

1 **Changes in population depth distribution and oxygen stratification are involved in the current**
2 **low condition of the Eastern Baltic Sea cod (*Gadus morhua*)**

3

4 Michele Casini^{1,2}, Martin Hansson³, Alessandro Orio¹, Karin Limburg^{1,4}

5

6 ¹ Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Marine
7 Research, Lysekil, Sweden

8 ² University of Bologna, Department of Biological, Geological and Environmental Sciences, Bologna,
9 Italy

10 ³ Swedish Meteorological and Hydrological Institute, Gothenburg, Sweden

11 ⁴ State University of New York College of Environmental Science and Forestry, Department of
12 Environmental and Forest Biology, Syracuse, New York, USA

13

14 Corresponding author: Michele Casini; e-mail: michele.casini@slu.se

15

16

17

18

19

20

21

22

23 **Abstract**

24 During the past twenty years, hypoxic areas have expanded rapidly in the Baltic Sea, which has become
25 one of the largest marine “dead zones” in the world. At the same time, the most important commercial
26 fish population of the region, the Eastern Baltic cod, has experienced a drastic reduction in mean body
27 condition, but the processes behind the relation between deoxygenation and condition remain elusive.
28 Here we use extensive long-term monitoring data on cod biology and distribution as well as on
29 hydrological variations, to investigate the processes that relate deoxygenation and cod condition during
30 the autumn season. Our results show that the depth distribution of cod has increased during the past
31 four decades at the same time of the expansion, and shallowing, of waters with oxygen concentrations
32 detrimental to cod performance. This has resulted in a progressively increasing spatial overlap between
33 the cod population and low-oxygenated waters after the mid-1990s. This spatial overlap and the actual
34 oxygen concentration experienced by cod therein statistically explained a large proportion of the
35 changes in cod condition over the years. These results complement previous analyses on fish otolith
36 microchemistry that also revealed that since the mid-1990s, cod individuals with low condition were
37 exposed to low-oxygen waters during their life. This study helps to shed light on the processes that have
38 led to a decline of the Eastern Baltic cod body condition, which can aid the management of this
39 population currently in distress. Further studies should focus on understanding why the cod population
40 has moved to deeper waters in autumn and on analysing the overlap with low-oxygen waters in other
41 seasons to quantify the potential effects of the variations in physical properties on cod biology
42 throughout the year.

43

44 **Keywords:** hypoxia, fish body condition, direct exposure, depth distribution, cod *Gadus morhua*

45

46

47

48 **1. Introduction**

49 The oceans and marine coastal areas are experiencing dramatic deoxygenation worldwide (Breitburg et
50 al., 2018). Declining oxygen can have multiple direct and indirect effects on aquatic organisms and
51 entire ecosystems (Breitburg, 2002; Rabalais et al. 2002; Wu, 2002; Diaz and Rosenberg, 2008; Levin
52 et al., 2009). In particular, studies undertaken both in the wild and within experimental set-ups have
53 revealed large effects of hypoxia on basic metabolism, behavior, ecology, distribution and life-history
54 traits of fish (Chabot and Dutil, 1999; Pichavant et al., 2001; Eby et al., 2005; Herbert and Steffensen,
55 2005; Domenici et al., 2007; Stramma et al., 2012).

56 The Baltic Sea (Fig. 1) is one of the largest brackish areas in the world where the oxygenated, yet scarce
57 and irregular saline water inflows from the adjacent North Sea, combined with a water residence time
58 of about 25–30 years, make the system particularly prone to hypoxia (Carstensen et al., 2014; Reusch
59 et al., 2018). As a consequence, and in combination with global warming and eutrophication, the Baltic
60 Sea has become one of the largest anthropogenic “dead zones” in the world (Breitburg et al., 2018),
61 with degradation or elimination of benthic communities and disruption of benthic food webs over vast
62 areas (Conley et al., 2009). In particular, since the early 1990s the anoxic and hypoxic areas have
63 increased rapidly in the southern and central Baltic Sea (Carstensen et al., 2014) (Fig. 2).

64 In this degraded demersal and benthic environment, body condition (a morphometric index of fish
65 fatness and well-being) of the dominant demersal fish population, the Eastern Baltic cod *Gadus morhua*
66 (hereafter simply referred to as Baltic cod), has declined since the mid-1990s (Casini et al., 2016a). This
67 decline was also stressed by the fishery that suffered from an increasingly high proportion of catches of
68 lean cod with low economic value. Low condition has a negative effect on reproductive potential (Mion
69 et al., 2018), mortality (Casini et al., 2016b) and potentially also movements (Mehner and Kasprzak,
70 2011) with indirect effects on prey and therefore food-web structure and ecosystem functioning as
71 shown in other systems (e.g. Ekau et al., 2010). Therefore, it is very important to understand the ultimate
72 factors leading to low cod condition.

73 The decline in the Baltic cod condition has been related to a decrease in the main pelagic prey abundance
74 in the main distribution area of cod (Eero et al., 2012; Casini et al., 2016a) and increased parasite
75 infestation (Horbowy et al., 2016), but also to the increased extent of hypoxic and anoxic areas (Casini
76 et al., 2016a). The mechanistic processes linking hypoxia and cod conditions could be various and not
77 mutually exclusive, including stress due to direct hypoxia exposure, suitable habitat contraction and
78 consequent change in cod spatial distribution, and change in the surrounding biota such as reduction of
79 important benthic prey (Casini et al., 2016a). Limburg and Casini (2019), using otolith microchemistry,
80 showed that fish in low condition at capture were exposed during their lives to lower oxygen levels than
81 those in good condition (at least from the mid-1990s), suggesting that direct exposure to low-oxygen
82 waters could constitute a key factor. However, Limburg and Casini (2019) did not analyse the spatial
83 distribution of the cod population in relation to low-oxygen layers, and therefore whether or not a large
84 part of the population indeed experienced stressful circumstances, which could explain the decline in
85 mean population condition found by Casini et al. (2016a).

86 In this study, we fill this gap and specifically analyse the temporal changes in the depth distribution of
87 cod, from long-term monitoring data, in relation to the actual oxygen levels experienced by the cod
88 population and the oxygen levels acknowledged in literature to affect cod behavior and performance.

