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Abstract. The trajectories of soil carbon in our changing climate are of utmost importance, as soil is a substantial carbon reser-

voir with a large potential to impact the atmospheric carbon dioxide (CO2) burden. Atmospheric CO2 observations integrate all

processes affecting carbon exchange between the surface and the atmosphere and therefore are suitable for carbon cycle model

evaluation. In this study, we present a framework for how to use atmospheric CO2 observations to evaluate two distinct soil

carbon models (CBALANCE and YASSO) that are implemented in the global land surface model (JSBACH). We transported5

the biospheric carbon fluxes obtained by JSBACH using the atmospheric transport model TM5 to obtain atmospheric CO2.

We then compared these results with surface observations from Global Atmosphere Watch stations as well as with column

XCO2 retrievals from the GOSAT satellite. The seasonal cycles of atmospheric CO2 estimated by the two different soil mod-

els differed. The estimates from the CBALANCE soil model were more in line with the surface observations at low latitudes

(0◦N-45◦N) with only 1% bias in the seasonal cycle amplitude, whereas YASSO underestimated the seasonal cycle amplitude10

in this region by 32%. YASSO, on the other hand, gave more realistic seasonal cycle amplitudes of CO2 at northern boreal

sites (north of 45◦N) with underestimation of 15% compared to 30% overestimation by CBALANCE. Generally, the estimates

from CBALANCE were more successful in capturing the seasonal patterns and seasonal cycle amplitudes of atmospheric CO2

even though it overestimated soil carbon stocks by 225% (compared to underestimation of 36% by YASSO) and its predictions

of the global distribution of soil carbon stocks was unrealistic. The reasons for these differences in the results are related to the15

different environmental drivers and their functional dependencies of these two soil carbon models. In the tropics, heterotrophic

respiration in the YASSO model increased earlier in the season since it is driven by precipitation instead of soil moisture, as in

CBALANCE. In temperate and boreal regions, the role of temperature is more dominant. There, heterotophic respiration from

the YASSO model had a larger seasonal amplitude, driven by air temperature, compared to CBALANCE, which is driven by
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soil temperature. The results underline the importance of using sub-yearly data in the development of soil carbon models when20

they are used in shorter than annual time scales.

Copyright statement. TEXT

1 Introduction

The terrestrial carbon cycle consists of uptake of CO2 by vegetation for photosynthesis and release of carbon by plants’

autotrophic respiration, soil decomposition by heterotrophic organisms and natural disturbances (Bond-Lamberty et al., 2016).25

Soils store twice as much carbon as the atmosphere (Scharlemann et al., 2014) and its fate in changing climate remains

uncertain (Crowther et al., 2016). For example, while Crowther et al. (2016) concluded from a data-based analysis that large

carbon stocks will lose more carbon due to warming conditions, van Gestel et al. (2018) questioned this view with an analysis

based on a more comprehensive dataset. To have reliable predictions of future carbon stocks, process-based understanding of

the below ground carbon cycle is needed (Bradford et al., 2016).30

One way to evaluate soil carbon models has been to use observations of soil carbon stocks (Todd-Brown et al., 2013).

At small scales,rates of gas exchange measured in chambers have also been used (Ťupek et al., 2019), but separation of

heterotrophic and autotrophic respiration is laborious (Chemidlin Prévost-Bouré et al., 2010). It is anyhow challenging to

find reasons for differences in heterotrophic respiration between large scale models, as the litter input to the soil influences

heterotophic respiration and this litter input varies between the models. One way forward is to use a testbed for these models,35

as done by Wieder et al. (2018).

An alternative, regionally integrated approach is using observations of atmospheric CO2, which integrate all processes in-

volved in global surface-atmosphere carbon exchange. The surface observation network of atmospheric CO2 has been used in

benchmarking global carbon cycle models (Cadule et al., 2010; Dalmonech and Zaehle, 2013; Peng et al., 2015). Recent ad-

vances of satellite technology have enabled retrievals of space-born dry-air total column-averaged CO2 mole fraction (XCO2),40

quantifying CO2 in the entire atmospheric column between the land surface and the top of the atmosphere. These observations

reveal a more spatially integrated CO2 signal compared to surface site observations and together they provide a complemen-

tary dataset. These two data sources have been used together to study the carbon cycle with "top-down“ inversion modelling

(Crowell et al., 2019). This kind of modelling framework uses atmospheric CO2 observations to constrain a priori biospheric

and ocean fluxes, based on the Bayesian inversion technique, which results in optimized estimates (a posteriori) of the fluxes45

(Maksyutov et al., 2013; Rödenbeck et al., 2003; van der Laan-Luijkx et al., 2017; Wang et al., 2019). Estimates for fossil

emissions are often assumed as known, i.e., not optimized in the inversion.

In this study we present a framework how to use atmospheric CO2 observations to evaluate soil carbon models implemented

in a land surface model. We apply this to two state-of-the-art soil carbon models as a "proof-of-concept" for a more universal

application. Basile et al. (2020) did similar work within a biogeochemical testbed and concluded that heterotrophic respiration50
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can be a valuable benchmark in carbon cycle studies. They emphasized that the seasonal phasing of heterotrophic respiration

relative to the net primary production influences the net ecosystem exchange and therefore potentially introduces bias to

atmospheric CO2 that hampers its use as a benchmark.

To obtain the atmospheric CO2 profiles from our simulations with the land surface model we applied an atmospheric trans-

port model. In this work we used a three-dimensional atmospheric chemistry transport model TM5 (Krol et al., 2005; Huijnen55

et al., 2010). Generally, transport models, such as TM5, contain errors caused by, for example, poorly resolved advection and

heavily parameterized transport schemes (Gaubert et al., 2019). With TM5 we calculated the column averaged CO2 that can

be used to evaluate model results versus the satellite observations. Also satellite observations can include errors. The uncer-

tainty for GOSAT observations has been estimated to be around 1 to 2 ppm (Oshchepkov et al., 2013; Reuter et al., 2013).

Contributors to uncertainties in the retrieval algorithms originate, for example, from the solar radiation database and handling60

of aerosol scattering (Yoshida et al., 2013). Last, also space-borne observations have uncertainties, and also the column XCO2

profiles have influences from e.g. advection and global scale gradients driven by weather systems (Keppel-Aleks et al., 2011).

A model evaluation performed with the column XCO2 observations enabled a more thorough study of fluxes and atmospheric

physics of the modelling system (Keppel-Aleks et al., 2011).

