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Abstract. The trajectories of soil carbon (C) in the changing climate are of utmost importance, as soil carbon is a substantial
carbon storage with a large potential to impact the atmospheric carbon dioxide (CO3) burden. Atmospheric CO- observations
integrate all processes affecting C exchange between the surface and the atmosphere. Therefore they provide a benchmark
for carbon cycle models. We evaluated two distinct soil carbon models (CBALANCE and YASSO) that were implemented to
a global land surface model (JSBACH) against atmospheric CO4 observations. We transported the biospheric carbon fluxes
obtained by JSBACH using the atmospheric transport model TM5 to obtain atmospheric CO5. We then compared these results
with surface observations from Global Atmosphere Watch (GAW) stations as well as with column XCO,, retrievals from the
GOSAT satellite. The seasonal cycles of atmospheric CO2 estimated by the two different soil models differed. The estimates
from the CBALANCE soil model were more in line with the surface observations at low latitudes (0° N-45° N) with only 1
% bias in the seasonal cycle amplitude (SCA), whereas YASSO was underestimating the SCA in this region by 32 %. YASSO
gave more realistic seasonal cycle amplitudes of COs at northern boreal sites (north of 45° N) with underestimation of 15
% compared to 30 % overestimation by CBALANCE. Generally, the estimates from CBALANCE were more successful in
capturing the seasonal patterns and seasonal cycle amplitudes of atmospheric CO5 even though it overestimated soil carbon
stocks by 225 % (compared to underestimation of 36 % by YASSO) and its predictions of the global distribution of soil
carbon stocks was unrealistic. The reasons for these differences in the results are related to the different environmental drivers
and their functional dependencies of these two soil carbon models. In the tropical region the YASSO model showed earlier
increase in season of the heterotophic respiration since it is driven by precipitation instead of soil moisture as CBALANCE.
In the temperate and boreal region the role of temperature is more dominant. There the heterotophic respiration from the

YASSO model had larger annual variability, driven by air temperature, compared to the CBALANCE which is driven by soil
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temperature. The results underline the importance of using sub-yearly data in the development of soil carbon models when

they are used in shorter than annual time scales.

1 Introduction

The global carbon (C) balance is mainly influenced by terrestrial and oceanic carbon fluxes. Since the early 1960s, when
accurate measurements of atmospheric CO5 began, the land and ocean have absorbed approximately half of annual anthro-
pogenic carbon dioxide (CO5) emissions (Le Quéré et al., 2018). The terrestrial natural carbon cycle consists of uptake by
vegetation and release of carbon by plants’ autotrophic respiration, soil decomposition by heterotrophic organisms and natural
disturbances (Bond-Lamberty et al., 2016). At global scale, recent advances in remote sensing have allowed global spatially
distributed estimates for gross primary production (GPP) generated together with machine learning methods (Tramontana et al.,
2016). Photosynthesis takes place in the green plant parts, which can be detected from space as well as the sun-induced chloro-
phyll fluorescence that is related to photosynthesis (MacBean et al., 2018). Release of carbon from the terrestrial biosphere
remains more elusive, since below ground processes cannot be directly detected globally and the understanding of the below
ground processes is still developing (Bradford et al., 2016).

For soil respiration, including both autotrophic respiration by roots and heterotrophic respiration, some global datasets have
been developed (Bond-Lamberty and Thomson, 2010; Hashimoto et al., 2015). Recently efforts to estimate heterotrophic
respiration have also been made using machine learning techniques, Tang et al. (2019) and Warner et al. (2019) being the first
attempts. The separation of heterotrophic respiration from the autotrophic respiration remains still a challenge and in these two
studies it has been done at yearly scales. The soil stores twice as much carbon as the atmosphere (Scharlemann et al., 2014)
and its fate in changing climate remains uncertain (Crowther et al., 2016). To have reliable predictions of future carbon stocks,
process-based understanding of the below ground carbon cycle needs to be achieved.

Heterotrophic respiration, R, at global scale is a very important part of the carbon cycle. It is influenced by moisture
and temperature conditions (Wei, 2010). In many global modelling approaches, moisture and temperature dependencies are
influencing a first-order decay process of soil carbon pools (Todd-Brown et al., 2013). The magnitude of modelled R, is
therefore dependent on these parameters, the pool sizes and their turnover rates as well as the incoming litter input from
vegetation. The role of the turnover rate is crucial, as the pre-industrial turnover rates are the key uncertainty in simulation of
soil organic matter stocks for the 21st century (Todd-Brown et al., 2014). Soil carbon modelling needs improvements so that
future changes in soil carbon stocks can be better predicted (Bradford et al., 2016). Current global carbon cycle models give a
wide range of estimates for changes in soil carbon by the end of this century (Todd-Brown et al., 2014). There is currently on-
going development of soil carbon models, and these next generation models include detailed microbial dynamics with nutrient
cycles (Wieder et al., 2018; Yu et al., 2019).
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One way to benchmark soil carbon models has been by using observations of soil carbon stocks (Todd-Brown et al., 2013).
At smaller scales, gas exchange observations with chambers have also been used (Tupek et al., 2019). It is anyhow challenging
to find reasons for differences in heterotrophic respiration between large scale models, as the litter input to the soil influences
heterotophic respiration and this litter input varies between the models. Alternative way forward is to use a test-bed for these
models, as done by Wieder et al. (2018).

An alternative, regionally integrated approach is using observations of the atmospheric CO4, which integrate all processes
involved in global surface-atmosphere C exchange. The surface observation network of atmospheric CO4 has been used in
benchmarking global carbon cycle models (Cadule et al., 2010; Dalmonech and Zaehle, 2013; Peng et al., 2015). Recent ad-
vances of satellite technology have enabled retrievals of space-born dry-air total column-averaged CO5 mole fraction (XCOs),
quantifying COs in the entire atmospheric column between the land surface and the top of the atmosphere. These observations
reveal a more spatially integrated CO» signal compared to surface site observations and together they provide a complemen-
tary dataset. These two data sources have been used together to study the carbon cycle with "top-down* inversion modelling
(Crowell et al., 2019). This kind of modelling framework uses atmospheric CO5 observations to constrain a priori biospheric
and ocean fluxes, based on the Bayesian inversion technique, which results in optimized estimates (a posteriori) of the fluxes
(Maksyutov et al., 2013; Rodenbeck et al., 2003; van der Laan-Luijkx et al., 2017; Wang et al., 2019). The estimates for fossil
emissions are often assumed as known, i.e., not optimized in the inversion.

