

1 **Changes in population depth distribution and oxygen stratification explain the current**
2 **low condition of the Eastern Baltic Sea cod (*Gadus morhua*)**

3

4 Michele Casini^{1,2}, Martin Hansson³, Alessandro Orio¹, Karin Limburg^{1,4}

5 ¹ Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of
6 Marine Research, Lysekil, Sweden

7 ² University of Bologna, Department of Biological, Geological and Environmental Sciences,
8 Bologna, Italy

9 ³ Swedish Meteorological and Hydrological Institute, Gothenburg, Sweden

10 ⁴ State University of New York College of Environmental Science and Forestry, Department
11 of Environmental and Forest Biology, Syracuse, New York, USA

12

13 Corresponding author: Michele Casini; e-mail: michele.casini@slu.se

14

15

16

17

18

19

20

21

22 **Abstract**

23 During the past twenty years, hypoxic areas have expanded exponentially in the Baltic Sea,
24 which has become one of the largest marine “dead zones” in the world. At the same time, the
25 most important commercial fish population of the region, the Eastern Baltic cod, has
26 experienced a drastic reduction in mean body condition, but the processes relating hypoxia to
27 condition remain elusive. Here we use extensive long-term monitoring data on cod biology and
28 distribution as well as on hydrological variations, to investigate the processes that relate
29 deoxygenation and cod condition during the autumn season. Our results show that the depth
30 distribution of cod has increased during the past four decades at the same time of the expansion,
31 and shallowing, of the waters with an oxygen concentration known to be detrimental for cod
32 performance. This has resulted in a spatial overlap between the cod population and low-
33 oxygenated waters after the mid-1990s, which relates with the observed decline in cod mean
34 body condition. Complementary analyses on fish otolith microchemistry also revealed that
35 since the mid-1990s, cod individuals with low condition were indeed exposed to low-oxygen
36 waters during their life. This study helps to shed light on the processes that have led to a decline
37 of the Eastern Baltic cod body condition, which can aid the management of this population
38 currently in distress. Further studies should focus on understanding why the cod population has
39 moved to deeper waters in autumn and on analysing the overlap with low-oxygen waters in
40 other seasons to quantify the potential effects of the variations in physical properties on cod
41 biology throughout the year.

42

43 **Keywords:** hypoxia, fish body condition, direct exposure, depth distribution, cod *Gadus*
44 *morhua*

45

46 1. Introduction

47 The oceans and marine coastal areas are experiencing dramatic deoxygenation worldwide
48 (Breitburg et al., 2018). Declining oxygen can have multiple direct and indirect effects on
49 aquatic organisms and entire ecosystems (Breitburg, 2002; Rabalais et al. 2002; Wu, 2002;
50 Diaz and Rosenberg, 2008; Levin et al., 2009). In particular, studies undertaken both in the
51 wild and within experimental set-ups have revealed large effects of hypoxia on basic
52 metabolism, behavior, ecology, distribution and life-history traits of fish (Pichavant et al.,
53 2001; Eby et al., 2005; Herbert and Steffensen, 2005; Domenici et al., 2007; Stramma et al.,
54 2012).

55 The Baltic Sea (Fig. 1) is one of the largest brackish areas in the world where the oxygenated,
56 yet scarce and irregular saline water inflows from the adjacent North Sea, combined with a
57 water residence time of about 25–30 years, make the system particularly prone to hypoxia
58 (Carstensen et al., 2014). As a consequence, and in combination with global warming and
59 eutrophication, the Baltic Sea has become one of the largest anthropogenic “dead zones” in the
60 world (Breitburg et al., 2018), with well documented degradation or elimination of benthic
61 communities and disruption of benthic food webs over vast areas (Conley et al., 2009). In
62 particular, since the early 1990s the anoxic and hypoxic areas have increased exponentially in
63 the southern and central Baltic Sea (Carstensen et al., 2014) (Fig. 2).

64 In this degraded demersal and benthic environment, the body condition (a morphometric index
65 of fish fatness and well-being) of the dominant demersal fish population, the Eastern Baltic cod
66 *Gadus morhua* (hereafter simply referred to as Baltic cod), has declined since the mid-1990s
67 (Casini et al., 2016a). This decline has been related to a decrease in the main pelagic prey
68 abundance in the main distribution area of cod (Eero et al., 2012; Casini et al., 2016a), but also
69 to the increased extent of hypoxic and anoxic areas (Casini et al., 2016a). However, the

70 underlying mechanisms of the relationship between cod condition and hypoxia are still elusive
71 (but see Limburg and Casini, 2019). The mechanistic processes linking hypoxia and cod
72 conditions could be various and not mutually exclusive, including stress due to direct hypoxia
73 exposure, contraction in the spatial distribution of the population, and change in the
74 surrounding biota such as reduction of important benthic prey (Casini et al., 2016a). A recent
75 study pointed out the importance of the decline in the feeding level and energy intake of cod
76 after the mid-1990s, which was explained by the decline in important benthic prey in the
77 environment (Neuenfeldt et al., 2019). Lately some investigations have also put forward the
78 hypothesis that the observed changes in the distribution of demersal fish species, including cod,
79 were due to the variations in the extent of the hypoxic areas in the Baltic Sea (Orio et al., 2019),
80 although in-depth analyses were not performed to confirm this hypothesis. The low cod
81 condition in recent decades has been stressed also by the fishery that has lamented an
82 increasingly high proportion of catches of lean cod with low economic value. Low condition
83 has a negative effect on reproductive potential (Mion et al., 2018), mortality (Casini et al.,
84 2016b) and potentially also movements (Mehner and Kasprzak, 2011) with indirect effects on
85 prey and therefore food-web structure and ecosystem functioning as shown in other systems
86 (e.g. Ekau et al., 2010). Therefore, it is very important to understand the ultimate factors leading
87 to low cod condition and in particular the processes explaining the correlation between cod
88 condition and deoxygenation of the Baltic Sea water over time.

89 In this study, we further examine the mechanisms linking deoxygenation to cod condition in
90 the Baltic Sea. We specifically analyse the temporal changes in the depth distribution of cod,
91 from long-term monitoring data, in relation to the oxygen levels acknowledged in literature to
92 affect cod behavior and performance. We support these analyses investigating the relation
93 between fish exposure to hypoxia and cod condition using otolith microchemistry. Fish otoliths
94 (ear stones) composed of aragonite accrete continually throughout life and incorporate trace

95 elements, providing a direct, retrospective measure of an individual fish's environmental and
96 physiological history.

