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Abstract. The trajectories of soil carbon (C) in the changing climate are of utmost importance, as soil carbon is a substantial

carbon storage with a large potential to impact the atmospheric carbon dioxide (CO2) burden. Atmospheric CO2 observations

integrate all processes affecting C exchange between the surface and the atmosphere. Therefore they provide a benchmark

for carbon cycle models. We evaluated two distinct soil carbon models (CBALANCE and YASSO) that were implemented to

a global land surface model (JSBACH) against atmospheric CO2 observations. We transported the biospheric carbon fluxes5

obtained by JSBACH using the atmospheric transport model TM5 to obtain atmospheric CO2. We then compared these results

with surface observations from Global Atmosphere Watch (GAW) stations as well as with column XCO2 retrievals from the

GOSAT satellite. The seasonal cycles of atmospheric CO2 estimated by the two different soil models differed. The estimates

from the CBALANCE soil model were more in line with the surface observations at low latitudes (0◦ N-45◦ N) with only 1

% bias in the seasonal cycle amplitude (SCA), whereas YASSO was underestimating the SCA in this region by 32 %. YASSO10

gave more realistic seasonal cycle amplitudes of CO2 at northern boreal sites (north of 45◦ N) with underestimation of 15

% compared to 30 % overestimation by CBALANCE. Generally, the estimates from CBALANCE were more successful in

capturing the seasonal patterns and seasonal cycle amplitudes of atmospheric CO2 even though it overestimated soil carbon

stocks by 225 % (compared to underestimation of 36 % by YASSO) and its predictions of the global distribution of soil

carbon stocks was unrealistic. The reasons for these differences in the results are related to the different environmental drivers15

and their functional dependencies of these two soil carbon models. In the tropical region the YASSO model showed earlier

increase in season of the heterotophic respiration since it is driven by precipitation instead of soil moisture as CBALANCE.

In the temperate and boreal region the role of temperature is more dominant. There the heterotophic respiration from the

YASSO model had larger annual variability, driven by air temperature, compared to the CBALANCE which is driven by soil
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temperature. The results underline the importance of using sub-yearly data in the development of soil carbon models when20

they are used in shorter than annual time scales.

1 Introduction

The global carbon (C) balance is mainly influenced by terrestrial and oceanic carbon fluxes. Since the early 1960s, when

accurate measurements of atmospheric CO2 began, the land and ocean have absorbed approximately half of annual anthro-25

pogenic carbon dioxide (CO2) emissions (Le Quéré et al., 2018). The terrestrial natural carbon cycle consists of uptake by

vegetation and release of carbon by plants’ autotrophic respiration, soil decomposition by heterotrophic organisms and natural

disturbances (Bond-Lamberty et al., 2016). At global scale, recent advances in remote sensing have allowed global spatially

distributed estimates for gross primary production (GPP) generated together with machine learning methods (Tramontana et al.,

2016). Photosynthesis takes place in the green plant parts, which can be detected from space as well as the sun-induced chloro-30

phyll fluorescence that is related to photosynthesis (MacBean et al., 2018). Release of carbon from the terrestrial biosphere

remains more elusive, since below ground processes cannot be directly detected globally and the understanding of the below

ground processes is still developing (Bradford et al., 2016).

For soil respiration, including both autotrophic respiration by roots and heterotrophic respiration, some global datasets have

been developed (Bond-Lamberty and Thomson, 2010; Hashimoto et al., 2015). Recently efforts to estimate heterotrophic35

respiration have also been made using machine learning techniques, Tang et al. (2019) and Warner et al. (2019) being the first

attempts. The separation of heterotrophic respiration from the autotrophic respiration remains still a challenge and in these two

studies it has been done at yearly scales. The soil stores twice as much carbon as the atmosphere (Scharlemann et al., 2014)

and its fate in changing climate remains uncertain (Crowther et al., 2016). To have reliable predictions of future carbon stocks,

process-based understanding of the below ground carbon cycle needs to be achieved.40

Heterotrophic respiration, Rh, at global scale is a very important part of the carbon cycle. It is influenced by moisture

and temperature conditions (Wei, 2010). In many global modelling approaches, moisture and temperature dependencies are

influencing a first-order decay process of soil carbon pools (Todd-Brown et al., 2013). The magnitude of modelled Rh is

therefore dependent on these parameters, the pool sizes and their turnover rates as well as the incoming litter input from

vegetation. The role of the turnover rate is crucial, as the pre-industrial turnover rates are the key uncertainty in simulation of45

soil organic matter stocks for the 21st century (Todd-Brown et al., 2014). Soil carbon modelling needs improvements so that

future changes in soil carbon stocks can be better predicted (Bradford et al., 2016). Current global carbon cycle models give a

wide range of estimates for changes in soil carbon by the end of this century (Todd-Brown et al., 2014). There is currently on-

going development of soil carbon models, and these next generation models include detailed microbial dynamics with nutrient

cycles (Wieder et al., 2018; Yu et al., 2019).50
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One way to benchmark soil carbon models has been by using observations of soil carbon stocks (Todd-Brown et al., 2013).

At smaller scales, gas exchange observations with chambers have also been used (Ťupek et al., 2019). It is anyhow challenging

to find reasons for differences in heterotrophic respiration between large scale models, as the litter input to the soil influences

heterotophic respiration and this litter input varies between the models. Alternative way forward is to use a test-bed for these

models, as done by Wieder et al. (2018).55

An alternative, regionally integrated approach is using observations of the atmospheric CO2, which integrate all processes

involved in global surface-atmosphere C exchange. The surface observation network of atmospheric CO2 has been used in

benchmarking global carbon cycle models (Cadule et al., 2010; Dalmonech and Zaehle, 2013; Peng et al., 2015). Recent ad-

vances of satellite technology have enabled retrievals of space-born dry-air total column-averaged CO2 mole fraction (XCO2),

quantifying CO2 in the entire atmospheric column between the land surface and the top of the atmosphere. These observations60

reveal a more spatially integrated CO2 signal compared to surface site observations and together they provide a complemen-

tary dataset. These two data sources have been used together to study the carbon cycle with "top-down“ inversion modelling

(Crowell et al., 2019). This kind of modelling framework uses atmospheric CO2 observations to constrain a priori biospheric

and ocean fluxes, based on the Bayesian inversion technique, which results in optimized estimates (a posteriori) of the fluxes

(Maksyutov et al., 2013; Rödenbeck et al., 2003; van der Laan-Luijkx et al., 2017; Wang et al., 2019). The estimates for fossil65

emissions are often assumed as known, i.e., not optimized in the inversion.

In this study we investigate in how far atmospheric CO2 observations, both from surface network and space-born observa-

tions, can be used to benchmark these two soil carbon models included in the land surface model JSBACH, one of the models

participating in CMIP6. Previous studies evaluating the new YASSO soil carbon model performance when implemented in

JSBACH, have shown better performance in relation to observations of soil carbon stocks when compared to the older soil car-70

bon model of JSBACH, CBALANCE (Goll et al., 2015; Thum et al., 2011). Since the only difference between the two model

versions is the description of the underlying soil processes and include no major feedbacks between soil and vegetation in the

model set-up (excluding the effect of litter accumulation on fire fluxes), the difference in the release of carbon to the atmo-

sphere originates only from the soil carbon models. The two soil carbon models used in this work have different environmental

drivers. CBALANCE has soil moisture and soil temperature as driving variables and the YASSO model precipitation and air75

temperature. The models have differing response functions to these environmental variables as well as different carbon pool

structures, and they are both first-order decay models. This framework allows us to investigate how these above-mentioned

differences in soil carbon modes influence atmospheric CO2. To transfer terrestrial carbon fluxes from the surface to the at-

mosphere, we use the transport model TM5 and the anthropogenic and ocean fluxes from an inversion framework (van der

Laan-Luijkx et al., 2017). In the analysis we also use a simple box model calculation to further understand the main causes in80

the different outcomes of the models.
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2 Materials and Methods

We used the land surface model JSBACH (Mauritsen et al., 2019) to obtain the net land-atmosphere CO2 exchange and fed

them together with ocean, fossil and land use fluxes into a transport model TM5, which simulates the resulting atmospheric

CO2 mole fractions at selected surface stations as well as column integrated values for comparison to satellite derived column85

CO2.

2.1 Model simulations: JSBACH with two soil carbon models

JSBACH is the global land surface model of the Max Planck Institute‘s Earth System Model (Mauritsen et al., 2019), simulating

the terrestrial carbon, energy and water cycles (Reick et al., 2013). In this study JSBACH was run with two different sub-

models for soil carbon that are described below. The older model, CBALANCE, has been used in CMIP5 simulations of90

JSBACH (Giorgetta et al., 2013) and the newer model, YASSO, has been used in simulations for the annual global carbon

budget (Le Quéré et al., 2015; Le Quéré et al., 2018) and is used in CMIP6 simulations of JSBACH (Mauritsen et al.,2019).

It is furthermore also used in JSBACH4, a re-implementation of JSBACH for the ICON-ESM (Giorgetta et al., 2018; Nabel

et al., 2019).

Independent of the used sub-model for soil carbon, JSBACH uses three carbon pools for the living vegetation carbon:95

a wood pool, containing woody parts of plants, and a green and a reserve pool containing the non-woody parts. JSBACH

simulates different processes that lead to losses from the vegetation pools, such as grazing, shedding of leaves and natural or

anthropogenic disturbances. Depending on the process, some of the vegetation carbon is lost as CO2 into the atmosphere, while

the remaining part is transferred as dead vegetation into the litter and soil pools of the used sub-model for soil carbon, where

it is then subject to the internal processes of the soil carbon sub-model. The only process outside of the soil carbon sub-model100

which influences dead material are the fire processes, burning parts of above ground litter carbon.