89

90 **2. Materials and methods**

91 **2.1 Biological data and estimation of cod condition**

92 Biological data on Eastern Baltic cod individuals ($n = 124\ 165$) were collected during the Baltic
93 International Trawl Survey, BITS, between 1991 and 2018 (retrieved from the DATRAS database of
94 the International Council for the Exploration of the Sea, ICES; www.ices.dk; [downloaded 28 January 2020](#)) and previous Swedish and Latvian bottom trawl surveys performed in 1979-1990 in the Baltic
95 Sea (Casini et al., 2016a). Cod individual body condition (Fulton's K) was estimated as $K = W/L^3 * 100$, where W is the total weight (g) and L the total length (cm, typically measured from the tip of the
96 snout to the tip of the longer lobe of the caudal fin) of the fish. Mean condition was estimated for ICES
97

99 Subdivision (SD) 25 (corresponding to the main distribution area for Eastern Baltic cod since the early
100 1990s, Orio et al., 2017) and SDs 26-28 separately, updating the time-series in Casini et al. (2016a).
101 More northern SDs were not included due to their low and inconsistent survey coverage through the
102 years. Condition for small fish (represented here by the size-class 20-29 cm) and large fish (represented
103 here by the size-class 40-49 cm) were used in the analyses, as cod change diet during its ontogeny and
104 these two size-classes differ in feeding habits (Neuenfeldt et al., 2020). We could not use smaller and
105 larger size-classes because of their scarcity in the BITS survey catches. The small size-class could also
106 be considered as representing juvenile fish (Eero et al., 2015; ICES, 2017a) although, from around 2005,
107 the mean length at first maturity has decreased below 30 cm (Köster et al., 2017). Years with < 25
108 observations for the respective length-classes and areas were excluded from the analyses. We focused
109 on cod condition in autumn (quarter 4 BITS survey, from mid-October to mid-December),
110 corresponding to the cod main growth season after spawning in spring-summer (Mion et al., 2020).
111 Moreover, for the autumn season, long time-series of oxygen levels and extent of hypoxic areas are also
112 available (Casini et al., 2016a).

113 **2.2 Estimation of cod depth distribution**

114 Indices of cod biomass (calculated as catch-per-unit-effort, CPUE, kg/h, herein referred to as biomass)
115 and depth distribution (i.e. mean depth and interquartile range of predicted depth distribution) from the
116 BITS and historical bottom trawl surveys in SDs 25-28 from 1979 to 2018 were estimated for large (\geq
117 30 cm) and small cod (< 30 cm) using a modelling procedure similar to the one used in Orio et al.
118 (2019). However, in the current study rather than including environmental variables in the models,
119 quarter was included in interactions with latitude and longitude, and with depth. To estimate the changes
120 in cod depth distribution in SDs 26-28 that account for the changes in the spatial distribution of the cod
121 population, the SD-specific depth distributions were weighted by the annual SD-specific cod CPUEs
122 from the bottom trawl surveys in quarter 4, estimated from the same model, for large and small cod.

123 **2.3 Depth of hypoxic layers**

124 Baltic cod has been shown to avoid oxygen concentrations below 1 ml/l (approximately 1.4 mg/l)
125 (Schaber et al., 2012). Therefore, time-series of the depth at which 1 ml/l oxygen concentration was
126 encountered by SD were obtained from the Swedish Meteorological and Hydrological Institute (SMHI,
127 www.smhi.se).

128 Time-series of depth at which 4.3 ml/l oxygen concentration (approximately 6 mg/l) was encountered
129 by SD were also obtained from SMHI. This oxygen concentration, on average, has been found to affect
130 the performance of fish (Vaquer-Sunyer and Duarte, 2008). Specifically for cod, 4.3 ml/l has been found
131 as threshold from which an effect on condition and growth starts to be observable (Chabot and Dutil,
132 1999). Therefore, we expected that the occurrence of cod in areas and depths with an oxygen
133 concentration \leq 4.3 ml/l would lead to an increase in the proportion of cod individuals with very low
134 condition ($K < 0.8$; Eero et al., 2012) and a decrease in mean condition in the population. To relate the
135 depths at which 1 ml/l and 4.3 ml/l oxygen concentrations were encountered to cod depth of occurrence
136 in SDs 26-28, the oxygen depths in each SD were weighted with the annual SD-specific cod CPUEs
137 from the bottom trawl surveys in quarter 4, for large and small cod. In this way, the oxygen
138 circumstances in the SDs where cod was more abundant were weighted the most.

139 **2.4 Depth overlap between cod and hypoxic layers, and oxygen experienced by cod**

140 We estimated the overlap (% meters) between the cod depth range of distribution and the water layer
141 with oxygen concentration \leq 4.3 ml/l, as estimated above, in both SD 25 and SDs 26-28. We also
142 reconstructed the time-series of the oxygen concentrations at the mean depth and interquartile range of
143 the cod depth distribution in each SD (data from SMHI). Also in this case, for SDs 26-28 the oxygen
144 concentrations in each SD were weighted with the annual SD-specific cod CPUEs from the bottom
145 trawl surveys in quarter 4, for large and small cod.

146 **2.5 Modelling of cod condition versus oxygen**

147 To formally analyse the effect of the depth overlap and oxygen concentrations experienced by cod on
148 cod condition, we used generalized additive models (GAMs; Hastie and Tibshirani, 1990). The
149 following additive formulation was used:

150 Condition $\sim s(\text{Depth overlap}) + s(\text{Oxygen experienced}) + \varepsilon$
151 where *Depth overlap* is the overlap between the cod depth range of distribution and the water layer with
152 an oxygen concentration ≤ 4.3 and *Oxygen experienced* is the actual oxygen level corresponding to the
153 cod depth distribution (we used for this the oxygen corresponding to the deeper interquartile of the cod
154 depth range of distribution). s is the thin plate smoothing spline function and ε is random error. We
155 limited the maximum degrees of freedom acceptable for each term to $k=4$, which retains model
156 flexibility and allows at the same time an ecological interpretability of the results. A Gamma distribution
157 with an identity function was used. Residuals were inspected for deviation from the assumption of
158 normality and no autocorrelation using graphical methods (Cleveland, 1993). The statistical analyses
159 were performed using the mgcv library of R v. 4.0.2 (www.r-project.org). The significance level was
160 set to $\alpha = 0.05$ for all tests.