We use in this work JSBACH, the land surface model of the ICOsahedral Non-hydrostatic Earth system model (ICON-65

ESM), one of the models participating in CMIP6. We are interested in seeing if the two soil carbon models lead to markedly

different CO2 signals and to explore which conclusions on model performance and process representation can be drawn that

could help to improve this land surface model (and potentially other similar models) and our understanding of the land carbon

cycle. Since the only difference between the two model versions is the description of the underlying soil processes and include

no major feedbacks between soil and vegetation in the model set-up (excluding a small effect of litter accumulation on fire70

emissions), the difference in the release of carbon to the atmosphere originates only from the soil carbon models. The two soil

carbon models are both first-order decay models. However, they have different pool structures and environmental drivers and

have differing response functions to these variables. CBALANCE uses soil moisture and soil temperature as driving variables

and the YASSO model precipitation and air temperature. This framework allows us to investigate how these above-mentioned

differences in soil carbon modes influence atmospheric CO2. We use the transport model TM5 and the anthropogenic and75

ocean fluxes from an inversion framework (van der Laan-Luijkx et al., 2017). In the analysis we also use a simple box model

calculation to further understand the main causes in the different outcomes of the models. Specifically, we aim to answer the

following questions:

– How do can we use a land surface model together with a transport model to evaluate soil carbon model and what problems

do we face when doing that?80

– What is the role of soil carbon stocks, the variables driving their decomposition and the functional dependencies of those

variables on modelled heterotrophic respiration at global scale and how this leads to differences in the atmospheric CO2

signal?
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2 Materials and Methods

We used the land surface model JSBACH (Mauritsen et al., 2019) to obtain net land-atmosphereCO2 exchange and fed that,85

together with ocean, fossil and land use �uxes, into a transport model, TM5, which simulates resulting atmosphericCO2 at

selected surface sites as well as column integrated values for comparison to satellite derived columnCO2.

2.1 Model simulations: JSBACH with two soil carbon models

JSBACH is the global land surface model of the Max Planck Institute`s Earth System Model (Mauritsen et al., 2019), simu-

lating terrestrial carbon, energy and water cycles (Reick et al., 2013). In this study JSBACH was run with two different soil90

carbon sub-models that are described below. The older model, CBALANCE, has been used in CMIP5 simulations of JSBACH

(Giorgetta et al., 2013). The newer model, YASSO, has been used in simulations for the annual global carbon budget (Le Quéré

et al., 2015; Le Quéré et al., 2018) and is used in CMIP6 simulations of JSBACH (Mauritsen et al.,2019). It is also used in

JSBACH4, a re-implementation of JSBACH for the ICON-ESM (Giorgetta et al., 2018; Nabel et al., 2019).

Independent of the sub-model used for soil carbon, JSBACH uses three carbon pools for living vegetation: a wood pool,95

containing woody parts of plants, and green and reserve pools that contain the non-woody parts. JSBACH simulates different

processes that lead to losses from the vegetation pools, such as grazing, shedding of leaves and natural or anthropogenic

disturbances. Depending on the process, some of the vegetation carbon is lost asCO2 into the atmosphere, while the remaining

part is transferred as dead vegetation into the litter and soil pools of the sub-model for soil carbon, where it is then subject to

the internal processes of the soil carbon sub-model. The only process outside of the soil carbon sub-model that in�uences dead100

material is �re, burning parts of above ground litter carbon.

2.1.1 The soil carbon model CBALANCE

CBALANCE (CBA) is the original soil carbon sub-model of JSBACH (Raddatz et al., 2007), which has been used in CMIP5.

The environmental drivers for decomposition in CBA are soil temperature (at soil depth of 30 to 120 cm below the surface)

and relative soil moisture (� ) of the upper-most soil layer, which is 5 cm thick.� varies between zero and one.105

The function for soil temperature dependence,f CBA;T soil of decomposition follows aQ10 formulation as

f CBA;T soil (Tsoil ) = Q
T soil
10 � C
10 (1)

with a Q10 value of 1.8 andTsoil is soil temperature in� C (shown in Fig. S1a) (Raddatz et al., 2007). The dependency on

relative soil moisture� is linear (Fig. S1b) and it is calculated as

f CBA;� (� ) = MAX (� min ;
� � � crit

1:0 � � crit
) (2)110

where� crit is 0.35 and� min is 0.1 (Knorr, 2000).

Together these functions are modulating the rate of decomposition, so that theRh from each pool (denoted byi ) is

Rh (Tsoil ; � ) = f CBA;� f CBA;T soil

Ci

� i
(3)
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whereCi is the carbon content of each pool and� i is the turnover rate of each pool in days. CBA uses �ve different carbon

pools having different turnover times:115

– Two green litter pools: one above- and one below-ground in which the non-woody plant parts decompose with turnover

times between 1.8 and 2.5 years (Goll et al., 2015)

– Two woody litter pools: one above- and one below-ground in which the woody plant parts are decomposed with turnover

times of several decades

– One slow pool receiving its input from the four litter pools and its turnover time is on the order of a century.120

2.1.2 The soil carbon model YASSO

The original soil carbon model of JSBACH was replaced by YASSO (YAS) (Thum et al., 2011; Goll et al., 2012). JSBACH's

YAS implementation is based on the Yasso07 model (Tuomi et al., 2009). Development of Yasso07 relied heavily on litter bag

and other observational data sets that were used to estimate model parameters (Tuomi et al., 2009, 2011). Owing to its strong

connection to experiments, its environmental drivers are quasi-monthly air temperature and precipitation.125

The decomposition dependency on air temperature is

f Y AS;T air (Tair ) = e� 1 Tair + � 2 T 2
air (4)

whereTair is air temperature (� C), parameter� 1 is 9.5� 10� 2 � C � 1 parameter� 2 is -14� 10� 4 � C � 2 (Fig. S1c).

The decomposition depends on precipitationPa (m) as

f Y AS;P a (Pa) = (1 � eP a ): (5)130

where = -1.21m� 1 (Fig. S1d). The environmental drivers for YAS (precipitation and air temperature) are averaged for 30-day

periods.

Similar to CBA, YAS has slowly and rapidly decomposing pools, but its pool dynamics are more structured. First, all the

pools are divided into woody and non-woody materials. The difference in the calculation of the decomposition rates between

non-woody and woody pools is an additional parameter that increases the turnover rates of the woody litter, dependent on its135

size parameter (Tuomi et al., 2011), which is PFT-dependent.

YAS takes the chemical composition of the incoming litter into account. The incoming litter is divided to different chemical

pools according to the PFT dependent factors. Information for the PFT dependent factors for the litter decomposition has been

derived from observations (Berg, 1991b, a; Gholz et al., 2000; Trofymow, 1998). YAS uses four chemically distinct pools:

acid soluble, water soluble, ethanol soluble and non-soluble. For each of these four chemical compositions one above- and one140

below-ground pool is used. In addition there is one humus pool (divided to woody and non-woody pools as all the other pools).

Dynamics of the YAS carbon pools are described in (Tuomi et al., 2009) with decomposition �uxes causing redistributions

among the pools or losses to the atmosphere. Each of the pools has a decay constant, which is modi�ed by the environmental

dependencies in Eqs. (4) and (5).
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2.2 The model simulations: The JSBACH set-up145

JSBACH model simulations followed the TRENDY v4 protocol in terms of JSBACH version, simulation protocol and forc-

ing data (Le Quéré et al., 2015; Sitch et al., 2015). Climate forcing was based on CRUNCEP v6 (Viovy, 2010) and global

atmosphericCO2 was obtained from ice core and National Oceanic and Atmospheric Administration (NOAA) measurements

(Sitch et al., 2015). For each set-up, the model was run to equilibrium, i.e. until the soil carbon pools of the applied carbon

sub-model were at steady-state. The two different transient simulations were then done for 1860 to 2014. Anthropogenic land150

cover change was forced by the LUHv1 dataset (Hurtt et al., 2011) and was simulated as described in Reick et al. (2013).