In this study we investigate in how far atmospheric CO5 observations, both from surface network and space-born observa-
tions, can be used to benchmark these two soil carbon models included in the land surface model JSBACH, one of the models
participating in CMIP6. Previous studies evaluating the new YASSO soil carbon model performance when implemented in
JSBACH, have shown better performance in relation to observations of soil carbon stocks when compared to the older soil car-
bon model of JSBACH, CBALANCE (Goll et al., 2015; Thum et al., 2011). Since the only difference between the two model
versions is the description of the underlying soil processes and include no major feedbacks between soil and vegetation in the
model set-up (excluding the effect of litter accumulation on fire fluxes), the difference in the release of carbon to the atmo-
sphere originates only from the soil carbon models. The two soil carbon models used in this work have different environmental
drivers. CBALANCE has soil moisture and soil temperature as driving variables and the YASSO model precipitation and air
temperature. The models have differing response functions to these environmental variables as well as different carbon pool
structures, and they are both first-order decay models. This framework allows us to investigate how these above-mentioned
differences in soil carbon modes influence atmospheric CO5. To transfer terrestrial carbon fluxes from the surface to the at-
mosphere, we use the transport model TMS and the anthropogenic and ocean fluxes from an inversion framework (van der
Laan-Luijkx et al., 2017). In the analysis we also use a simple box model calculation to further understand the main causes in

the different outcomes of the models.
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2 Materials and Methods

We used the land surface model JSBACH (Mauritsen et al., 2019) to obtain the net land-atmosphere CO4 exchange and fed
them together with ocean, fossil and land use fluxes into a transport model TMS5, which simulates the resulting atmospheric

CO; mole fractions at selected surface stations as well as column integrated values for comparison to satellite derived column
COa.

2.1 Model simulations: JSBACH with two soil carbon models

JSBACH is the global land surface model of the Max Planck Institute ‘s Earth System Model (Mauritsen et al., 2019), simulating
the terrestrial carbon, energy and water cycles (Reick et al., 2013). In this study JSBACH was run with two different sub-
models for soil carbon that are described below. The older model, CBALANCE, has been used in CMIP5 simulations of
JSBACH (Giorgetta et al., 2013) and the newer model, YASSO, has been used in simulations for the annual global carbon
budget (Le Quéré et al., 2015; Le Quéré et al., 2018) and is used in CMIP6 simulations of JSBACH (Mauritsen et al.,2019).
It is furthermore also used in JSBACH4, a re-implementation of JSBACH for the ICON-ESM (Giorgetta et al., 2018; Nabel
etal., 2019).

Independent of the used sub-model for soil carbon, JSBACH uses three carbon pools for the living vegetation carbon:
a wood pool, containing woody parts of plants, and a green and a reserve pool containing the non-woody parts. JSBACH
simulates different processes that lead to losses from the vegetation pools, such as grazing, shedding of leaves and natural or
anthropogenic disturbances. Depending on the process, some of the vegetation carbon is lost as COq into the atmosphere, while
the remaining part is transferred as dead vegetation into the litter and soil pools of the used sub-model for soil carbon, where
it is then subject to the internal processes of the soil carbon sub-model. The only process outside of the soil carbon sub-model

which influences dead material are the fire processes, burning parts of above ground litter carbon.
2.1.1 The soil carbon model CBALANCE

CBALANCE (CBA) is the original soil carbon sub-model of JSBACH (Raddatz et al., 2007), which has been used in CMIP5.
The environmental drivers for decomposition in CBA are soil temperature (at soil depth of 30 to 120 cm below the surface)
and a relative soil moisture () of the upper-most soil layer, which is 5 cm thick. The « varies between zero and one.

The function for soil temperature dependence, fcpa, .., of decomposition follows a Q10 formulation as

oil

Tsoil

fCBA,Tsoiz(Tsoil) = 110000 .

with a Q1 value of 1.8 and T, is soil temperature in Celsius (shown in Fig. S1a) (Raddatz et al., 2007). The dependency on

relative soil moisture « is linear (Fig. S1 b) and it is calculated as

O — Qlepg
fepaa(a) = MAX (apin, ——at )

1.0— Qerit

where a1 0.35 and a4, 1s 0.1 (Knorr, 2000).
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Together these functions are modulating the rate of decomposition, so that the Rj, from each pool (denoted by ¢) is

C;
Ry (Tsoit, ) = foa,afoBAT, - 3)

(2

where C; is the carbon content of each pool and 7; is the turnover rate of each pool in days. CBA uses five different carbon

pools having different turnover times:

— Two green litter pools: one above- and one below ground in which the non-woody plant parts are decomposed with

turnover times between 1.8 and 2.5 years (Goll et al., 2015)

— Two woody litter pools: one above- and one below ground in which the woody plant parts are decomposed with turnover

times of several decades

— One slow pool receiving its input from the four litter pools and its turnover time is in the order of a century.
2.1.2 The soil carbon model YASSO

The original soil carbon model of JSBACH was replaced by YASSO (YAS) (Thum et al., 2011; Goll et al., 2012). JSBACH’s
YAS implementation is based on the Yasso07 model (Tuomi et al., 2009). Development of YassoO7 has relied heavily on litter
bag and other observational data sets that have been used to estimate the model parameters (Tuomi et al., 2009, 2011). Owing
to its strong connection to experiments, its environmental drivers are quasi-monthly air temperature and precipitation.

The decomposition dependency on air temperature is

. 2.
fYAS,Tm;T (Tair) _ 6/31Tau-+,32Tmr 4)

where T,,;, is air temperature (°C), parameter 3; is 9.5 x 1072 °C~! parameter 3, is -14 x 10~ °C~2 (Fig. Slc).

