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Abstract. Marine dimethyl sulfide (DMS) is important to climate due to the ability of DMS to alter Earth’s radiation budget.

However, a knowledge of the global-scale distribution, seasonal variability, and sea-to-air flux of DMS is needed in order to

understand the factors controlling surface ocean DMS and its impact on climate. Here we examine the use of an artificial

neural network (ANN) to extrapolate available DMS measurements to the global ocean and produce a global climatology with

monthly temporal resolution. A global database of 58,100 ship-based DMS measurements in surface waters was used along5

with a suite of environmental parameters consisting of latitude-longitude coordinates, time-of-day, time-of-year, solar radiation,

mixed layer depth, sea surface temperature, salinity, nitrate, phosphate, silicate, and oxygen. Linear regressions of DMS against

the environmental parameters show that on a global scale mixed layer depth and solar radiation are the strongest predictors of

DMS, however, they capture 14% and 12% of the raw DMS data variance, respectively. The multi-linear regression can capture

more (∼29%) of the raw data variance, but strongly underestimates high DMS concentrations. In contrast, the ANN captures10

∼61% of the raw data variance in our database. Like prior climatologies our results show a strong seasonal cycle in DMS

concentration and sea-to-air flux. The highest concentrations (fluxes) occur in the high-latitude oceans during the summer. We

estimate a lower global sea-to-air DMS flux (17.90±0.34 Tg S yr−1) than the prior estimate based on a map interpolation

method when the same gas transfer velocity parameterization is used.

1 Introduction15

Dimethylsulfide emitted from the surface ocean is the major precursor for aerosol sulfate in the marine atmosphere. These

aerosols play a significant role in the climate system both directly, through aerosol radiative effects and indirectly, through

their role as cloud condensation nuclei and influence on cloud radiative properties (Andreae and Rosenfeld, 2008). Assessing

the impact of DMS on global climate requires an understanding of the DMS distribution and the factors controlling variability

on a variety of spatial and temporal scales. Dimethylsulfide is produced in surface waters, mainly via enzymatic cleavage of the20

biogenic compound dimethyl sulfoniopropionate (DMSP; (e.g. Stefels et al., 2007)). The abundance of DMS in surface waters

is a function of numerous factors controlling production, loss rates and pathways of both DMSP and DMS (Simó, 2001; Toole
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and Siegel, 2004). Developing mechanistic and predictive models of surface ocean DMS is challenging due to limitations of

the existing observational database.

Given the biogenic origin of DMS, early efforts focused on the relationship between DMS and Chl a (a proxy for biomass).25

Positive correlations between DMS and Chl a have been reported on basin scales (e.g. Andreae and Barnard, 1984; Yang

et al., 1999). However, this positive correlation disappears when more data are used. Kettle et al. (1999) found no significant

relationship between DMS and Chl a based on the global DMS data set available at the time. The weak relationship may be

caused by the so-called “summer DMS paradox”, which describes a phenomenon where a maximum DMS concentration is

commonly detected in low latitude waters when phytoplankton biomass is low (Toole and Siegel, 2004; Vallina et al., 2008).30

Kettle et al. (1999) also tested linear regression models on a compilation of data, including sea surface salinity and temperature,

nitrate, silicate, phosphate, and Chl a, and concluded that no simple algorithm based on linear regression could be used to create

monthly DMS fields, indicating that more complex mechanisms control surface DMS concentrations.

Simó and Dachs (2002) achieved a strong relationship between heavily binned and averaged DMS data and mixed layer

depth (MLD). Vallina and Simó (2007) found a linear relationship between DMS concentration and solar radiation dose (SRD)35

in the coastal northwest Mediterranean. They conducted a global scale study by dividing the ocean into 10◦ latitude by 20◦

longitude boxes and correlating SRD and the box averaged DMS concentration. A strong linear relationship was detected in

this filtered dataset. Derevianko et al. (2009) reexamined the relationship between SRD/MLD and DMS concentration by using

1◦ by 1◦ bins, and found that only a small fraction (14%) of the DMS variance was captured by a linear model based on SRD

or MLD. These authors also pointed out that the previously identified strong relationship between MLD/SRD and DMS “result40

from the reduction in the total variance in the data due to binning” (Derevianko et al., 2009).

