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Abstract 22 

During the past twenty years, hypoxic areas have expanded exponentially in the Baltic Sea, 23 

which has become one of the largest marine “dead zones” in the world. At the same time, the 24 

most important commercial fish population of the region, the Eastern Baltic cod, has 25 

experienced a drastic reduction in mean body condition, but the processes relating hypoxia to 26 

condition remain elusive. Here we use extensive long-term monitoring data on cod biology and 27 

distribution as well as on hydrological variations, to investigate the processes that relate 28 

deoxygenation and cod condition during the autumn season. Our results show that the depth 29 

distribution of cod has increased during the past four decades at the same time of the expansion, 30 

and shallowing, of the waters with an oxygen concentration known to be detrimental for cod 31 

performance. This has resulted in a spatial overlap between the cod population and low-32 

oxygenated waters after the mid-1990s, which relates with the observed decline in cod mean 33 

body condition. Complementary analyses on fish otolith microchemistry also revealed that 34 

since the mid-1990s, cod individuals with low condition were indeed exposed to low-oxygen 35 

waters during their life. This study helps to shed light on the processes that have led to a decline 36 

of the Eastern Baltic cod body condition, which can aid the management of this population 37 

currently in distress. Further studies should focus on understanding why the cod population has 38 

moved to deeper waters in autumn and on analysing the overlap with low-oxygen waters in 39 

other seasons to quantify the potential effects of the variations in physical properties on cod 40 

biology throughout the year. 41 
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1. Introduction 46 

The oceans and marine coastal areas are experiencing dramatic deoxygenation worldwide 47 

(Breitburg et al., 2018). Declining oxygen can have multiple direct and indirect effects on 48 

aquatic organisms and entire ecosystems (Breitburg, 2002; Rabalais et al. 2002; Wu, 2002; 49 

Diaz and Rosenberg, 2008; Levin et al., 2009). In particular, studies undertaken both in the 50 

wild and within experimental set-ups have revealed large effects of hypoxia on basic 51 

metabolism, behavior, ecology, distribution and life-history traits of fish (Pichavant et al., 52 

2001; Eby et al., 2005; Herbert and Steffensen, 2005; Domenici et al., 2007; Stramma et al., 53 

2012). 54 

The Baltic Sea (Fig. 1) is one of the largest brackish areas in the world where the oxygenated, 55 

yet scarce and irregular saline water inflows from the adjacent North Sea, combined with a 56 

water residence time of about 25–30 years, make the system particularly prone to hypoxia 57 

(Carstensen et al., 2014). As a consequence, and in combination with global warming and 58 

eutrophication, the Baltic Sea has become one of the largest anthropogenic “dead zones” in the 59 

world (Breitburg et al., 2018), with well documented degradation or elimination of benthic 60 

communities and disruption of benthic food webs over vast areas (Conley et al., 2009). In 61 

particular, since the early 1990s the anoxic and hypoxic areas have increased exponentially in 62 

the southern and central Baltic Sea (Carstensen et al., 2014) (Fig. 2).  63 

In this degraded demersal and benthic environment, the body condition (a morphometric index 64 

of fish fatness and well-being) of the dominant demersal fish population, the Eastern Baltic cod 65 

Gadus morhua (hereafter simply referred to as Baltic cod), has declined since the mid-1990s 66 

(Casini et al., 2016a). This decline has been related to a decrease in the main pelagic prey 67 

abundance in the main distribution area of cod (Eero et al., 2012; Casini et al., 2016a), but also 68 

to the increased extent of hypoxic and anoxic areas (Casini et al., 2016a). However, the 69 
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underlying mechanisms of the relationship between cod condition and hypoxia are still elusive 70 

(but see Limburg and Casini, 2019). The mechanistic processes linking hypoxia and cod 71 

conditions could be various and not mutually exclusive, including stress due to direct hypoxia 72 

exposure, contraction in the spatial distribution of the population, and change in the 73 

surrounding biota such as reduction of important benthic prey (Casini et al., 2016a). A recent 74 

study pointed out the importance of the decline in the feeding level and energy intake of cod 75 

after the mid-1990s, which was explained by the decline in important benthic prey in the 76 

environment (Neuenfeldt et al., 2019). Lately some investigations have also put forward the 77 

hypothesis that the observed changes in the distribution of demersal fish species, including cod, 78 

were due to the variations in the extent of the hypoxic areas in the Baltic Sea (Orio et al., 2019), 79 

although in-depth analyses were not performed to confirm this hypothesis. The low cod 80 

condition in recent decades has been stressed also by the fishery that has lamented an 81 

increasingly high proportion of catches of lean cod with low economic value. Low condition 82 

has a negative effect on reproductive potential (Mion et al., 2018), mortality (Casini et al., 83 