2.1.1 The soil carbon model CBALANCE

CBALANCE (CBA) is the original soil carbon sub-model of JSBACH (Raddatz et al., 2007), which has been used in CMIP5.

The environmental drivers for decomposition in CBA are soil temperature (at soil depth of 30 to 120 cm below the surface)

and a relative soil moisture (α) of the upper-most soil layer, which is 5 cm thick. The α varies between zero and one.105

The function for soil temperature dependence, fCBA,Tsoil
of decomposition follows a Q10 formulation as

fCBA,Tsoil
(Tsoil) =Q

Tsoil
10◦C
10 (1)

with a Q10 value of 1.8 and Tsoil is soil temperature in Celsius (shown in Fig. S1a) (Raddatz et al., 2007). The dependency on

relative soil moisture α is linear (Fig. S1 b) and it is calculated as

fCBA,α(α) =MAX(αmin,
α−αcrit

1.0−αcrit
) (2)110

where αcrit is 0.35 and αmin is 0.1 (Knorr, 2000).
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Together these functions are modulating the rate of decomposition, so that the Rh from each pool (denoted by i) is

Rh(Tsoil,α) = fCBA,αfCBA,Tsoil

Ci
τi

(3)

where Ci is the carbon content of each pool and τi is the turnover rate of each pool in days. CBA uses five different carbon

pools having different turnover times:115

– Two green litter pools: one above- and one below ground in which the non-woody plant parts are decomposed with

turnover times between 1.8 and 2.5 years (Goll et al., 2015)

– Two woody litter pools: one above- and one below ground in which the woody plant parts are decomposed with turnover

times of several decades

– One slow pool receiving its input from the four litter pools and its turnover time is in the order of a century.120

2.1.2 The soil carbon model YASSO

The original soil carbon model of JSBACH was replaced by YASSO (YAS) (Thum et al., 2011; Goll et al., 2012). JSBACH’s

YAS implementation is based on the Yasso07 model (Tuomi et al., 2009). Development of Yasso07 has relied heavily on litter

bag and other observational data sets that have been used to estimate the model parameters (Tuomi et al., 2009, 2011). Owing

to its strong connection to experiments, its environmental drivers are quasi-monthly air temperature and precipitation.125

The decomposition dependency on air temperature is

fY AS,Tair
(Tair) = eβ1Tair+β2T

2
air (4)

where Tair is air temperature (◦C), parameter β1 is 9.5 × 10−2 ◦C−1 parameter β2 is -14 × 10−4 ◦C−2 (Fig. S1c).

The decomposition depends on precipitation Pa (m) as

fY AS,Pa
(Pa) = (1− eγPa). (5)130

where γ = -1.21 m−1 (Fig. S1d). The environmental drivers for YAS (precipitation and air temperature) are averaged for a

30-day period.

Similar to CBA, YAS has slowly and fast decomposing pools, but its pool dynamics are more structured. YAS uses 18 carbon

pools, nine for the decomposition of woody litter and nine for the decomposition of non-woody litter. The only difference in

the calculation of the decomposition rates between non-woody and woody pools is an additional parameter that increases135

the turnover rates with increasing size of the woody litter (Tuomi et al., 2011). In addition to the distinction into woody and

non-woody litter which is also done in CBA, YAS takes the chemical composition of the litter into account. YAS uses four

chemically distinct pool kinds: acid soluble, water soluble, ethanol soluble and non-soluble. For each of these four chemical

compositions one above and one below ground pool are used. In addition there is one humus pool for woody and one for

non-woody material. The dynamics of the YAS carbon pools are described in (Tuomi et al., 2009) with decomposition fluxes140
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causing redistributions among the different pools or losses to the atmosphere. Each of the pools has a decay constant, which is

modified by the environmental dependencies in Eqs. (4) and (5).

Each PFT used in JSBACH has a distinct chemical composition. Furthermore, the branch size of the woody litter is PFT-

dependent.

2.2 The model simulations: The JSBACH set-up145

JSBACH model simulations followed the TRENDY v4 protocol in terms of JSBACH version, simulation protocol and forcing

data (Le Quéré et al., 2015; Sitch et al., 2015). Climate forcing was based on CRUNCEP v6 (Viovy, 2010) and the global

atmospheric CO2 was obtained from ice core and NOAA monitoring station data (Sitch et al., 2015). For both set-ups the

model was separately run into equilibrium, i.e. until the soil carbon pools of the applied carbon sub-model were at steady-

state. The two different transient simulations were then done for the period 1860 to 2014. Anthropogenic land cover change150

was forced by the LUHv1 dataset (Hurtt et al., 2011) and was simulated as described in Reick et al. (2013). While fire and

windthrow were simulated, natural land cover changes and the nitrogen cycle were not activated. Simulations were done at

T63 spatial resolution (approximately 1.9◦, 200 km). For further details on the spin-up and the model version please refer to

the SI.

2.3 The model simulations: TM5155

To estimate atmospheric CO2, we used the global Eulerian atmospheric transport model TM5 (Krol et al., 2005; Huijnen et al.,

2010). TM5 was run globally at 6◦ x 4◦ (latitude x longitude) resolution with two-way zoom over Europe, where the European

domain was run at 1◦ x 1◦ resolution. This is the pre-existing set-up that was readily available. The 3-hourly meteorological

fields from ECMWF ERA-Interim (Dee et al., 2011) were used as constraints. Linear interpolation was done to obtain CO2

estimates at the exact locations and times of the observations.160

We fed TM5 with daily biospheric, weekly ocean and annual fossil fuel fluxes to obtain realistic atmospheric CO2. Values of

GPP and total ecosystem respiration were taken from the JSBACH simulations for the two different soil model formulations.

Also, carbon release from vegetation and soil owing to land-use change, fires and herbivores were taken from the JSBACH

model results as part of terrestrial biosphere carbon fluxes. In addition, we used the posterior biospheric flux estimates from

CarbonTracker Europe (CTE2016, later referenced to as CTE; van der Laan-Luijkx et al. (2017)) to provide some guidance on165

the ability of TM5 to represent the individual site observations. The ocean fluxes were the a posterior estimates from the same

study.

Fossil fuel emissions are from the EDGAR4.2 Database (EDGAR4.2, 2011) and Carbones project (http://www.carbones.eu),

with scaling to global total values as for the Global Carbon Budget as described in van der Laan-Luijkx et al. (2017). The

annual fossil fuel flux to the atmosphere was approximately 8.63 PgCyr−1, and ocean uptake of carbon was approximately170

2.33 PgCyr−1 when averaged over years 2001-2014. Annual values are summarized in Table S1.

Simulations with TM5 were done for 2000-2014, but the first year was considered as spin-up and omitted from the analysis.
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2.4 The surface observations

Surface observations of atmospheric CO2 from NOAA weekly discrete air samples (ObsPack product: GLOBALVIEWplus

v2.1; ObsPack (2016)) were used to evaluate the effect of different soil carbon models on tropospheric atmospheric CO2175

seasonal cycles at sites around the globe. The sites used in the evaluation are shown in Fig. 1. From the data, samples reflective

of well-mixed background air were selected (based on flag criteria) similar to van der Laan-Luijkx et al. (2017) to minimize

the influence on the observation of transport model errors in our analysis.

2.5 The satellite retrievals

GOSAT (Greenhouse Gases Observing Satellite) from Japan Aerospace Exploration Agency (JAXA) was launched in 2009 and180

observes column XCO2 with the TANSO-FTS instrument (Kuze et al., 2009). These data were used to evaluate the different

simulations and to assess the model performance at larger spatial scale.

XCO2 from the simulation results were calculated using global 4◦ x 6◦ x 25 (latitude x longitude x vertical levels) daily av-

erage 3-dimensional (3-D) atmospheric CO2 fields. For each satellite retrieval, the global 3-D daily mean gridded atmospheric

CO2 estimates were horizontally interpolated to the location of the retrievals to create the vertical profile of simulated CO2.185

Averaging kernels (AKs) (Rodgers and Connor, 2003) were applied to model estimates to ensure reliable comparison with

GOSAT retrievals:

Ĉ = ca + (h ◦ a)T (x− xa), (6)

where Ĉ is XCO2, scalar ca is the prior XCO2 of each retrieval, h is a vertical summation vector, a is an absorber-weighted

AK of each retrieval, x is a model profile and xa is the prior profile of the retrieval. Each retrieval had a prior profile (Yoshida190

et al., 2013). The retrievals for different terrestrial TransCom (TC) areas (Fig. 1) were compared with those calculated from

the two model simulations. For comparison with GOSAT XCO2, the estimates of 3D fields at 6◦ x 4◦ resolution were used,

but not those from the zoom grids due to technical reasons. Differences in XCO2 due to model resolution were not significant

within the context of this study. In this work GOSAT observations (NIES retrieval V02.21 and V02.31) between July 2009 and

the end of 2014 were used.195

3 Results

3.1 Global carbon stocks and fluxes with the two model formulations

Since the two different model formulations differ only in their soil carbon module formulation, the incoming flux to the

ecosystem from photosynthesis is the same in both cases. Analysis of the results was done for 2001-2014, and we show here

averaged values for that period.200

Global simulated GPP of 167 PgCyr−1 (Table 2) is highly overestimated when compared to the upscaled data product

from FLUXCOM, which is giving a mean value of 126 PgCyr−1 for this time period (Jung et al., 2019) and having a range
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of 106-130 PgCyr−1 for a longer time period. Despite the overestimate of global GPP by the model, the comparison to the

FLUXCOM product shows that the seasonal cycles in different latitudinal regions are quite similar, although in the northern

boreal region JSBACH reaches maximum GPP values later than the FLUXCOM product (Fig. S4). Vegetation carbon biomass205

was similar in both model formulations (Table 1). The small difference is caused by fire fluxes, which have small differences

in their magnitude but similar spatial patterns (Fig. S3). The global estimate for total soil carbon by CBA was 4.5-fold larger

than by YAS (Table 1). The global estimate for the litter simulated by YAS pool was larger than that simulated by CBA.