161

162 **3. Results**

163 **3.1 Cod condition**

164 Cod condition increased slightly between the mid-1970s and mid-1990s but declined abruptly
165 thereafter. This pattern was similar in SD 25 and SDs 26-28 for both large and small cod (Fig. 3), but
166 after the mid-1990s condition dropped more for large cod (~30% for large cod and 20-25% for small
167 cod). The percentage of large fish with very low condition (< 0.8 , see Eero et al., 2012) increased from
168 the end of the 1990s in both SD 25 and SDs 26-28 reaching in recent years 30-40%. The percentage of
169 small fish with low condition also increased, but lagged temporally behind the large cod, and at 10-20%
170 of observations was lower than the high incidences of large cod in poor condition (Fig. 3). In general,
171 in SD 25 condition declined slightly more (and the percentage of fish with very low condition increased
172 more) than in SDs 26-28 after the mid-1990s.

173 **3.2 Cod depth distribution**

174 Large cod in SD 25 were distributed between 35 and 50 m depth (average 43 m) at the beginning of the
175 time-series, but have been found in somewhat deeper waters (down to 40-60 m, average 50 m) from the
176 early 2000s (Fig. 4a). In SDs 26-28 large cod were distributed between 35 and 55 m depth (average 45
177 m) at the beginning of the time-series, whereas after the mid-1990s they became distributed between
178 50 and 75 m depth (average 62 m) (Fig. 4c). Along with the change in mean depth, large cod in SDs
179 26-28 have shown a contraction of the range of depth distribution in the past 20 years. Small cod were
180 distributed somewhat shallower than the large fish, but also moved into deeper waters during the time
181 period investigated. In SD 25, small cod shifted distribution from between 30 and 50 m depth (average
182 40 m) to 45-60 m depth (average 53 m) (Fig. 5a). In SDs 26-28 small cod moved deeper with time as
183 well, from 30-50 m depth (average 40 m) to 45-65 m depth (average 55 m), and experienced a
184 contraction of the range of depth distribution similar to what occurred for the large fish in this area (Fig.
185 5c).

186 **3.3 Depth of hypoxic layers**

187 The depth at which 1 ml/l was encountered remained fairly constant at around 70 m in SD 25, while in
188 SDs 26-28, it decreased from below 120 m to around 80 m over the past 20 years (Fig. 4a,c and 5a,c).
189 Over the same time period, the depth at which 4.3 ml/l was encountered diminished in SD 25 from ~
190 60 m to ~ 50m, and in SDs 26-28 the 4.3 ml/l threshold shifted from ~ 80 m to ~ 60 m since the early
191 1990s (Fig. 4a,c and 5a,c). The oxygen depths in SDs 26-28, accounting for the SD-specific distribution
192 of the cod, did not differ much between large and small cod (note the slightly different patterns in the
193 oxygen depths between Fig. 4c and Fig. 5c, which is due to the different distribution of small and large
194 cod among these three SDs).

195 **3.4 Depth overlap between cod and hypoxic layers, and oxygen experienced by cod**

196 Large cod depth distribution never overlapped with the depth of oxygen ≤ 1 ml/l along the time period
197 analysed, except in the very last year in SD 25 (Fig. 4a,c). On the other hand, large cod distribution
198 heavily overlapped with the depth with oxygen ≤ 4.3 ml/l since the mid-1990s (Fig. 4a,c) and the

199 overlap, although oscillating, increased in the past twenty years reaching values higher than 90% in SD
200 25 and higher than 80% in SDs 26-28 (Fig. 4b,d).

201 Also small cod distribution never overlapped with depth with oxygen ≤ 1 ml/l along the time period
202 analysed, except in the very last year in SD 25 (Fig. 5a,c). On the other hand, small cod distribution
203 overlapped with the depth with oxygen ≤ 4.3 ml/l since early-2000s (Fig. 5a,c) and the overlap, although
204 oscillating, increased in the past fifteen years reaching values higher than 90% in SD 25 and up to 50%
205 in SDs 26-28 (Fig. 5b,d).

206 The actual oxygen concentrations experienced by cod changed extensively during the study period.
207 Large cod in SD 25 experienced oxygen concentrations of 5-7 ml/l (average ~ 6.5 ml/l) during the late
208 1970s and early 1980s, while especially from the mid-1990s a decline, paralleled by a widening of the
209 experienced oxygen range, occurred until reaching values of 2.5-5.5 ml/l (average ~ 4 ml/l). Similar
210 patterns occurred also in SDs 26-28 although the oxygen at the lower interquartile range of the cod
211 depth distribution declined further down to be close to 1 ml/l (Fig. 4b,d).

212 Small cod in SD 25 experienced oxygen concentrations of 6-7.5 ml/l (average ~ 7 ml/l) during the late
213 1970s and early 1980s, while especially from the late-1990s a decline, paralleled by a widening of the
214 experienced oxygen range, occurred until reaching values of 3-6 ml/l (average ~ 4 ml/l). Similar patterns
215 occurred also in SDs 26-28 although the oxygen experienced in the latest years was relatively better
216 than in SD 25, being 3.5-6.5 ml/l (average ~ 5 ml/l) (Fig. 5b,d).

217 **3.5 Modelling of cod condition versus oxygen**

218 The GAMs explained 68.3 % and 61.8 % of the total deviance, for large and small cod, respectively
219 (see the caption of Fig. 6 for more statistics). For both models, *Oxygen experienced* by cod was the
220 most important predictor of condition, while *Depth overlap* explained a minor part of the model
221 deviance. For large cod, the effect of *Oxygen experienced* was positive and seemed to reach an
222 asymptote at around 5 ml/l (Fig. 6a), while for the small cod this was not the case with a positive effect
223 over the whole range of the experienced oxygen (Fig. 6b). *Depth overlap* was negatively correlated to
224 condition, although this effect was much stronger for the large cod (Fig. 6a,b). The residuals of the

225 models did not strongly violate the normality and homogeneity assumptions and were not autocorrelated
226 (Fig. S1). The use of GAMs with an interactive formulation (i.e. *Depth overlap* and *Oxygen experienced*
227 used in interaction) explained a similar amount of deviance (69.4 % and 62.1 %, for large and small
228 cod, respectively).