2016b) and potentially also movements (Mehner and Kasprzak, 2011) with indirect effects on 84 

prey and therefore food-web structure and ecosystem functioning as shown in other systems 85 

(e.g. Ekau et al., 2010). Therefore, it is very important to understand the ultimate factors leading 86 

to low cod condition and in particular the processes explaining the correlation between cod 87 

condition and deoxygenation of the Baltic Sea water over time. 88 

In this study, we further examine the mechanisms linking deoxygenation to cod condition in 89 

the Baltic Sea. We specifically analyse the temporal changes in the depth distribution of cod, 90 

from long-term monitoring data, in relation to the oxygen levels acknowledged in literature to 91 

affect cod behavior and performance. We support these analyses investigating the relation 92 

between fish exposure to hypoxia and cod condition using otolith microchemistry. Fish otoliths 93 

(ear stones) composed of aragonite accrete continually throughout life and incorporate trace 94 
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elements, providing a direct, retrospective measure of an individual fish’s environmental and 95 

physiological history. 96 

 97 

2. Materials and methods 98 

2.1 Biological data and estimation of cod condition 99 

Biological data on Eastern Baltic cod individuals were collected during the Baltic International 100 

Trawl Survey, BITS, between 1991 and 2018 (retrieved from the DATRAS database of the 101 

International Council for the Exploration of the Sea, ICES; www.ices.dk) and previous 102 

Swedish and Latvian bottom trawl surveys performed in 1979-1990 in the Baltic Sea (Casini 103 

et al., 2016a). Cod individual body condition (Fulton’s K) was estimated as K = W/L3 * 100, 104 

where W is the total weight (g) and L the total length (cm) of the fish. Mean condition was 105 

estimated for ICES Subdivision (SD) 25 (corresponding to the main distribution area for cod 106 

since the early 1990s, Orio et al., 2017) and SDs 26-28 separately. Condition was estimated for 107 

small fish (represented here by the size-class 20-29 cm) and large fish (represented here by the 108 

size-class 40-49 cm). We focused on the cod condition in autumn (i.e. quarter 4), corresponding 109 

to the cod main growth season after spawning in spring-summer (Mion et al., 2020). Moreover, 110 

for autumn long time-series of oxygen levels and extent of hypoxic areas are also available 111 

(Casini et al., 2016a). 112 

2.2 Estimation of cod depth distribution 113 

Indices of cod biomass (calculated as catch-per-unit-effort, CPUE, kg/h, herein referred to as 114 

biomass) and depth distribution (i.e. mean depth and interquartile range of predicted depth 115 

distribution) from the BITS and historical bottom trawl surveys in SDs 25-28 from 1979 to 116 

2018 were estimated for large (≥ 30 cm) and small cod (15-30 cm) using a modelling procedure 117 

similar to the one used in Orio et al. (2019). However, in the current study rather than including 118 
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environmental variables in the models, quarter was included in interactions with latitude and 119 

longitude, and with depth. To estimate the changes in cod depth distribution in SDs 26-28 that 120 

account for the changes in the spatial distribution of the cod population, the SD-specific depth 121 

distributions were weighted by the annual SD-specific cod CPUEs from the bottom trawl 122 

surveys in quarter 4, estimated from the same model. 123 

2.3 Depth of hypoxic layers 124 

Baltic cod has been shown to avoid oxygen concentrations below 1 ml/l (approximately 1.4 125 

mg/l) (Schaber et al., 2012). Therefore, time-series of the depth at which 1 ml/l oxygen 126 

concentration was encountered by SD were obtained from the Swedish Meteorological and 127 

Hydrological Institute (SMHI, www.smhi.se).  128 

Time-series of depth at which 4 ml/l oxygen concentration was encountered by SD were also 129 

obtained from SMHI. This oxygen concentration, on average, has been found to affect the 130 

performance of fish (Vaquer-Sunyer and Duarte, 2008). Specifically for cod, 4 ml/l has been 131 

found as threshold under which an effect on condition and growth starts to be observable 132 