Prognostic models have also been used to obtain climatological DMS distributions. In these models, phytoplankton are

divided into different groups based on their ability to produce DMS. For example, diatoms produce less DMS than coccol-

ithophores and Phaeocystis (e.g. Bopp et al., 2003; Vogt et al., 2010; Gypens et al., 2014). Elliott (2009) implicitly incorpo-

rated Phaeocystis in a model by assuming that DMS yields are simply related to temperature. The work of Wang et al. (2015)45

explicitly incorporated Phaeocystis into the Biogeochemical Elemental Cycling (BEC) model and included DMSP production

from each phytoplankton group, along with DMS leakage pathways from algal cells, (grazing, lysis, and exudation). Despite

this level of modeling detail, there remain large discrepancies between the model simulations and in-situ measurements (Vogt

et al., 2010; Wang et al., 2015).

The DMS climatologies used in most climate models were obtained by extrapolating observed DMS to the global ocean50

using objective analysis schemes (Kettle et al., 1999; Lana et al., 2011). In those climatologies, observational data were first

binned and averaged into 1◦ by 1◦ grid squares, which were then grouped into 57 static biogeographic provinces according to

Longhurst (1998). Many provinces lacked adequate data to create a reliable climatology (Fig. A1). In those situations, temporal

interpolations were used to fill the blanks, and to create a first-guess map. Distance-weighted interpolation was used to fill the

remaining gaps. Major gaps remain in the observational data base for wintertime in the high latitudes of both hemispheres.55

Machine learning is being increasingly used in oceanography and geosicence studies (Bergen et al., 2019). For example,

Roshan and DeVries (2017) applied an artificial neural network (ANN) to extrapolate observed dissolved organic carbon
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(DOC) to the global ocean. Rafter et al. (2019) used an ensemble of neural networks to study oceanic δ15N distribution. ANNs

have also been used to study DMS on regional scales (e.g. Humphries et al., 2012). The popularity of machine learning partially

stems from one of its inherent advantages: it can detect non-linear relationships that traditional linear regression models are60

unable to capture. Since DMS is produced by marine algae, we expect that there exists a functional relationship between

parameters controlling the growth of phytoplankton or species distribution. Therefore, the objective of the present paper is to

explore possible relationships between DMS and environmental variables, with the goal of creating a monthly-resolved DMS

climatology.

The paper is organized as follows. We begin by exploring the relationships between DMS concentration and various en-65

vironmental parameters taken one at a time using linear regression. We then do a stepwise multilinear regression to create a

reference model to which we compare our neural network model results. Lastly, we train an ANN using DMS measurements

and environmental parameters. With the trained networks, we extrapolate the sparse measurements globally to obtain gridded

fields of monthly DMS distributions and sea-to-air DMS fluxes.

2 Materials and Methods70

2.1 Data sources and cleaning

Surface ocean DMS data were obtained from the Global Surface Seawater DMS database and from the North Atlantic Aerosol

and Marine Ecosystems experiment [NAAMES, (Behrenfeld et al., 2019) (Table A1) . In total, 58,100 measurements were

used, compared to 47,313 used by Lana et al. (2011). The Global Surface Seawater DMS database also includes some ancillary

in-situ data, such as DMSP, Chl a, sea surface temperature (SST), and salinity (SSS). Such data were used if available. If75

not, monthly climatology data from other sources (Table A1) are used to fill the gaps. SeaWIFS Chl-a data from December

1997 to March 2001 were averaged to create monthly climatologies. Photosynthetically available radiation (PAR) from January

2003 to March 2017 were averaged to get monthly PAR climatologies. Mixed layer depth climatologies were obtained from

Schmidtko et al. (2013). Sea ice cover was from a simulation with the ocean component of the Community Earth System Model

(CESM) forced with a repeating thirty year cycle (1980-2009) of NCEP reanalysis datasets (Wang et al., 2019), the output was80

averaged into a monthly climatology and was used for estimating air-sea gas exchange. Nutrient data (nitrate, phosphate, and

silicate) were also included in the neural network analyses, since they can exert influence on phytoplankton distribution and

thus influence DMS production (Wang et al., 2015; Archer et al., 2009). The ancillary data are then matched with DMS data

according to the time of year.

2.2 Linear regressions85

Linear regression models are conducted on two sets of data to diagnose the predictive skill of each ancillary variable. As a first

step, we restrict the regression model to data sets where both DMS and the predictor variable are simultaneously available.

This selection process yields a total of 10,823 pairs for Chl a and DMS, 4,559 pairs of total DMSP (DMSPt) and DMS, 36,814
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pairs of sea-surface salinity and DMS, and 43,142 pairs of sea-surface temperature and DMS, respectively. In a second step,

the unmeasured predictors (i.e. MLD, PAR, Nitrate (DIN), Phosphate (DIP), and Silicate (SiO4−
4 ), SST, SSA, and Chl a) are90

filled in using monthly climatology data from the previously cited sources. DMSPt is not included, because there is no available

climatological dataset to fill the missing values.