The net CO2 flux shows a slightly larger land sink for YAS than CBA (Table 2). Owing to the larger litter pool, fire fluxes are

larger in the YAS model formulation by 0.50 PgCyr−1. This caused the heterotrophic respiration of YAS to be 0.56 PgCyr−1210

smaller than by CBA, since the model was spun-up to steady state in 1860. This does not completely compensate for the

difference and leads to a small discrepancy in net CO2 fluxes between the two model formulations.

Since the soil carbon pools are of very different magnitude, but the annual Rh between the model formulations are similar,

the turnover times of the two formulations must differ. The turnover times (τ ) of soil carbon pools can be evaluated at both grid

scale and from global values. This global value is obtained by dividing the total soil carbon pool (to which both soil and litter215

carbon stocks are added) by the annual Rh. Calculated from the global values averaged between 2001 and 2014, the apparent

turnover time for CBA is 51.3 years and for YAS 14.8 years. The anomalies of the turnover times are represented in Fig. S4.

These have been calculated from the carbon pools over the whole time period and the mean annual Rh. The models show

longer turnover times in northern high latitudes and dry areas. CBA predicts longer turnover times to southern Europe, whereas

YAS does not. On the other hand, YAS predicts longer turnover times close to Saharan desert, different to CBA. YAS also220

consistently predicts longer turnover times to northern latitudes, but CBA does not do this for the northern European region.

The global distribution of soil carbon is very different between the model formulations (Fig. 2). Overall the CBA values

are higher, with the highest values reaching over 105 kgCm−2, being four times larger than the values predicted by YAS. The

CBA model has large values of soil carbon in the mid-latitudes of the Northern Hemisphere. YAS predicts larger values in the

temperate region of the Northern Hemisphere, but the highest values of soil carbon are located in arctic regions.225

Even though annual total global values of heterotrophic respiration are similar between the different model formulations,

their global seasonal cycles are different (Fig. 3). The YAS version has a 66 % larger variation of Rh during the year than

CBA. Both model versions have their minimum value of Rh in February. While CBA has a maximum in August, YAS reaches

its maximum value one month earlier, and global Rh also stays high during August. YAS clearly has a steeper increase and

decline in its seasonal cycle than CBA. The Rh seasonal cycles show clear differences in their seasonal pattern between the230

two model formulations in different latitudinal regions (Fig. 4). The magnitude of heterotrophic respiration is quite similar in

the different latitudinal zones. The YAS model shows however a larger amplitude in the seasonal variation in all of the regions.

The seasonal cycle is quite different between the model formulations in the tropics. At 0◦ N-30◦ N, where YAS has seasonal

cycle shifted earlier compared to CBA. In this region YAS has 42 % larger seasonal amplitude of Rh than CBA. In the two

more northern regions in the Northern Hemisphere the amplitude in Rh of YAS is approximately twice the amplitude of CBA.235

In both of these regions YAS has clear maximum values of Rh in July and August, while the seasonal cycles of CBA are more

shallow and do not include such clear maximums.
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In the southern hemisphere in regions 0◦ S -10◦ S and 10◦ S -30◦ S the CBA predicts higher values of Rh during the first

months of the year after which it stays lower until the end of the year, whereas YAS shows a clear lowering between June and

September. In the region 10◦ S -30 ◦ S YAS has 54 % larger amplitude in Rh than CBA.240

The variation in Rh seasonal dynamics of these two model formulations can be linked to the differences in their environ-

mental drivers and functions. In Table 3 the correlation between heterotrophic respiration and the environmental drivers of each

specific model formulation are shown for the different latitudinal regions. Figures S5-S8 show these same relationships. The

Rh from CBA has a strong correlation with the soil moisture α in the tropical region (30◦ S-30◦ N) and a high correlation with

the soil temperature Tsoil in the northern high latitudes (30◦ N-90◦ N) and lower correlation in southern high latitudes (30◦245

S-60◦ S). In other regions the r2 values are low between Rh from CBA and its environmental drivers and in two regions the

dependency between α and Rh is negative. On the other hand, the Rh predicted by the YAS model shows strong correlation

to its environmental drivers (Table 3). The r2 values between Rh and precipitation are over 0.80 in all regions except region

30◦ S-60◦ S. Between the air temperature and Rh the results are similar, with the only lower r2 value taking place in tropics

in the Southern Hemisphere. The seasonal cycle of Rh predicted by the YAS model does not show any positive correlation to250

soil moisture variable α in any of these regions (Table 3 and Fig. S9). In the tropical region the soil moisture for CBA and

precipitation for YAS are more important drivers compared to soil and air temperatures. In the high latitudes the temperature

has larger effect on Rh with both models, even though in the Northern Hemisphere also the precipitation has a significant role

for YAS.

To assess, whether the higher amplitude of the seasonal cycle in Rh by YAS is caused by the larger litter pool or the255

environmental response functions, a simple box model calculation was performed (a detailed description in Appendix).

When the global respiration was calculated with the turnover times and soil carbon pools of the YAS model, but using the

environmental responses and drivers of the CBA model, the annual magnitude decreased by 29 % compared to the original YAS

model (Table A1). However, the yearly maximum value did not change by much. When the opposite was done, and the turnover

time and soil carbon pools of CBA were used with the environmental responses and inputs of the YAS model, the magnitude260

of the global heterotrophic respiration was increased approximately 1.4-fold (Fig. A1). The increase in the amplitude was 83

% (Table A1). Therefore this simple analysis suggests that the environmental variables and their response functions cause the

larger global amplitude of Rh in the YAS model formulation. To further disentangle, whether this change was caused by the

different environmental drivers or their functional dependencies, we made additional tests.

The amplitudes of the seasonal cycle of Rh (difference between the maximum and minimum values) are shown in Table A1.265

For the YAS model, there happens a strong decrease in the amplitude when both driver variables and the response functions

are changed. When only driver variables are changed, there occurs only a slight decrease. When the response functions are

changed, the decrease in the amplitude is more pronounced with 21 %. The amplitude predicted by the CBA model increases,

when the driving variables and response functions are changed (Table A1). This increase is occurs when either driving variables

or response functions are changed individually. However, with the change of the response functions the change in the amplitude270

is larger, 74 %. Therefore the response functions have a more pronounced role in the changes than only the driving variables

and this was true for both of the models.

9

https://doi.org/10.5194/bg-2020-7
Preprint. Discussion started: 10 February 2020
c© Author(s) 2020. CC BY 4.0 License.



3.2 Evaluation against surface observations

Seasonal cycle amplitudes (SCAs) of atmospheric CO2 are successfully simulated by the modeling framework across different

latitudes (Fig. 5a). The r2 values of the observed seasonal cycle and the model estimates are high across latitudes, despite some275

lower values in mid-latitudes of the Northern Hemisphere (Fig. 5b). Averaged over all the latitudes the r2 value, calculated as

linear correlation of simulated and observed averaged annual cycles, was 0.93 for the CTE, 0.90 for CBA and 0.87 for YAS.

The CBA model is able to capture the timing of the seasonal cycle in northern latitudes, but has a tendency to overestimate

the SCA by 30 % north of 45◦ N. In this region the underestimation of SCA by CTE is approximately 5 % and by YAS 14 %.

In the region 0◦ N-45◦ N the YAS underestimates the SCA in average approximately by 32 %, whereas CTE underestimates280

it by 4 % and CBA overestimates it only by 1 %. The agreement between estimated atmospheric CO2 and observations was

worse in YAS than in CBA when considering the r2 value and the seasonal cycle. Overall, the magnitude of the SCA predicted

by YAS had less bias north from 45◦ N compared to CBA, but large underestimation in latitudes 0◦ N-45◦ N, where CBA was

very successful in attaining the right SCA.

This behavior is further illustrated from comparisons of the detrended seasonal cycle at four stations in the Northern Hemi-285

sphere (Fig. 6 and Table S2). To confirm the general quality of the TM5 model used for both YAS and CBA we plotted its

biospheric posterior fluxes from CarbonTracker Europe 2016 (CTE); indeed, deviations of CTE to observations are much

smaller than from the JSBACH model at all sites. At the high-latitude sites, Alert and Pallas (Fig. 6a, b), CBA overestimates

the seasonal cycle amplitude, while YAS shows some phase-shift of the cycle. The observed SCAs are smaller at the two more

southern sites, Niwot Ridge and Mauna Loa. For those sites, CBA is generally successful in capturing their magnitude (Table290

S2), whereas YAS underestimates them strongly. YAS is also having difficulty capturing the seasonal pattern at Niwot Ridge.

This was happening generally in the temperate region, as is also seen in the lower r2 values of the YAS model at the different

sites (Fig. 5.

When comparing the overall bias at these four sites between the observations and the model simulations, CBA overestimated

CO2 by 3.65 ppm and YAS by 2.27 ppm, when averaged over all the measurements within the study period. A closer look at295

the bias at Mauna Loa (Fig. S10) revealed a trend in this bias between year 2000 and 2014. The CTE shows no bias. The CBA

is overestimating CO2 by 1.76 ppm in the beginning and by 3.74 ppm in 2014. The YAS has lower overestimation, being 1.12

ppm in 2000 and 3.14 in 2014.