While �re and windthrow were simulated, natural land cover changes and the nitrogen cycle were not activated. Simulations

were done at T63 spatial resolution (approximately 1.9� or, 200 km). For further details on the spin-up and the model version

please refer to the SI.

2.3 The model simulations: TM5155

To estimate atmosphericCO2, we used the global Eulerian atmospheric transport model TM5 (Krol et al., 2005; Huijnen et al.,

2010). TM5 was run globally at 6� x 4� (latitude x longitude) resolution with two-way zoom over Europe, where the European

domain was run at 1� x 1� resolution. This is the pre-existing set-up that was readily available. The 3-hourly meteorological

�elds from ECMWF ERA-Interim (Dee et al., 2011) were used as forcing to run TM5. Linear interpolation was done to obtain

CO2 estimates at the exact locations and times of the observations.160

We fed TM5 daily biospheric, weekly ocean and annual fossil fuel �uxes to obtain realistic atmosphericCO2. Values of

GPP and total ecosystem respiration were taken from the JSBACH simulations for the two different soil model formulations.

Also, carbon release from vegetation and soil owing to land-use change, �res and herbivores were taken from the JSBACH

model results as part of terrestrial biosphere carbon �uxes. In addition, we used the posterior biospheric �ux estimates from

CarbonTracker Europe (CTE2016, later referred to as CTE; van der Laan-Luijkx et al. (2017)) to provide some guidance on165

the ability of TM5 to represent the individual site observations. The ocean �uxes were the a posterior estimates from the same

study.

Fossil fuel emissions are from the EDGAR4.2 Database (EDGAR4.2, 2011) and Carbones project (http://www.carbones.eu),

with scaling to global total values as for the Global Carbon Budget as described in van der Laan-Luijkx et al. (2017). The

annual fossil fuel �ux to the atmosphere was approximately 8.63PgCyr� 1, and ocean uptake of carbon was approximately170

2.33PgCyr� 1 when averaged over 2001-2014. Annual values are summarized in Table S1. Simulations with TM5 were done

for 2000-2014.

2.4 The surface observations

Surface observations of atmosphericCO2 from NOAA weekly discrete air samples (ObsPack product: GLOBALVIEWplus

v2.1; ObsPack (2016)) were used to evaluate the effect of different soil carbon models on troposphericCO2 seasonal cycles at175

sites around the globe. The sites used in the evaluation are shown in Fig. 1. The uncertainties of NOAA �ask air measurements
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for the period of this study are� 0.07 ppm (68% c.i.). From the data, samples re�ective of well-mixed background air were

selected (based on �ag criteria) similar to van der Laan-Luijkx et al. (2017) to minimize the in�uence on the observation of

transport model errors in our analysis.

2.5 The satellite retrievals180

GOSAT (Greenhouse Gases Observing Satellite) from Japan Aerospace Exploration Agency (JAXA) was launched in 2009 and

observes columnXCO2 with the TANSO-FTS instrument (Kuze et al., 2009). These data were used to evaluate the different

simulations and to assess model performance at larger spatial scale.XCO2 from the simulation were calculated using global 4�

x 6� x 25 (latitude x longitude x vertical levels) daily average 3-dimensional (3-D) atmosphericCO2 �elds. For each satellite

retrieval, the global 3-D daily mean gridded atmosphericCO2 estimates were horizontally interpolated to the location of the185

retrievals to create the vertical pro�le of simulatedCO2. Averaging kernels (AKs) (Rodgers and Connor, 2003) were applied

to model estimates to ensure reliable comparison with GOSAT retrievals:

Ĉ = ca + ( h � a)T (x � xa); (6)

whereĈ is XCO2, scalarca is the priorXCO2 of each retrieval,h is a vertical summation vector,a is an absorber-weighted

AK of each retrieval,x is a model pro�le andxa is the prior pro�le of the retrieval. Each retrieval had a prior pro�le (Yoshida190

et al., 2013). The retrievals for different terrestrial TransCom (TC) areas (Fig. 1) were compared with those calculated from

the two model simulations. For comparison with GOSATXCO2, the estimates of 3D �elds at 6� x 4� resolution were used,

but not those from the zoom grids due to technical reasons. Differences inXCO2 due to model resolution were not signi�cant

within the context of this study. In this work GOSAT observations (NIES retrieval V02.21 and V02.31) between July 2009 and

the end of 2014 were used.195

2.6 Global datasets for evaluating simulated soil carbon and gross primary productivity

For evaluation of the JSBACH model results we additionally used data from two soil carbon databases and the FLUXCOM

project (Jung et al., 2019). We used the gross primary production (GPP) produced by FLUXCOM, where eddy covariance

�ux observations are upscaled using machine learning methods and meteorological and remote sensing data. The FLUXCOM

GPP has 0.5 degree spatial resolution and eight-day temporal resolution for 2001-2014. Additionally we used two different soil200

carbon datasets, SoilGrids (Hengl et al., 2014) and one based on Harmonized World Soil Database (HWSD) (Batjes, 2016).

For the soil carbon data we used the preprocessed datasets from Fan et al. (2020) providing values for organic soil carbon down

to 1 m depth.
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3 Results

3.1 Global carbon �uxes and stocks with the two model formulations205

3.1.1 Carbon �uxes

Since the two different model formulations differ only in their soil carbon module formulation, the incoming �ux to the

ecosystem from photosynthesis is the same in both cases. We analyzed results for 2000-2014, and we show here averaged

values for that period. The main target variable of our analysis is understanding the role of heterotrophic respiration, but

to better elucidate how it in�uences the atmosphericCO2, we also show net primary production (NPP) and net ecosystem210

exchange (NEE). NPP is obtained from the gross primary production (GPP) by subtracting autotrophic respiration. NEE is

obtained by further subtracting from GPP total ecosystem respiration, autotrophic respiration, direct land cover change, �re,

harvest and herbivory �uxes, as shown in Table 2.

Even though annual total global values of heterotrophic respiration are similar between the different model formulations

(Table 1), their global seasonal cycles are different (Fig. 2c). The YAS version has a 66% larger variation ofRh during the year215

than CBA. Both model versions have their minimum value ofRh in February. While CBA has a maximum in August, YAS

reaches its maximum value one month earlier, and globalRh also stays high during August. YAS clearly has a steeper increase

and decline in its seasonal cycle than CBA. The higher peak of heterotrophic respiration by the YAS model leads to higher

global NEE values during June and July (Fig. 2 e). In the �rst four months of the year, NEE is higher in the simulations of the

CBA model, caused by the higher heterotrophic respiration values at this time (Fig. 2 e). Autotrophic respiration (which, as220

explained above, like GPP and NPP is the same for both model formulations) and has its highest values in July and August (Fig.