To reduce the dynamic range, we log-transform the DMS, DMSPt, Chl a, MLD, DIP, DIN, and silicate data. We do not

log-transform SST to avoid losing data with temperature below (equal to) zero. Data with salinity less than 10 are removed to

eliminate near shore and estuary measurements to focus on the open ocean. The corresponding predictors are then standardized95

to their z-score, Z ≡ (C −C)/σ, where C is predictor’s concentration; C is the mean of the variables; and σ is standard

deviation of the variables. Matlab’s polyfit function is applied to each pair to fit a first degree polynomial, i.e. a linear

regression.

2.3 Multilinear regression

We begin by applying a step-wise multi-linear regression model to the environmental data using Matlab’s stepwiselm100

function. We consider a total of eight potential DMS predictors: PAR, MLD, Chl a, SSS, SST, DIN, DIP, and SiO. Bayesian

Information Criterion (BIC) of 0.01 is used as a criterion for accepting or rejecting a predictor, which means that predictors are

removed if they induce a BIC increase of more than 0.01.

2.4 Artificial Neural Network (ANN)

To assess the possibility that a non-linear model might provide better prediction, we train artificial neural networks (ANNs)105

using the Keras deep learning toolbox in Python. The ANN requires that the predictor fields be available for every DMS data

point so we fill missing values in the environmental dataset with climatological data. We eliminate DMS measurements that are

under CESM ice coverage, leaving us with 49,798 DMS measurements with a complete set of predictors. DMS concentration

along with the eight environmental predictors (PAR, MLD, Chl a, SSS, DIN, DIP, and SiO) are log-transformed. The predictors’

dynamic ranges are then constrained to the [0,1] interval using a minmax normalization, i.e. Cnorm ≡ (C −Cmin)/(Cmax−110

Cmin), where Cmin and Cmax are the minimum and maximum values in the data C, respectively.

The in-situ sampling times (months and hours) were converted to periodic functions using sine and cosine functions to

address the data continuity issue, such that in a diurnal or seasonal cycle the start (0 hr or January) and the end (24 hr or

December) of a cycle share the same properties, but would be numerically different. The coordinate space notations have a

similar issue in the longitudinal direction. The conversions are conducted according to Gade (2010) and Gregor et al. (2017)115

as follows:
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The dataset is then separated into training and external validating sets. Data from the fifteen two-degree-latitude bands

(69◦N−71◦N, 59◦N−61◦N, 49◦N−51◦N, 39◦N−41◦N, 29◦N−31◦N, 19◦N−21◦N, 9◦N−11◦N, 1◦N−1◦S, 9◦S−11◦S, 19◦S−21◦S,

29◦S−31◦S, 39◦S−41◦S, 49◦S−51◦S, 59◦S−61◦S, 69◦S−71◦S) are left out for external validation (10,836 points). The re-

maining data (38,962 points) are used to train the neural network. The network has one input layer with 15 input nodes125

corresponding to the 15 predictors (8 environmental predictors and 7 time and coordination signatures), two dense hidden

layers with 128 nodes each, and one output layer with one node corresponding to the predicted DMS concentration.

To avoid overfitting, we add two dropout layers with a dropout ratio of 30% after each hidden layer. We also apply a L2

kernel regularizer for each hidden layer with the regulation parameter value set to 0.001. When the network is trained, the

training data set is internally split to two units, 80% for training and 20% for internal validation. We monitor the internal130

validation mean squared error, and stop the training when there is no error deduction in 50 epochs. Only the best model with

the lowest validation mean squared error is saved. We tested different network setups, the current setting achieves goodness of

fit, but avoids overfitting. We train an assemble of networks based on ten random states (random seed of 2, 4, 8, 16, 32, 64,

128, 256, 512, and 1024 generated using the Python tensorflow package).

To obtain a monthly and annual DMS climatology, we interpolate the corresponding state variables (PAR, MLD, Chl a, SSS,135

SST, DIN, DIP, and SiO) onto a 1◦ by 1◦ grid. Coordinates and target months are transformed accordingly. We then apply

the trained networks to obtain hourly DMS concentrations, which are averaged into daily and monthly means. Monthly results

from 10 random states are then used to produce the final monthly climatology and to analyze uncertainties.