The results at surface sites show that CBA largely overestimated SCA at high northern latitudes, whereas YAS almost

consistently underestimated the SCA in the Northern Hemisphere. CBA captured the seasonal cycle patterns better than YAS300

across different latitudes.

3.3 Column XCO2 comparisons for TransCom regions

This evaluation of the two soil modules against satellite column XCO2 was carried out for the different TransCom (TC) regions

(Fig. 1). The comparison was based on seasonal cycle amplitudes and r2 values similar to the surface site evaluation. Not all the

TC regions show a clear seasonal cycle, such as regions in South America (TC regions 3 and 4), northern part of Africa (TC=5)305
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and Australia (TC=10). For completeness we show the analysis also for these regions in Table S3. For regions with clear sea-

sonal cycle we used the ccgcrv curve fitting procedure available from NOAA

(https://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html, (Thoning et al., 1989)), but for regions with missing data or no

clear seasonal cycle, we averaged over all years of data.

To further illustrate the results from this comparison, we show data for two regions having a clear seasonal cycle and310

reflecting the same behaviour that was noticed at the four surface observation sites that were looked deeper into in the previous

section. In TC region 2, the southern part of North America, CBA is more successful in capturing the observed SCA than YAS

(Fig. 7 a), even though CBA reaches the minimum XCO2 later than observations. YAS underestimates SCA by 56% and has

a different seasonal pattern than observations, so the minimum is reached earlier than in the observations and also the shape

during the summer period is different to the observations. In TC region 11, Europe, both models capture the SCA (Fig. 7, Table315

S3) and the seasonal cycle in the first part of the year. The increase of CO2 is not as well captured by the simulations.

Overall, observed and simulated XCO2 differ from each other similar to the surface site observations. Estimates of SCA by

YAS are too small in mid-latitudes (Fig. 7a) and in TCs 2, 5 and 8 compared to the observations, and CBA is better in capturing

the observed annual cycles. At TC=1 (the northern part of North America), CBA overestimates the SCA, while YAS better

captures it. However, the seasonal cycle pattern is better captured with CBA (Table S2) than with YAS. Generally YAS had320

smaller SCAs than the observations and CBA was more consistent with the observations in most TC regions (Table S3). CBA

is also better than YAS in capturing the seasonal pattern of XCO2 in the all TC regions (Table S3).

There occurs bias between the space-born observations and the model simulations. When averaged over the time period used

and the TC regions, CBA overestimates the GOSAT observations by 3.37 ppm and YAS by 2.33 ppm. These values were in

line with the bias estimates at the four surface sites.325

4 Discussion

In this work our aim was to use atmospheric observations to benchmark soil carbon models. Our main finding was that the two

models predicted differently the annual cycle of the global Rh, with the YAS model having a larger amplitude. This in turn

lead to pronounced clear differences in the model predictions of seasonal cycles of the atmospheric CO2 mole fractions. To

be able to attribute the differences between the two models we need to compare their results from different aspects and to also330

judge whether our model simulations are reasonable in the light of previous research.

Similarly to the earlier studies (Goll et al., 2015; Thum et al., 2011), in our results the YAS model was more successful

than CBA in estimating the observed global soil carbon stocks, which is approximately 1500 PgC (Scharlemann et al., 2014)

including large uncertainties. The distribution of soil carbon stocks was also more realistic in YAS than in CBA. The large

soil carbon stocks in the mid-latitudes predicted by CBA (Fig. 2 a) are unrealistic compared to current estimates of global soil335

carbon distribution (Scharlemann et al., 2014). The large carbon stocks at high latitudes predicted by the YAS model (Fig. 2)

are more in line with the observations. However, the version of JSBACH used does not include peatlands and is modelling

only mineral soils, therefore the large carbon reservoirs of peatlands are not captured by the model, as they are now described
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as mineral soils. The YAS model is widely used in different applications at smaller scale and its performance to estimate

soil carbon stocks has been found to be good (Hernández et al., 2017). Comparability between the model-calculated and the340

observed carbon stocks is relevant for any analyses of the carbon fluxes because in the both models the fluxes are proportional

to the stocks (flux = decomposition rate * stock).

The global turnover rate of soil carbon by CBA was somewhat larger than in an earlier study, where it was estimated to be

40.8 years (Todd-Brown et al., 2014). This value was in the higher end of the CMIP5 models. The global turnover rate value

from YAS, which was 14.8 years, is more in the range of the other CMIP5 models (Todd-Brown et al., 2014). The spatial345

distribution of the turnover rate anomalies show the the differences caused by the environmental drivers and their dependencies

at annual timescales. When comparing these overall turnover rates of the total soil carbon, it is important to keep in mind

that both models consisted of carbon pools that had widely varying turnover rates. For example, despite of the higher overall

turnover rate, the turnover rate of the most recalcitrant carbon pool of YAS was an order of magnitude lower than that of CBA.

Moving to the monthly time scales, we can see that the global seasonal Rh cycle had a larger amplitude with YAS than350

with CBA (Fig. 3) and a simple box model calculation found the environmental drivers and their response functions to be the

cause of this instead the large litter pool in the YAS model. It is anyhow challenging to further disentangle whether this larger

amplitude is mainly caused by the differing environmental drivers the soil carbon models or if their functional dependencies

would play a bigger role. The analysis by the box model suggested a stronger role of the response functions compared to the

driving variables at monthly timescales, but strong conclusions cannot be drawn from such a simple analysis. Also other studies355

have showed that the response functions themselves lead to pronounced differences between soil carbon models (Wieder et al.,

2018).

The annual heterotrophic respiration was 66.1 PgCyr−1 for CBA and 65.5 PgCyr−1 for YAS (Table 2), which falls in the

range of estimates from the Earth System Models (41.3-71.6 PgCyr−1) and is close the observation based estimates of 60

PgCyr−1 (Shao et al., 2013). The similar values ofRh by YAS and CBA are caused by the way the models are run into steady-360

state in the beginning of the simulation in 1860. Part of this difference is caused by the fire fluxes. The YAS model has a larger

litter pool that behaves as fuel for fires. Therefore, to have the system at steady state, global heterotrophic respiration by YAS

must be less. Also, the simulation time of 140 years before the beginning of the analysis might also cause some divergence

between the model runs.

When Rh is compared by latitudinal zones, differences between the model formulations are visible in the variability and365

timing of the seasonal cycles in many regions (Fig. 4). Rh showed strong correlations to the environmental drivers of the

models in different latitudinal zones (Table 3). Both models are largely influenced by their moisture dependency in the tropical

region (Table 3). CBA is driven by soil moisture with a linear dependence and YAS is driven by precipitation. While at annual

timescales these two variables (air vs. soil temperature and precipitation vs. soil moisture) are similar, since precipitation is

affecting soil moisture and on longer timescales air temperature determines soil temperature in the top soil layers, the seasonal370

cycles of the variables are different. At annual timescales, at which the YAS model has been originally developed, the dynamics

of these variables are not likely to be as different as at these shorter timescales. Precipitation begins earlier in the season in

the tropical region, and it causes YAS to reach yearly maximum Rh earlier than CBA, which is driven by soil moisture in this
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region. Also in the temperate region, where the temperature has a larger role, the air temperature has larger variability than soil

temperature and this leads to different kind of seasonal pattern of the Rh predictions by the models.375

Different moisture dependencies of Rh have earlier been found to be important (Exbrayat et al., 2013). At the global level

Hursh et al. (2017) recommended using parabolic soil moisture functions in preference to functions based on mean annual

precipitation. Their study considered soil respiration, i.e., autotrophic respiration by roots was also included. Ťupek et al.

(2019) evaluated the YAS model against Rh observations at two coniferous sites in southern Finland and found problems in

capturing the seasonality in the observations and the variability in the summertime fluxes. One reason for this they mention380

is the response of the simulated Rh to soil moisture conditions, since Rh is not attenuated in very moist conditions and they

found a need to improve the moisture dependency of the YAS model. This is in line with our findings, that a model that has

been parameterized at annual time scales requires further development before it can be reliably applied at shorter timescales.

Precipitation has been originally used in the YAS model as a proxy for soil moisture, since enough accurate soil moisture

observations for model development haven’t been available. Clearly, this idea needs reconsideration as our results show that at385

zonal spatial scales and monthly temporal scale the Rh from YAS is not at all correlated to soil moisture variable α.

The global GPP, being 165 PgCyr−1 in this study, was overestimated, compared to the FLUXCOM estimate. Different

FLUXCOM products give estimates between 106 and 130 PgCyr−1 for period 2008-2010 (Jung et al., 2019). There has been

also other estimates for the global GPP. The Carbon Cycle Data Assimilation system provides a value of 146 (± 19) (Koffi

et al., 2012) and the estimates based on isotope observations have given estimates of 150 to 175 PgCyr−1 (Welp et al., 2011).390

The GPP of JSBACH is relatively high, but it was the same for both of the model formulations and only contributed to the

amount of litter fall. Therefore we do not expect the variation of its magnitude to have substantial influence to our results,

bearing also in mind that the seasonal cycle in different latitudinal zones was captured by the JSBACH model (Fig. S2).

The differences by the two models in the seasonal cycle of atmospheric CO2 were strong. CBA better reproduced the sea-

sonal cycle amplitudes capturing the shape of the seasonal cycle both for surface sites and comparisons in the TC regions, even395

though its soil carbon distribution had lower performance compared to YAS. CBA exaggerated the seasonal cycle amplitudes

at high northern latitudes, as has been found earlier (Dalmonech and Zaehle, 2013).