97

98 **2. Materials and methods**

99 **2.1 Biological data and estimation of cod condition**

100 Biological data on Eastern Baltic cod individuals were collected during the Baltic International
101 Trawl Survey, BITS, between 1991 and 2018 (retrieved from the DATRAS database of the
102 International Council for the Exploration of the Sea, ICES; www.ices.dk) and previous
103 Swedish and Latvian bottom trawl surveys performed in 1979-1990 in the Baltic Sea (Casini
104 et al., 2016a). Cod individual body condition (Fulton's K) was estimated as $K = W/L^3 * 100$,
105 where W is the total weight (g) and L the total length (cm) of the fish. Mean condition was
106 estimated for ICES Subdivision (SD) 25 (corresponding to the main distribution area for cod
107 since the early 1990s, Orio et al., 2017) and SDs 26-28 separately. Condition was estimated for
108 small fish (represented here by the size-class 20-29 cm) and large fish (represented here by the
109 size-class 40-49 cm). We focused on the cod condition in autumn (i.e. quarter 4), corresponding
110 to the cod main growth season after spawning in spring-summer (Mion et al., 2020). Moreover,
111 for autumn long time-series of oxygen levels and extent of hypoxic areas are also available
112 (Casini et al., 2016a).

113 **2.2 Estimation of cod depth distribution**

114 Indices of cod biomass (calculated as catch-per-unit-effort, CPUE, kg/h, herein referred to as
115 biomass) and depth distribution (i.e. mean depth and interquartile range of predicted depth
116 distribution) from the BITS and historical bottom trawl surveys in SDs 25-28 from 1979 to
117 2018 were estimated for large (≥ 30 cm) and small cod (15-30 cm) using a modelling procedure
118 similar to the one used in Orio et al. (2019). However, in the current study rather than including

119 environmental variables in the models, quarter was included in interactions with latitude and
120 longitude, and with depth. To estimate the changes in cod depth distribution in SDs 26-28 that
121 account for the changes in the spatial distribution of the cod population, the SD-specific depth
122 distributions were weighted by the annual SD-specific cod CPUEs from the bottom trawl
123 surveys in quarter 4, estimated from the same model.

124 **2.3 Depth of hypoxic layers**

125 Baltic cod has been shown to avoid oxygen concentrations below 1 ml/l (approximately 1.4
126 mg/l) (Schaber et al., 2012). Therefore, time-series of the depth at which 1 ml/l oxygen
127 concentration was encountered by SD were obtained from the Swedish Meteorological and
128 Hydrological Institute (SMHI, www.smhi.se).

129 Time-series of depth at which 4 ml/l oxygen concentration was encountered by SD were also
130 obtained from SMHI. This oxygen concentration, on average, has been found to affect the
131 performance of fish (Vaquer-Sunyer and Duarte, 2008). Specifically for cod, 4 ml/l has been
132 found as threshold under which an effect on condition and growth starts to be observable
133 (Chabot and Dutil, 1999). Therefore, we expected that the occurrence of cod in areas and depths
134 with an oxygen concentration ≤ 4 ml/l would lead to an increase in the proportion of cod
135 individuals with very low condition and a decrease in mean condition in the population.

136 To relate the depths at which 1 ml/l and 4 ml/l oxygen concentrations were encountered to cod
137 depth of occurrence and condition in SDs 26-28, the oxygen depths by SD were weighted with
138 the annual SD-specific cod CPUEs from the bottom trawl surveys estimated from the same
139 models in quarter 4. In this way, the oxygen circumstances in the SDs where cod was more
140 abundant were weighted the most.

141 **2.4 Otolith microchemistry**

142 Otoliths ($N = 154$) were selected from Baltic cod collected in the study area in the 1980s-2010s
143 from BITS and historical bottom trawl surveys in February (Limburg and Casini, 2019). These
144 were cleaned, transversely sectioned, and analysed by laser ablation inductively coupled
145 plasma spectrometry. A spot of 100-micron diameter was driven at 5 $\mu\text{m/sec}$, 10 Hz, to create
146 a transect from the otolith core to the outer dorsal edge, collecting a suite of elements (see
147 Limburg and Casini, 2018 for details). For the analysis described here, we took the ratio of
148 manganese to magnesium along this continuous transect. Manganese, although redox-sensitive
149 and thus available as dissolved Mn^{2+} and Mn^{3+} at low oxygen concentrations, is also affected
150 by the fish's growth rate (Limburg et al., 2015; suggested by Thomas et al., 2019). Dividing
151 manganese by the corresponding, growth-sensitive magnesium (from the same replicate) to
152 some extent corrects for the growth effect (Limburg and Casini 2018, 2019). Our metric for
153 hypoxia exposure is the fraction of an annual growth band wherein this Mn/Mg ratio exceeds
154 an age-based threshold (Limburg and Casini 2018, 2019). We tested this metric as a function
155 of cod condition categorized into "high" (condition ≥ 0.9) and "low" (condition < 0.9) groups,
156 and tested whether this had changed over time (before the year 2000, and from 2000 onward).

157

158 **3. Results**

159 **3.1 Cod condition**

160 Cod condition increased slightly between the mid-1970s and mid-1990s, but declined abruptly
161 thereafter. This pattern was similar in SD 25 and SDs 26-28 for both small and large cod (Fig.
162 3), but after the mid-1990s condition dropped more for large cod. The percentage of large fish
163 with very low condition (< 0.8 , see Eero et al., 2012) increased from the end of 1990s in both
164 SD 25 and SDs 26-28 reaching in recent years 30-40%. The percentage of small fish with low
165 condition also increased, but lagged temporally behind the large cod, and at 10-20% of

166 observations was lower than the high incidences of large cod in poor condition (Fig. 3). In
167 general, in SD 25 condition declined slightly more (and the percentage of fish with very low
168 condition increased more) than in SDs 26-28 after the mid-1990s.