The decomposition depends on precipitation P, (m) as

fyas.p, (Pa)=(1—e"). @)

where v = -1.21 m~! (Fig. S1d). The environmental drivers for YAS (precipitation and air temperature) are averaged for a
30-day period.

Similar to CBA, YAS has slowly and fast decomposing pools, but its pool dynamics are more structured. YAS uses 18 carbon
pools, nine for the decomposition of woody litter and nine for the decomposition of non-woody litter. The only difference in
the calculation of the decomposition rates between non-woody and woody pools is an additional parameter that increases
the turnover rates with increasing size of the woody litter (Tuomi et al., 2011). In addition to the distinction into woody and
non-woody litter which is also done in CBA, YAS takes the chemical composition of the litter into account. YAS uses four
chemically distinct pool kinds: acid soluble, water soluble, ethanol soluble and non-soluble. For each of these four chemical
compositions one above and one below ground pool are used. In addition there is one humus pool for woody and one for

non-woody material. The dynamics of the YAS carbon pools are described in (Tuomi et al., 2009) with decomposition fluxes
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causing redistributions among the different pools or losses to the atmosphere. Each of the pools has a decay constant, which is
modified by the environmental dependencies in Egs. (4) and (5).

Each PFT used in JSBACH has a distinct chemical composition. Furthermore, the branch size of the woody litter is PFT-
dependent.

2.2 The model simulations: The JSBACH set-up

JSBACH model simulations followed the TRENDY v4 protocol in terms of JSBACH version, simulation protocol and forcing
data (Le Quéré et al., 2015; Sitch et al., 2015). Climate forcing was based on CRUNCEP v6 (Viovy, 2010) and the global
atmospheric CO2 was obtained from ice core and NOAA monitoring station data (Sitch et al., 2015). For both set-ups the
model was separately run into equilibrium, i.e. until the soil carbon pools of the applied carbon sub-model were at steady-
state. The two different transient simulations were then done for the period 1860 to 2014. Anthropogenic land cover change
was forced by the LUHv1 dataset (Hurtt et al., 2011) and was simulated as described in Reick et al. (2013). While fire and
windthrow were simulated, natural land cover changes and the nitrogen cycle were not activated. Simulations were done at
T63 spatial resolution (approximately 1.9°, 200 km). For further details on the spin-up and the model version please refer to
the SI.

2.3 The model simulations: TM5

To estimate atmospheric CO4, we used the global Eulerian atmospheric transport model TMS5 (Krol et al., 2005; Huijnen et al.,
2010). TMS was run globally at 6° x 4° (latitude x longitude) resolution with two-way zoom over Europe, where the European
domain was run at 1° x 1° resolution. This is the pre-existing set-up that was readily available. The 3-hourly meteorological
fields from ECMWF ERA-Interim (Dee et al., 2011) were used as constraints. Linear interpolation was done to obtain CO2
estimates at the exact locations and times of the observations.

We fed TMS with daily biospheric, weekly ocean and annual fossil fuel fluxes to obtain realistic atmospheric COs. Values of
GPP and total ecosystem respiration were taken from the JSBACH simulations for the two different soil model formulations.
Also, carbon release from vegetation and soil owing to land-use change, fires and herbivores were taken from the JSBACH
model results as part of terrestrial biosphere carbon fluxes. In addition, we used the posterior biospheric flux estimates from
CarbonTracker Europe (CTE2016, later referenced to as CTE; van der Laan-Luijkx et al. (2017)) to provide some guidance on
the ability of TMS to represent the individual site observations. The ocean fluxes were the a posterior estimates from the same
study.

Fossil fuel emissions are from the EDGAR4.2 Database (EDGAR4.2, 2011) and Carbones project (http://www.carbones.eu),
with scaling to global total values as for the Global Carbon Budget as described in van der Laan-Luijkx et al. (2017). The
annual fossil fuel flux to the atmosphere was approximately 8.63 PgCyr~!, and ocean uptake of carbon was approximately
2.33 PgCyr~! when averaged over years 2001-2014. Annual values are summarized in Table S1.

Simulations with TMS5 were done for 2000-2014, but the first year was considered as spin-up and omitted from the analysis.
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2.4 The surface observations

Surface observations of atmospheric CO9 from NOAA weekly discrete air samples (ObsPack product: GLOBALVIEWplus
v2.1; ObsPack (2016)) were used to evaluate the effect of different soil carbon models on tropospheric atmospheric CO4
seasonal cycles at sites around the globe. The sites used in the evaluation are shown in Fig. 1. From the data, samples reflective
of well-mixed background air were selected (based on flag criteria) similar to van der Laan-Luijkx et al. (2017) to minimize

the influence on the observation of transport model errors in our analysis.
2.5 The satellite retrievals

GOSAT (Greenhouse Gases Observing Satellite) from Japan Aerospace Exploration Agency (JAXA) was launched in 2009 and
observes column XCQO4 with the TANSO-FTS instrument (Kuze et al., 2009). These data were used to evaluate the different
simulations and to assess the model performance at larger spatial scale.

XCO4 from the simulation results were calculated using global 4° x 6° x 25 (latitude x longitude x vertical levels) daily av-
erage 3-dimensional (3-D) atmospheric COs, fields. For each satellite retrieval, the global 3-D daily mean gridded atmospheric
CO4 estimates were horizontally interpolated to the location of the retrievals to create the vertical profile of simulated COs.
Averaging kernels (AKs) (Rodgers and Connor, 2003) were applied to model estimates to ensure reliable comparison with

GOSAT retrievals:

C=co+ (hoa)' (x —x,), (6)
where C is XCOg, scalar ¢, is the prior XCO, of each retrieval, & is a vertical summation vector, a is an absorber-weighted
AK of each retrieval, x is a model profile and x,, is the prior profile of the retrieval. Each retrieval had a prior profile (Yoshida
et al., 2013). The retrievals for different terrestrial TransCom (TC) areas (Fig. 1) were compared with those calculated from
the two model simulations. For comparison with GOSAT XCOs, the estimates of 3D fields at 6° x 4° resolution were used,
but not those from the zoom grids due to technical reasons. Differences in XCOq due to model resolution were not significant
within the context of this study. In this work GOSAT observations (NIES retrieval V02.21 and V02.31) between July 2009 and
the end of 2014 were used.