The biases between XCO2 from satellite retrievals and the model results originating from the JSBACH simulations are

relatively large and this is likely caused by the use of a posteriori ocean fluxes from the CTE2016. The global a posteriori land

sink (including biomass burning emissions) of CTE is approximately -2.0 (± 1.1) PgCyr−1 in time period 2001-2014. The400

global land sink of JSBACH is approximately -1.7 PgCyr−1 (Table 2) and is therefore lower than the land sink by CTE2016.

Since the ocean fluxes are a posteriori fluxes from CTE2016 simulation, they cause a bias to the simulated atmospheric CO2

mole fraction when used together with the land fluxes from the JSBACH simulation. The net land sink of YAS version is

slightly closer to CTE2016 value, and this leads to lower bias also at Mauna Loa (Fig. S10).

Additionally, the spaceborn observations also contain bias. GOSAT retrievals were evaluated against ground-based Total405

Carbon Column Observing Network (TCCON), and XCO2 is biased low by approximately 1.48 ppm (Yoshida et al., 2013).

In this study we concentrated on analysing the SCAs and the pattern of the seasonal cycle and emphasized the differences

between the two different soil carbon models. Therefore we do not consider this bias to play a big role in these analysis.

13

https://doi.org/10.5194/bg-2020-7
Preprint. Discussion started: 10 February 2020
c© Author(s) 2020. CC BY 4.0 License.



Also the transport model contains biases (Gurney et al., 2004), but since only one transport model was used in this study, it is

expected that the biases are similar between the two model runs and are not the cause for the large differences seen in the two410

different simulations.

5 Conclusions

We demonstrated how atmospheric CO2 observations can be used to benchmark soil carbon models and that it is important

to benchmark models across several different variables. This work highlighted the importance of the model drivers and their

functional dependencies. The YAS model better captured the magnitude and spatial distribution of soil carbon stocks globally415

and resulted in similar global turnover rate compared to other Earth System Models, in comparison to the much higher turnover

rate by the CBA model.

The YAS model showed biases in the atmospheric CO2 cycle at temperate latitudes in the Northern Hemisphere. The CBA

model showed better performance in capturing the seasonal cycle pattern of the CO2 mole fraction, but it had biases in the

high latitudes in the Northern Hemisphere. When considering both land based and atmospheric based observations, it is not420

straightforward to say which model performed better. However, the Rh from the YAS model showed misalignment with soil

water content in the tropical regions, as they were negatively correlated with each other. This suggests that use of precipitation

as a proxy for soil moisture might not be sensible in sub-annual time scales.

In addition to the surface observations of CO2, also space-born XCO2 observations were used. They were providing a larger-

scale confirmation for the results obtained from the surface observations and thus worked as a complimentary information425

source.

Soil carbon models have several development needs (Bradford et al., 2016; van Groenigen et al., 2017) that are now partly

being answered with the next generation models including more mechanistic representation of several below ground processes

(Wieder et al., 2015; Yu et al., 2019). The development of moisture dependency from simple empiric relationships is moving

towards mechanistic approaches, which may yield more reliable results in the long term (Yan et al., 2018).430

Code and data availability. The site level data from Global Atmospheric Watch -network is available via Obspack (2016)

(https://doi.org/10.15138/G3059Z). The EDGAR4.2 emission database is available at http://edgar.jrc.ec.europa.eu. The GOSAT data are

from GOSAT Data Archive Service (GDAS) (https://data2.gosat.nies.go.jp/index_en.html). The CRUNCEP data is available from Viovy

(2010) (https://vesg.ipsl.upmc.fr/thredds/catalog/store/p529viov/cruncep/V7_1901_2015/catalog.html). The JSBACH model can be obtained

from the Max Planck Institute for Meteorology, and it is available for the scientific community under the MPI-M Sofware License Agree-435

ment (http://www.mpimet.mpg.de/en/science/models/license/, last access: 16 September 2019). The CarbonTracker Europe code is contin-

uously updated and available through a GIT repository at Wageningen University and Research: https://git.wur.nl/ctdas. For further de-

tails, see also: www.carbontracker.eu. For the curve fitting for the atmospheric CO2 data we used scripts available from ERSL NOAA at

https://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html.
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Appendix A: Box model440

A simple box model calculation was performed to evaluate the importance of the dependencies on environmental drivers and

the soil carbon pool sizes on the larger global seasonal cycle amplitude in Rh as predicted by YAS. In this box model, we

assume that heterotophic respiration Rh is a product of environmental dependencies and the turnover time as

Rh,Y AS = b ∗ fY AS,Tair (Tair) ∗ fY AS,Pa(Pa) ∗ Csoil,Y AS
τY AS

,where b=
ΣfCBA,Tsoil

(Tsoil)fCBA,α(α)
ΣfY AS,Tair

(Tair)fY AS,Pa
(Pa)

, (A1)

where Rh,Y AS is the heterotophic respiration of model YAS, b is a scalar that takes into account the different magnitudes of445

the response functions, Tair is the air temperature, Pa is the annual precipitation, Csoil,Y AS are the total soil carbon pools and

τY AS is the turnover time of the total soil carbon pools. Tsoil is the soil temperature and α is the relative soil moisture. This

formulation in A1 refers to the YAS model. The response functions are as shown in Section 2.1.2. For the CBA model the

formulation is as

Rh,CBA =
1
b
∗ fCBA,Tsoil

(Tsoil) ∗ fCBA,α(α) ∗ Csoil,CBA
τCBA

. (A2)450

These response have been introduced in Section 2.1.1.

The equations were used for monthly data averaged over the years 2001-2014 of heterotrophic respiration, environmental

drivers and soil carbon stocks to estimate the turnover times for each grid point for YAS using eq. A1 and for CBA using eq. A2.

Using these turnover times, we calculated the globalRh with the turnover times and soil carbon pools of each model by making

different tests. First, we used the environmental responses and drivers of the other model (lines B in Table A1). Additionally455

we changed the driving variables, but kept the original response functions (lines C in Table A1). Then we changed only the

response functions of the original model while keeping the original driving variables (lines D in Table A1).

Since the driving variables of soil moisture and annual precipitation differed in magnitudes approximately four-fold, the soil

moisture was multiplied by four when using the function for annual precipitation (fY AS,Pa
) and when annual precipitation was

used in the function for soil moisture (fCBA,α) it was divided by four. The annual cycles of Rh are shown in Fig. A1 and the460

amplitudes in Table A1.

Author contributions. TT designed the experiment with the help of SZ. JESM performed the JSBACH model simulations. AT did the Carbon-

Tracker Europe (CTE2016) runs with the JSBACH biospheric fluxes, with the CO2 fields provided by ITK. ITK provided the CarbonTracker

Europe (CTE2016) results used for comparison at the surface stations. TT performed the analysis with help from SZ, AT and TM. TT wrote

the first version of the draft and all the authors contributed to the manuscript.465

Competing interests. Dr. Sönke Zaehle is an associate editor for Biogeosciences.

15

https://doi.org/10.5194/bg-2020-7
Preprint. Discussion started: 10 February 2020
c© Author(s) 2020. CC BY 4.0 License.



Acknowledgements. TT was funded by Academy of Finland (grant no. 266803). TT and SZ were funded by European Research Council

(ERC) under the European Union’s Horizon 2020 research and innovation programme (QUINCY; grant no. 647204). SZ was furthermore

supported by the European Union’s Horizon 2020 Project funded under the programme SC5-01-2014 (CRESCENDO, grant No. 641816).470

ITL received funding from Netherlands Organisation for Scientific Research (NWO) under contract no. 016.Veni.171.095. JEMSN and JP

were supported by the German Research Foundation’s Emmy Noether Program (PO1751/1-1). JSBACH simulations were conducted at the

German Climate Computing Center (DKRZ; allocation bm0891). We thank Dr. Janne Hakkarainen for helping in analysing the GOSAT data

and averaging kernel calculation. We thank Dr. Martin Jung for access to the FLUXCOM results and the FLUXCOM initiative. We thank

Prof. Dr. Wouter Peters for constructive comments on an earlier version of this manuscript.475

16

https://doi.org/10.5194/bg-2020-7
Preprint. Discussion started: 10 February 2020
c© Author(s) 2020. CC BY 4.0 License.



References

Bond-Lamberty, B. and Thomson, A.: A global database of soil respiration data, Biogeosciences, 7, 1915–1926, https://doi.org/10.5194/bg-

7-1915-2010, http://www.biogeosciences.net/7/1915/2010/, 2010.

Bond-Lamberty, B., Epron, D., Harden, J., Harmon, M. E., Hoffman, F., Kumar, J., David McGuire, A., and Vargas, R.: Estimating het-

erotrophic respiration at large scales: challenges, approaches, and next steps, Ecosphere, 7, e01 380, https://doi.org/10.1002/ecs2.1380,480

http://doi.wiley.com/10.1002/ecs2.1380, 2016.

Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A., and Crowther, T. W.: Managing uncertainty in soil carbon

feedbacks to climate change, Nature Climate Change, 6, 751–758, https://doi.org/10.1038/nclimate3071, http://www.nature.com/articles/

nclimate3071, 2016.

Cadule, P., Friedlingstein, P., Bopp, L., Sitch, S., Jones, C. D., Ciais, P., Piao, S. L., and Peylin, P.: Benchmarking coupled climate-carbon485

models against long-term atmospheric CO2 measurements: Coupled climate-carbon models benchmarks, Global Biogeochemical Cycles,

24, n/a–n/a, https://doi.org/10.1029/2009GB003556, http://doi.wiley.com/10.1029/2009GB003556, 2010.