229

230 **4. Discussion**

231 In this paper, we analysed the potential mechanisms relating Baltic Sea deoxygenation with changes in
232 Eastern Baltic cod body condition during the past four decades. To this end, we investigated the changes
233 in depth distribution of the cod population and the vertical changes in oxygen gradients based on long-
234 term biological and hydrological monitoring data. Moreover, we related the results of these analyses
235 with proxies for hypoxia exposure from individual fish otolith microchemistry recently published in
236 literature.

237 **4.1 Cod depth distribution and overlap with hypoxic layers**

238 Our analyses show an increase in the areas with an oxygen level below cod tolerance (i.e. oxygen
239 concentration ≤ 1 ml/l; Schaber et al., 2012). Moreover, this oxygen threshold has also shifted with time
240 towards shallower depths, determining an overall contraction of the potentially suitable habitat for cod
241 (Casini et al., 2016a). Declines in oxygen concentrations have caused a contraction of the habitat and
242 the distribution of fish in other systems (Eby and Crowder, 2002; Stramma et al., 2012; Breitburg et al.,
243 2018) with measurable effects on, for example, individual growth (e.g. Campbell and Rice, 2014). In
244 the Baltic Sea, however, this change seems not to have affected the cod depth distribution in autumn,
245 since the latter has been always above 70-75 m, a depth only almost never reached by the waters with
246 oxygen concentration ≤ 1 ml/l. On the other hand, it could be hypothesized that during the latest decade
247 the cod population was unable to occupy even deeper habitats because of the vertical rise of this oxygen
248 layer. This hypothesis seems to be supported by the decline in the range of depth distribution (i.e. a
249 squeeze of the cod habitat occupation) shown by both large and small cod in SDs 26-28 during the past
250 twenty years. Explaining the temporal changes in the depth distribution of cod is beyond the scope of

251 this paper, but a potential reason could be that cod seek deeper layers to avoid too warm waters, which
252 could be detrimental when resources are scarce. In fact, pelagic prey have declined after the mid-1990s
253 in the southern and central Baltic Sea (Casini et al., 2016a) and therefore cod might go deeper to
254 optimize metabolism. Small cod, moreover, could seek deeper waters to escape from the predation of
255 the increased seals and aquatic birds (Orio et al., 2019). The temporal patterns revealed by our study
256 for quarter 4 generally conform to what found by Orio et al. (2019) for quarter 1. However, the increased
257 depth distribution of large cod in SDs 26-28 found in our study in quarter 4 contrasts with findings in
258 the same areas in quarter 1, where a shallowing has instead been observed since the mid-1990s after an
259 initial deepening (Orio et al., 2019). In quarter 1 cod is in general distributed deeper than in quarter 4
260 (Orio et al., 2019 and this study, respectively) and it could be that in quarter 1, when the water is also
261 less stratified, large cod were able to dwell in exceptionally deep layers in the mid-1990s because of
262 the good oxygen circumstances during that period (Carstensen et al. 2014; this study). A different
263 requirements that the large mature fish have for their maturation and successful reproduction when they
264 approach spawning in late spring (Røjbek et al., 2012) could potentially also contribute to the difference
265 in the temporal patterns of distribution between the quarters.

266 The depth where oxygen concentration falls to ≤ 4.3 ml/l (“sub-lethal” level, i.e. level that has been
267 shown in previous studies to affect cod performance; Chabot and Dutil, 1999; Vaquer-Sunyer and
268 Duarte, 2008) has shallowed during the past four decades, as a consequence of deoxygenation. Our
269 analysis revealed that this vertical rise, together with the deepening of the cod depth distribution, has
270 resulted in that cod has started to dwell more and more in these hostile low-oxygen waters. The depths
271 at which cod has been dwelling during the past two decades correspond to the depths of the Baltic Sea
272 permanent stratification where the oxygen drops quickly, explaining the wider range of oxygen
273 concentrations that cod has experienced during this period. Moreover, our analysis reveals that the
274 oxygen concentrations that the cod population indeed experienced has progressively decreased until
275 approaching the 1 ml/l at the lowest boundary of its distribution (tolerance level, i.e. level that has been
276 shown in previous studies to be avoided by cod; Schaber et al., 2012). The overlap between cod depth
277 distribution and “sub-lethal” oxygen layers occurred mainly after the mid-1990s, concomitant with the

278 drop in cod condition, while in earlier years the cod population was occurring mostly above those layers.
279 The progressively higher proportion of the cod population in “sub-lethal” oxygen layers after the mid-
280 1990s, as revealed by our study, conforms also to the increasingly higher proportion of individuals in
281 extremely low condition (< 0.8 Fulton’s K), which include starving fish and fish close to the condition
282 mortality threshold (Eero et al., 2012; Casini et al., 2016b).

283 **4.2 Relation to otolith microchemistry from literature**

284 Limburg and Casini (2019) using otolith microchemistry recently found that Baltic cod with low
285 condition at capture experienced during their lives lower oxygen levels than cod with high condition.
286 However, Limburg and Casini (2019) did not analyse to what extent the cod population indeed
287 experienced low-oxygen levels, and therefore whether the exposure to low-oxygen waters could explain
288 the decline in the mean condition of the cod population. Our study did this, showing that a large part of
289 the population has dwelled in sub-lethal low-oxygen levels after the mid-1990s in quarter 4. Together,
290 the individual-based study by Limburg and Casini (2019) and the population-level present study provide
291 consistent and robust indications that the decline in mean cod condition of the population from the mid-
292 1990s is due to an increased overlap with low-oxygen layers. This suggests that currently condition may
293 carry over from chronic exposure to low oxygen concentrations, which weakens fish and produces a
294 cascade of effects, from reduced metabolic scope leading to lower activity and slower digestion
295 (Claireaux and Chabot, 2016), to greater susceptibility to disease and parasites (e.g., Sokolova et al.,
296 2018). Both Limburg and Casini (2019) and the present study also revealed that the exposure to hypoxic
297 waters was lower in the period before the mid-1990s, and was unrelated to cod condition confirming
298 that, before the mid-1990s, factors other than direct low-oxygen exposure played a greater role in
299 shaping cod condition as concluded also by Casini et al. (2016a).