2.5 Sea-to-air flux

Air-sea gas transfer is estimated using the following bulk formula,140

F =Kw(Cw −Ca/H), (4)

where F is sea-to-air gas exchange flux, Ca and Cw are bulk air and bulk water gas concentrations, and Kw (cm/hr) is the

overall gas transfer velocity, expressed in water side units (Liss, 1974). Kw reflects the combined resistance to gas transfer on
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both sides of the interface, as follows:

1/Kw = 1/kw + 1/(Hka)), (5)145

where H is the dimensionless (gas/liquid) Henry’s law constant and ka and kw are gas transfer velocities in air and seawater.

The surface ocean is strongly supersaturated in DMS with respect to the overlying atmosphere, with Cw� Ca, simplifying

the flux equation 4 to

F =KwCw, (6)

For this study we used two parameterizations forKw. The Goddijn-Murphy et al. (2012) parameterization (hereafter GM12)150

is based on regressions between satellite based wind-speed observations with shipboard in-situ measurements of DMS gas

transfer velocities using eddy covariance. The GM12 parameterization for Kw normalized to a Sc number of 660 is

Kw,660 = 2.1U10− 2.8, (7)

where U10 is wind speed (m/s) at 10 m above sea surface. We also utilized the Nightingale et al. (2000) (hereafter N00), which

is based on shipboard 3He/SF6 dual tracer experiments. Their parameterization for water side only DMS gas transfer velocity155

at a Schmidt number of 660 (κw,660) is calculated as follows,

kw,660 = (0.222U2
10 + 0.333U10)(ScDMS/600)−0.5, (8)

where ScDMS is calculated as a function of temperature after Saltzman et al. (1993). A total transfer velocity is obtained from

N00 as follows,

Kw,660 = kw,660(1− γa), (9)160

where γa is atmospheric gradient fraction given by γa = 1/(1 + ka/αkw,660) (McGillis et al., 2000). Air side DMS transfer

velocity is given as ka = 659U10(MDMS/MH2O)−0.5, whereMDMS andMH2O are the molecular weights of DMS and water,

respectively (McGillis et al., 2000).

DMS fluxes were calculated using a satellite-based wind speed climatology (Table A1) and surface ocean DMS concentra-

tions from the ANN results. Ice fraction data are from the CESM simulation monthly climatology. DMS fluxes from ice-covered165

regions are set to zero, although DMS concentration in or below sea ice is not necessarily zero.

3 Results and discussion

3.1 Linear regressions

The linear regression coefficients and R2 values are summarized in Table 1. For the test using in-situ measurements, DMS

and DMSPt show the strongest positive correlation with a R2 value of 0.41. It is not surprising to find the strong relationship170
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between total DMSP (DMSPt) and DMS, since DMS derives from the enzymatic cleavage of DMSP (Stefels, 2000; Stefels

et al., 2007). However, it is difficult to infer global scale climatological DMS distributions from total DMSP measurements,

because there are approximately 10-fold fewer measurements of total DMSP compared to DMS. On the other hand, since

DMSP is directly produced by phytoplankton and has no sea-to-air gas exchange, it is relatively easy to parameterize in a

biogeochemical model (Galí et al., 2015) The strong relationship between DMS and DMSP point toward a potential way to175

model marine seawater DMS.

The second strongest predictor is in-situ Chl a (R2 = 0.19). When missing Chl a data are filled in using the satellite-based

climatological values, the correlation between Chl a and DMS becomes weaker (R2 = 0.07). The weak relationship may be

caused by greater variance in the larger dataset (41,146 vs 9,942). The positive correlation between Chl a and DMS can be

explained by the fact that the precursor of DMS, namely DMSP, is biogenic. Such a relationship has been reported in basin180

scale studies (e.g. Yang et al., 1999). On the other hand, negative correlations between DMS and Chl a have also been detected

in coastal waters of the Mediterranean and in the Sargasso Sea (Toole and Siegel, 2004). The low and inconsistent R2 values

indicate the complexity of the biogeochemical reduced sulfur cycle. As suggested by Simó (2001), not only can phytoplankton

biomass, taxonomy, and activity influence DMS production, so do food-web structure and dynamics.

When tested against climatological data with gaps filled-in, MLD has the strongest negative correlation with DMS (R2 =185

0.14, n = 53,391), with a slope of -0.36. It has been reported that in the open ocean high DMS concentrations have been detected

when the water column is most stratified (Simó and Pedrós-Alió, 1999). When the mixed layer deepens, water with no or little

DMS is entrained into the surface waters and dilutes surface DMS concentrations (Derevianko et al., 2009). Additionally,

stratified wasters get more light which is good for phytoplankton growth and can stimulate DMS production due to enhanced

oxidative stress.190

Climatological PAR is the second strongest predictor (R2 = 0.12, n = 54,683) of raw DMS data with a positive correlation.