S2a). During 2000-2014 both CBA and YAS predict increases in heterotrophic respiration, but only YAS has a signi�cantly

increasing trend (p-value < 0.005) (Fig. 2). CBA has a larger standard deviation in the annual values (0.87PgC) than YAS

(0.73PgC). The annual NEE time series do not have signi�cant trends and CBA has larger interannual variability (standard

deviation of 0.84PgC vs. 0.79PgC by YAS).225

In addition to the comparison of the global results, we looked how the two soil modules differed for broad latitudinal

separated regions. As for the global values total magnitudes ofRh are comparable, while the seasonal cycles show clear

differences and similar behaviour is also noticed in different latitudinal regions (Fig. 3c, d). The YAS model shows, however,

a larger amplitude in the seasonal variation in all of the regions. The NPP is the same in the different latitudinal regions (Fig.

3a, b). In the two most northern regions in the Northern Hemisphere the amplitude inRh of YAS is approximately twice the230

amplitude of CBA. In both of these regions YAS has clear maximum values ofRh in July and August, while the seasonal

cycles of CBA are more shallow and do not include such clear maximums. The seasonal cycle ofRh is quite different between

the model formulations in the tropics. At 0� N-30� N, YAS has a seasonal cycle shifted earlier compared to CBA. In this region

YAS has a 42% larger seasonal amplitude forRh than CBA. In the Southern Hemisphere regions 0� S -10� S and 10� S -30� S,

CBA predicts higher values ofRh during the �rst months of the year after which it stays lower until the end of the year, whereas235

YAS shows a clear lowering between June and September. In the region 10� S -30� S YAS has 54% larger amplitude inRh than
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CBA. The differences in heterotrophic respiration lead to pronounced differences in the NEE within the tropical region (Fig.

3e, f).

The variation inRh seasonal dynamics of these two model formulations can be linked to the differences in their environ-

mental drivers and functions. In Table 3 the correlation between heterotrophic respiration and the environmental drivers of240

each speci�c model formulation are shown for the different latitudinal regions. Figures S3-S7 in the supplementary material

show these same relationships. TheRh from CBA has a strong correlation with soil moisture� in the tropical region (30� S-

30� N) and a high correlation with soil temperatureTsoil in the northern high latitudes (30� N-90� N) and lower correlation in

southern high latitudes (30� S-60� S). For other combinations of regions and drivers ther values are low for CBA and in two

regions the dependency between� andRh is negative. For the YAS model, on the other hand,Rh shows strong correlation245

to its environmental drivers (Table 3). Ther values betweenRh and precipitation are over 0.90 in all regions except region

30� S-60� S. Between air temperature andRh the results are similar, with the only smallr value in the Southern Hemisphere

tropics. The seasonal cycle ofRh predicted by the YAS model does correlate positively with the soil moisture variable� in any

of these regions (Table 3 and Fig. S7). This is not unexpected as such, since� is not the driver of the YAS model. In the tropical

region soil moisture for CBA and precipitation for YAS are more important drivers compared to soil and air temperatures. At250

high latitudes temperature has a larger effect onRh in the results of both models, even though in the Northern Hemisphere

precipitation also has a signi�cant role for YAS.

We also investigated, whether the seasonal cycle of the heterotrophic respiration is correlated with litter fall. The only

signi�cant correlation occurred at 30� N-60� N for both model versions. This was caused because both have similar annual

cycles ofRh and litter fall, but the seasonal cycle ofRh precedes litter fall (Fig. S8).255

Global simulated GPP of 167PgCyr� 1 (Table 2) is highly overestimated when compared to the up-scaled data product

from FLUXCOM, which is giving a mean value of 126PgCyr� 1 for this time period (Jung et al., 2019) and having a range

of 106-130PgCyr� 1 for a longer time period. Despite the overestimate of global GPP by the model, the comparison to the

FLUXCOM product shows that the seasonal cycles in different latitudinal regions are quite similar, although in the northern

boreal region JSBACH reaches maximum GPP values later than the FLUXCOM product (Fig. S9).260

The annual netCO2 �ux shows a slightly larger land sink for YAS than CBA (Table 2). Owing to the larger litter pool, �re

�uxes are larger in the YAS model formulation by 0.50PgCyr� 1, however they have similar spatial patterns (Fig. S10). This

caused the heterotrophic respiration of YAS to be 0.56PgCyr� 1 smaller than by CBA, since the model was spun-up to steady

state in 1860 and thus leads to a small discrepancy in netCO2 �uxes between the two model formulations.

3.1.2 Carbon stocks265

The soil carbon stocks predicted be the two models differed in magnitude and also their latitudinal distributions differed. The

global estimate for total soil carbon by CBA was 4.5-fold larger than by YAS (Table 1). The global estimate for litter simulated

by the YAS model was larger than that simulated by CBA. Vegetation carbon biomass was similar in both model formulations

(Table 1).
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The global distribution of soil carbon is very different between the model formulations (Fig. S11c, d, Fig. S12). The CBA270

model has large values of soil carbon in the mid-latitudes of the Northern Hemisphere. YAS predicts larger values in the

temperate region of the Northern Hemisphere, but the highest values of soil carbon are located in arctic regions. The data based

estimates from SoilGrids and HWSD also predict the highest values at high northern latitudes (Fig. S11a, b and Fig. S12).

The CBA model predicts higher values and differing latitudinal pattern south of 60� N compared to the data based values (Fig.

S12). The YAS model shows very similar behaviour to the HWSD latitudinal pattern and magnitude south of 60� N. Ther 2 and275

the root mean square errors are generally better for the YAS model than the CBA model when comparing the values along the

latitudinal gradient against the data-based products (Table S2).

The turnover times of the two formulations must differ, since the soil carbon pools are of very different magnitude, but the

annualRh between the model formulations are similar. The turnover times (� ) of soil carbon pools can be evaluated at both grid

scale and from global values. This global value is obtained by dividing the total soil carbon pool (to which both soil and litter280

carbon stocks are added) by the annualRh . Calculated from the global values averaged for 15 years, the apparent turnover time

for CBA is 51.3 years and for YAS 14.8 years. The anomalies of the turnover times are represented in Fig. 4. These have been

calculated from the carbon pools over the whole time period and the mean annualRh . The models show longer turnover times

in northern high latitudes and dry areas. CBA shows a larger spread of turnover times within different temperature regimes

than YAS (Fig. 5). The turnover times of CBA are generally longer and show a large spread across different temperatures. The285

YAS model shows a large spread of turnover rates at warmer temperatures but below 0� C the range is narrower (Fig. 5 b). Both

models predict the fastest turnover rates in moist and warm conditions.