300 **4.3 Mechanisms shaping cod condition**

301 We have confirmed here, using population-level monitoring data, that direct oxygen exposure is likely
302 a key factor shaping cod condition after the mid-1990s (Limburg and Casini, 2019). Low-oxygen
303 exposure has been shown in laboratory experiments to reduce cod appetite with consequent significant

304 decline in body condition and growth (Chabot and Dutil, 1999). This seems to conform to the
305 observation of a decline in Eastern Baltic cod feeding level from stomach content analyses (Neuenfeldt
306 et al., 2020) that has been put earlier in relation with cod growth by Brander (2000). Therefore, a lower
307 appetite due to an increased direct exposure to low-oxygen waters seems to be a sound explanation to
308 both the decline in growth (Brander 2000) and condition (this study). In our estimations of cod overlap
309 with sub-lethal waters we considered the oxygen thresholds affecting cod performance as found in
310 laboratory experiments performed on relatively large fish (~ 45 cm, Chabot and Dutil, 1999). Interestingly, in our statistical analysis the inflection of the curve relating the actual oxygen experienced
311 and condition for large cod (40-49 cm in our study) started to occur at ~ 4.5-5 ml/l, corresponding well
312 to the threshold found experimentally in Chabot and Dutil (1999). The threshold for small fish could be
313 however higher, although a size-dependent hypoxia tolerance in fish is still debated (Vaquer-Sunyer
314 and Duarte, 2008; Nilsson and Östlund-Nilsson, 2008). This could however explain why in our
315 statistical analysis the effect of oxygen experienced on small cod condition was linear without reaching
316 an asymptote at high oxygen concentrations. In this case our assumption of a 4.3 ml/l sub-lethal
317 threshold for small cod could be considered very conservative.

319 Beside direct exposure to sub-lethal oxygen levels, other factors, not mutually exclusive, might
320 contribute to explain the decline in condition as well (Casini et al., 2016a). For example deoxygenation,
321 by deteriorating the benthic communities, has likely affected important benthic prey for cod in negative
322 ways, and therefore also influenced indirectly cod condition and growth (Neuenfeldt et al., 2020).
323 Moreover, the more severe decline in condition in SD 25 compared to SDs 26-28, for example, could
324 be due to the higher density of cod in the southern Baltic Sea during the past twenty years (Orio et al.,
325 2017) leading to density-dependent effects, and the lower abundance of sprat, the main pelagic fish prey
326 for cod, in this area (Casini et al., 2014). Additional potential reasons of the decline in cod condition
327 after the early 1990s are constituted by the increased biomass of flounder that could have deprived cod
328 of important benthic food resources (Haase et al., 2020) and increased parasite infestation (Horbwy et
329 al., 2016). All these factors could have acted, singularly or in combination, on cod together with direct
330 low-oxygen exposure shaping the decline in its condition observed in the past three decades. Moreover,

331 cod condition was relatively low also in the 1970s-1980s (although not showing individuals with very
332 low condition, Fig. 2), when the cod population did not seem to spend time in low-oxygen waters,
333 confirming that the main drivers of mean condition can vary in time.

334 **4.4 Conclusions**

335 We have shown here the potential mechanisms linking deoxygenation to cod condition in the Baltic
336 Sea. A combination of increased depth distribution of the cod population and a vertical rise of the “sub-
337 lethal” oxygen layers has led cod dwelling progressively more in hostile low-oxygen waters,
338 contributing to explain the reduction in cod condition in the past two decades. Further analyses should
339 focus on revealing the reasons of the shift of cod distribution to deeper and less-oxygenated waters. We
340 stress that our depth analyses were focused on the autumn season, when cod growth is maximised for
341 the accumulation of energy reserves to be utilized for spawning the following spring-summer (Mion et
342 al., 2020). The changes in cod depth distribution are different in other seasons, especially those before
343 and during spawning (Orio et al., 2019), when cod could have different environment requirements for
344 reproduction. Therefore, further analyses should be performed to investigate the changes in cod
345 population depth distribution in relation to oxygen stratification in other seasons to better understand
346 the biotic and abiotic spatio-temporal dynamics, and their effects on cod performance, over the entire
347 year.

348

349 **Data availability**

350 Time-series used in this study are available upon request to the corresponding author.

351 **Author contribution**

352 MC designed and coordinated the study. MC, MH, AO and KL prepared the raw data. MC estimated
353 cod condition, MH performed the hydrographic modelling, and AO performed the cod distribution
354 modelling. MC prepared the first draft of the manuscript and all authors contributed to the final version.

355 **Competing interests**

356 The authors declare that they have no conflict of interest.

357 **Acknowledgements**

358 We thank all the personnel involved in the long-term fish and hydrological monitoring programmes and
359 data collection at the SLU's Department of Aquatic Resources (and former Swedish National Board of
360 Fisheries) and at the Swedish Meteorological and Hydrological Institute. We also thank the Institute of
361 Food safety, Animal Health and Environment "BIOR", Latvia, for the historical Latvian data on cod
362 condition and survey catches. We are grateful to Keith Brander, Jan Dierking and one anonymous
363 reviewer for their constructive suggestions that improved the manuscript.

364 **Financial support**

365 This study was funded by the Swedish Research Council Formas (grant no. 2018-00775 to Michele
366 Casini: "Fish interactions in the marine benthic habitat: a knowledge gap in Baltic Sea fish ecology and
367 multispecies fisheries management") and the US National Science Foundation (project OCE-1923965
368 to Karin Limburg: "Shifting the hypoxia paradigm – new directions to explore the spread and impacts
369 of ocean/Great Lakes deoxygenation").