(Chabot and Dutil, 1999). Therefore, we expected that the occurrence of cod in areas and depths 133 

with an oxygen concentration ≤ 4 ml/l would lead to an increase in the proportion of cod 134 

individuals with very low condition and a decrease in mean condition in the population. 135 

To relate the depths at which 1 ml/l and 4 ml/l oxygen concentrations were encountered to cod 136 

depth of occurrence and condition in SDs 26-28, the oxygen depths by SD were weighted with 137 

the annual SD-specific cod CPUEs from the bottom trawl surveys estimated from the same 138 

models in quarter 4. In this way, the oxygen circumstances in the SDs where cod was more 139 

abundant were weighted the most. 140 

2.4 Otolith microchemistry 141 
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Otoliths (N = 154) were selected from Baltic cod collected in the study area in the 1980s-2010s 142 

from BITS and historical bottom trawl surveys in February (Limburg and Casini, 2019). These 143 

were cleaned, transversely sectioned, and analysed by laser ablation inductively coupled 144 

plasma spectrometry. A spot of 100-micron diameter was driven at 5 µm/sec, 10 Hz, to create 145 

a transect from the otolith core to the outer dorsal edge, collecting a suite of elements (see 146 

Limburg and Casini, 2018 for details). For the analysis described here, we took the ratio of 147 

manganese to magnesium along this continuous transect. Manganese, although redox-sensitive 148 

and thus available as dissolved Mn2+ and Mn3+ at low oxygen concentrations, is also affected 149 

by the fish’s growth rate (Limburg et al., 2015; suggested by Thomas et al., 2019).  Dividing 150 

manganese by the corresponding, growth-sensitive magnesium (from the same replicate) to 151 

some extent corrects for the growth effect (Limburg and Casini 2018, 2019). Our metric for 152 

hypoxia exposure is the fraction of an annual growth band wherein this Mn/Mg ratio exceeds 153 

an age-based threshold (Limburg and Casini 2018, 2019). We tested this metric as a function 154 

of cod condition categorized into “high” (condition ≥ 0.9) and “low” (condition < 0.9) groups, 155 

and tested whether this had changed over time (before the year 2000, and from 2000 onward). 156 

 157 

3. Results 158 

3.1 Cod condition 159 

Cod condition increased slightly between the mid-1970s and mid-1990s, but declined abruptly 160 

thereafter. This pattern was similar in SD 25 and SDs 26-28 for both small and large cod (Fig. 161 

3), but after the mid-1990s condition dropped more for large cod. The percentage of large fish 162 

with very low condition (< 0.8, see Eero et al., 2012) increased from the end of 1990s in both 163 

SD 25 and SDs 26-28 reaching in recent years 30-40%. The percentage of small fish with low 164 

condition also increased, but lagged temporally behind the large cod, and at 10-20% of 165 
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observations was lower than the high incidences of large cod in poor condition (Fig. 3). In 166 

general, in SD 25 condition declined slightly more (and the percentage of fish with very low 167 

condition increased more) than in SDs 26-28 after the mid-1990s. 168 

3.2 Cod depth distribution 169 

Large cod in SD 25 were distributed between 30 and 50 m depth (average of 40 m depth) at 170 

the beginning of the time-series, but have been found in deeper waters since the late 1990s 171 

(Fig. 4A). In SDs 26-28 large cod were distributed between 35 and 55 m depth (average 45 m) 172 

at the beginning of the time-series, while afterwards they moved deeper and since the mid-173 

1990s they became distributed between 50 and 70 m depth (average 60 m) (Fig. 4C). Along 174 

with the change in mean depth, large cod in SDs 26-28 have shown a contraction of the range 175 

of depth distribution in the past 20 years. Small cod were distributed somewhat shallower than 176 

the large fish, but also moved into deeper waters during the time period investigated. In SD 25, 177 

these shifted distribution from between 30 and 50 m depth (average 40 m depth) to 45-60 m 178 

depth (average 53 m) (Fig. 5A). In SDs 26-28 small cod moved deeper with time as well, from 179 

30-50 m depth (average 40 m) to 50-63 m depth (average 55 m), and experienced a contraction 180 

of the range of depth distribution similar to what occurred for the large fish in this area (Fig. 181 