169 **3.2 Cod depth distribution**

170 Large cod in SD 25 were distributed between 30 and 50 m depth (average of 40 m depth) at
171 the beginning of the time-series, but have been found in deeper waters since the late 1990s
172 (Fig. 4A). In SDs 26-28 large cod were distributed between 35 and 55 m depth (average 45 m)
173 at the beginning of the time-series, while afterwards they moved deeper and since the mid-
174 1990s they became distributed between 50 and 70 m depth (average 60 m) (Fig. 4C). Along
175 with the change in mean depth, large cod in SDs 26-28 have shown a contraction of the range
176 of depth distribution in the past 20 years. Small cod were distributed somewhat shallower than
177 the large fish, but also moved into deeper waters during the time period investigated. In SD 25,
178 these shifted distribution from between 30 and 50 m depth (average 40 m depth) to 45-60 m
179 depth (average 53 m) (Fig. 5A). In SDs 26-28 small cod moved deeper with time as well, from
180 30-50 m depth (average 40 m) to 50-63 m depth (average 55 m), and experienced a contraction
181 of the range of depth distribution similar to what occurred for the large fish in this area (Fig.
182 5C).

183 **3.3 Depth of hypoxic layers**

184 The depth at which 1 ml/l was encountered remained fairly constant at around 70 m in SD 25,
185 while in SDs 26-28 it became shallower from being deeper than 100 m before the early 1990s
186 to 70-80 m in the past twenty years (Fig. 4A,C and 5A,C). The depth at which 4 ml/l was
187 encountered diminished in SD 25 from 60-65 m at the beginning of the time period to 50-55 m
188 during the past twenty years, while in SDs 26-28 it became shallower from being 70-80 m
189 before the early-1990s to 55-60 m in the past fifteen years (Fig. 4A,C and 5A,C). The oxygen

190 depths in SDs 26-28, accounting for the SD-specific distribution of the cod, did not differ much
191 between large and small cod (compare Fig. 4C and Fig. 5C).

192 **3.4 Depth overlap between cod and hypoxic layers**

193 In SD 25, large cod depth distribution never overlapped with depth with oxygen ≤ 1 ml/l along
194 the time period analysed, while in SDs 26-28 there was an overlap in a couple toward the end
195 of the time-series (Fig. 4A,C). On the other hand, large cod distribution heavily overlapped
196 with the depth with oxygen ≤ 4 ml/l since the mid-1990s (Fig. 4A,C) and the overlap, although
197 oscillating, increased in the past twenty years reaching values above 50% in SD 25 and up to
198 100% in SDs 26-28 (Fig. 4B,D).

199 Small cod distribution never overlapped with depth with oxygen ≤ 1 ml/l along the time period
200 analysed, neither in SD 25 nor SDs 26-28 (Fig. 5A,C). On the other hand, small cod distribution
201 overlapped with the depth with oxygen ≤ 4 ml/l since mid-1990s (Fig. 5A,C) and the overlap,
202 although oscillating, increased in the past fifteen years reaching values higher than 60% both
203 in SD 25 and SDs 26-28 (Fig. 5B,D).

204 There was a strong positive correlation between the percentage of the cod population in waters
205 ≤ 4 ml/l and the percentage of cod individuals with very low condition (for large cod, $r = 0.71$
206 and 0.74 in SD 25 and SDs 26-28, respectively; for small cod, $r = 0.58$ and 0.59 in SD 25 and
207 SDs 26-28, respectively). There was also a strong negative correlation between the percentage
208 of the cod population in waters ≤ 4 ml/l and mean cod condition (for large cod, $r = -0.77$ and -
209 0.76 in SD 25 and SDs 26-28, respectively; for small cod, $r = -0.60$ and -0.54 in SD 25 and
210 SDs 26-28, respectively).

211 **3.5 Otolith microchemistry**

212 Fish exposed to hypoxia as measured by otolith chemistry showed different responses as a
213 function of their condition at time of capture and the time period (pre- or post-2000; Fig. 6).

214 Prior to 2000, the annual duration of hypoxia exposure was relatively low (35.4%); for the
215 years 2000 and onward, the percent duration rose to 51.8%. More strikingly, when divided
216 further into groups by fish condition, pre-2000 fish were not significantly different with respect
217 to hypoxia exposure regardless of condition. After 2000, fish with condition < 0.9 had been
218 exposed considerably longer to hypoxia ($62.7\% \pm 3.6$) than fish with condition ≥ 0.9 ($40.9\% \pm$
219 5.1; Fig. 6). The effect sizes of interaction of time period and condition were large and highly
220 significant ($F_{1,746} = 23.287$, $p = 2 \times 10^{-6}$).

221

222 **4. Discussion**

223 In this paper, we analysed the potential mechanisms relating Baltic Sea deoxygenation with
224 changes in Eastern Baltic cod body condition during the past four decades. To this end, we
225 investigated the changes in depth distribution of the cod population and the vertical changes in
226 oxygen gradients based on long-term biological and hydrological monitoring data. Moreover,
227 we supplemented these analyses with proxies for hypoxia exposure from individual fish otolith
228 microchemistry.

229 **4.1 Cod depth of distribution and overlap with hypoxic areas**

230 Our analyses show an increase in the areas with an oxygen level below cod tolerance (i.e.
231 oxygen ≤ 1 ml/l; Schaber et al., 2012). Moreover, this oxygen threshold has also shifted with
232 time towards shallower depths, determining an overall contraction of the potentially suitable
233 habitat for cod (Casini et al., 2016a). Declines in oxygen concentrations have caused a
234 contraction of the habitat and the distribution of fish in other systems (Eby and Crowder, 2002;
235 Stramma et al., 2012; Breitburg et al., 2018) with measurable effects on, for example,
236 individual growth (e.g. Campbell and Rice, 2014). In the Baltic Sea, however, this change
237 seems not to have affected the cod depth of distribution in autumn, since the latter has been

238 always above 70-75 m, a depth only in few years reached by the waters with 1 ml/l. On the
239 other hand, it could be hypothesized that during the latest decade the cod population was unable
240 to occupy deeper habitats because of the vertical rise of this oxygen layer. This hypothesis
241 seems to be supported by the decline in the range of depth distribution (i.e. a squeeze of the
242 cod habitat occupation) shown by both large and small cod in SDs 26-28 during the past twenty
243 years. Explaining the temporal changes in the depth distribution of cod is beyond the scope of
244 this paper, but a potential reason could be that cod seek deeper layers to avoid too warm waters,
245 which could be detrimental when resources are scarce. In fact, pelagic prey have declined after
246 the mid-1990s in the southern and central Baltic Sea (Casini et al., 2016a) and therefore cod
247 might go deeper to optimize metabolism. Small cod, moreover, could seek deeper waters to
248 escape from the predation of the increased seals and aquatic birds (Orio et al., 2019).