Crowell, S., Baker, D., Schuh, A., Basu, S., Jacobson, A. R., Chevallier, F., Liu, J., Deng, F., Feng, L., McKain, K., Chatterjee, A., Miller,

J. B., Stephens, B. B., Eldering, A., Crisp, D., Schimel, D., Nassar, R., O&amp;apos;Dell, C. W., Oda, T., Sweeney, C., Palmer, P. I., and

Jones, D. B. A.: The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network, Atmospheric Chemistry and Physics,490

19, 9797–9831, https://doi.org/10.5194/acp-19-9797-2019, https://www.atmos-chem-phys.net/19/9797/2019/, 2019.

Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G.,

Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B.,

Emmett, B. A., Estiarte, M., Frey, S. D., Guo, J., Harte, J., Jiang, L., Johnson, B. R., Kröel-Dulay, G., Larsen, K. S., Laudon, H., Lavallee,

J. M., Luo, Y., Lupascu, M., Ma, L. N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer-Meister, L., Poll,495

C., Reinsch, S., Reynolds, L. L., Schmidt, I. K., Sistla, S., Sokol, N. W., Templer, P. H., Treseder, K. K., Welker, J. M., and Bradford,

M. A.: Quantifying global soil carbon losses in response to warming, Nature, 540, 104–108, https://doi.org/10.1038/nature20150, http:

//www.nature.com/articles/nature20150, 2016.

Dalmonech, D. and Zaehle, S.: Towards a more objective evaluation of modelled land-carbon trends using atmospheric CO2 and

satellite-based vegetation activity observations, Biogeosciences, 10, 4189–4210, https://doi.org/10.5194/bg-10-4189-2013, https://www.500

biogeosciences.net/10/4189/2013/, 2013.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer,

P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haim-

berger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz,

B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:505

configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, 137, 553–597,

https://doi.org/10.1002/qj.828, http://doi.wiley.com/10.1002/qj.828, 2011.

EDGAR4.2: Emission Database for Global Atmospheric Research (EDGAR), release version 4.2, European Commission, Joint Research

Centre (JRC)/PBL Netherlands Environmental Assessment Agency, 2011.

Exbrayat, J.-F., Pitman, A. J., Zhang, Q., Abramowitz, G., and Wang, Y.-P.: Examining soil carbon uncertainty in a global model: response510

of microbial decomposition to temperature, moisture and nutrient limitation, Biogeosciences, 10, 7095–7108, https://doi.org/10.5194/bg-

10-7095-2013, https://www.biogeosciences.net/10/7095/2013/, 2013.

17

https://doi.org/10.5194/bg-2020-7
Preprint. Discussion started: 10 February 2020
c© Author(s) 2020. CC BY 4.0 License.



Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak,

K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W.,

Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K. D., Stockhause,515

M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.: Climate and carbon cycle

changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5: Climate Changes in MPI-

ESM, Journal of Advances in Modeling Earth Systems, 5, 572–597, https://doi.org/10.1002/jame.20038, http://doi.wiley.com/10.1002/

jame.20038, 2013.

Giorgetta, M. A., Brokopf, R., Crueger, T., Esch, M., Fiedler, S., Helmert, J., Hohenegger, C., Kornblueh, L., Köhler, M., Manzini, E.,520

Mauritsen, T., Nam, C., Raddatz, T., Rast, S., Reinert, D., Sakradzija, M., Schmidt, H., Schneck, R., Schnur, R., Silvers, L., Wan, H.,

Zängl, G., and Stevens, B.: ICON-A, the Atmosphere Component of the ICON Earth System Model: I. Model Description, Journal of

Advances in Modeling Earth Systems, 10, 1613–1637, https://doi.org/10.1029/2017MS001242, https://agupubs.onlinelibrary.wiley.com/

doi/abs/10.1029/2017MS001242, 2018.

Goll, D. S., Brovkin, V., Parida, B. R., Reick, C. H., Kattge, J., Reich, P. B., van Bodegom, P. M., and Niinemets, U.: Nutrient limitation525

reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling, Biogeosciences, 9, 3547–

3569, https://doi.org/10.5194/bg-9-3547-2012, https://www.biogeosciences.net/9/3547/2012/, 2012.

Goll, D. S., Brovkin, V., Liski, J., Raddatz, T., Thum, T., and Todd-Brown, K. E. O.: Strong dependence of CO 2 emissions from an-

thropogenic land cover change on initial land cover and soil carbon parametrization, Global Biogeochemical Cycles, 29, 1511–1523,

https://doi.org/10.1002/2014GB004988, https://onlinelibrary.wiley.com/doi/abs/10.1002/2014GB004988, 2015.530

Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Pak, B. C., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fung, I. Y.,

Heimann, M., John, J., Maki, T., Maksyutov, S., Peylin, P., Prather, M., and Taguchi, S.: Transcom 3 inversion intercomparison: Model

mean results for the estimation of seasonal carbon sources and sinks: T3 seasonal results, Global Biogeochemical Cycles, 18, n/a–n/a,

https://doi.org/10.1029/2003GB002111, http://doi.wiley.com/10.1029/2003GB002111, 2004.

Hashimoto, S., Carvalhais, N., Ito, A., Migliavacca, M., Nishina, K., and Reichstein, M.: Global spatiotemporal distribution of soil respiration535

modeled using a global database, Biogeosciences, 12, 4121–4132, https://doi.org/10.5194/bg-12-4121-2015, https://www.biogeosciences.

net/12/4121/2015/, 2015.

Hernández, L., Jandl, R., Blujdea, V. N. B., Lehtonen, A., Kriiska, K., Alberdi, I., Adermann, V., Cañellas, I., and Didion, M.: Towards

complete and harmonized assessment of soil carbon stocks and balance in forests: The ability of the Yasso07 model across a wide gradient

of climatic and forest conditions in Europe, Science of Total Environment, p. 12, 2017.540

Huijnen, V., Williams, J., van Weele, M., van Noije, T., Krol, M., Dentener, F., Segers, A., Houweling, S., Peters, W., de Laat, J., Boersma,

F., Bergamaschi, P., van Velthoven, P., Le Sager, P., Eskes, H., Alkemade, F., Scheele, R., Nédélec, P., and Pätz, H.-W.: The global

chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0, Geoscientific Model Development,

3, 445–473, https://doi.org/10.5194/gmd-3-445-2010, http://www.geosci-model-dev.net/3/445/2010/, 2010.

Hursh, A., Ballantyne, A., Cooper, L., Maneta, M., Kimball, J., and Watts, J.: The sensitivity of soil respiration to soil temperature, moisture,545

and carbon supply at the global scale, Global Change Biology, 23, 2090–2103, https://doi.org/10.1111/gcb.13489, http://doi.wiley.com/

10.1111/gcb.13489, 2017.

Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, A., Jones,

C. D., Kindermann, G., Kinoshita, T., Klein Goldewijk, K., Riahi, K., Shevliakova, E., Smith, S., Stehfest, E., Thomson, A., Thornton, P.,

van Vuuren, D. P., and Wang, Y. P.: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual550

18

https://doi.org/10.5194/bg-2020-7
Preprint. Discussion started: 10 February 2020
c© Author(s) 2020. CC BY 4.0 License.



land-use transitions, wood harvest, and resulting secondary lands, Climatic Change, 109, 117, https://doi.org/10.1007/s10584-011-0153-2,

https://doi.org/10.1007/s10584-011-0153-2, 2011.

Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N.,

Chevallier, F., Gans, F., Groll, D. S., Haverd, V., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J. A., Pallandt,

M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., Tramontana, G., Weber, U., Reichstein, M., Koehler, P., O’Sullivan, M.,555

and Walker, A.: Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach, Bio-

geosciences Discussions, 2019, 1–40, https://doi.org/10.5194/bg-2019-368, https://www.biogeosciences-discuss.net/bg-2019-368/, 2019.

Knorr, W.: Annual and interannual CO2 exchanges of the terrestrial biosphere: process-based simulations and uncertainties, Global Ecol-

ogy and Biogeography, 9, 225–252, https://doi.org/10.1046/j.1365-2699.2000.00159.x, http://doi.wiley.com/10.1046/j.1365-2699.2000.

00159.x, 2000.560

Koffi, E. N., Rayner, P. J., Scholze, M., and Beer, C.: Atmospheric constraints on gross primary productivity and net ecosystem productivity:

Results from a carbon-cycle data assimilation system, Global Biogeochemical Cycles, 26, https://doi.org/10.1029/2010GB003900, https:

//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010GB003900, 2012.

Krol, M., Houweling, S., Bregman, B., and Bergamaschi, P.: The two-way nested global chemistry-transport zoom model TM5: algorithm

and applications, Atmos. Chem. Phys., p. 16, 2005.565

Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T.: Thermal and near infrared sensor for carbon observation Fourier-

transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring, Applied Optics, 48, 6716,

https://doi.org/10.1364/AO.48.006716, https://www.osapublishing.org/abstract.cfm?URI=ao-48-35-6716, 2009.

Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P., Peters, G. P., Andres, R. J.,

Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P., Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, L., Chang, J.,570

Chevallier, F., Chini, L. P., Ciais, P., Fader, M., Feely, R. A., Gkritzalis, T., Harris, I., Hauck, J., Ilyina, T., Jain, A. K., Kato, E., Kitidis,

V., Klein Goldewijk, K., Koven, C., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lima, I. D., Metzl, N., Millero, F., Munro,

D. R., Murata, A., Nabel, J. E. M. S., Nakaoka, S., Nojiri, Y., O’Brien, K., Olsen, A., Ono, T., Pérez, F. F., Pfeil, B., Pierrot, D., Poulter,

B., Rehder, G., Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J., Séférian, R., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi,

T., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S., Vandemark, D., Viovy, N., Wiltshire, A., Zaehle,575

S., and Zeng, N.: Global Carbon Budget 2015, Earth System Science Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https:

//www.earth-syst-sci-data.net/7/349/2015/, 2015.