5C). 182 

3.3 Depth of hypoxic layers 183 

The depth at which 1 ml/l was encountered remained fairly constant at around 70 m in SD 25, 184 

while in SDs 26-28 it became shallower from being deeper than 100 m before the early 1990s 185 

to 70-80 m in the past twenty years (Fig. 4A,C and 5A,C). The depth at which 4 ml/l was 186 

encountered diminished in SD 25 from 60-65 m at the beginning of the time period to 50-55 m 187 

during the past twenty years, while in SDs 26-28 it became shallower from being 70-80 m 188 

before the early-1990s to 55-60 m in the past fifteen years (Fig. 4A,C and 5A,C). The oxygen 189 
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depths in SDs 26-28, accounting for the SD-specific distribution of the cod, did not differ much 190 

between large and small cod (compare Fig. 4C and Fig. 5C). 191 

3.4 Depth overlap between cod and hypoxic layers 192 

In SD 25, large cod depth distribution never overlapped with depth with oxygen ≤ 1 ml/l along 193 

the time period analysed, while in SDs 26-28 there was an overlap in a couple toward the end 194 

of the time-series (Fig. 4A,C). On the other hand, large cod distribution heavily overlapped 195 

with the depth with oxygen ≤ 4 ml/l since the mid-1990s (Fig. 4A,C) and the overlap, although 196 

oscillating, increased in the past twenty years reaching values above 50% in SD 25 and up to 197 

100% in SDs 26-28 (Fig. 4B,D). 198 

Small cod distribution never overlapped with depth with oxygen ≤ 1 ml/l along the time period 199 

analysed, neither in SD 25 nor SDs 26-28 (Fig. 5A,C). On the other hand, small cod distribution 200 

overlapped with the depth with oxygen ≤ 4 ml/l since mid-1990s (Fig. 5A,C) and the overlap, 201 

although oscillating, increased in the past fifteen years reaching values higher than 60% both 202 

in SD 25 and SDs 26-28 (Fig. 5B,D). 203 

There was a strong positive correlation between the percentage of the cod population in waters 204 

≤ 4 ml/l and the percentage of cod individuals with very low condition (for large cod, r = 0.71 205 

and 0.74 in SD 25 and SDs 26-28, respectively; for small cod, r = 0.58 and 0.59 in SD 25 and 206 

SDs 26-28, respectively). There was also a strong negative correlation between the percentage 207 

of the cod population in waters ≤ 4 ml/l and mean cod condition (for large cod, r = -0.77 and -208 

0.76 in SD 25 and SDs 26-28, respectively; for small cod, r = -0.60 and -0.54 in SD 25 and 209 

SDs 26-28, respectively). 210 

3.5 Otolith microchemistry 211 

Fish exposed to hypoxia as measured by otolith chemistry showed different responses as a 212 

function of their condition at time of capture and the time period (pre- or post-2000; Fig. 6). 213 
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Prior to 2000, the annual duration of hypoxia exposure was relatively low (35.4%); for the 214 

years 2000 and onward, the percent duration rose to 51.8%.  More strikingly, when divided 215 

further into groups by fish condition, pre-2000 fish were not significantly different with respect 216 

to hypoxia exposure regardless of condition. After 2000, fish with condition < 0.9 had been 217 

exposed considerably longer to hypoxia (62.7% ± 3.6) than fish with condition ≥ 0.9 (40.9% ± 218 

5.1; Fig. 6).  The effect sizes of interaction of time period and condition were large and highly 219 

significant (F1,746 = 23.287, p = 2 x 10-6). 220 

 221 

4. Discussion 222 

In this paper, we analysed the potential mechanisms relating Baltic Sea deoxygenation with 223 

changes in Eastern Baltic cod body condition during the past four decades. To this end, we 224 

investigated the changes in depth distribution of the cod population and the vertical changes in 225 

oxygen gradients based on long-term biological and hydrological monitoring data. Moreover, 226 

we supplemented these analyses with proxies for hypoxia exposure from individual fish otolith 227 

microchemistry. 228 

4.1 Cod depth of distribution and overlap with hypoxic areas 229 

Our analyses show an increase in the areas with an oxygen level below cod tolerance (i.e. 230 

oxygen ≤ 1 ml/l; Schaber et al., 2012). Moreover, this oxygen threshold has also shifted with 231 

time towards shallower depths, determining an overall contraction of the potentially suitable 232 

habitat for cod (Casini et al., 2016a). Declines in oxygen concentrations have caused a 233 

contraction of the habitat and the distribution of fish in other systems (Eby and Crowder, 2002; 234 

Stramma et al., 2012; Breitburg et al., 2018) with measurable effects on, for example, 235 

individual growth (e.g. Campbell and Rice, 2014). In the Baltic Sea, however, this change 236 

seems not to have affected the cod depth of distribution in autumn, since the latter has been 237 

https://doi.org/10.5194/bg-2020-74
Preprint. Discussion started: 13 March 2020
c© Author(s) 2020. CC BY 4.0 License.