249 The depth where dissolved oxygen falls to ≤ 4 ml/l (“sub-lethal” level, i.e. level that has been
250 shown in previous studies to affect cod performance; Chabot and Dutil, 1999; Vaquer-Sunyer
251 and Duarte, 2008) has shallowed during the past four decades, as a consequence of
252 deoxygenation. Our analysis revealed that this vertical rise, together with the deepening of the
253 cod depth distribution, has resulted in that cod has started to dwell more and more in these
254 hostile low-oxygen waters. This is consistent with observations of hypoxia exposure proxied
255 by otolith chemistry (Limburg and Casini, 2018 and 2019; this study, see below). The overlap
256 between cod depth distribution and “sub-lethal” oxygen layers occurred and reinforced only
257 after the mid-1990s, concomitant with the decline in cod condition, while in earlier years the
258 cod population was occurring above those layers. Therefore, according to our expectations and
259 hypothesis, the negative effects of hypoxia on cod condition could only arise after the mid-
260 1990s. This is also in accordance with our otolith microchemistry analysis (see below) and
261 previous investigations that suggested that in the earlier years (before the mid-1990s) cod
262 condition was regulated by other factors, such as pelagic prey biomass and density-dependence

263 (Casini et al., 2016a, Limburg and Casini, 2019). The progressively higher proportion of the
264 cod population in “sub-lethal” oxygen layers, as revealed by our study, conforms also to the
265 increasingly higher proportion of individuals in extremely low condition (< 0.8 Fulton’s K),
266 which include starving fish and fish close to the condition mortality threshold (Eero et al., 2012;
267 Casini et al., 2016b).

268 **4.2 Otolith microchemistry**

269 The complementary analyses performed on fish otolith microchemistry confirmed that since
270 the mid-1990s, cod individuals with low condition were indeed exposed to low-oxygen waters
271 during their life. Duration of hypoxia exposure as measured in Baltic cod otoliths has increased
272 markedly since mid-1990s (Limburg and Casini, 2018) and was found in our study to be
273 significantly greater in fish in poor condition at time of capture. This is a remarkable finding,
274 given that condition is measured only once during life (at capture), and the observations of
275 hypoxia exposure are taken throughout life. This suggests that currently, condition may carry
276 over from chronic exposure to low oxygen, which weakens fish and produces a cascade of
277 effects, from reduced metabolic scope leading to lower activity and slower digestion (Claireaux
278 and Chabot, 2016), to greater susceptibility to disease and parasites (e.g., Sokolova et al.,
279 2018). In contrast, in fish captured prior to 2000 the overall exposure to hypoxia was lower and
280 showed no relationship with condition. Thus the otolith microchemistry analysis confirmed the
281 that, pre-2000, factors other than hypoxia played a greater role in shaping cod condition as
282 concluded also by Casini et al. (2016a).

283 Although we have shown here that direct oxygen exposure is likely a key factor shaping cod
284 condition after the mid-1990s, other factors might contribute to explain the decline in condition
285 as well (Casini et al., 2016a). The more severe decline in condition in SD 25 compared to SDs
286 26–28, for example, could be due to the higher density of cod in the southern Baltic Sea during

287 the past twenty years (Orio et al., 2017) leading to density-dependent effects, and the lower
288 abundance of sprat, the main pelagic fish prey for cod, in this area (Casini et al., 2014).
289 Moreover, deoxygenation, by deteriorating the benthic communities, has likely affected
290 negatively important benthic prey for cod and therefore influenced also indirectly cod condition
291 and growth (Neuenfeldt et al., 2019).

292 **5. Conclusions**

293 We have shown here the potential mechanisms linking deoxygenation to cod condition in the
294 Baltic Sea. A combination of increased depth of distribution of the cod population and a vertical
295 rise of the “sub-lethal” oxygen layers has led cod dwelling progressively more in hostile low-
296 oxygen waters, contributing to explain the reduction in cod condition in the past two decades.
297 Further analyses should focus on revealing the reasons of the shift of cod distribution to deeper
298 and less-oxygenated waters. We stress that our depth analyses were focused on the autumn
299 season, when cod growth is maximised for the accumulation of energy reserves to be utilized
300 for spawning the following spring-summer (Mion et al., 2020). The changes in cod depth of
301 distribution are different in other seasons, especially those before and during spawning (Orio
302 et al., 2019), when cod could have different environment requirements for reproduction.
303 Therefore, further analyses should be performed to investigate the changes in cod population
304 depth distribution in relation to oxygen stratification in other seasons to better understand the
305 biotic and abiotic spatio-temporal dynamics, and their effects on cod performance, over the
306 entire year.

307

308

309

310

311 **Data availability**

312 Time-series used in this study are available upon request to the corresponding author.

313 **Author contribution**

314 MC designed and coordinated the study. MC, MH, AO and KL prepared the raw data. MC
315 estimated cod condition, MH performed the hydrographic modelling, AO performed the cod
316 distribution modelling, and KL prepared and analysed the cod otoliths. MC prepared the first
317 draft of the manuscript and all authors contributed to the final version.

318 **Competing interests**

319 The authors declare that they have no conflict of interest.

320 **Acknowledgements**

321 We thank all the personnel involved in the long-term fish and hydrological monitoring
322 programmes and data collection at the SLU's Department of Aquatic Resources (and former
323 Swedish National Board of Fisheries) and at the Swedish Meteorological and Hydrological
324 Institute. We also thank the Institute of Food safety, Animal Health and Environment "BIOR",
325 Latvia, for the historical Latvian data on cod condition and survey catches.

326 **Financial support**

327 This study was funded by the Swedish Research Council Formas (grant no. 2018-00775 to
328 Michele Casini: "Fish interactions in the marine benthic habitat: a knowledge gap in Baltic Sea
329 fish ecology and multispecies fisheries management") and the US National Science Foundation
330 (project OCE-1923965 to Karin Limburg: "Shifting the hypoxia paradigm – new directions to
331 explore the spread and impacts of ocean/Great Lakes deoxygenation").