370

371 **References**

372 Brander, K.: Reduced growth in Baltic Sea cod may be due to mild hypoxia, ICES Journal of Marine
373 Science, <https://doi.org/10.1093/icesjms/fsaa041>, 2020.

374 Breitburg, D.: Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes
375 and fisheries, Estuaries, 25, 767–781, <https://doi.org/10.1007/BF02804904>, 2002.

376 Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert,
377 D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher,
378 G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M., Yasuhara, M.,
379 and Zhang, J.: Declining oxygen in the global ocean and coastal waters, Science, 359, eaam7240,
380 <https://doi.org/10.1126/science.aam7240>, 2018.

381 Campbell, L. A., and Rice, J. A.: Effects of hypoxia-induced habitat compression on growth of juvenile
382 fish in the Neuse River Estuary, North Carolina, USA. *Mar. Ecol. Prog. Ser.*, 497, 199–213,
383 <https://doi.org/10.3354/meps10607>, 2014.

384 Carstensen, J., Andersen, J. H., Gustafsson, B. G., and Conley, D. J.: Deoxygenation of the Baltic Sea
385 during the last century, *Proc. Natl. Acad. Sci. USA*, 111, 5628–5633,
386 <https://doi.org/10.1073/pnas.1323156111>, 2014.

387 Casini, M., Rouyer, T., Bartolino V., Larson N., and Grygiel, W.: Density dependence in space and
388 time: opposite synchronous variations in population distribution and body condition in the Baltic
389 Sea sprat (*Sprattus sprattus*) over three decades, *PLoS ONE*, 9, e92278,
390 <https://doi.org/10.1371/journal.pone.0092278>, 2014.

391 Casini, M., Käll, F., Hansson, M., Plikshs, M., Baranova, T., Karlsson, O., Lundström, K., Neuenfeldt,
392 S., Gårdmark, G., and Hjelm J.: Hypoxic areas, density dependence and food limitation drive the
393 body condition of a heavily exploited marine fish predator, *R. Soc. Open Sci.*, 3, 160416,
394 <https://doi.org/10.1098/rsos.160416>, 2016a.

395 Casini, M., Eero, M., Carlshamre, S., and Lövgren, J.: Using alternative biological information in stock
396 assessment: condition-corrected natural mortality of Eastern Baltic cod, *ICES J. Mar. Sci.*, 73,
397 2625-2631, <https://doi.org/10.1093/icesjms/fsw117>, 2016b.

398 Chabot, D., and Dutil, J.-D.: Reduced growth of Atlantic cod in non-lethal hypoxic conditions, *J. Fish
399 Biol.*, 55, 472–491, <https://doi.org/10.1111/j.1095-8649.1999.tb00693.x>, 1999.

400 Claireaux, G., and Chabot, D.: Responses by fishes to environmental hypoxia: integration through Fry's
401 concept of aerobic metabolic scope, *J. Fish Biol.*, 88, 232-251, <https://doi.org/10.1111/jfb.12833>,
402 2016.

403 Cleveland, W. S.: *Visualizing data*. Summit, NJ: Hobart Press, 1993.

404 Conley, D. G. Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B. G., Hietanen, S.,
405 Kortekaas, M., Kuosa, H., Meier, H. E. M., Müller-Karulis, B., Nordberg, K., Norkko, A.,

406 Nürnberg, G., Pitkänen, H., Rabalais, N. N., Rosenberg, R., Savchuk, O. P., Slomp, C. P., Voss,
407 M., Wulff, F., and Zillén L.: Hypoxia-related processes in the Baltic Sea, *Environ. Sci. Technol.*,
408 43, 3412–3420, <https://doi.org/10.1021/es802762a>, 2009.

409 Diaz, R. J., and Rosenberg, R.: Spreading dead zones and consequences for marine ecosystems, *Science*,
410 321, 926–929, <https://doi.org/10.1126/science.1156401>, 2008.

411 Domenici, P., Lefrançois, C., and Shingles, A.: Hypoxia and the antipredator behaviours of fishes, *Phil.
412 Trans. R. Soc. B*, 362, 2015–2121, <https://doi.org/10.1098/rstb.2007.2103>, 2007.

413 Eby, L.A., and Crowder, L. B.: Hypoxia-based habitat compression in the Neuse River Estuary: context-
414 dependent shifts in behavioral avoidance thresholds, *Can. J. Fish. Aquat. Sci.*, 59, 952–965,
415 <https://doi.org/10.1139/f02-067>, 2002.

416 Eby, L. A., Crowder, L. B., McClellan, C. M., Peterson, C. H., Powers, and M. J.: Habitat degradation
417 from intermittent hypoxia: impacts on demersal fishes, *Mar. Ecol. Prog. Ser.*, 291, 249–261,
418 <https://doi.org/10.3354/meps291249>, 2005.

419 Eero, M., Vinther, M., Haslob, H., Huwer, B., Casini, M., Storr-Paulsen, M., and Köster, F. W.: Spatial
420 management of marine resources can enhance the recovery of predators and avoid local depletion
421 of forage fish, *Cons. Lett.*, 5, 486–492, <https://doi.org/10.1111/j.1755-263X.2012.00266.x>, 2012.

422 Ekau, W., Auel, H., Pörtner, H.-O., and Gilbert, D.: Impacts of hypoxia on the structure and processes
423 in pelagic communities (zooplankton, macro-invertebrates and fish), *Biogeosciences*, 7, 1669–
424 1699, <https://doi.org/10.5194/bg-7-1669-201>, 2010.

425 Nilsson, G. E., and Östlund-Nilsson, S.: Does size matter for hypoxia tolerance in fish? *Biol. Rev.*, 83,
426 173–189, <https://doi.org/10.1111/j.1469-185X.2008.00038.x>, 2008.

427 Haase, K., Orio, A., Pawlak, J., Pachur, M., and Casini, M.: Diet of dominant demersal fish species in
428 the Baltic Sea: is flounder stealing benthic food from cod? *Mar. Ecol. Progr. Ser.*, 645, 159–170,
429 <https://doi.org/10.3354/meps13360>, 2020.