Physiologically, the correlation between PAR and DMS can be explained by two reasons. First, high radiation negatively

influences the bacterial population and accompanying DMS consumption (Toole et al., 2006). Second, high radiation promotes

DMS production by exerting oxidative stress on algal cells (Toole et al., 2006; Sunda et al., 2002). Strong correlation between

monthly binned and averaged solar radiation dose (SRD) and DMS concentration has been reported (R2 = 0.94) at the Blanes195

Bay Microbial Observatory located in the coast of northwest Mediterranean (Vallina and Simó, 2007). Correlations between

DMS and the other parameters (SST, SSS, DIP, DIN, and SiO) are generally weak (R2 < 0.001), indicating that although

these environmental parameters can influence biomass distribution in the ocean, their direct influence on DMS concentration

is subtle.

3.2 Binned data versus raw data200

Simó and Dachs (2002) obtained a high R2 value between DMS concentration and the ratio of Chl a and MLD (Chl/MLD).

Vallina and Simó (2007) reported an R2 of 0.95 (n=14) between DMS concentration and SRD. We applied the same linear

regressions on the raw data (not binned), and found that the correlation between solar radiation and DMS is weak, and the

correlation between DMS and Chl/MLD is statistically insignificant (n = 9,942, R2 =∼ 0 ). Compared to Simó and Dachs
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(2002) and Vallina and Simó (2007), we have significantly more data points. For example, in this study, there is a total of 9,942205

DMS measurements accompanied with simultaneous Chl a measurements versus 2,385 data points used in Simó and Dachs

(2002), and 54,683 (DMS, MLD) pairs in this study versus 26,400 in Vallina and Simó (2007). Another noticeable difference

between the current study and previous analyses is that both Simó and Dachs (2002) and Vallina and Simó (2007) binned the

data into large longitude and latitude grids. By doing so, the raw data variance is greatly reduced. Additionally, both studies

applied data cleaning processes to exclude “outliers”. For example, Simó and Dachs deliberately got rid of “A few groups of210

data that did not fit the algorithm equation”. In our analyses, we use all available raw data.

3.3 Multilinear regression

Fig. 1a compares a multilinear regression model prediction to observations (R2 = 0.28). Generally, the multilinear model

captures more of the variance than the univariate linear regression model. However, it is apparent that the multilinear regression

model significantly underestimates high DMS concentrations. The generally low correlation hinders the possibility of reliably215

extrapolating the model to the global ocean.

3.4 ANN

Fig. 1b displays the tracer-tracer correlation between DMS observations and ANN predictions. Compared to simple linear and

multilinear regression models, ANN captures much more of the observed DMS variance (R2 = 0.61, n= 49,798). Compared

to previous extrapolations (Kettle et al., 1999; Lana et al., 2011), the ability of the ANN to build a nonlinear relationship220

between DMS and environmental predictors allows it to capture more of the variance. It also incorporates diurnal and seasonal

signals present in the data. As a result, the extrapolation obtained from the ANN considers the relationship with geographical

neighbors and also with temporal relationships.

3.5 DMS distributions

Fig. 3 displays monthly DMS concentration distributions predicted by the ANN. Generally, DMS concentrations in polar re-225

gions show strong seasonality. The highest DMS concentrations are in summer when light and temperature are ideal for primary

production. For example, in austral summer, the Southern Ocean circumpolar regions display the highest DMS concentration

(>10 nM). DMS concentration in the Scotia Sea and west coast of South America (30◦S - 60◦S) display the highest DMS

concentration, which gradually decreases and falls below 0.5 nM in the following months when primary production is limited

by light or low temperature. In boreal summer, DMS concentration in the Bering Sea and Greenland Sea can exceed 20 nM.230

The summertime high DMS concentration at high latitudes is consistent with the hypothesis that phytoplankton use DMSP

as a cryoprotectant (Karsten et al., 1992). It is found that the same phytoplankton (Antarctic macroalga) contains higher DMSP

concentration in the polar regions than in the temperate regions (Karsten et al., 1990). High DMS concentrations at high

latitudes have been observed to accompany blooms of coccolithophores and Phaeocystis, which are prolific DMSP producers
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(Iida et al., 2002; Toole and Siegel, 2004). At the same time, the shoaling of mixed layer depth in summer can also help to235

maintain high surface DMS concentration.