332

333 **References**

334 Breitburg, D.: Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal
335 fishes and fisheries, *Estuaries*, 25, 767–781, <https://doi.org/10.1007/BF02804904>, 2002.

336 Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon,
337 V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi,
338 S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A.,
339 Telszewski, M., Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and
340 coastal waters, *Science*, 359, [eaam7240](https://doi.org/10.1126/science.aam7240), <https://doi.org/10.1126/science.aam7240>, 2018.

341 Campbell, L. A., and Rice, J. A.: Effects of hypoxia-induced habitat compression on growth of
342 juvenile fish in the Neuse River Estuary, North Carolina, USA. *Mar. Ecol. Prog. Ser.*, 497,
343 199–213, <https://doi.org/10.3354/meps10607>, 2014.

344 Carstensen, J., Andersen, J. H., Gustafsson, B. G., and Conley, D. J.: Deoxygenation of the
345 Baltic Sea during the last century, *Proc. Natl Acad. Sci. USA*, 111, 5628–5633,
346 <https://doi.org/10.1073/pnas.1323156111>, 2014.

347 Casini, M., Rouyer, T., Bartolino V., Larson N., and Grygiel, W.: Density dependence in space
348 and time: opposite synchronous variations in population distribution and body condition
349 in the Baltic Sea sprat (*Sprattus sprattus*) over three decades, *PLoS ONE*, 9, e92278,
350 <https://doi.org/10.1371/journal.pone.0092278>, 2014.

351 Casini, M., Käll, F., Hansson, M., Plikhs, M., Baranova, T., Karlsson, O., Lundström, K.,
352 Neuenfeldt, S., Gårdmark, G., and Hjelm J.: Hypoxic areas, density dependence and food
353 limitation drive the body condition of a heavily exploited marine fish predator, *R. Soc.*
354 *Open Sci.*, 3, 160416, <https://doi.org/10.1098/rsos.160416>, 2016a.

355 Casini, M., Eero, M., Carlshamre, S., and Lövgren, J.: Using alternative biological information
356 in stock assessment: condition-corrected natural mortality of Eastern Baltic cod, *ICES J.*
357 *Mar. Sci.*, 73, 2625–2631, <https://doi.org/10.1093/icesjms/fsw117>, 2016b.

358 Chabot, D., and Dutil, J.-D.: Reduced growth of Atlantic cod in non-lethal hypoxic conditions,
359 *J. Fish Biol.*, 55, 472–491, <https://doi.org/10.1111/j.1095-8649.1999.tb00693.x>, 1999.

360 Claireaux, G., and Chabot, D.: Responses by fishes to environmental hypoxia: integration
361 through Fry's concept of aerobic metabolic scope, *J. Fish Biol.*, 88, 232–251,
362 <https://doi.org/10.1111/jfb.12833>, 2016.

363 Conley, D. G. Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B. G.,
364 Hietanen, S., Kortekaas, M., Kuosa, H., Meier, H. E. M., Müller-Karulis, B., Nordberg,
365 Norkko, A., Nürnberg, G., Pitkänen, H., Rabalais, N. N., Rosenberg, R., Savchuk, O.
366 P., Slomp, C. P., Voss, M., Wulff, F., and Zillén L.: Hypoxia-related processes in the Baltic
367 Sea, *Environ. Sci. Technol.*, 43, 3412–3420, <https://doi.org/10.1021/es802762a>, 2009.

368 Diaz, R. J., and Rosenberg, R.: Spreading dead zones and consequences for marine ecosystems,
369 *Science*, 321, 926–929, <https://doi.org/10.1126/science.1156401>, 2008.

370 Domenici, P., Lefrançois, C., and Shingles, A.: Hypoxia and the antipredator behaviours of
371 fishes, *Phil. Trans. R. Soc. B*, 362, 2015–2121, <https://doi.org/10.1098/rstb.2007.2103>,
372 2007.

373 Eby, L.A., and Crowder, L. B.: Hypoxia-based habitat compression in the Neuse River Estuary:
374 context-dependent shifts in behavioral avoidance thresholds, *Can. J. Fish. Aquat. Sci.*, 59,
375 952–965, <https://doi.org/10.1139/f02-067>, 2002.

376 Eby, L. A., Crowder, L. B., McClellan, C. M., Peterson, C. H., Powers, and M. J.: Habitat
377 degradation from intermittent hypoxia: impacts on demersal fishes, *Mar. Ecol. Prog. Ser.*,
378 291, 249–261, <https://doi.org/10.3354/meps291249>, 2005.

379 Eero, M., Vinther, M., Haslob, H., Huwer, B., Casini, M., Storr-Paulsen, M., and Köster, F.
380 W.: Spatial management of marine resources can enhance the recovery of predators and
381 avoid local depletion of forage fish, *Cons. Lett.*, 5, 486–492,
382 <https://doi.org/10.1111/j.1755-263X.2012.00266.x>, 2012.

383 Ekau, W., Auel, H., Pörtner, H.-O., and Gilbert, D.: Impacts of hypoxia on the structure and
384 processes in pelagic communities (zooplankton, macro-invertebrates and fish),
385 *Biogeosciences*, 7, 1669–1699, doi:10.5194/bg-7-1669-201, 2010.

386 Herbert, N. A., and Steffensen, J. F.: The response of Atlantic cod, *Gadus morhua*, to
387 progressive hypoxia: fish swimming speed and physiological stress, *Mar. Biol.*, 147,
388 1403–1412, <https://doi.org/10.1007/s00227-005-0003-8>, 2005.

389 Levin, L. A., Ekau, W., Gooday, A. J., Jorissen, F., Middelburg, J. J., Naqvi, S. W. A., Neira,
390 C., Rabalais, N. N., and Zhang, J.: Effects of natural and human-induced hypoxia on
391 coastal benthos, *Biogeosciences*, 6, 2063–2098, <https://doi.org/10.5194/bg-6-2063-2009>,
392 2009.

393 Limburg, K. E., Walther, B. D., Lu, Z. G. Jackman, Mohan, J., Walther, Y., Nissling, A.,
394 Weber, P. K., and Schmitt, A. K.: In search of the dead zone: use of otoliths for tracking
395 fish exposure to hypoxia, *J. Mar. Syst.*, 141, 167-178,
396 <https://doi.org/10.1016/j.jmarsys.2014.02.014>, 2015.