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., Korsbakken, J. I., Peters, G. P., Canadell,

J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C., Gkritzalis, T., Goll,

D. S., Harris, I., Haverd, V., Hoffman, F. M., Hoppema, M., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Johannessen, T., Jones,580

C. D., Kato, E., Keeling, R. F., Goldewijk, K. K., Landschützer, P., Lefèvre, N., Lienert, S., Liu, Z., Lombardozzi, D., Metzl, N., Munro,

D. R., Nabel, J. E. M. S., Nakaoka, S.-i., Neill, C., Olsen, A., Ono, T., Patra, P., Peregon, A., Peters, W., Peylin, P., Pfeil, B., Pierrot,

D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rocher, M., Rödenbeck, C., Schuster, U., Schwinger, J., Séférian, R., Skjelvan,

I., Steinhoff, T., Sutton, A., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy,

N., Walker, A. P., Wiltshire, A. J., Wright, R., Zaehle, S., and Zheng, B.: Global Carbon Budget 2018, Earth System Science Data, 10,585

2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://www.earth-syst-sci-data.net/10/2141/2018/, 2018.

19

https://doi.org/10.5194/bg-2020-7
Preprint. Discussion started: 10 February 2020
c© Author(s) 2020. CC BY 4.0 License.



MacBean, N., Maignan, F., Bacour, C., Lewis, P., Peylin, P., Guanter, L., Köhler, P., Gómez-Dans, J., and Disney, M.: Strong

constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data, Scientific Reports, 8, 1973,

https://doi.org/10.1038/s41598-018-20024-w, http://www.nature.com/articles/s41598-018-20024-w, 2018.

Maksyutov, S., Takagi, H., Valsala, V. K., Saito, M., Oda, T., Saeki, T., Belikov, D. A., Saito, R., Ito, A., Yoshida, Y., Morino, I., Uchino,590

O., Andres, R. J., and Yokota, T.: Regional CO2flux estimates for 2009–2010 based on GOSAT and ground-based CO2 observations,

Atmospheric Chemistry and Physics, 13, 9351–9373, https://doi.org/10.5194/acp-13-9351-2013, https://www.atmos-chem-phys.net/13/

9351/2013/, 2013.

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler,

S., Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns,595

T., Jimenéz-de-la-Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L.,

Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz, D.,

Nyawira, S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H.,

Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., Storch, J.,

Tian, F., Voigt, A., Vrese, P., Wieners, K., Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the MPI-M Earth System600

Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2, Journal of Advances in Modeling Earth Systems, 11, 998–1038,

https://doi.org/10.1029/2018MS001400, https://onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001400, 2019.

Nabel, J. E. M. S., Naudts, K., and Pongratz, J.: Accounting for forest age in the tile-based dynamic global vegetation model JSBACH4

(4.20p7; git feature/forests) – a land surface model for the ICON-ESM, Geoscientific Model Development Discussions, 2019, 1–24,

https://doi.org/10.5194/gmd-2019-68, https://www.geosci-model-dev-discuss.net/gmd-2019-68/, 2019.605

ObsPack: Global Atmospheric Data Integration Project, Multi-laboratory compilation of atmospheric carbon dioxide data for the period

1957–2015, obspack_co2_1_GLOBALV IEWplus_v2.1_2016− 09− 02, NOAA Earth System Research Laboratory, Global Moni-

toring Division, 2016.

Peng, S., Ciais, P., Chevallier, F., Peylin, P., Cadule, P., Sitch, S., Piao, S., Ahlström, A., Huntingford, C., Levy, P., Li, X., Liu, Y., Lo-

mas, M., Poulter, B., Viovy, N., Wang, T., Wang, X., Zaehle, S., Zeng, N., Zhao, F., and Zhao, H.: Benchmarking the seasonal cycle610

of CO2 fluxes simulated by terrestrial ecosystem models: Seasonal cycle of CO2 fluxes, Global Biogeochemical Cycles, 29, 46–64,

https://doi.org/10.1002/2014GB004931, http://doi.wiley.com/10.1002/2014GB004931, 2015.

Raddatz, T. J., Reick, C. H., Knorr, W., Kattge, J., Roeckner, E., Schnur, R., Schnitzler, K.-G., Wetzel, P., and Jungclaus, J.: Will the

tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century?, Climate Dynamics, 29, 565–574,

https://doi.org/10.1007/s00382-007-0247-8, http://link.springer.com/10.1007/s00382-007-0247-8, 2007.615

Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of natural and anthropogenic land cover change in MPI-ESM: Land

Cover in MPI-ESM, Journal of Advances in Modeling Earth Systems, 5, 459–482, https://doi.org/10.1002/jame.20022, http://doi.wiley.

com/10.1002/jame.20022, 2013.

Rödenbeck, C., Houweling, S., Gloor, M., and Heimann, M.: CO2 flux history 1982–2001 inferred from atmospheric data using a global

inversion of atmospheric transport, Atmospheric Chemistry and Physics, 3, 1919–1964, https://doi.org/10.5194/acp-3-1919-2003, https:620

//www.atmos-chem-phys.net/3/1919/2003/, 2003.

Rodgers, C. D. and Connor, B. J.: Intercomparison of remote sounding instruments, Journal of Geophysical Research: Atmospheres, 108,

n/a–n/a, https://doi.org/10.1029/2002JD002299, http://doi.wiley.com/10.1029/2002JD002299, 2003.

20

https://doi.org/10.5194/bg-2020-7
Preprint. Discussion started: 10 February 2020
c© Author(s) 2020. CC BY 4.0 License.



Scharlemann, J. P., Tanner, E. V., Hiederer, R., and Kapos, V.: Global soil carbon: understanding and managing the largest terrestrial carbon

pool, Carbon Management, 5, 81–91, https://doi.org/10.4155/cmt.13.77, http://www.tandfonline.com/doi/abs/10.4155/cmt.13.77, 2014.625

Shao, P., Zeng, X., Moore, D. J. P., and Zeng, X.: Soil microbial respiration from observations and Earth System Models, Environmental Re-

search Letters, 8, 034 034, https://doi.org/10.1088/1748-9326/8/3/034034, http://stacks.iop.org/1748-9326/8/i=3/a=034034?key=crossref.

8de91620f8b1689fd302f83adce962a1, 2013.

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford,

C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G.,630

Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends

and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, https:

//www.biogeosciences.net/12/653/2015/, 2015.

Tang, X., Fan, S., Du, M., Zhang, W., Gao, S., Liu, S., Chen, G., Yu, Z., Yao, Y., and Yang, W.: Spatial-and temporal-patterns of global

soil heterotrophic respiration in terrestrial ecosystems, Earth System Science Data Discussions, 2019, 1–28, https://doi.org/10.5194/essd-635

2019-123, https://www.earth-syst-sci-data-discuss.net/essd-2019-123/, 2019.

Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC

data, 1974–1985, Journal of Geophysical Research: Atmospheres, 94, 8549–8565, https://doi.org/10.1029/JD094iD06p08549, https://

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JD094iD06p08549, 1989.

Thum, T., Räisänen, P., Sevanto, S., Tuomi, M., Reick, C., Vesala, T., Raddatz, T., Aalto, T., Järvinen, H., Altimir, N., Pilegaard, K., Nagy,640

Z., Rambal, S., and Liski, J.: Soil carbon model alternatives for ECHAM5/JSBACH climate model: Evaluation and impacts on global

carbon cycle estimates, Journal of Geophysical Research, 116, G02 028, https://doi.org/10.1029/2010JG001612, http://doi.wiley.com/10.

1029/2010JG001612, 2011.

Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. A. G., and Allison, S. D.: Causes of vari-

ation in soil carbon simulations from CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717–1736,645

https://doi.org/10.5194/bg-10-1717-2013, https://www.biogeosciences.net/10/1717/2013/, 2013.

Todd-Brown, K. E. O., Randerson, J. T., Hopkins, F., Arora, V., Hajima, T., Jones, C., Shevliakova, E., Tjiputra, J., Volodin, E., Wu, T., Zhang,

Q., and Allison, S. D.: Changes in soil organic carbon storage predicted by Earth system models during the 21st century, Biogeosciences,

11, 2341–2356, https://doi.org/10.5194/bg-11-2341-2014, https://www.biogeosciences.net/11/2341/2014/, 2014.

Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G.,650

Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes across global FLUXNET

sites with regression algorithms, Biogeosciences, p. 23, 2016.

Tuomi, M., Thum, T., Järvinen, H., Fronzek, S., Berg, B., Harmon, M., Trofymow, J., Sevanto, S., and Liski, J.: Leaf

litter decomposition—Estimates of global variability based on Yasso07 model, Ecological Modelling, 220, 3362–3371,

https://doi.org/10.1016/j.ecolmodel.2009.05.016, https://linkinghub.elsevier.com/retrieve/pii/S030438000900386X, 2009.655

Tuomi, M., Laiho, R., Repo, A., and Liski, J.: Wood decomposition model for boreal forests, Ecological Modelling, 222, 709–718,

https://doi.org/10.1016/j.ecolmodel.2010.10.025, https://linkinghub.elsevier.com/retrieve/pii/S0304380010005855, 2011.

van der Laan-Luijkx, I. T., van der Velde, I. R., van der Veen, E., Tsuruta, A., Stanislawska, K., Babenhauserheide, A., Zhang, H. F., Liu, Y.,

He, W., Chen, H., Masarie, K. A., Krol, M. C., and Peters, W.: The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: implementation

and global carbon balance 2001–2015, Geoscientific Model Development, 10, 2785–2800, https://doi.org/10.5194/gmd-10-2785-2017,660

https://www.geosci-model-dev.net/10/2785/2017/, 2017.