3 Results
3.1 Global carbon stocks and fluxes with the two model formulations

Since the two different model formulations differ only in their soil carbon module formulation, the incoming flux to the
ecosystem from photosynthesis is the same in both cases. Analysis of the results was done for 2001-2014, and we show here
averaged values for that period.

Global simulated GPP of 167 PgCyr~! (Table 2) is highly overestimated when compared to the upscaled data product
from FLUXCOM, which is giving a mean value of 126 PgCyr~! for this time period (Jung et al., 2019) and having a range
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of 106-130 PgCyr~! for a longer time period. Despite the overestimate of global GPP by the model, the comparison to the
FLUXCOM product shows that the seasonal cycles in different latitudinal regions are quite similar, although in the northern
boreal region JSBACH reaches maximum GPP values later than the FLUXCOM product (Fig. S4). Vegetation carbon biomass
was similar in both model formulations (Table 1). The small difference is caused by fire fluxes, which have small differences
in their magnitude but similar spatial patterns (Fig. S3). The global estimate for total soil carbon by CBA was 4.5-fold larger
than by YAS (Table 1). The global estimate for the litter simulated by YAS pool was larger than that simulated by CBA.

The net CO4, flux shows a slightly larger land sink for YAS than CBA (Table 2). Owing to the larger litter pool, fire fluxes are
larger in the YAS model formulation by 0.50 PgCyr~!. This caused the heterotrophic respiration of YAS to be 0.56 PgCyr~1
smaller than by CBA, since the model was spun-up to steady state in 1860. This does not completely compensate for the
difference and leads to a small discrepancy in net CO5 fluxes between the two model formulations.

Since the soil carbon pools are of very different magnitude, but the annual R;, between the model formulations are similar,
the turnover times of the two formulations must differ. The turnover times (7) of soil carbon pools can be evaluated at both grid
scale and from global values. This global value is obtained by dividing the total soil carbon pool (to which both soil and litter
carbon stocks are added) by the annual Rj,. Calculated from the global values averaged between 2001 and 2014, the apparent
turnover time for CBA is 51.3 years and for YAS 14.8 years. The anomalies of the turnover times are represented in Fig. S4.
These have been calculated from the carbon pools over the whole time period and the mean annual Rj. The models show
longer turnover times in northern high latitudes and dry areas. CBA predicts longer turnover times to southern Europe, whereas
YAS does not. On the other hand, YAS predicts longer turnover times close to Saharan desert, different to CBA. YAS also
consistently predicts longer turnover times to northern latitudes, but CBA does not do this for the northern European region.

The global distribution of soil carbon is very different between the model formulations (Fig. 2). Overall the CBA values
are higher, with the highest values reaching over 105 kgCm ™2, being four times larger than the values predicted by YAS. The
CBA model has large values of soil carbon in the mid-latitudes of the Northern Hemisphere. YAS predicts larger values in the
temperate region of the Northern Hemisphere, but the highest values of soil carbon are located in arctic regions.

Even though annual total global values of heterotrophic respiration are similar between the different model formulations,
their global seasonal cycles are different (Fig. 3). The YAS version has a 66 % larger variation of Rj during the year than
CBA. Both model versions have their minimum value of R}, in February. While CBA has a maximum in August, YAS reaches
its maximum value one month earlier, and global R}, also stays high during August. YAS clearly has a steeper increase and
decline in its seasonal cycle than CBA. The R}, seasonal cycles show clear differences in their seasonal pattern between the
two model formulations in different latitudinal regions (Fig. 4). The magnitude of heterotrophic respiration is quite similar in
the different latitudinal zones. The YAS model shows however a larger amplitude in the seasonal variation in all of the regions.

The seasonal cycle is quite different between the model formulations in the tropics. At 0° N-30° N, where YAS has seasonal
cycle shifted earlier compared to CBA. In this region YAS has 42 % larger seasonal amplitude of R;, than CBA. In the two
more northern regions in the Northern Hemisphere the amplitude in R;, of YAS is approximately twice the amplitude of CBA.
In both of these regions YAS has clear maximum values of 12, in July and August, while the seasonal cycles of CBA are more

shallow and do not include such clear maximums.
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In the southern hemisphere in regions 0° S -10° S and 10° S -30° S the CBA predicts higher values of R}, during the first
months of the year after which it stays lower until the end of the year, whereas YAS shows a clear lowering between June and
September. In the region 10° S -30 © S YAS has 54 % larger amplitude in R}, than CBA.

The variation in R}, seasonal dynamics of these two model formulations can be linked to the differences in their environ-
mental drivers and functions. In Table 3 the correlation between heterotrophic respiration and the environmental drivers of each
specific model formulation are shown for the different latitudinal regions. Figures S5-S8 show these same relationships. The
Rj, from CBA has a strong correlation with the soil moisture « in the tropical region (30° S-30° N) and a high correlation with
the soil temperature T,;; in the northern high latitudes (30° N-90° N) and lower correlation in southern high latitudes (30°
S-60° S). In other regions the 72 values are low between R;, from CBA and its environmental drivers and in two regions the
dependency between « and Ry, is negative. On the other hand, the R, predicted by the YAS model shows strong correlation
to its environmental drivers (Table 3). The 72 values between R}, and precipitation are over 0.80 in all regions except region
30° S-60° S. Between the air temperature and R, the results are similar, with the only lower 72 value taking place in tropics
in the Southern Hemisphere. The seasonal cycle of R;, predicted by the YAS model does not show any positive correlation to
soil moisture variable « in any of these regions (Table 3 and Fig. S9). In the tropical region the soil moisture for CBA and
precipitation for YAS are more important drivers compared to soil and air temperatures. In the high latitudes the temperature
has larger effect on R, with both models, even though in the Northern Hemisphere also the precipitation has a significant role
for YAS.

To assess, whether the higher amplitude of the seasonal cycle in Rj by YAS is caused by the larger litter pool or the
environmental response functions, a simple box model calculation was performed (a detailed description in Appendix).