3.1.3 Box model

To assess whether the larger seasonal cycle amplitude inRh by YAS is caused by the larger litter pool or the environmental

response functions, a simple box model calculation was performed (detailed description is given in Appendix). When global290

respiration was calculated with the turnover times and soil carbon pools of the YAS model, but using the environmental

responses and drivers of the CBA model, the annual magnitude decreased by 29% compared to the original YAS model

(Table A1). However, the yearly maximum value did not change much. When the opposite was done, and the turnover time

and soil carbon pools of CBA were used with the environmental responses and inputs of the YAS model, the magnitude of

global heterotrophic respiration increased by approximately 1.4-fold (Fig. A1). The increase in the amplitude was 83% (Table295

A1). Therefore, this simple analysis suggests that the environmental variables and their response functions cause the larger

global amplitude ofRh in the YAS model formulation. To further disentangle whether this change was caused by the different

environmental drivers or their functional dependencies, we made additional tests.

The amplitudes of the seasonal cycle ofRh (difference between the maximum and minimum values) are shown in Table A1.

For the YAS model, there happens a strong decrease in the amplitude when both driver variables and the response functions300

are changed. When only driver variables are changed, only a slight decrease occurs. When the response functions are changed,

the decrease in the amplitude is more pronounced with 21%. The amplitude predicted by the CBA model increases, when

the driving variables and response functions are changed (Table A1). This increase occurs when either driving variables or
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response functions are changed individually. However, with the change of the response functions the change in amplitude is

larger (74%). In summary, the response functions have a more pronounced role in the changes than the driving variables alone,305

and this was true for both models.

3.2 Evaluation against surface observations

Seasonal cycle amplitudes of atmosphericCO2 are successfully simulated by the modeling framework across different latitudes

(Fig. 6a). Ther 2 values of the observed seasonal cycle and the model estimates are high across latitudes, despite some lower

values in mid-latitudes of the Northern Hemisphere (Fig. 6b). Averaged over all latitudes ther 2 value, calculated as linear310

correlation of simulated and observed averaged annual cycles, was 0.93 for CTE, 0.90 for CBA and 0.87 for YAS.

The capability of the model formulations to simulate the amplitude of the seasonal cycle differs within latitudinal regions

(Fig. 6). The CBA model is able to capture the timing of the seasonal cycle in northern latitudes, but has a tendency to

overestimate the seasonal cycle amplitude by about 30% north of 45� N. In this region the underestimation of seasonal cycle

amplitude by CTE is approximately 5% and by YAS 14%. In the region 0� N-45� N YAS underestimates the seasonal cycle315

amplitude, on average, by approximately 32%, whereas CTE underestimates it by 4% and CBA overestimates it by 1%. The

agreement between estimated atmosphericCO2 and observations was worse in YAS than in CBA when considering ther 2

value and the seasonal cycle. Overall, the magnitude of the seasonal cycle amplitude predicted by YAS had less bias north

from 45� N compared to CBA, but large underestimation in latitudes 0� N-45� N, where CBA was very successful in simulating

the right seasonal cycle amplitude.320

Four surface observation sites in the Northern Hemisphere illustrate similar behaviour of the seasonal cycle and its ampli-

tudes as described above (Fig. 7 and Table S3). To con�rm the general quality of the TM5 model used for both YAS and

CBA we plotted its biospheric posterior �uxes from CarbonTracker Europe 2016 (CTE); indeed, deviations between CTE and

observations are much smaller than from the JSBACH model at all sites. At the high-latitude sites, Alert and Pallas (Fig. 7a,

e), CBA overestimates the seasonal cycle amplitude, while YAS shows some phase-shift of the cycle. The observed seasonal325

cycle amplitudes are smaller at the two more southern sites, Niwot Ridge and Mauna Loa. For those sites, CBA is generally

successful in capturing their magnitude (Table S3), whereas YAS underestimates them strongly. YAS is also having dif�culty

capturing the seasonal pattern at Niwot Ridge. This was happening generally in the temperate region, as is also seen in the

lower r 2 values of the YAS model at the different sites (Fig. 6).

In addition to the seasonal cycle the temporal development of the seasonal cycle amplitude for the four sites is displayed in330

Fig. 7b, d, f, h. We show this development for relative values of the seasonal cycle amplitudes to make the temporal development

visible, since the values between the two different model formulations are so different. The correlation coef�cients between

observed and the different modelled time series are shown in Table S4. CTE better captured the interannual variation of

the seasonal cycle amplitude than the CBA and YAS models, which perform comparably. The YAS model shows stronger

interannual variation at Niwot Ridge (Fig. 7d) and this is caused by the small magnitude of the seasonal cycle amplitude by335

YAS at this site.
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When comparing the overall bias in atmosphericCO2 at these four sites between the observations and the model simu-

lations, CBA overestimatedCO2 by 3.65 ppm and YAS by 2.27 ppm, when averaged over all the measurements within the

study period. A closer look at the bias at Mauna Loa (Fig. S13) revealed biases in the 2000-2014 trends for CBA and YAS,

whereas CTE shows no bias in trend. The CBA overestimatesCO2 by 1.76 ppm in the beginning and by 3.74 ppm in 2014. The340

overestimates by YAS are smaller, 1.12 ppm in 2000 and 3.14 in 2014. The results at surface sites show that CBA largely over-

estimated seasonal cycle amplitude at high northern latitudes, whereas YAS almost consistently underestimated the seasonal

cycle amplitude in the Northern Hemisphere. CBA captured the seasonal cycle patterns better than YAS across different lati-

tudes. Overall, the YAS model showed biases in the atmosphericCO2 cycle at temperate latitudes in the Northern Hemisphere,

whereas the CBA model had biases in the high latitudes in the Northern Hemisphere.345

3.3 ColumnXCO 2 comparisons for TransCom regions

This evaluation of the two soil modules against satellite columnXCO2 was carried out for the different TransCom (TC) regions

(Fig. 1). The comparison was based on seasonal cycle amplitudes andr 2 values similar to the surface site evaluation. Not all the

TC regions show a clear seasonal cycle, such as regions in South America (TC regions 3 and 4), northern part of Africa (TC=5)

and Australia (TC=10). For completeness we show the analysis also for these regions in Table S5. For regions with clear sea-350

sonal cycles we used the ccgcrv curve �tting procedure available from NOAA

(https://www.esrl.noaa.gov/gmd/ccgg/mbl/crv�t/crv�t.html, (Thoning et al., 1989)), but for regions with missing data or no

clear seasonal cycle, we averaged over all years of data.

To further illustrate the results from this comparison, we show data for two regions having a clear seasonal cycle. In TC

region 2, the southern part of North America, CBA is more successful in capturing the observed seasonal cycle amplitude355

than YAS (Fig. 8a), even though CBA reaches the minimumXCO2 later than observations. YAS underestimates the seasonal

cycle amplitude by 56% and has a different seasonal pattern than observations, so the minimum is reached earlier than in the

observations and also the shape during the summer period differs from the observations. In Europe, TC region 11, both models

capture the seasonal cycle amplitude (Fig. 8c, Table S5) and the seasonal cycle in the �rst part of the year. The increase of

CO2 is not as well captured by the simulations. The time series of seasonal cycle amplitudes predicted by the CBA and YAS360

models(8c, d) do not correlate signi�cantly with the observations.

