia-Pausas 
et al. 2007 

Pyrenees -7 – 2.2 42.5 – 42.9 1416 – 
1904 

-0.7 – 5 V X V X X 
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1085 

Table 2: Results of the geophysical model for soil organic carbon (R2
Adj = 0.34). 1086 

Model term Estimate SE t-value P-value

Intercept -0.525 1.802 -0.291 0.771

Climate variables 

MAP 0.003 0.001 4.560 <0.001 *** 

TSIS -0.098 0.228 -0.429 0.669

Topography variables 

Slope -0.339 0.095 -3.569 0.001 *** 

Exposed -3.130 0.936 -3.344 0.001 ** 

Soil type variables 

Clay 0.121 0.027 4.500 <0.001 *** 

Management variables 

Low intensity -5.013 1.196 -4.192 <0.001 ***

Medium intensity 2.012 1.168 1.722 0.088 

Interactions between 

variable types 

TSIS x Exposed 0.417 0.124 3.358 0.001 ** 

TSIS x Slope 0.044 0.013 3.452 0.001 *** 

MAP x Clay 0.000 0.000 -4.637 <0.001 ***

TSIS x Low intensity 0.655 0.159 4.110 <0.001 *** 

TSIS x Medium intensity -0.262 0.156 -1.684 0.095

1087 

1088 
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Table 3: Results of the Combined model for soil organic carbon (R2
Adj = 0.61). 1089 

Model term Estimate SE t-value P-value

Intercept -0.290 1.458 -0.199 0.843

Climate variables 

MAP -0.001 0.000 -2.434 0.017 * 

TSIS -0.004 0.181 -0.022 0.982

Topography variables 

Slope -0.225 0.078 -2.868 0.005 ** 

Management variables 

Cattle 0.487 0.101 4.834 <0.001 *** 

Mixed -0.289 0.093 -3.106 0.002 ** 

Low intensity -3.249 1.014 -3.204 0.002 ** 

Medium intensity 1.666 1.073 1.553 0.123 

Soil nutrient variables 

Log(Soil C/N) 0.665 0.076 8.777 <0.001 *** 

Soil N 3.302 0.617 5.349 <0.001 *** 

Herbage variables 

NDF 0.014 0.006 2.525 0.013 * 

Herbage ADL/NH 0.026 0.009 2.987 0.003 ** 

Interactions between 
variable types 

TSIS x Slope 0.030 0.010 2.833 0.006 ** 

TSIS x Low intensity 0.423 0.136 3.104 0.002 ** 

TSIS x Medium intensity -0.214 0.143 -1.495 0.138

Soil N x Cattle grazing -0.736 0.168 -4.380 <0.001 ***

Soil N x Mixed grazing 0.493 0.175 2.813 0.006 ** 

Soil N x NDF -0.039 0.011 -3.505 0.001 *** 

Cattle x Herbage 
ADL/NH 

-0.030 0.010 -2.872 0.005 ** 

Mixed x Herbage 
ADL/NH 

0.014 0.011 1.252 0.213 

1090 
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1091 

1092 

Figures 1093 

1094 

Figure 1: Conceptual scheme used in this work to relate potential environmental drivers with 1095 

SOC. We assume that drivers may affect soil organic carbon (SOC) both directly or hierarchically 1096 

through other driver. Interactions between factors from different types could also drive SOC. 1097 

Grazing management has a special location as may act through different paths and interact with 1098 

factors at different scales.  1099 

1100 

1101 

https://doi.org/10.5194/bg-2020-63
Preprint. Discussion started: 17 March 2020
c© Author(s) 2020. CC BY 4.0 License.



54 

Figure 2: Relative contributions (%) of predictor variables in the final BRT model obtained. Soil 1102 

N: soil nitrogen; Soil C/N: soil carbon to nitrogen ratio, Clay: clay content; Abiom: aboveground 1103 

biomass; ADL: acid-detergent lignin; Loam: loam content; K: soil potassium; TSIS: mean 1104 

summer temperature minus mean annual temperature; NDF: neutro detergent fibre; pH: soil 1105 

pH; CH: carbon in the herbage; Mg: soil magnesium; Slope: terrain slope; MAP: mean annual 1106 

precipitation; ADF: acid detergent fibre. See Table S1 for more details about variables. 1107 

1108 
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Figure 3. The relationship between SOC and regional and landscape scale factors in the 1109 

Geophysical model. In A) solid lines and circles represent exposed hillsides, and dotted lines and 1110 

triangles indicate protected hillsides. In D) solid lines and circles indicate low grazing 1111 

management intensity, dotted lines and triangles indicate medium grazing management 1112 

intensity and dashed lines and squares indicate high grazing management intensity. In A-D line 1113 

and plane values are predictions of the model across the corresponding predictors´ range 1114 

according to estimate marginal means. Grey areas around regression lines indicate standard 1115 

errors. In A) and D) points indicate actual values. 1116 

1117 
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1118 

1119 

1120 

Figure 4. The relationship between SOC and biochemical and herbage factors in the Combined 1121 

model. In B) and D) solid lines and circle points represent cattle-grazing, dashed lines and 1122 

square points indicate sheep-grazing and dotted lines and triangle points indicate mixed-1123 

grazing. In A-D line and plane values are predictions of the model across the corresponding 1124 

predictors´ range according to estimate marginal means. In A-D line and plane values are 1125 

predictions of the model across the corresponding predictors´ range according to estimate 1126 

marginal means.  Grey spectrum indicate 95% confidence intervals. In A) and D) points indicate 1127 

actual values. 1128 
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