When the global respiration was calculated with the turnover times and soil carbon pools of the YAS model, but using the
environmental responses and drivers of the CBA model, the annual magnitude decreased by 29 % compared to the original YAS
model (Table A1). However, the yearly maximum value did not change by much. When the opposite was done, and the turnover
time and soil carbon pools of CBA were used with the environmental responses and inputs of the YAS model, the magnitude
of the global heterotrophic respiration was increased approximately 1.4-fold (Fig. Al). The increase in the amplitude was 83
% (Table A1). Therefore this simple analysis suggests that the environmental variables and their response functions cause the
larger global amplitude of R;, in the YAS model formulation. To further disentangle, whether this change was caused by the
different environmental drivers or their functional dependencies, we made additional tests.

The amplitudes of the seasonal cycle of R, (difference between the maximum and minimum values) are shown in Table Al.
For the YAS model, there happens a strong decrease in the amplitude when both driver variables and the response functions
are changed. When only driver variables are changed, there occurs only a slight decrease. When the response functions are
changed, the decrease in the amplitude is more pronounced with 21 %. The amplitude predicted by the CBA model increases,
when the driving variables and response functions are changed (Table A1). This increase is occurs when either driving variables
or response functions are changed individually. However, with the change of the response functions the change in the amplitude
is larger, 74 %. Therefore the response functions have a more pronounced role in the changes than only the driving variables

and this was true for both of the models.
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3.2 [Evaluation against surface observations

Seasonal cycle amplitudes (SCAs) of atmospheric CO are successfully simulated by the modeling framework across different
latitudes (Fig. 5a). The 72 values of the observed seasonal cycle and the model estimates are high across latitudes, despite some
lower values in mid-latitudes of the Northern Hemisphere (Fig. 5b). Averaged over all the latitudes the 72 value, calculated as
linear correlation of simulated and observed averaged annual cycles, was 0.93 for the CTE, 0.90 for CBA and 0.87 for YAS.

The CBA model is able to capture the timing of the seasonal cycle in northern latitudes, but has a tendency to overestimate
the SCA by 30 % north of 45° N. In this region the underestimation of SCA by CTE is approximately 5 % and by YAS 14 %.
In the region 0° N-45° N the YAS underestimates the SCA in average approximately by 32 %, whereas CTE underestimates
it by 4 % and CBA overestimates it only by 1 %. The agreement between estimated atmospheric CO2 and observations was
worse in YAS than in CBA when considering the 72 value and the seasonal cycle. Overall, the magnitude of the SCA predicted
by YAS had less bias north from 45° N compared to CBA, but large underestimation in latitudes 0° N-45° N, where CBA was
very successful in attaining the right SCA.

This behavior is further illustrated from comparisons of the detrended seasonal cycle at four stations in the Northern Hemi-
sphere (Fig. 6 and Table S2). To confirm the general quality of the TM5 model used for both YAS and CBA we plotted its
biospheric posterior fluxes from CarbonTracker Europe 2016 (CTE); indeed, deviations of CTE to observations are much
smaller than from the JSBACH model at all sites. At the high-latitude sites, Alert and Pallas (Fig. 6a, b), CBA overestimates
the seasonal cycle amplitude, while YAS shows some phase-shift of the cycle. The observed SCAs are smaller at the two more
southern sites, Niwot Ridge and Mauna Loa. For those sites, CBA is generally successful in capturing their magnitude (Table
S2), whereas YAS underestimates them strongly. YAS is also having difficulty capturing the seasonal pattern at Niwot Ridge.
This was happening generally in the temperate region, as is also seen in the lower r2 values of the YAS model at the different
sites (Fig. 5.

When comparing the overall bias at these four sites between the observations and the model simulations, CBA overestimated
CO; by 3.65 ppm and YAS by 2.27 ppm, when averaged over all the measurements within the study period. A closer look at
the bias at Mauna Loa (Fig. S10) revealed a trend in this bias between year 2000 and 2014. The CTE shows no bias. The CBA
is overestimating COq by 1.76 ppm in the beginning and by 3.74 ppm in 2014. The YAS has lower overestimation, being 1.12
ppm in 2000 and 3.14 in 2014.

The results at surface sites show that CBA largely overestimated SCA at high northern latitudes, whereas YAS almost
consistently underestimated the SCA in the Northern Hemisphere. CBA captured the seasonal cycle patterns better than YAS

across different latitudes.
3.3 Column XCO5 comparisons for TransCom regions

This evaluation of the two soil modules against satellite column XCOs was carried out for the different TransCom (TC) regions
(Fig. 1). The comparison was based on seasonal cycle amplitudes and r? values similar to the surface site evaluation. Not all the

TC regions show a clear seasonal cycle, such as regions in South America (TC regions 3 and 4), northern part of Africa (TC=5)
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and Australia (TC=10). For completeness we show the analysis also for these regions in Table S3. For regions with clear sea-
sonal cycle we used the ccgerv curve fitting procedure available from NOAA
(https://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html, (Thoning et al., 1989)), but for regions with missing data or no
clear seasonal cycle, we averaged over all years of data.

To further illustrate the results from this comparison, we show data for two regions having a clear seasonal cycle and
reflecting the same behaviour that was noticed at the four surface observation sites that were looked deeper into in the previous
section. In TC region 2, the southern part of North America, CBA is more successful in capturing the observed SCA than YAS
(Fig. 7 a), even though CBA reaches the minimum XCOx later than observations. YAS underestimates SCA by 56% and has
a different seasonal pattern than observations, so the minimum is reached earlier than in the observations and also the shape
during the summer period is different to the observations. In TC region 11, Europe, both models capture the SCA (Fig. 7, Table
S3) and the seasonal cycle in the first part of the year. The increase of COx is not as well captured by the simulations.

Overall, observed and simulated XCO, differ from each other similar to the surface site observations. Estimates of SCA by
YAS are too small in mid-latitudes (Fig. 7a) and in TCs 2, 5 and 8 compared to the observations, and CBA is better in capturing
the observed annual cycles. At TC=1 (the northern part of North America), CBA overestimates the SCA, while YAS better
captures it. However, the seasonal cycle pattern is better captured with CBA (Table S2) than with YAS. Generally YAS had
smaller SCAs than the observations and CBA was more consistent with the observations in most TC regions (Table S3). CBA
is also better than YAS in capturing the seasonal pattern of XCOs in the all TC regions (Table S3).