397 Limburg, K. E., and Casini, M.: Effect of marine hypoxia on Baltic Sea cod *Gadus morhua*:
398 evidence from otolith chemical proxies, *Front. Mar. Sci.*, 5, 482,
399 <https://doi.org/10.3389/fmars.2018.00482>, 2018.

400 Limburg, K., and Casini, M.: Otolith chemistry indicates recent worsened Baltic cod condition
401 is linked to hypoxia exposure, Biol. Lett., 15, 20190352,
402 <https://doi.org/10.1098/rsbl.2019.0352>, 2019.

403 Mehner, T., and Kasprzak, P.: Partial diel vertical migrations in pelagic fish, J. Anim. Ecol.,
404 80, 761–770, <https://doi.org/10.1111/j.1365-2656.2011.01823.x>, 2011.

405 Mion, M., Thorsen, A., Dierking, J., Herrmann, J.-P., Huwer, B., Vitale, F., von Dewitz, B.,
406 and Casini, M.: Effect of fish length and nutritional condition on the fecundity of distressed
407 Atlantic cod *Gadus morhua* from the Baltic Sea, J. Fish Biol., 92, 1016-1034,
408 <https://doi.org/10.1111/jfb.13563>, 2018.

409 Mion, M., Hilvarsson, A., Hüsse, K., Krumme, U., Krüger-Johnsen, M., McQueen, K.,
410 Mohamed, E., Motyka, R., Orio, A., Plikšs, M., Radtke, K., and Casini, M.: Historical
411 growth of Eastern Baltic cod (*Gadus morhua*): setting a baseline with international tagging
412 data, Fish. Res., 223, <https://doi.org/10.1016/j.fishres.2019.105442>, 2020.

413 Neuenfeldt, S., Bartolino, V., Orio, A., Andersen, K. H., Andersen, N. G., Niiranen, S.,
414 Bergström, U., Ustups, D., Kallasvuo, M., Kulatska, N., and Casini, M.: Feeding and
415 growth of Atlantic cod (*Gadus morhua* L.) in the Eastern Baltic Sea under environmental
416 change, ICES J. Mar. Sci., <https://doi.org/10.1093/icesjms/fsz224>, 2019.

417 Orio, A., Florin, A.-B., Bergström, U., Šics, I., Baranova, T., and Casini, M.: Modelling indices
418 of abundance and size-based indicators of cod and flounder stocks in the Baltic Sea using
419 newly standardized trawl survey data, ICES J. Mar. Sci., 74, 1322-1333,
420 <https://doi.org/10.1093/icesjms/fsx005>, 2017.

421 Orio, A., Bergström, U., Florin, A.-B., Lehmann, A., Šics, I., and Casini, M.: Spatial
422 contraction of demersal fish populations in a large marine ecosystem, J. Biogeogr., 46,
423 633-645, <https://doi.org/10.1111/jbi.13510>, 2019.

424 Pichavant, K., Person-Le-Ruyet, J., Le Bayon, N., Severe, A., Le Roux, A., and Boeuf, G.:
425 Comparative effects of long-term hypoxia on growth, feeding and oxygen consumption in
426 juvenile turbot and European sea bass, *J. Fish Biol.* 59, 875–883,
427 <https://doi.org/10.1111/j.1095-8649.2001.tb00158.x>, 2001.

428 Rabalais, N. N., Turner, R. E., and Wiseman Jr, W. J.: Gulf of Mexico hypoxia, A.K.A ‘The
429 dead zone’, *Annu. Rev. Ecol. Syst.*, 33, 235–263,
430 <https://doi.org/10.1146/annurev.ecolsys.33.010802.150513>, 2002.

431 Schaber, M., Hinrichsen, H.-H., and Gröger, J.: Seasonal changes in vertical distribution
432 patterns of cod (*Gadus morhua*) in the Bornholm Basin, Central Baltic Sea, *Fish.*
433 *Oceanogr.*, 21, 33–43, <https://doi.org/10.1111/j.1365-2419.2011.00607.x>, 2012.

434 Sokolova, M., Buchmann, K., Huwer, B., Kania, P. W., Krumme, U., Galatius, A., Hemmer-
435 Hansen, J., and Behrens, J. W.: Spatial patterns in infection of cod *Gadus morhua* with the
436 seal-associated liver worm *Contracaecum osculatum* from the Skagerrak to the central
437 Baltic Sea, *Mar. Ecol. Progr. Ser.*, 606, 105–118, <https://doi.org/10.3354/meps12773>,
438 2018.

439 Stramma, L., Prince E. D., Schmidtko, S., Luo, J., Hoolihan, J. P., Visbeck, M., Wallace, D. W.
440 R., Brandt, P., Körtzinger, A.: Expansion of oxygen minimum zones may reduce available
441 habitat for tropical pelagic fishes, *Nat. Clim. Change*, 2, 33–37,
442 <https://doi.org/10.1038/nclimate1304>, 2012.

443 Thomas, O. R., Swearer, S. E., Kapp, E. A., Peng, P., Tonkin-Hill, G. Q., Papenfuss, A.,
444 Roberts, A., Bernard, P., and Roberts, B. R.: The inner ear proteome of fish, *The FEBS
445 journal*, 286, 66–81, <https://doi.org/10.1111/febs.14715>, 2019.

446 Vaquer-Sunyer, R., and Duarte, C. M.: Thresholds of hypoxia for marine biodiversity, Proc.
447 Natl Acad. Sci. USA, 105, 15 452–15 457, <https://doi.org/10.1073/pnas.0803833105>,
448 2008.

449 Wu, R. S. S.: Hypoxia: from molecular responses to ecosystem responses, Mar. Pollut. Bull.
450 45, 35–45, [https://doi.org/10.1016/S0025-326X\(02\)00061-9](https://doi.org/10.1016/S0025-326X(02)00061-9), 2002.

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466 **Figure captions**

467 Fig. 1. Bathymetric Map of the Baltic Sea divided into ICES Subdivisions (SDs). The study
468 area includes the SDs 25–28 (i.e. the Central Baltic Sea).