11 
 

always above 70-75 m, a depth only in few years reached by the waters with 1 ml/l. On the 238 

other hand, it could be hypothesized that during the latest decade the cod population was unable 239 

to occupy deeper habitats because of the vertical rise of this oxygen layer. This hypothesis 240 

seems to be supported by the decline in the range of depth distribution (i.e. a squeeze of the 241 

cod habitat occupation) shown by both large and small cod in SDs 26-28 during the past twenty 242 

years. Explaining the temporal changes in the depth distribution of cod is beyond the scope of 243 

this paper, but a potential reason could be that cod seek deeper layers to avoid too warm waters, 244 

which could be detrimental when resources are scarce. In fact, pelagic prey have declined after 245 

the mid-1990s in the southern and central Baltic Sea (Casini et al., 2016a) and therefore cod 246 

might go deeper to optimize metabolism. Small cod, moreover, could seek deeper waters to 247 

escape from the predation of the increased seals and aquatic birds (Orio et al., 2019).  248 

The depth where dissolved oxygen falls to ≤ 4 ml/l (“sub-lethal” level, i.e. level that has been 249 

shown in previous studies to affect cod performance; Chabot and Dutil, 1999; Vaquer-Sunyer 250 

and Duarte, 2008) has shallowed during the past four decades, as a consequence of 251 

deoxygenation. Our analysis revealed that this vertical rise, together with the deepening of the 252 

cod depth distribution, has resulted in that cod has started to dwell more and more in these 253 

hostile low-oxygen waters. This is consistent with observations of hypoxia exposure proxied 254 

by otolith chemistry (Limburg and Casini, 2018 and 2019; this study, see below). The overlap 255 

between cod depth distribution and “sub-lethal” oxygen layers occurred and reinforced only 256 

after the mid-1990s, concomitant with the decline in cod condition, while in earlier years the 257 

cod population was occurring above those layers. Therefore, according to our expectations and 258 

hypothesis, the negative effects of hypoxia on cod condition could only arise after the mid-259 

1990s. This is also in accordance with our otolith microchemistry analysis (see below) and 260 

previous investigations that suggested that in the earlier years (before the mid-1990s) cod 261 

condition was regulated by other factors, such as pelagic prey biomass and density-dependence 262 
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(Casini et al., 2016a, Limburg and Casini, 2019). The progressively higher proportion of the 263 

cod population in “sub-lethal” oxygen layers, as revealed by our study, conforms also to the 264 

increasingly higher proportion of individuals in extremely low condition (< 0.8 Fulton’s K), 265 

which include starving fish and fish close to the condition mortality threshold (Eero et al., 2012; 266 

Casini et al., 2016b).  267 

4.2 Otolith microchemistry 268 

The complementary analyses performed on fish otolith microchemistry confirmed that since 269 

the mid-1990s, cod individuals with low condition were indeed exposed to low-oxygen waters 270 

during their life. Duration of hypoxia exposure as measured in Baltic cod otoliths has increased 271 

markedly since mid-1990s (Limburg and Casini, 2018) and was found in our study to be 272 

significantly greater in fish in poor condition at time of capture. This is a remarkable finding, 273 

given that condition is measured only once during life (at capture), and the observations of 274 

hypoxia exposure are taken throughout life. This suggests that currently, condition may carry 275 

over from chronic exposure to low oxygen, which weakens fish and produces a cascade of 276 

effects, from reduced metabolic scope leading to lower activity and slower digestion (Claireaux 277 

and Chabot, 2016), to greater susceptibility to disease and parasites (e.g., Sokolova et al., 278 

2018). In contrast, in fish captured prior to 2000 the overall exposure to hypoxia was lower and 279 

showed no relationship with condition. Thus the otolith microchemistry analysis confirmed the 280 

that, pre-2000, factors other than hypoxia played a greater role in shaping cod condition as 281 

concluded also by Casini et al. (2016a). 282 

Although we have shown here that direct oxygen exposure is likely a key factor shaping cod 283 

condition after the mid-1990s, other factors might contribute to explain the decline in condition 284 

as well (Casini et al., 2016a). The more severe decline in condition in SD 25 compared to SDs 285 