There occurs bias between the space-born observations and the model simulations. When averaged over the time period used
and the TC regions, CBA overestimates the GOSAT observations by 3.37 ppm and YAS by 2.33 ppm. These values were in

line with the bias estimates at the four surface sites.

4 Discussion

In this work our aim was to use atmospheric observations to benchmark soil carbon models. Our main finding was that the two
models predicted differently the annual cycle of the global Rj, with the YAS model having a larger amplitude. This in turn
lead to pronounced clear differences in the model predictions of seasonal cycles of the atmospheric CO, mole fractions. To
be able to attribute the differences between the two models we need to compare their results from different aspects and to also
judge whether our model simulations are reasonable in the light of previous research.

Similarly to the earlier studies (Goll et al., 2015; Thum et al., 2011), in our results the YAS model was more successful
than CBA in estimating the observed global soil carbon stocks, which is approximately 1500 PgC (Scharlemann et al., 2014)
including large uncertainties. The distribution of soil carbon stocks was also more realistic in YAS than in CBA. The large
soil carbon stocks in the mid-latitudes predicted by CBA (Fig. 2 a) are unrealistic compared to current estimates of global soil
carbon distribution (Scharlemann et al., 2014). The large carbon stocks at high latitudes predicted by the YAS model (Fig. 2)
are more in line with the observations. However, the version of JSBACH used does not include peatlands and is modelling

only mineral soils, therefore the large carbon reservoirs of peatlands are not captured by the model, as they are now described
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as mineral soils. The YAS model is widely used in different applications at smaller scale and its performance to estimate
soil carbon stocks has been found to be good (Hernandez et al., 2017). Comparability between the model-calculated and the
observed carbon stocks is relevant for any analyses of the carbon fluxes because in the both models the fluxes are proportional
to the stocks (flux = decomposition rate * stock).

The global turnover rate of soil carbon by CBA was somewhat larger than in an earlier study, where it was estimated to be
40.8 years (Todd-Brown et al., 2014). This value was in the higher end of the CMIP5 models. The global turnover rate value
from YAS, which was 14.8 years, is more in the range of the other CMIP5 models (Todd-Brown et al., 2014). The spatial
distribution of the turnover rate anomalies show the the differences caused by the environmental drivers and their dependencies
at annual timescales. When comparing these overall turnover rates of the total soil carbon, it is important to keep in mind
that both models consisted of carbon pools that had widely varying turnover rates. For example, despite of the higher overall
turnover rate, the turnover rate of the most recalcitrant carbon pool of YAS was an order of magnitude lower than that of CBA.

Moving to the monthly time scales, we can see that the global seasonal Rj, cycle had a larger amplitude with YAS than
with CBA (Fig. 3) and a simple box model calculation found the environmental drivers and their response functions to be the
cause of this instead the large litter pool in the YAS model. It is anyhow challenging to further disentangle whether this larger
amplitude is mainly caused by the differing environmental drivers the soil carbon models or if their functional dependencies
would play a bigger role. The analysis by the box model suggested a stronger role of the response functions compared to the
driving variables at monthly timescales, but strong conclusions cannot be drawn from such a simple analysis. Also other studies
have showed that the response functions themselves lead to pronounced differences between soil carbon models (Wieder et al.,
2018).

The annual heterotrophic respiration was 66.1 PgCyr—! for CBA and 65.5 PgCyr~! for YAS (Table 2), which falls in the
range of estimates from the Earth System Models (41.3-71.6 PgCyr—1!) and is close the observation based estimates of 60
PgCyr~! (Shao et al., 2013). The similar values of R, by YAS and CBA are caused by the way the models are run into steady-
state in the beginning of the simulation in 1860. Part of this difference is caused by the fire fluxes. The YAS model has a larger
litter pool that behaves as fuel for fires. Therefore, to have the system at steady state, global heterotrophic respiration by YAS
must be less. Also, the simulation time of 140 years before the beginning of the analysis might also cause some divergence
between the model runs.

When R, is compared by latitudinal zones, differences between the model formulations are visible in the variability and
timing of the seasonal cycles in many regions (Fig. 4). R, showed strong correlations to the environmental drivers of the
models in different latitudinal zones (Table 3). Both models are largely influenced by their moisture dependency in the tropical
region (Table 3). CBA is driven by soil moisture with a linear dependence and YAS is driven by precipitation. While at annual
timescales these two variables (air vs. soil temperature and precipitation vs. soil moisture) are similar, since precipitation is
affecting soil moisture and on longer timescales air temperature determines soil temperature in the top soil layers, the seasonal
cycles of the variables are different. At annual timescales, at which the YAS model has been originally developed, the dynamics
of these variables are not likely to be as different as at these shorter timescales. Precipitation begins earlier in the season in

the tropical region, and it causes YAS to reach yearly maximum R}, earlier than CBA, which is driven by soil moisture in this
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region. Also in the temperate region, where the temperature has a larger role, the air temperature has larger variability than soil
temperature and this leads to different kind of seasonal pattern of the R, predictions by the models.

Different moisture dependencies of I?;, have earlier been found to be important (Exbrayat et al., 2013). At the global level
Hursh et al. (2017) recommended using parabolic soil moisture functions in preference to functions based on mean annual
precipitation. Their study considered soil respiration, i.e., autotrophic respiration by roots was also included. Tupek et al.
(2019) evaluated the YAS model against R, observations at two coniferous sites in southern Finland and found problems in
capturing the seasonality in the observations and the variability in the summertime fluxes. One reason for this they mention
is the response of the simulated Ry, to soil moisture conditions, since R, is not attenuated in very moist conditions and they
found a need to improve the moisture dependency of the YAS model. This is in line with our findings, that a model that has
been parameterized at annual time scales requires further development before it can be reliably applied at shorter timescales.
Precipitation has been originally used in the YAS model as a proxy for soil moisture, since enough accurate soil moisture
observations for model development haven’t been available. Clearly, this idea needs reconsideration as our results show that at
zonal spatial scales and monthly temporal scale the R, from YAS is not at all correlated to soil moisture variable a.