469 Fig. 2. Maps of the Baltic Sea with superimposed the areas with oxygen concentration ≤ 1 ml/l
470 (black, avoided by cod) and ≤ 4 ml/l (grey, sub-lethal level, producing negative effects on cod
471 performance) in 1990 (panel A) and 2018 (panel B). Time-series of the total area (km^2) with
472 oxygen concentration ≤ 1 ml/l and ≤ 4 ml/l in the SDs 25-28 (panel C). Data were from the
473 Swedish Meteorological and Hydrological Institute (SMHI, www.smhi.se) (see also Casini et
474 al., 2016a).

475 Fig. 3. Temporal developments of mean cod condition (± 1 s.d.) in Subdivision 25 and
476 Subdivisions 26-28 for small cod (20-29 cm) and large cod (40–49 cm). Superimposed (grey
477 bars) the temporal developments of the percentage of cod with very low condition (< 0.8) for
478 the respective areas and length classes.

479 Fig. 4. Time-series of large cod (≥ 30 cm) depth distribution (mean and interquartile range of
480 each predicted depth distribution; see Orio et al., 2019) as well as depths of oxygen
481 concentration 1 ml/l and 4 ml/l, for Subdivision 25 (panel A) and Subdivisions 26-28 (panel
482 C). Panels B and D, time-series of the percent of large cod in waters with oxygen concentration
483 ≤ 4 ml/l, in Subdivision 25 and Subdivisions 26-28.

484 Fig. 5. Time-series of small cod (15-30 cm) depth distribution (mean and interquartile range of
485 each predicted depth distribution; see Orio et al., 2019) as well as depth of oxygen
486 concentration 1 ml/l and 4 ml/l, for Subdivision 25 (panel A) and Subdivisions 26-28 (panel
487 C). Panels B and D, time-series of the percent of small cod in waters with oxygen concentration
488 ≤ 4 ml/l, in Subdivision 25 and Subdivisions 26-28.

489 Fig. 6. Differences in otolith chemistry as related to hypoxia and fish condition for pre-2000
490 and 2000s. Within-year hypoxia exposure duration is proxied by the fraction of each annual
491 growth band in which the otolith Mn/Mg ratio exceeds age-specific thresholds. These are
492 categorized by condition factor (high condition is 0.9 or greater) measured at time of capture
493 (see Limburg and Casini, 2019).