Another interesting region is the Pacific equatorial upwelling region. Large-scale upwelling brings nutrient-rich waters to

the surface, which nourish highly productive phytoplankton communities. Overall, the seasonality in the equatorial Pacific

is weaker than that in polar regions, but there is still a clear seasonal pattern. In the period from December to February, the

tongue with high DMS concentration (∼3 nM) extends to the west Pacific Ocean reaching the east coast of Australia and the240

Philippine Sea. The tongue gradually retreats eastward in the following months. From September to November, the tongue is

constrained to the eastern Pacific and DMS concentration falls to its lowest values (<2.0 nM). High DMS concentrations in

the west Pacific ocean from November to February are also predicted by Lana et al. (2011).

The subtropical gyres show consistently low DMS concentrations and weak seasonal cycles throughout the year. In the

southern hemisphere gyres, DMS concentrations are highest during austral summer, when the ocean is strongly stratified and245

local primary production is low. There are hot spots where DMS concentration exceeds 3 nM in December and February. DMS

concentrations are generally low (falling below 1 nM) during austral spring and winter seasons. In the period from April to

September, DMS concentrations in the S. Atlantic gyre fall below 0.1 nM. In the northern hemisphere gyres, DMS concentra-

tions are high during the boreal summer season. The concurrence of high DMS concentration with low phytoplankton biomass

(Chl a) in summer is described as the “summer DMS paradox” (Simó and Pedrós-Alió, 1999). A few mechanisms have been250

proposed to collectively explain the decoupling of DMS concentration and phytoplankton biomass: 1) gyres in summertime

are dominated by phytoplankton species that produce relatively more DMSP, 2) ultraviolet radiation suppresses bacterial DMS

consumption, 3) direct DMS production by phytoplankton relax UVR-induced oxidative stress, 4) solar-radiation stimulates

DMS exudation.

The Indian Ocean as a whole shows quite interesting seasonality. DMS concentration is high from December to February,255

and gradually decreases in the following months, and reaches minimum in September. Our prediction in the Indian subtropical

gyre (ISSG) is quite consistent with the result reported by Lana et al. (2011). However, our highest concentration is lower than

that reported by Lana et al. (2011) (4 nM compared to 6 nM). We predict a similar seasonal cycle in the equatorial Indian

Ocean (MONS) compared to Lana et al. (2011): DMS concentrations are higher in boreal summer than winter. The so-called

“summer DMS paradox” is once again observed in these regions.260

Monthly mean concentrations are plotted along with results from Lana et al. (2011) (Fig. 2). Our predictions display similar

seasonal patterns but overall lower average concentrations compared to Lana et al. (2011). The differences are the largest in

the months of January, October, November, and December. To find out which parts of the ocean contribute to the difference,

monthly difference maps are plotted in Fig. 4. Generally, the differences are small where measurement data are present. For

example, the Atlantic ocean was extensively surveyed in October (overall difference< 0.5 nM), whereas, the Indian and Pacific265

oceans have sparse data coverage and the largest differences. This is especially true in the months of January, October to

December in the Indian ocean, and in the months of January, February, October to December in the western Pacific ocean. The

results are not surprising, because our model matches observational data well, and Lana et al. (2011) model has the lowest bias

when measurement data are available. However, when observational data are absent, our model builds on internal relationship
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between DMS and environmental parameters, and Lana et al. (2011) relies only on temporal and spatial relationships, which270

can be very weak due to the sparsity of the observational data (Fig. 4 and Fig. A1).

3.6 Sea-to-air flux

In this study, we computed monthly sea-to-air DMS fluxes using both the GM12 and N00 gas transfer velocity parameter-

izations (Fig. 5 and Fig. 6). These yield global DMS annual fluxes of 17.17±0.32 Tg S yr−1 and 17.90±0.34 Tg S yr−1,

respectively. The uncertainties (errorbars) are calculated according to DMS distributions from 10 ANN models based on dif-275

ferent random seeds. These fluxes are consistent with an satellite-based estimate by Land et al. (2014), who estimated an

global sea-to-air flux of 19.6 Tg S yr−1. Our flux estimates are on the lower end of Lana et al. (2011) (15.0 to 40.4 Tg S yr−1)

climatology, but exhibit similar patterns of geographic and seasonal variability (Table 2).