21

https://doi.org/10.5194/bg-2020-7
Preprint. Discussion started: 10 February 2020
c© Author(s) 2020. CC BY 4.0 License.



van Groenigen, K. J., Osenberg, C. W., Terrer, C., Carrillo, Y., Dijkstra, F. A., Heath, J., Nie, M., Pendall, E., Phillips, R. P., and Hun-

gate, B. A.: Faster turnover of new soil carbon inputs under increased atmospheric CO2, Global Change Biology, 23, 4420–4429,

https://doi.org/10.1111/gcb.13752, http://doi.wiley.com/10.1111/gcb.13752, 2017.

Viovy, N.: CRU-NCEP dataset, http://dods.extra.cea.fr/data/p529viov/cruncep/readme.htm, 2010.665

Wang, H., Jiang, F., Wang, J., Ju, W., and Chen, J. M.: Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2 XCO 2 retrievals,

Atmospheric Chemistry and Physics, 19, 12 067–12 082, https://doi.org/10.5194/acp-19-12067-2019, https://www.atmos-chem-phys.net/

19/12067/2019/, 2019.

Warner, D., Bond-Lamberty, B., Jian, J., Stell, E., and Vargas, R.: Spatial predictions and associated uncertainty of annual soil respiration at

the global scale, Global Biogeochemical Cycles, p. 2019GB006264, https://doi.org/10.1029/2019GB006264, https://onlinelibrary.wiley.670

com/doi/abs/10.1029/2019GB006264, 2019.

Wei, W.: Forest soil respiration and its heterotrophic and autotrophic components: Global patterns and responses to temperature and precipi-

tation, Soil Biology, p. 9, 2010.

Welp, L. R., Keeling, R. F., Meijer, H. A. J., Bollenbacher, A. F., Piper, S. C., Yoshimura, K., Francey, R. J., Allison, C. E.,

and Wahlen, M.: Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Niño, Nature, 477, 579–582,675

https://doi.org/10.1038/nature10421, http://www.nature.com/articles/nature10421, 2011.

Wieder, W. R., Cleveland, C. C., Smith, W. K., and Todd-Brown, K.: Future productivity and carbon storage limited by terrestrial nutrient

availability, Nature Geoscience, 8, 441–444, https://doi.org/10.1038/ngeo2413, http://www.nature.com/articles/ngeo2413, 2015.

Wieder, W. R., Hartman, M. D., Sulman, B. N., Wang, Y.-P., Koven, C. D., and Bonan, G. B.: Carbon cycle confidence and uncertainty:

Exploring variation among soil biogeochemical models, Global Change Biology, 24, 1563–1579, https://doi.org/10.1111/gcb.13979, http:680

//doi.wiley.com/10.1111/gcb.13979, 2018.

Yan, Z., Bond-Lamberty, B., Todd-Brown, K. E., Bailey, V. L., Li, S., Liu, C., and Liu, C.: A moisture function of soil heterotrophic

respiration that incorporates microscale processes, Nature Communications, 9, 2562, https://doi.org/10.1038/s41467-018-04971-6, http:

//www.nature.com/articles/s41467-018-04971-6, 2018.

Yoshida, Y., Kikuchi, N., Morino, I., Uchino, O., Oshchepkov, S., Bril, A., Saeki, T., Schutgens, N., Toon, G. C., Wunch, D., Roehl, C. M.,685

Wennberg, P. O., Griffith, D. W. T., Deutscher, N. M., Warneke, T., Notholt, J., Robinson, J., Sherlock, V., Connor, B., Rettinger, M.,

Sussmann, R., Ahonen, P., Heikkinen, P., Kyrö, E., Mendonca, J., Strong, K., Hase, F., Dohe, S., and Yokota, T.: Improvement of the

retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data, Atmospheric Measurement Techniques,

6, 1533–1547, https://doi.org/10.5194/amt-6-1533-2013, https://www.atmos-meas-tech.net/6/1533/2013/, 2013.

Yu, L., Ahrens, B., Wutzler, T., Schrumpf, M., and Zaehle, S.: Jena Soil Model: a microbial soil organic carbon model integrated with690

nitrogen and phosphorus processes, preprint, Climate and Earth System Modeling, https://doi.org/10.5194/gmd-2019-187, https://www.

geosci-model-dev-discuss.net/gmd-2019-187/, 2019.
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Figure 1. Locations of GAW stations, denoted as black dots, and different TransCom regions as different colors.

23

https://doi.org/10.5194/bg-2020-7
Preprint. Discussion started: 10 February 2020
c© Author(s) 2020. CC BY 4.0 License.



a)CBALANCE

0

15

30

45

60

75

90

105

S
oi
lC

(k
g
C
m
−2

)

b)YASSO

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

S
oi
lC

(k
g
C
m
−2

)

Figure 2. The distribution of total soil carbon globally for CBA (a) and YAS (b). The scales are different between the plots.
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Figure 3. The annual cycle of heterotrophic respiration globally with the CBALANCE (dark grey) and YASSO (light grey) model versions.
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Figure 4. The annual cycle of heterotrophic respiration in Northern (a) and Southern (b) Hemispheres separated into latitudinal zones.

CBALANCE results are shown in solid lines and the YASSO results in dashed lines.
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Figure 5. The seasonal cycle amplitudes (SCAs) of atmospheric CO2 in ppm (a) and r2 between the simulations and observations (b) at

different Global Atmosphere Watch stations as a function of latitude.The black circles denote observations, the grey crosses are the results

from the CarbonTracker Europe 2016 (CTE), the dark grey stars are the results from the CBALANCE (CBA) run and the lighter grey

diamonds are the results from the YASSO (YAS) run.
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Figure 6. The detrended seasonal cycles of atmospheric CO2 at four Global Atmospheric Watch sites: Alert (a), Pallas (b), Niwot Ridge (c),

Mauna Loa (d) for observations (OBS) in black solid line, CarbonTracker Europe 2016 (CTE) in a grey dotter line, and the two JSBACH

model version with CBALANCE (CBA) in dark grey dashed line and YASSO (YAS) in light grey dashed line. The solid grey line denotes

the zero line.
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Figure 7. The seasonal cycles of detrended atmospheric XCO2 mole fraction at TransCom regions two, southern part of North America (a)

and eleven, Europe (b). The observations are in black solid line, CBALANCE (CBA) model results in dashed dark grey line and YASSO

(YAS) model results in dasher light grey line. The solid grey line denotes the zero line.
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Table 1. Global C storage in the two different model formulations averaged over 2001-2014. For the YAS model the eight above ground

pools are summed to obtain the litter pool, while the remaining 10 pools (below ground and humus) represent the soil pool.

C pool (Pg C) CBA YAS

Litter C 171 263

Soil C 3217 703

Vegetation C 432 432
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Table 2. Global terrestrial C fluxes from the two different model formulations averaged over 2001-2014.

Row Flux (PgCyear−1) CBA YAS

A Net CO2 flux (A = -B + E + G + H + I + J) -1.68 -1.75

B GPP 167 same

C Heterotrophic resp. Rh 66.1 65.5

D Autotrophic resp. Ra 89.9 same

E TER (E = C + D) 156 156

F NPP (F = B - D) 77.4 same

G Direct land cover change 2.30 same

H Fire 1.60 2.10

I Harvest 0.23 same

J Herbivory 5.54 same
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Table 3. r2 values for the different latitudinal zones between modelled heterotrophic respiration and the environmental drivers of the CBAL-

ANCE (CBA) and YASSO (YAS) models. The environmental drivers are all calculated as monthly means for the latitudinal zones. The

values denoted by asterisk (*) show a negative correlation. The positive relationships with the r2 value of 0.80 or more have been written in

bold. α is the relative soil moisture, Tsoil and Tair are soil and air temperature, and Pa is the precipitation.

Lat. zone CBA vs. α CBA vs. Tsoil YAS vs. Pa YAS vs. Tair YAS vs. α

60◦N -90◦N 0.04 0.92 0.91 0.80 0.23

30◦N -60◦N 0.65* 0.97 0.95 0.90 0.85*

0◦N -30◦N 0.92 0.24 0.92 0.86 0.34

0◦S -10◦S 0.84 0.00 0.86 0.27 0.20

10◦S -30◦S 0.88 0.14 0.87 0.82 0.22

30◦S -60◦S 0.21* 0.58 0.60 0.91 0.83*
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Figure A1. Different annual cycles of the heterotrophic respiration (Rh) predicted by the YASSO (a) and CBALANCE (b) model and the

different alternatives from the box model calculation.
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Table A1. The amplitude of global heterotrophic respiration within a year in different box model formulations. The input variables or

functions that differ from the original model formulation are in bold letters.

Line Option Amplitude (PgCyear−1)

A) YAS - Original model 3.8

B) YAS with inputs Tsoil and α and functions fCBA,Tsoil and fCBA,α 2.7

C) YAS with inputs Tsoil and α and functions fY AS,Tair and fY AS,Pa 3.7

D) YAS with inputs Tair and Pa and functions fCBA,Tsoil and fCBA,α 3.0

A) CBA - Original model 2.3

B) CBA with inputs Tair and Pa and functions fYAS,Tair and fYAS,Pa 4.2

C) CBA with inputs Tair and Pa and functions fCBA,Tsoil and fCBA,α 3.2

D) CBA with inputs Tsoil and α and functions fYAS,Tair and fYAS,Pa 4.0
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