494

495

496

497

498

499

500

501

502

503

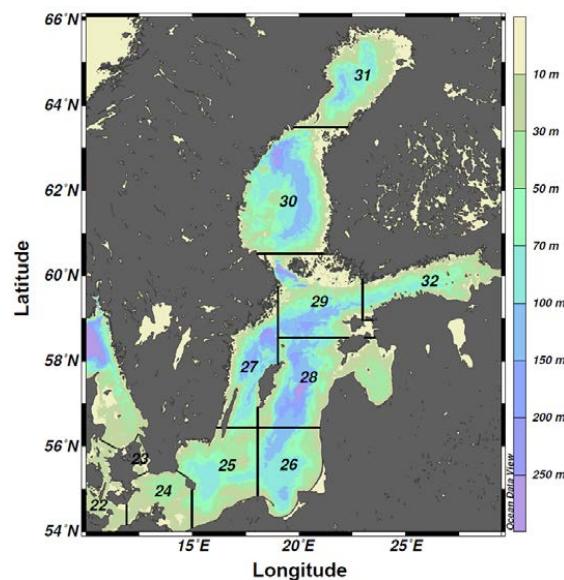
504

505

506

507

508


509

510

511 Figure 1

512

513

514

515

516

517

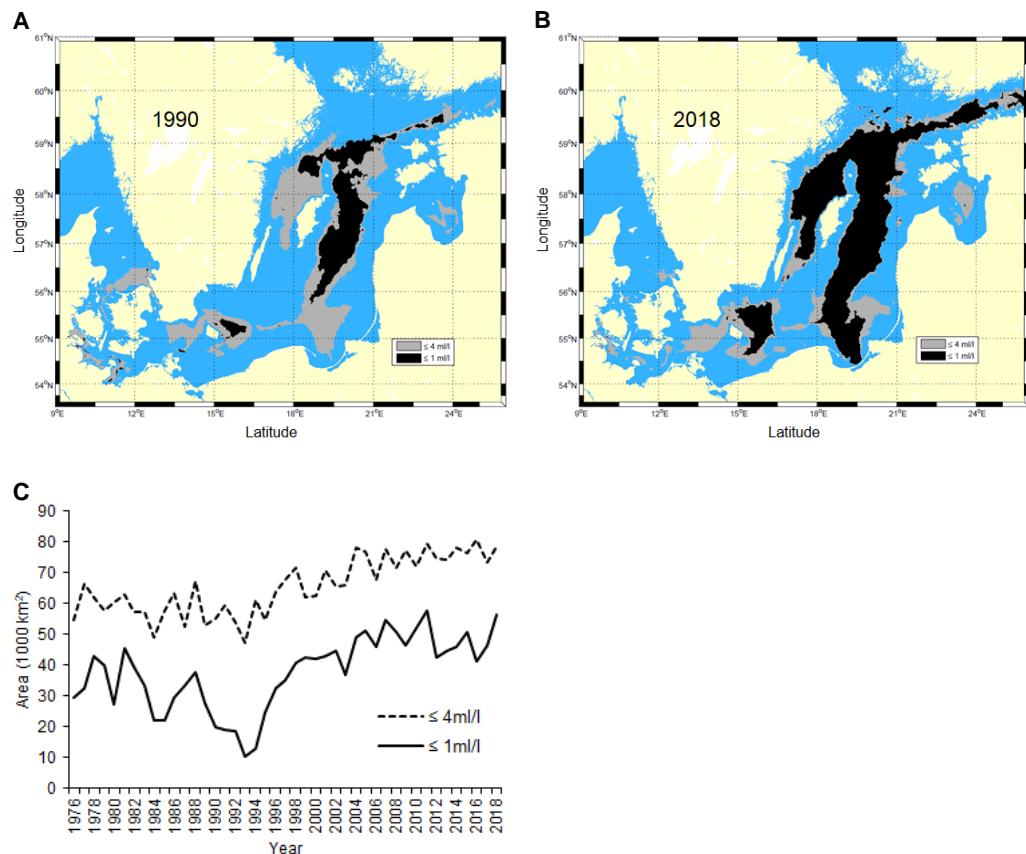
518

519

520

521

522


523

524 Figure 2

525

526

527

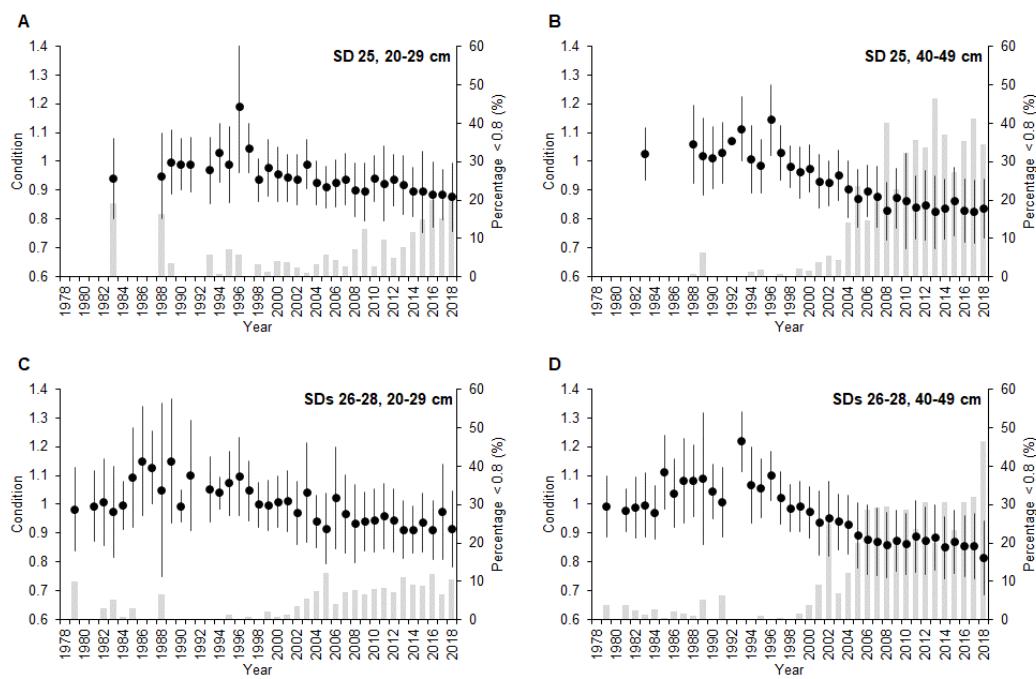
528

529

530

531

532


533

534

535 Figure 3

536

537

538

539

540

541

542

543

544


545

546

547 Figure 4

548

549

550

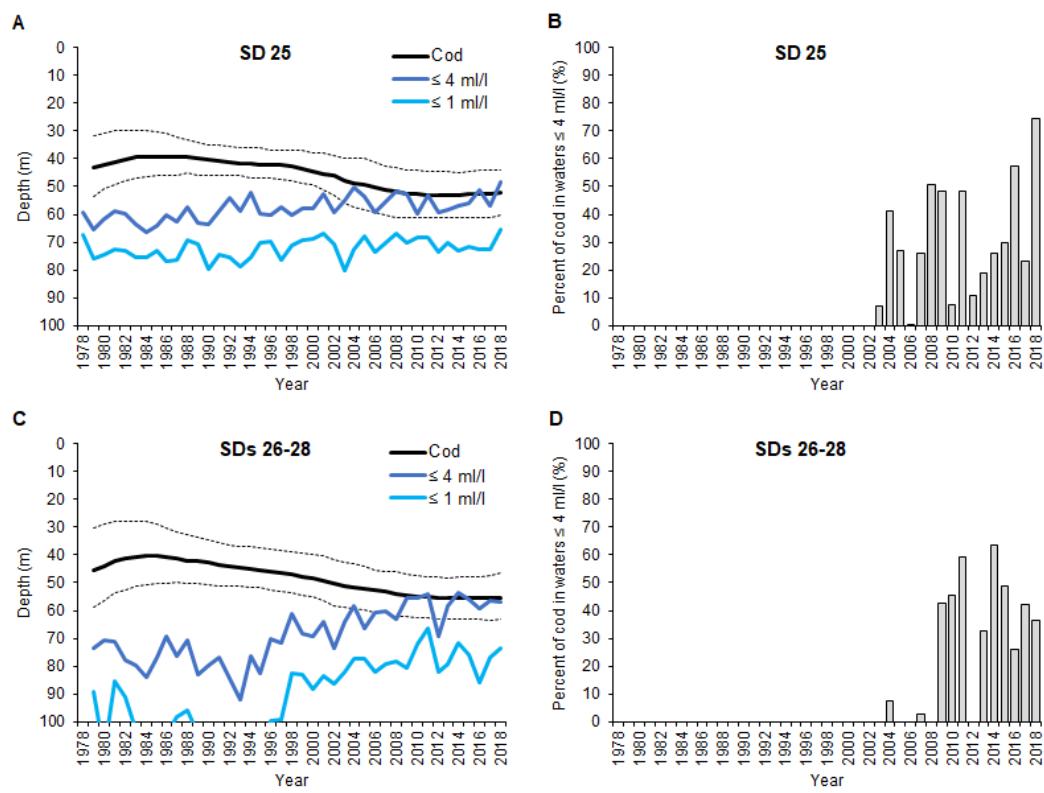
551

552

553

554

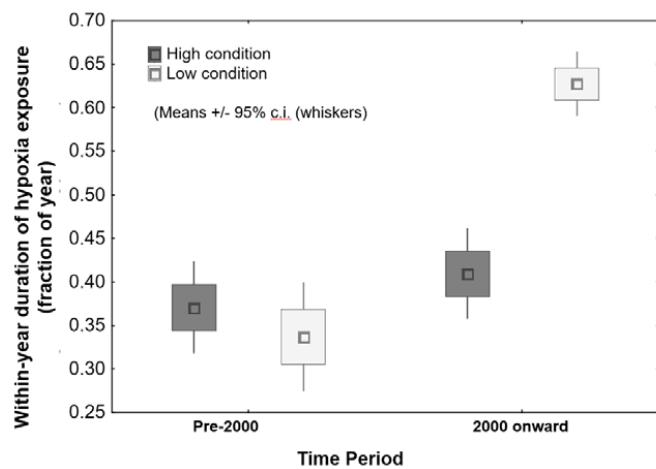
555


556

557

558 Figure 5

559


560

561

562 Figure 6

563

564

565

566

567

568