26-28, for example, could be due to the higher density of cod in the southern Baltic Sea during 286 
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the past twenty years (Orio et al., 2017) leading to density-dependent effects, and the lower 287 

abundance of sprat, the main pelagic fish prey for cod, in this area (Casini et al., 2014). 288 

Moreover, deoxygenation, by deteriorating the benthic communities, has likely affected 289 

negatively important benthic prey for cod and therefore influenced also indirectly cod condition 290 

and growth (Neuenfeldt et al., 2019). 291 

5. Conclusions 292 

We have shown here the potential mechanisms linking deoxygenation to cod condition in the 293 

Baltic Sea. A combination of increased depth of distribution of the cod population and a vertical 294 

rise of the “sub-lethal” oxygen layers has led cod dwelling progressively more in hostile low-295 

oxygen waters, contributing to explain the reduction in cod condition in the past two decades. 296 

Further analyses should focus on revealing the reasons of the shift of cod distribution to deeper 297 

and less-oxygenated waters. We stress that our depth analyses were focused on the autumn 298 

season, when cod growth is maximised for the accumulation of energy reserves to be utilized 299 

for spawning the following spring-summer (Mion et al., 2020). The changes in cod depth of 300 

distribution are different in other seasons, especially those before and during spawning (Orio 301 

et al., 2019), when cod could have different environment requirements for reproduction. 302 

Therefore, further analyses should be performed to investigate the changes in cod population 303 

depth distribution in relation to oxygen stratification in other seasons to better understand the 304 

biotic and abiotic spatio-temporal dynamics, and their effects on cod performance, over the 305 

entire year. 306 

 307 

 308 

 309 

 310 
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Figure captions 466 

Fig. 1. Bathymetric Map of the Baltic Sea divided into ICES Subdivisions (SDs). The study 467 

area includes the SDs 25–28 (i.e. the Central Baltic Sea). 468 

Fig. 2. Maps of the Baltic Sea with superimposed the areas with oxygen concentration ≤ 1 ml/l 469 

(black, avoided by cod) and ≤ 4 ml/l (grey, sub-lethal level, producing negative effects on cod 470 

performance) in 1990 (panel A) and 2018 (panel B). Time-series of the total area (km2) with 471 

oxygen concentration ≤ 1 ml/l and ≤ 4 ml/l in the SDs 25-28 (panel C). Data were from the 472 

Swedish Meteorological and Hydrological Institute (SMHI, www.smhi.se) (see also Casini et 473 

al., 2016a). 474 

Fig. 3. Temporal developments of mean cod condition (± 1 s.d.) in Subdivision 25 and 475 

Subdivisions 26-28 for small cod (20-29 cm) and large cod (40–49 cm). Superimposed (grey 476 

bars) the temporal developments of the percentage of cod with very low condition (< 0.8) for 477 

the respective areas and length classes. 478 

Fig. 4. Time-series of large cod (≥ 30 cm) depth distribution (mean and interquartile range of 479 

each predicted depth distribution; see Orio et al., 2019) as well as depths of oxygen 480 

concentration 1 ml/l and 4 ml/l, for Subdivision 25 (panel A) and Subdivisions 26-28 (panel 481 

C). Panels B and D, time-series of the percent of large cod in waters with oxygen concentration 482 

≤ 4 ml/l, in Subdivision 25 and Subdivisions 26-28. 483 

Fig. 5. Time-series of small cod (15-30 cm) depth distribution (mean and interquartile range of 484 

each predicted depth distribution; see Orio et al., 2019) as well as depth of oxygen 485 

concentration 1 ml/l and 4 ml/l, for Subdivision 25 (panel A) and Subdivisions 26-28 (panel 486 

C). Panels B and D, time-series of the percent of small cod in waters with oxygen concentration 487 

≤ 4 ml/l, in Subdivision 25 and Subdivisions 26-28. 488 
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Fig. 6. Differences in otolith chemistry as related to hypoxia and fish condition for pre-2000 489 

and 2000s. Within-year hypoxia exposure duration is proxied by the fraction of each annual 490 

growth band in which the otolith Mn/Mg ratio exceeds age-specific thresholds. These are 491 

categorized by condition factor (high condition is 0.9 or greater) measured at time of capture 492 

(see Limburg and Casini, 2019). 493 
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