The global GPP, being 165 PgCyr~! in this study, was overestimated, compared to the FLUXCOM estimate. Different
FLUXCOM products give estimates between 106 and 130 PgCyr~? for period 2008-2010 (Jung et al., 2019). There has been
also other estimates for the global GPP. The Carbon Cycle Data Assimilation system provides a value of 146 (£ 19) (Koffi
et al., 2012) and the estimates based on isotope observations have given estimates of 150 to 175 PgCyr—! (Welp et al., 2011).
The GPP of JSBACH is relatively high, but it was the same for both of the model formulations and only contributed to the
amount of litter fall. Therefore we do not expect the variation of its magnitude to have substantial influence to our results,
bearing also in mind that the seasonal cycle in different latitudinal zones was captured by the JSBACH model (Fig. S2).

The differences by the two models in the seasonal cycle of atmospheric CO5 were strong. CBA better reproduced the sea-
sonal cycle amplitudes capturing the shape of the seasonal cycle both for surface sites and comparisons in the TC regions, even
though its soil carbon distribution had lower performance compared to YAS. CBA exaggerated the seasonal cycle amplitudes
at high northern latitudes, as has been found earlier (Dalmonech and Zaehle, 2013).

The biases between XCO, from satellite retrievals and the model results originating from the JSBACH simulations are
relatively large and this is likely caused by the use of a posteriori ocean fluxes from the CTE2016. The global a posteriori land
sink (including biomass burning emissions) of CTE is approximately -2.0 (£ 1.1) PgCyr~! in time period 2001-2014. The
global land sink of JSBACH is approximately -1.7 PgCyr~! (Table 2) and is therefore lower than the land sink by CTE2016.
Since the ocean fluxes are a posteriori fluxes from CTE2016 simulation, they cause a bias to the simulated atmospheric CO2
mole fraction when used together with the land fluxes from the JSBACH simulation. The net land sink of YAS version is
slightly closer to CTE2016 value, and this leads to lower bias also at Mauna Loa (Fig. S10).

Additionally, the spaceborn observations also contain bias. GOSAT retrievals were evaluated against ground-based Total
Carbon Column Observing Network (TCCON), and XCOs is biased low by approximately 1.48 ppm (Yoshida et al., 2013).

In this study we concentrated on analysing the SCAs and the pattern of the seasonal cycle and emphasized the differences

between the two different soil carbon models. Therefore we do not consider this bias to play a big role in these analysis.
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Also the transport model contains biases (Gurney et al., 2004), but since only one transport model was used in this study, it is
expected that the biases are similar between the two model runs and are not the cause for the large differences seen in the two

different simulations.

5 Conclusions

We demonstrated how atmospheric CO4 observations can be used to benchmark soil carbon models and that it is important
to benchmark models across several different variables. This work highlighted the importance of the model drivers and their
functional dependencies. The YAS model better captured the magnitude and spatial distribution of soil carbon stocks globally
and resulted in similar global turnover rate compared to other Earth System Models, in comparison to the much higher turnover
rate by the CBA model.

The YAS model showed biases in the atmospheric CO» cycle at temperate latitudes in the Northern Hemisphere. The CBA
model showed better performance in capturing the seasonal cycle pattern of the CO2 mole fraction, but it had biases in the
high latitudes in the Northern Hemisphere. When considering both land based and atmospheric based observations, it is not
straightforward to say which model performed better. However, the I?j, from the YAS model showed misalignment with soil
water content in the tropical regions, as they were negatively correlated with each other. This suggests that use of precipitation
as a proxy for soil moisture might not be sensible in sub-annual time scales.

In addition to the surface observations of CO., also space-born XCO- observations were used. They were providing a larger-
scale confirmation for the results obtained from the surface observations and thus worked as a complimentary information
source.

Soil carbon models have several development needs (Bradford et al., 2016; van Groenigen et al., 2017) that are now partly
being answered with the next generation models including more mechanistic representation of several below ground processes
(Wieder et al., 2015; Yu et al., 2019). The development of moisture dependency from simple empiric relationships is moving

towards mechanistic approaches, which may yield more reliable results in the long term (Yan et al., 2018).

Code and data availability. The site level data from Global Atmospheric Watch -network is available via Obspack (2016)
(https://doi.org/10.15138/G3059Z). The EDGAR4.2 emission database is available at http://edgar.jrc.ec.europa.eu. The GOSAT data are
from GOSAT Data Archive Service (GDAS) (https://data2.gosat.nies.go.jp/index_en.html). The CRUNCEP data is available from Viovy
(2010) (https://vesg.ipsl.upmec.fr/thredds/catalog/store/p529viov/cruncep/V7_1901_2015/catalog.html). The JSBACH model can be obtained
from the Max Planck Institute for Meteorology, and it is available for the scientific community under the MPI-M Sofware License Agree-
ment (http://www.mpimet.mpg.de/en/science/models/license/, last access: 16 September 2019). The CarbonTracker Europe code is contin-
uously updated and available through a GIT repository at Wageningen University and Research: https://git.wur.nl/ctdas. For further de-
tails, see also: www.carbontracker.eu. For the curve fitting for the atmospheric CO2 data we used scripts available from ERSL NOAA at

https://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html.
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Appendix A: Box model

A simple box model calculation was performed to evaluate the importance of the dependencies on environmental drivers and
the soil carbon pool sizes on the larger global seasonal cycle amplitude in R}, as predicted by YAS. In this box model, we
assume that heterotophic respiration Ry, is a product of environmental dependencies and the turnover time as

Cooil,y AS YfeBar,,, Tsoit) fepaa(a)
Rpyas="b (T P,)+ oLYAS o b= Lo :
nyas =bx fyastu, (Tuir) * fyas,p, (Fa) TY AS where Y fy as, o, (Tair) fy as,p, (Pa)’

where Rj, v g is the heterotophic respiration of model YAS, b is a scalar that takes into account the different magnitudes of

(AD)

the response functions, Ty, is the air temperature, P, is the annual precipitation, Cs,i;,y a5 are the total soil carbon pools and
Ty a5 18 the turnover time of the total soil carbon pools. T,,;; is the soil temperature and « is the relative soil moisture. This
formulation in A1 refers to the YAS model. The response functions are as shown in Section 2.1.2. For the CBA model the
formulation is as

1 Csoil,cBA

Rpcpa= 7 fea T, (Tsoil) * foBa,a(a) — (A2)

These response have been introduced in Section 2.1.1.