430 Hastie T. J., Tibshirani R. J.: Generalized additive models. London, UK: Chapman and Hall/CRC, 1990.

431 Herbert, N. A., and Steffensen, J. F.: The response of Atlantic cod, *Gadus morhua*, to progressive
432 hypoxia: fish swimming speed and physiological stress, Mar. Biol., 147, 1403–1412,
433 <https://doi.org/10.1007/s00227-005-0003-8>, 2005.

434 Horbowy, J., Podolska, M., and Nadolna-Ałtyn, K.: Increasing occurrence of anisakid nematodes in the
435 liver of cod (*Gadus morhua*) from the Baltic Sea: Does infection affect the condition and mortality
436 of fish? Fish. Res., 179, 99–103, <http://dx.doi.org/10.1016/j.fishres.2016.02.011>, 2016.

437 Levin, L. A., Ekau, W., Gooday, A. J., Jorissen, F., Middelburg, J. J., Naqvi, S. W. A., Neira, C.,
438 Rabalais, N. N., and Zhang, J.: Effects of natural and human-induced hypoxia on coastal benthos,
439 Biogeosciences, 6, 2063–2098, <https://doi.org/10.5194/bg-6-2063-2009>, 2009.

440 Limburg, K. E., Walther, B. D., Lu, Z. G. Jackman, Mohan, J., Walther, Y., Nissling, A., Weber, P. K.,
441 and Schmitt, A. K.: In search of the dead zone: use of otoliths for tracking fish exposure to hypoxia,
442 J. Mar. Syst., 141, 167–178, <https://doi.org/10.1016/j.jmarsys.2014.02.014>, 2015.

443 Limburg, K. E., and Casini, M.: Effect of marine hypoxia on Baltic Sea cod *Gadus morhua*: evidence
444 from otolith chemical proxies, Front. Mar. Sci., 5, 482, <https://doi.org/10.3389/fmars.2018.00482>,
445 2018.

446 Limburg, K., and Casini, M.: Otolith chemistry indicates recent worsened Baltic cod condition is linked
447 to hypoxia exposure, Biol. Lett., 15, 20190352, <https://doi.org/10.1098/rsbl.2019.0352>, 2019.

448 Mehner, T., and Kasprzak, P.: Partial diel vertical migrations in pelagic fish, J. Anim. Ecol., 80, 761–
449 770, <https://doi.org/10.1111/j.1365-2656.2011.01823.x>, 2011.

450 Mion, M., Thorsen, A., Dierking, J., Herrmann, J.-P., Huwer, B., Vitale, F., von Dewitz, B., and Casini,
451 M.: Effect of fish length and nutritional condition on the fecundity of distressed Atlantic cod *Gadus*
452 *morhua* from the Baltic Sea, J. Fish Biol., 92, 1016–1034, <https://doi.org/10.1111/jfb.13563>, 2018.

453 Mion, M., Hilvarsson, A., Hüssy, K., Krumme, U., Krüger-Johnsen, M., McQueen, K., Mohamed, E.,
454 Motyka, R., Orio, A., Plikšs, M., Radtke, K., and Casini, M.: Historical growth of Eastern Baltic

455 cod (*Gadus morhua*): setting a baseline with international tagging data, Fish. Res., 223, 105442,
456 <https://doi.org/10.1016/j.fishres.2019.105442>, 2020.

457 Neuenfeldt, S., Bartolino, V., Orio, A., Andersen, K. H., Andersen, N. G., Niiranen, S., Bergström, U.,
458 Ustups, D. Kallasvuo, M., Kulatska, N., and Casini, M.: Feeding and growth of Atlantic cod
459 (*Gadus morhua* L.) in the Eastern Baltic Sea under environmental change, ICES J. Mar. Sci., 77,
460 624–632, <https://doi.org/10.1093/icesjms/fsz224>, 2020.

461 Orio, A., Florin, A.-B., Bergström, U., Šics, I., Baranova, T., and Casini, M.: Modelling indices of
462 abundance and size-based indicators of cod and flounder stocks in the Baltic Sea using newly
463 standardized trawl survey data, ICES J. Mar. Sci., 74, 1322-1333,
464 <https://doi.org/10.1093/icesjms/fsx005>, 2017.

465 Orio, A., Bergström, U., Florin, A.-B., Lehmann, A., Šics, I., and Casini, M.: Spatial contraction of
466 demersal fish populations in a large marine ecosystem, J. Biogeogr., 46, 633-645,
467 <https://doi.org/10.1111/jbi.13510>, 2019.

468 Pichavant, K., Person-Le-Ruyet, J., Le Bayon, N., Severe, A., Le Roux, A., and Boeuf, G.: Comparative
469 effects of long-term hypoxia on growth, feeding and oxygen consumption in juvenile turbot and
470 European sea bass, J. Fish Biol. 59, 875–883, <https://doi.org/10.1111/j.1095-8649.2001.tb00158.x>,
471 2001.

472 Rabalais, N. N., Turner, R. E, and Wiseman Jr, W. J.: Gulf of Mexico hypoxia, A.K.A ‘The dead zone’,
473 Annu. Rev. Ecol. Syst., 33, 235–263, <https://doi.org/10.1146/annurev.ecolsys.33.010802.150513>,
474 2002.

475 Reusch, T. B. H., Dierking, J., Andersson, H., Bonsdorff, E., Carstensen, J., Casini, M., Czajkowski,
476 M., Hasler, B., Hinsby, K., Hyytiäinen, K., Johannesson, K., Jomaa, S., Jormalainen, V., Kuosa,
477 H., Kurland, S., Laikre, L., MacKenzie, B. R., Margonski, P., Melzner, F., Oesterwind, D.,
478 Ojaveer, H., Refsgaard, J. C., Sandström, A., Schwarz, G., Tonderski, K., Winder, M., and
479 Zanderson, M.: The Baltic Sea as a time machine for the future coastal ocean. Sci. Adv., 4,
480 eaar8195, <https://doi.org/10.1126/sciadv.aar8195>, 2018.

481 Røjbek, M. C., Jacobsen, C., Tomkiewicz, J., Støttrup, J. G.: Linking lipid dynamics with the
482 reproductive cycle in Baltic cod *Gadus morhua*. Mar. Ecol. Progr. Ser., 471, 215-234, <https://doi:10.3354/meps10012>, 2012.