Overall, observed and simulatedXCO2 differ from each other in ways similar to the surface site observations. Estimates of

seasonal cycle amplitude by YAS are too small in mid-latitudes (Fig. 8a) and in TCs 2, 5 and 8 compared to the observations,

and CBA is better at capturing the observed annual cycles. At TC=1 (the northern part of North America), CBA overestimates

the seasonal cycle amplitude, while YAS better captures it. However, the seasonal cycle pattern is better captured with CBA365

(Table S5) than with YAS. Generally YAS had smaller seasonal cycle amplitudes than the observations and CBA was more

consistent with the observations in most TC-regions (Table S4). CBA is also better than YAS in capturing the seasonal pattern

of XCO2 in all TC regions (Table S5).
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There is bias in absoluteXCO 2 between the GOSAT retrievals and the model simulations. When averaged over the time

period used and the TC regions, CBA overestimates the GOSAT observations by 3.37 ppm and YAS by 2.33 ppm. These values370

were in line with bias in absoluteCO2 estimates at the four surface sites.

4 Discussion

In this work our aim was to use atmospheric observations to assess whether soil carbon models of a land surface model can be

evaluated with this kind of framework. Our main �nding was that the two models predicted different annual cycles of global

Rh , with the YAS model having a larger amplitude. This in turn leads to clear differences in the model predictions of seasonal375

cycles of the atmosphericCO2 abundance. To attribute the differences between the two models to a speci�c cause, we need to

compare their results from their different aspects and to also judge whether our model simulations are reasonable in the light

of previous research.

4.1 Evaluation of carbon �uxes

Annual heterotrophic respiration was 66.1PgCyr� 1 for CBA and 65.5PgCyr� 1 for YAS (Table 2), which falls in the range380

of estimates from Earth System Models (41.3-71.6PgCyr� 1) and is close to the observation based estimates of 60PgCyr� 1

(Shao et al., 2013). Part of the difference is caused by the �re �uxes. The YAS model has a larger litter pool that behaves as

fuel for �res. Therefore, to have the system at steady state, global heterotrophic respiration by YAS must be less. Moreover,

the simulation time of 140 years before the beginning of the analysis might cause some divergence between the model runs.

Moving to monthly time scales, we can see that the global seasonalRh cycle had a larger amplitude with YAS than with CBA385

(Fig. 2) and a simple box model calculation found that environmental drivers and their response functions are the cause, not

the large litter pool in the YAS model. It is anyhow challenging to further disentangle whether this larger amplitude is mainly

caused by the differing environmental drivers of the soil carbon models or if the functional dependencies of those drivers would

play a bigger role. The analysis by the box model suggested a stronger role of the response functions compared to the driving

variables at monthly timescales, but strong conclusions cannot be drawn from such a simple analysis. Also other studies have390

showed that the response functions themselves lead to pronounced differences between soil carbon models (Wieder et al.,

2018).

When heterotrophic respiration is compared by latitudinal zones, differences between the model formulations are visible

in the variability and timing of the seasonal cycles in many regions (Fig. 3).Rh correlates strongly with the environmental

drivers of the models in different latitudinal zones (Table 3). Both models are largely in�uenced by their moisture dependency395

in the tropical region (Table 3). CBA is driven by soil moisture with a linear dependence and YAS is driven by precipitation.

At annual timescales, at which the YAS model was originally developed, precipitation and soil moisture behave similarly.

However, the seasonal cycles of the two variables are different. Precipitation begins earlier in the season in the tropical region,

and it causes YAS to reach yearly maximum heterotrophic respiration earlier than CBA, which is driven by soil moisture in this

region. Similarly, air and soil temperatures are more similar on the long term as for short periods. Particularly in the temperate400
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region, where the temperature has a larger role, the air temperature has larger variability than soil temperature and this leads to

different kind of seasonal pattern of theRh predictions by the two different soil models.

The observations show that litterfall has strong in�uences on heterotrophic respiration (Chemidlin Prévost-Bouré et al.,

2010), but this process is not included in the models, so at seasonal timescales in the different latitudinal zones no clear

in�uence of litterfall driving the heterotrophic respiration was seen. However, changes in the chemical composition of litterfall405

is considered to be a potential reason for changes in the amplitude of atmosphericCO2 (Randerson et al., 1997) and this is

something we could study with the YAS model.

Different moisture dependencies ofRh have earlier been found to be important (Exbrayat et al., 2013). At the global level

Hursh et al. (2017) recommended using parabolic soil moisture functions in preference to functions based on mean annual

precipitation. Their study considered soil respiration, i.e., autotrophic respiration by roots was also included.�Tupek et al. (2019)410

evaluated the YAS model againstRh observations at two coniferous sites in southern Finland and found problems in capturing

the seasonality in the observations and the variability in the summertime �uxes. One reason they mention for this is response

of the simulatedRh to soil moisture conditions, sinceRh is not attenuated in very moist conditions and they found a need to

improve the moisture dependency of the YAS model. This is in line with our �ndings, that a model that has been parameterized

at annual time scales requires further development before it can be reliably applied at shorter timescales. Precipitation was415

originally used in the YAS model as a proxy for soil moisture, since enough accurate soil moisture observations for model

development were not available. Clearly, this idea needs reconsideration as our results show that at zonal spatial scales and

monthly temporal scale,Rh from YAS is not at all correlated to the soil moisture.

Global GPP, being 165PgCyr� 1 in this study, was overestimated, compared to the FLUXCOM estimate. Different FLUX-

COM products give estimates between 106 and 130PgCyr� 1 for 2008-2010 (Jung et al., 2019). There have also been other420

estimates for global GPP. The Carbon Cycle Data Assimilation system estimated of 146 (� 19) PgCyr� 1 (for 1980-1999)

(Kof� et al., 2012) and estimates based on isotope observations are 150 to 175PgCyr� 1 (for 1980-2009) (Welp et al., 2011).

That GPP of JSBACH is biased high compared to observations is likely of secondary importance to our study comparing two

model formulations, because GPP was the same for both formulations and the GPP bias did not lead to strong biases in the

seasonal cycle predictions in different latitudinal zones were (Fig. S9). However, to assess the absolute skill of each model425

formulation in terms of net ecosystem exchange, GPP biases need to be reduced. Furthermore, the high GPP values predicted

in the current run would likely be lower, if the nutrient cycles of nitrogen and phosphorus were included in the used version of

JSBACH. Beside using a JSBACH version with nutrient cycles, further development work in the phenological cycle could im-

prove the estimated GPP. The difference of the modelled GPP to the FLUXCOM product (Fig. S9) suggests that the maximum

leaf area index might be overestimated in the tropics. Also, the timing of the phenological cycle north of 60� N might bene�t430

from re-parametrization.

4.2 Evaluation of carbon stocks and turnover times

The two soil models predicted different global soil carbon stocks (Table 1) with different latitudinal distributions (Fig. S12).