On an annual, zonal average basis, the DMS flux is highest in the tropical oceans and decreases towards the poles. However,

our zonally averaged fluxes are generally lower than those of Kettle et al. (1999) and Lana et al. (2011). To find out the280

possible reason(s) for our low flux estimates, we recalculated DMS fluxes based on the N00 flux parameterization and DMS

concentrations from Lana et al. (2011). The newly calculated flux is 23.48 Tg S yr−1, lower than the originally reported value

of 28.1 Tg S yr−1 (Lana et al., 2011), and indicates that the climatological fields of wind speeds, SST, and SSS used to compute

gas transfer velocity contribute ∼45% of the flux difference. The difference between the DMS concentration fields from this

study versus Lana et al. (2011) contribute the remaining ∼55% of the difference.285

Geographically, in the high-latitude northern hemisphere, sea-to-air DMS fluxes are low in boreal winter, even though wind

speeds are high. The DMS flux tends to increase in the proceeding months and reaches a maximum in boreal summer, despite

the lower wind speeds (Fig. A1). The inverse relationship between wind speed and DMS flux indicates that the high DMS flux

is mainly driven by high seawater DMS concentrations. Large sea-to-air DMS fluxes at high latitudes in austral summer are

driven jointly by high DMS concentrations and high wind speeds (Fig. 5 and Fig. A1). Although DMS concentration is low in290

austral winter, sea-to-air DMS fluxes are intermediate owing to year round high wind speed in this region. The eastern tropical

Pacific ocean displays a year-round intermediate sea-to-air DMS flux. This is mainly driven by the high DMS concentration in

this region, since the wind speeds here are generally low (Fig. 5 and Fig. A1).

Fig. 6 displays integrated monthly global DMS fluxes based on the two piston velocity parameterizations. It is noticeable that

DMS fluxes based on the GM12 parameterization are lower than those based on the N00 parameterization. Furthermore, DMS295

fluxes are highest in the winter months (Dec., Jan., and Feb.) and March; there is a another but smaller peak in the months of

July and August because of northern hemisphere flux peaks. The boreal winter (austral summer) high fluxes are due to the flux

from the southern hemisphere oceans, which also have a large surface area. Although DMS fluxes are high in the high-latitude

northern hemisphere summer, the sea surface area is much smaller than the southern hemisphere oceans. High DMS fluxes

in the southern hemisphere have profound impact to the Earth’s climate because there are less terrestrial and anthropogenic300

aerosol inputs compared to the northern hemisphere.
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4 Conclusions

The artificial neural network (ANN) used in this study has some advantages compared to the prior methods used to develop

DMS climatologies. Most importantly, the ANN utilizes available measurements to fill regions without DMS observations,

using non-linear relationships trained in more data rich regions/seasons. By contrast, objective interpolation methods are spa-305

tial/temporal averages of sparse data with no underlying basis in environmental variability. As a result, the ANN approach

captures significantly more of the raw data variance than simple linear/multilinear models. Simple models achieve comparable

fits only after heavily binning the DMS observations (e.g. Simó and Dachs, 2002; Galí et al., 2015; Vallina and Simó, 2007;

Galí et al., 2018). The ANN is computationally more expensive than the linear/multilinear models, but considerably less expen-

sive than prognostic biogeochemical models (e.g. Vogt et al., 2010; Wang and Moore, 2011; Wang et al., 2015). The principle310

weakness of the ANN approach is that it does not easily provide scientific insight into the relationships between the parame-

ters. Some insight could be gained by running sensitivity tests in which the response to perturbation of a single parameter is

diagnosed.

The ANN approach is a useful tool for developing trace gas climatologies. It may also be useful as a means of assessing the

sensitivity of DMS to past/future changes in climate by coupling the ANN to prognostic biogeochemical models. Caution is315

warranted in the interpretation of such efforts because there is as yet no basis for assessing whether the relationships obtained

by training on contemporary measurements apply to the past or will hold the future. Such relationships could be investigated

using paleoceanographic and ice core data (Osman et al., 2019).

The annual sea-to-air DMS flux calculated in this study is slightly (∼23%) lower than the objective interpolation method

of Lana et al. (2011) using the same sea-to-air gas exchange models. DMS concentrations from this study are similar to Lana320

et al. (2011) where measurements are abundant, so we infer that the difference is likely caused by positive bias in the objective

interpolation method for data-sparse regions/seasons.
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Table 1. Results of linear regression model.

Parameter R2 Slope No.