484 Schaber, M., Hinrichsen, H.-H, and Gröger, J.: Seasonal changes in vertical distribution patterns of cod
485 (*Gadus morhua*) in the Bornholm Basin, Central Baltic Sea, Fish. Oceanogr., 21, 33–43,
486 <https://doi.org/10.1111/j.1365-2419.2011.00607.x>, 2012.

487 Sokolova, M., Buchmann, K., Huwer, B., Kania, P. W., Krumme, U., Galatius, A., Hemmer-Hansen,
488 J., and Behrens, J. W.: Spatial patterns in infection of cod *Gadus morhua* with the seal-associated
489 liver worm *Contracaecum osculatum* from the Skagerrak to the central Baltic Sea, Mar. Ecol.
490 Progr. Ser., 606, 105-118, <https://doi.org/10.3354/meps12773>, 2018.

491 Stramma, L., Prince E. D., Schmidtko, S., Luo, J., Hoolihan, J. P., Visbeck, M, Wallace, D. W. R.,
492 Brandt, P., and Körtzinger, A.: Expansion of oxygen minimum zones may reduce available habitat
493 for tropical pelagic fishes, Nat. Clim. Change, 2, 33–37, <https://doi.org/10.1038/nclimate1304>,
494 2012.

495 Thomas, O. R., Swearer, S. E., Kapp, E. A., Peng, P., Tonkin-Hill, G. Q., Papenfuss, A., Roberts, A.,
496 Bernard, P., and Roberts, B. R.: The inner ear proteome of fish, The FEBS journal, 286, 66-81,
497 <https://doi.org/10.1111/febs.14715>, 2019.

498 Vaquer-Sunyer, R., and Duarte, C. M.: Thresholds of hypoxia for marine biodiversity, Proc. Natl Acad.
499 Sci. USA, 105, 15452–15457, <https://doi.org/10.1073/pnas.0803833105>, 2008.

500 Wu, R. S. S.: Hypoxia: from molecular responses to ecosystem responses, Mar. Pollut. Bull. 45, 35–45,
501 [https://doi.org/10.1016/S0025-326X\(02\)00061-9](https://doi.org/10.1016/S0025-326X(02)00061-9), 2002.

502

503

504

505 **Figure captions**

506 Figure 1. Bathymetric Map of the Baltic Sea divided into ICES Subdivisions (SDs). The study area
507 includes the SDs 25–28 (i.e. the Central Baltic Sea).

508 Figure 2. Maps of the Baltic Sea with superimposed the areas with oxygen concentration ≤ 1 ml/l (black,
509 avoided by cod) and ≤ 4.3 ml/l (grey, sub-lethal level, producing negative effects on cod performance)
510 in (a) 1990 and (b) 2018. Time-series of the total area (km^2) with oxygen concentration ≤ 1 ml/l and \leq
511 4.3 ml/l in the Subdivisions 25-28 (c). Data were from the Swedish Meteorological and Hydrological
512 Institute (SMHI, www.smhi.se) (see also Casini et al., 2016a).

513 Figure 3. Temporal developments of mean cod condition (± 1 s.d.) in Subdivision (SD) 25 and SDs 26-
514 28 for (a, c) large cod (40–49 cm) and (b, d) small cod (20-29 cm). Superimposed (grey bars) the
515 temporal developments of the percentage of cod with very low condition (< 0.8) for the respective areas
516 and length classes.

517 Figure 4. Time-series of large cod (≥ 30 cm) depth distribution (mean and interquartile range of each
518 predicted depth distribution; see Orio et al., 2019) as well as depths of oxygen concentration 1 ml/l and
519 4.3 ml/l, for (a) Subdivision (SD) 25 and (c) SDs 26-28. Time-series of the depth overlap (i.e. overlap
520 between large cod depth range of distribution and the depth of the water layer with oxygen concentration
521 ≤ 4.3 ml/l) (grey bars), and oxygen at the mean depth and interquartile range of large cod distribution
522 (solid line and dotted lines), in (b) SD 25 and (d) SDs 26-28.

523 Figure 5. Time-series of small cod (< 30 cm) depth distribution (mean and interquartile range of each
524 predicted depth distribution; see Orio et al., 2019) as well as depth of oxygen concentration 1 ml/l and
525 4.3 ml/l, for (a) Subdivision (SD) 25 and (c) SDs 26-28. Time-series of the depth overlap (i.e. overlap
526 between small cod depth range of distribution and the depth of the water layer with oxygen
527 concentration ≤ 4.3 ml/l) (grey bars), and oxygen at the mean depth and interquartile range of small cod
528 distribution (solid line and dotted lines), in (b) SD 25 and (d) SDs 26-28.

529 Figure 6. Results of the General Additive Models (GAMs). The plots show the partial effects of the
530 depth overlap (i.e. overlap between cod depth range of distribution and the depth of the water layer with

531 oxygen concentration ≤ 4.3 ml/l) and of the actual oxygen experienced (at the lowest interquartile of
532 the cod depth range of distribution) on cod condition, for (a) large cod and (b) small cod. Blue and red
533 dots represent Subdivision (SD) 25 and SDs 26-28, respectively. Statistics for large cod (a): *Depth*
534 *overlap* (edf = 1.00; F = 6.46; p = 0.01), *Oxygen experienced* (edf = 2.86; F = 10.88; p < 0.00001).
535 Statistics for small cod (b): *Depth overlap* (edf = 1.30; F = 0.82; p = 0.55), *Oxygen experienced* (edf =
536 1.51; F = 17.60; p < 0.00001). See Fig. S1 and S2 for the analysis of the residuals.

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553 Figure 1

554

555

556

557

558

559

560

561

562

563

564

565

566 Figure 2

567

568

569

570

571

572

573

574

575

576

577 Figure 3

578

579

580

581

582

583

584

585

586

587

588

589

590 Figure 4

591

592

593

594

595

596

597

598

599

600

601

602 Figure 5

603

604

605

606 Figure 6

607

608

609

610

611