The equations were used for monthly data averaged over the years 2001-2014 of heterotrophic respiration, environmental
drivers and soil carbon stocks to estimate the turnover times for each grid point for YAS using eq. Al and for CBA using eq. A2.
Using these turnover times, we calculated the global R;, with the turnover times and soil carbon pools of each model by making
different tests. First, we used the environmental responses and drivers of the other model (lines B in Table A1l). Additionally
we changed the driving variables, but kept the original response functions (lines C in Table Al). Then we changed only the
response functions of the original model while keeping the original driving variables (lines D in Table Al).

Since the driving variables of soil moisture and annual precipitation differed in magnitudes approximately four-fold, the soil
moisture was multiplied by four when using the function for annual precipitation (fy 45, p,) and when annual precipitation was
used in the function for soil moisture (fcpa o) it was divided by four. The annual cycles of Ry, are shown in Fig. Al and the

amplitudes in Table Al.
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Figure 1. Locations of GAW stations, denoted as black dots, and different TransCom regions as different colors.
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a) CBALANCE

Figure 2. The distribution of total soil carbon globally for CBA (a) and YAS (b). The scales are different between the plots.
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Figure 3. The annual cycle of heterotrophic respiration globally with the CBALANCE (dark grey) and YASSO (light grey) model versions.
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Figure 4. The annual cycle of heterotrophic respiration in Northern (a) and Southern (b) Hemispheres separated into latitudinal zones.

CBALANCE results are shown in solid lines and the YASSO results in dashed lines.
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Figure 5. The seasonal cycle amplitudes (SCAs) of atmospheric CO2 in ppm (a) and r2 between the simulations and observations (b) at
different Global Atmosphere Watch stations as a function of latitude.The black circles denote observations, the grey crosses are the results
from the CarbonTracker Europe 2016 (CTE), the dark grey stars are the results from the CBALANCE (CBA) run and the lighter grey
diamonds are the results from the YASSO (YAS) run.
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Figure 6. The detrended seasonal cycles of atmospheric CO3 at four Global Atmospheric Watch sites: Alert (a), Pallas (b), Niwot Ridge (c),
Mauna Loa (d) for observations (OBS) in black solid line, CarbonTracker Europe 2016 (CTE) in a grey dotter line, and the two JSBACH
model version with CBALANCE (CBA) in dark grey dashed line and YASSO (YAS) in light grey dashed line. The solid grey line denotes

the zero line.
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Figure 7. The seasonal cycles of detrended atmospheric XCO2 mole fraction at TransCom regions two, southern part of North America (a)

and eleven, Europe (b). The observations are in black solid line, CBALANCE (CBA) model results in dashed dark grey line and YASSO

(YAS) model results in dasher light grey line. The solid grey line denotes the zero line.
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Table 1. Global C storage in the two different model formulations averaged over 2001-2014. For the YAS model the eight above ground

pools are summed to obtain the litter pool, while the remaining 10 pools (below ground and humus) represent the soil pool.

Cpool (PgC) CBA YAS

Litter C 171 263
Soil C 3217 703
Vegetation C 432 432
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Table 2. Global terrestrial C fluxes from the two different model formulations averaged over 2001-2014.

Row Flux (PgCyear™!) CBA YAS
A Net CO2 flux (A=-B+E+G+H+I1+J) -1.68 -1.75
B GPP 167  same
C Heterotrophic resp. Ry, 66.1 655
D Autotrophic resp. R, 89.9  same
E TER(E=C+D) 156 156
F NPP (F=B -D) 774  same
G Direct land cover change 230 same
H Fire 1.60  2.10
I Harvest 0.23  same
J Herbivory 5.54  same
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Table 3. 2 values for the different latitudinal zones between modelled heterotrophic respiration and the environmental drivers of the CBAL-
ANCE (CBA) and YASSO (YAS) models. The environmental drivers are all calculated as monthly means for the latitudinal zones. The
values denoted by asterisk (*) show a negative correlation. The positive relationships with the r? value of 0.80 or more have been written in

bold. « is the relative soil moisture, Tso;; and T, are soil and air temperature, and P, is the precipitation.

Lat. zone CBAvs.ac CBAvs.Tsoii YASvs. P, YASvs.Tsir YASvs. «

60°N -90°N 0.04 0.92 0.91 0.80 0.23
30°N -60°N 0.65* 0.97 0.95 0.90 0.85*
0°N -30°N 0.92 0.24 0.92 0.86 0.34
0°S -10°S 0.84 0.00 0.86 0.27 0.20
10°S -30°S 0.88 0.14 0.87 0.82 0.22
30°S -60°S 0.21* 0.58 0.60 0.91 0.83*
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Figure Al. Different annual cycles of the heterotrophic respiration (R}) predicted by the YASSO (a) and CBALANCE (b) model and the
different alternatives from the box model calculation.
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Table Al. The amplitude of global heterotrophic respiration within a year in different box model formulations. The input variables or

functions that differ from the original model formulation are in bold letters.

Line Option Amplitude (PgCyear™!)
A)  YAS - Original model 3.8
B)  YAS with inputs Tsoi1 and « and functions fcea,T..;, and foBa o 2.7
C)  YAS with inputs Tsoi1 and « and functions fy as,1,,, and fyas,p, 3.7
D)  YAS with inputs T, and P, and functions fcea,T,,;, and fca,« 3.0
A)  CBA - Original model 23
B) CBA with inputs Taj, and P4 and functions fyas ;. and fyas p, 4.2
C)  CBA withinputs Ta;, and P, and functions fcpa,r,,;; and fcpa,a 32
D) CBA with inputs T4 and o and functions fyas,t,;, and fyas p, 4.0

34