DMSPt 0.41 0.82 4,657

Chl a1 0.19 0.46 9,942

MLD 0.14 -0.36 53,391

PAR 0.12 0.34 54,683

Chl a2 0.07 0.26 41,146

SST ∼0 -0.01 49,391

SSS ∼0 -0.07 49,007

DIP ∼0 0.03 50,350

DIN ∼0 0.02 50,077

SiO ∼0 0.04 50,304
1In-situ Chl a measurements.
2Data with climatology fill-in.
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Table 2. Annually-averaged zonal mean DMS flux (Tg S/yr) for this study (W20), Lana et al. (2011) (L11), and Kettle and Andreae

(2000)(K00). L11 and K00 are computed with the Nightingale et al. (2000) parameterization of the piston velocity[N00]. Flux in this study

is calculated using both the Nightingale et al. (2000), [N00], and Goddijn-Murphy et al. (2012),[GM12], parameterizations. Uncertainties

are estimated based on models from 10 different random seeds. Errorbars correspond to ±1σ.

Latitude K00[N00] L10[N00] W20[N00] W20[GM12]

90◦-80◦N 0.0 0.0 0.00±0.00 0.00±0.00

80◦-70◦N 0.2 0.1 0.05±0.01 0.05±0.01

70◦-60◦N 0.2 0.2 0.11±0.01 0.11±0.01

60◦-50◦N 0.7 0.9 0.36±0.02 0.34±0.02

50◦-40◦N 1.4 1.5 0.60±0.02 0.56±0.02

40◦-30◦N 1.5 1.5 0.92±0.03 0.88±0.03

30◦-20◦N 1.4 1.4 1.07±0.04 1.09±0.04

20◦-10◦N 2.4 2.6 1.83±0.08 1.77±0.08

10◦-0◦N 2.3 2.6 1.87±0.08 1.93±0.10

0◦-10◦S 1.9 2.2 2.03±0.11 2.11±0.12

10◦-20◦S 2.3 3.5 2.14±0.15 2.09±0.15

20◦-30◦S 1.9 3.0 1.63±0.11 1.61±0.11

30◦-40◦S 1.9 2.7 1.98±0.11 1.87±0.10

40◦-50◦S 2.4 2.8 2.12±0.16 1.79±0.14

50◦-60◦S 2.0 2.1 1.10±0.11 0.89±0.09

60◦-70◦S 1.2 0.9 0.09±0.01 0.08±0.01

70◦-80◦S 0.2 0.1 0.00±0.00 0.00±0.00

80◦-90◦S 0.0 0.0 0.00±0.00 0.00±0.00

Total 24.0 28.1 17.90±0.34 17.17±0.32
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Figure 1. Model versus observation plots on logarithmic scale: (a) multilinear regression model; (b) artificial neural network model. The

color indicates the fraction of the joint distribution explained as a percentile that falls within a region of concentration space.
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Figure 2. Comparisons of monthly mean DMS concentrations between this study and the study of Lana et al. (2011). Uncertainties are

estimated based on models from 10 different random seeds. Errorbars correspond to ±1σ.
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Figure 3. Monthly DMS concentration (nmol L−1) estimated based on artificial neural network.
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et al. (2012) parameterization, and black circles are flux based on Nightingale et al. (2000). Uncertainties are estimated based on models

from 10 different random seeds. Errorbars correspond to ±1σ.
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Table A1. DMS and ancillary data sources.

Variables Sources units References

DMS1 http://saga.pmel.noaa.gov/dms/ nM (Kettle et al., 1999)

DMS2 NAAMES nM (Behrenfeld et al., 2019)

Chl https://oceandata.sci.gsfc.nasa.gov/SeaWiFS/ µg L−1 (NASA, 2018)

MLD https://www.pmel.noaa.gov/mimoc/ m (Schmidtko et al., 2013)

PAR https://oceancolor.gsfc.nasa.gov/atbd/par/ Einsteins m−2 d−1 (Frouin et al., 2012)

WSP https://podaac.jpl.nasa.gov/dataset m s−1 (NASA, 2012)

SST WOA2013 C (Garcia et al., 2013)

SSS WOA2013 psu (Garcia et al., 2013)

DIP WOA2013 µM (Garcia et al., 2013)

DIN WOA2013 µM (Garcia et al., 2013)

SiO WOA2013 µM (Garcia et al., 2013)

ICE CESM model - (Wang et al., 2019)
1 Data from the online database. 2 New data from the North Atlantic Aerosol and Marine Ecosystems experiment.
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Figure A1. Distribution of DMS observations partitioned into each month. The color indicates DMS concentration (nM).
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Figure A1. Climatological wind speed (m s−1).
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