Similar to earlier studies (Goll et al., 2015; Thum et al., 2011), in our results the YAS model was more successful than CBA
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in estimating global soil carbon stocks similar to estimates from observations, approximately 1500PgC including large un-435

certainties (from 504 to 3000PgC) (Scharlemann et al., 2014), as can be seen in the different estimates from HSWD (1578

PgC) and SoilGrids (2870PgC) (see also Tifa� et al. (2018)). The YAS model is widely used in different applications at

smaller scale and its performance to estimate soil carbon stocks has been found to be good (Hernández et al., 2017). Compa-

rability between the model-calculated and the observed carbon stocks is relevant for any analyses of carbon �uxes because in

both models investigated here the �uxes are proportional to the stocks (�ux = decomposition rate * stock). Modelled global440

vegetation carbon was within the observation-based estimate of 442� 146PgC by Carvalhais et al. (2014).

The distribution of soil carbon stocks was also more realistic in YAS than in CBA (Fig. S12, Table S2). The large soil carbon

stocks in the mid-latitudes predicted by CBA (Figs. S11c, S12) are unrealistic compared to current estimates of the global soil

carbon distribution (Fig. S12). The large carbon stocks at high latitudes predicted by the YAS model (Figs. S11d, S12) are more

in line with the observations, but miss the high values observed from peatlands and permafrost in high latitude regions. The445

version of JSBACH used does not include peatlands and is modelling only mineral soils. Therefore, the large carbon reservoirs

of peatlands are not captured by the model. This JSBACH version also didn't have permafrost described. If permafrost would

be modelled, the seasonal cycle of heterotrophic respiration at high latitudes would likely be dampened, as the depth of the

active layer determines the amount of soil capable of respiring. The YAS model has been used in a JSBACH version containing

permafrost in a study concentrating on the Russian Far East (Castro-Morales et al., 2018). Both, CBA and YAS, were originally450

developed for mineral soils and for applications with organic soil, so model development and testing at smaller than global

scale could be useful.

The global turnover time of soil carbon by CBA was somewhat larger than in an earlier study, where it was estimated to

be 40.8 years (Todd-Brown et al., 2014). This value was in the higher end of the CMIP5 models. The global turnover time

from YAS, which was 14.8 years, is more in the range of the other CMIP5 models (Todd-Brown et al., 2014). The spatial455

distribution of the turnover time anomalies show differences caused by the environmental drivers and their dependencies at

annual timescales. When comparing these overall turnover times of total soil carbon, it is important to keep in mind that both

models consisted of carbon pools that had widely varying turnover times. For example, despite the higher overall turnover

time, the turnover time of the most recalcitrant carbon pool of YAS was an order of magnitude smaller than that of CBA.

The environmental responses of the turnover rate have quite different forms for the two soil carbon models (Fig. 5. The460

CBA model shows a wide distribution of turnover rates across the whole temperature range, whereas the YAS model shows

a larger spread in the tropical temperature range. This large spread in warm conditions is also observed (Koven et al., 2017)

and is caused by the saturating temperature function of the YAS model, as shown in Fig. S1c. The large spread in turnover

times as predicted by the CBA model might be caused by the fact that CBA is driven by soil temperature in one soil layer. The

environmental responses of the turnover rates at annual time scales behave similarly as at monthly time scales, so that moisture465

is a more important driver in warm regions and temperature in cold regions, as was seen in Table 3.
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4.3 Evaluation using atmosphericCO 2

The differences between the two models in the seasonal cycle of atmosphericCO2 were strong. CBA better reproduced the

seasonal cycle amplitudes capturing the shape of the seasonal cycle both for surface sites and comparisons in the TC regions,

even though its soil carbon distribution had worse performance compared to YAS. CBA exaggerated the seasonal cycle ampli-470

tudes at high northern latitudes, as has been found earlier (Dalmonech and Zaehle, 2013). It is important to keep in mind that

this study was done within a land surface model and modelled GPP was biased. The simulated GPP had a larger magnitude

and some bias in its seasonal cycle, and therefore its evaluation against atmosphericCO2 observations is in�uenced by it.

Even though the atmospheric observations provide a valuable and informative comparison for the model results, their use as a

benchmark metric needs careful consideration.475

The differences in absoluteCO2 andXCO2 levels against the surface observations and the satellite retrievals, respectively,

with modelledCO2 are caused by the modelling system, but this bias does not in�uence the analysis performed. We obtained

the land surface �uxes (GPP, respiration, �re, herbivory �uxes, land-use change emissions) from JSBACH and together with

the rest of �uxes from CarbonTracker Europe2016 (CTE2016), we used TM5 to obtain atmosphericCO2 values. Fossil fuel

emissions have not been optimized in CTE2016. Therefore we obtained ocean �uxes that had been optimized with the land480

carbon cycle of CTE2016, that differ from the JSBACH estimate. The land carbon cycle of CTE2016 is modelled by the

SiBCASA-GFED4 model (van der Velde et al., 2014) and �re emission that were estimated from satellite observed burned area

(Giglio et al., 2013). The net global a posteriori land sink of CTE2016 is approximately -2.0 (� 1.1)PgCyr� 1 for 2001-2014.

On the other hand, the JSBACH estimate for the net land sink is approximately -1.7PgCyr� 1 (Table 2) and is therefore smaller

than the land sink by CTE2016. The �re �ux of JSBACH is modelled, whereas the estimate in CTE2016 is based on data. As485

shown in Fig. S13 for Mauna Loa, the bias in theCO2 develops during the study period and the plot shows consistency so

that YAS, which predicts a net land sink closer to CTE2016 than CBA, has smaller bias at the end of the time period. We

concentrated the analysis on the averaged seasonal cycles, that are not in�uenced by this linear increase. We show also some

time series for the seasonal cycle amplitudes, but these have been calculated from detrended time series.

The space-borne observations give a similar message as the surface observations in TransCom regions, which showed clear490

seasonal cycle. Niwot Ridge is located in TransCom region 2 (southern part of North America) and also there YAS showed

too low amplitude and CBA performed better, similarly as seen in the Fig. 8. The Pallas site is located in TransCom region

11 (Europe) and at Pallas the seasonal cycle was more pronounced than in Europe as whole, but similarly for the surface

observations at Pallas and TransCom region 11, the models both perform acceptably. Using large TransCom regions helped to

interpret the signal despite the larger variability than in the surface observations (comparing grey shaded regions in Figs. 7 and495

8) and it has been recommended to use the information content of the satellites on continental scales (Miller et al., 2018).

The transport model itself also brings uncertainty to the result. Modelling of atmospheric transport is a challenging task as

open scienti�c questions in the �eld remain (Crotwell and Steinbacher, 2018) and the models contain biases (Gurney et al.,

2004). The errors in atmospheric transport models cause a substantial difference in the inverseCO2 model �ux estimates

(Peylin et al., 2013). However, in this study we only used one atmospheric transport model. It is expected that the biases, as500
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only one transport model was used, are similar between the two soil model runs and are not the cause for the large differences

seen in the two simulations.

5 Conclusions

We demonstrated how atmosphericCO2 observations can be used to evaluate two soil carbon models within the same land

surface model and the different viewpoints offered by several variables considered. We used two different soil carbon models505

within one land surface model and used a three-dimensional transport model to obtain atmosphericCO2, while obtaining the

anthropogenic and ocean �uxes from CarbonTracker Europe framework. We evaluated the carbon stocks of the soil models

and compared seasonal cycles calculated with soil carbon �uxes from the soil models to atmosphericCO2 results from both

surface and space-born observations. This work highlighted how the changes in the heterotrophic respiration transfer to the

net ecosystem exchange estimates and further to the atmosphericCO2 signal. We also discussed the importance of the model510

drivers and their functional dependencies, which differed for the two soil carbon models we studied. When considering both

surface- and space-based observations, it is not straightforward to say which of the two soil carbon models performed better.

Also, the evaluation was done within a land surface model that is biased in its GPP predictions when compared to an upscaled

GPP product and this hampers the use of atmosphericCO2 as a numeric benchmark.

The comparison of the two soil carbon models revealed large differences in their predictions. The YAS model better captured515

the magnitude and spatial distribution of soil carbon stocks globally. However, it was biased in its atmosphericCO2 cycle at

temperate latitudes in the Northern Hemisphere. The CBA model, on the other hand, showed better performance in capturing

the seasonal cycle pattern of atmosphericCO2, but it is biased at high latitudes in the Northern Hemisphere.Rh from the YAS

model showed misalignment with soil water content in tropical regions, as they were negatively correlated with each other.

This suggests that use of precipitation as a proxy for soil moisture might not be sensible at sub-annual time scales and calls for520

improvement in the parameterization of the YAS model.

Soil carbon models have several development needs (Bradford et al., 2016; van Groenigen et al., 2017) that are now partly

being answered with next generation models including more mechanistic representation of several below ground processes

(Wieder et al., 2015; Yu et al., 2019). The development of moisture dependency from simple empirical relationships is moving

towards mechanistic approaches, which may yield more reliable results in the long term (Yan et al., 2018). Our results con�rm525

that the moisture dependency of heterotrophic respiration plays on important role in the whole global carbon cycle.

In this study we used space-bornXCO2 observations in addition to the surface observations ofCO2. They were providing a

larger-scale con�rmation for the results obtained from the surface observations and thus provided complimentary information.

The number of satellite observations of columnXCO2 are increasing at a fast pace, e.g., OCO-2 observations started in 2014,

and they possess high potential for carbon cycle studies (Miller and Michalak, 2020).530
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Code and data availability.The site level data from Global Atmospheric Watch -network is available via Obspack (2016)

(https://doi.org/10.15138/G3059Z). The EDGAR4.2 emission database is available at http://edgar.jrc.ec.europa.eu. The GOSAT data are from

GOSAT Data Archive Service (GDAS) (https://data2.gosat.nies.go.jp/index_en.html). The CRUNCEP data is available from Viovy (2010)

(https://vesg.ipsl.upmc.fr/thredds/catalog/store/p529viov/cruncep/V7_1901_2015/catalog.html). The JSBACH model can be obtained from

the Max Planck Institute for Meteorology, and it is available for the scienti�c community under the MPI-M Sofware License Agreement535

(http://www.mpimet.mpg.de/en/science/models/license/, last access: 16 September 2019). The CarbonTracker Europe code is continuously

updated and available through a GIT repository at Wageningen University and Research: https://git.wur.nl/ctdas. For further details, see also:

www.carbontracker.eu. The transport model TM5 is available via https://svn.knmi.nl/svn/TM5. For the curve �tting for the atmosphericCO2

data we used scripts available from ERSL NOAA at https://www.esrl.noaa.gov/gmd/ccgg/mbl/crv�t/crv�t.html.

Appendix A: Description of the box model540

A simple box model calculation was performed to evaluate the importance of the dependencies of environmental drivers and

the soil carbon pool sizes on the larger global seasonal cycle amplitude inRh as predicted by YAS. In this box model, we

assume that heterotrophic respirationRh is a product of environmental dependencies and the turnover time as

Rh;Y AS = b� f Y AS;T air (Tair ) � f Y AS;P a (Pa) �
Csoil;Y AS

� Y AS
;where b=

� f CBA;T soil (Tsoil )f CBA;� (� )
� f Y AS;T air (Tair )f Y AS;P a (Pa)

; (A1)

whereRh;Y AS is the heterotophic respiration of model YAS,b is a scalar that takes into account the different magnitudes of545

the response functions,Tair is air temperature,Pa is annual precipitation,Csoil;Y AS are the total soil carbon pools and� Y AS

is the turnover time of the total soil carbon pools.Tsoil is soil temperature and� is the relative soil moisture. This formulation

in A1 refers to the YAS model. The response functions are as shown in Section 2.1.2. For the CBA model the formulation is as

Rh;CBA =
1
b

� f CBA;T soil (Tsoil ) � f CBA;� (� ) �
Csoil;CBA

� CBA
: (A2)550

These response were introduced in Section 2.1.1.

The equations used monthly heterotrophic respiration, environmental drivers and soil carbon stocks averaged over 2001-

2014 to estimate the turnover times for each grid point for YAS using eq. A1 and for CBA using eq. A2. Using these turnover

times, we calculated globalRh with the turnover times and soil carbon pools of each model by making different tests. First, we

used the environmental responses and drivers of the other model (lines B in Table A1). Additionally we changed the driving555

variables, but kept the original response functions (lines C in Table A1). Then we changed only the response functions of the

original model while keeping the original driving variables (lines D in Table A1).

Since the driving variables of soil moisture and annual precipitation differed in magnitudea by approximately four-fold, soil

moisture was multiplied by four when using the function for annual precipitation (f Y AS;P a ) and when annual precipitation was

used in the function for soil moisture (f CBA;� ) it was divided by four. The annual cycles ofRh are shown in Fig. A1 and the560

amplitudes in Table A1.
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Figure 1. Locations of Global Atmosphere Watch stations, denoted as black dots, and different TransCom regions (different numbers denote

the different TransCom regions in this study) as different colors.
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Figure 2.The annual cycles of net primary production (NPP) (a), heterotrophic respiration (c) and net ecosystem exchange (NEE) (e) globally

with the CBALANCE (in cyan) and YASSO (in red) model versions. In the subpanels, annual values are plotted for 2000-2014 for NPP (b),

heterotophic respiration (d) and NEE (f).
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Figure 3. The annual cycle of net primary production (NPP) (a, b), heterotrophic respiration (c, d) and net ecosystem exchange (e, f) in

Northern and Southern Hemispheres separated into latitudinal zones. CBALANCE results are shown in solid lines and the YASSO results in

dashed lines.
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Figure 4. Turnover time (� ) anomalies for CBALANCE (a) and YASSO (b). The average turnover time that was subtracted was 104 years

for CBALANCE and 31 years for YASSO.
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