
Dear Editor,


The most important changes in our manuscript are:


- we extended the presentation of the results (as request of reviewer 1). Specifically we added a 
paragraph on 

- different climate ranges, 

- different land cover types and 

- extended the section on spatial vs. temporal effects


- we extended the methods section (as a request of reviewer 2)

- we added a summarising paragraph to the conclusions and more details on the meaning of our 

findings with respect to the terrestrial carbon cycle (request of reviewer 1)

- we improved several figures as request of reviewer 1, i.e. 


- Figure 2, 

- Figure 3 and

- Added Figure 4(b) along with the extension of the results on different climate ranges


- we added information on different land cover types at various places.

- we discuss the limitations of ERA5 and GLEAM data

- we discuss the implications for NEP

- we made minor improvements at various places


Please find attached 

- a detailed response to the reviewers and 

- a marked up version of all changes in the manuscript.


Yours sincerely,

Milan Flach (on behalf of all authors)



Response on the  

Interactive comment on “Vegetation modulates the impact of climate extremes on gross 
primary production” by Milan Flach et al. 

Anonymous Referee #1

Received and published: 15 April 2020


The study deals with the role of vegetation for the effects of climate extremes on gross primary 
production (GPP). This is by analysing a selection of different observational data sets for the last 
15 years or so. Although I find the subject of the study interesting and highly relevant, I don’t find 
its presentation in the manuscript meets the quality standard, making it suitable for publication in 
its current form. Therefore, in my opinion, the manuscript should undergo a major revision before 
being published in Biogeoscienes. I will further explain my reservations in the following:


Response: We are pleased that the reviewer is considering our manuscript highly relevant and are 
confident that we are able to present the manuscript in a form meeting the reviewers expectations 
as well as the quality standard of the journal. Please find the responses to the individual comments 
below. 

General comments:

1. In the study, forests are combined over the whole globe, providing estimates of the impacts of 
droughts and/or heatwaves on GPP at a global scale. I wonder, whether it would add value to the 
study, if also different categories of trees or different climate ranges (which typically also have a 
dominating type of trees) were distinguished. Different types of trees in a different background 
climate might be affected by the extreme events in different ways.


Response: We would like to thank the reviewer for this comment. Differente climate ranges are 
distinguished in this study so far by using growing season temperature and growing season 
surface moisture as drivers of the statistical models explaining the impacts of the extreme events. 
Figure 3 shows the impact of the extreme events using temperature and surface moisture during 
the event. To further distinguish these impacts in different climate ranges, we added a similar 
second plot showing the extreme events in climate space opened up by growing season 
temperature and growing season surface moisture (now: Fig. 3b).  We added a paragraph on 
different climate ranges to the result section (p.10, 176-184). 
Regarding the second aspect, distinguishing more different categories of trees, we would like to 
note here, that although forests are combined over the whole globe, the ecosystem type forests 
provides an astonishing homogeneous response pattern globally buffering negative impacts of 
extreme events to a certain degree globally. We further differentiated forests into their different 
land cover classes (such as evergreen needleleaf forest, mixed forest, …) in Figure 5b. However, 
splitting different tree  categories up to a species level is not possible so far by the means of 
globally available remote sensing products as used in this study.  

2. I find that the presentation of the results (Section 3) only makes up a relatively small part of the 
paper, certainly as compared to the introduction and the section on the methodology. I think this 
section needs to be extended to have a more balanced paper.


Response: We extended the presentation of the results in a revised version of the paper. 
Specifically we added a paragraph on different climate ranges (p.10, 176-184), different land cover 
types (p.11, 209-217) and extended the section on spatial vs. temporal effects (p.11, .220-225). 

3. I find that the conclusions (Section 5) of the paper a bit weak. I think they could be extended in 
several ways, e.g. what the findings of the study mean for the terrestrial carbon budget and 
carbon dioxide concentrations under climate change.


Response: We added a paragraph on our findings with respect to the terrestrial carbon cycle 
(p.17, 310-315). 



4. I am a bit confused that some of the dots in Fig. 1 seem to be assigned to different types of 
ecosystems. Unless this is related to the way of presentation, it needs to be explained that grid 
points can comprehend different types of ecosystems and that in the analysis all (my assumption) 
types of ecosystems are included rather than the dominating type. I also wonder, whether, if in 
fact different types are considered, there should be a lower limit on the extent/fraction of the area 
covered by each type in a grid point.


Response: We would like to thank the reviewer for pointing us to this possible source of 
misunderstanding. We extended the explanation of Fig. 1 (now: Fig. 2, p.6 and p.7) as it 
encompassed all grind cells affected by the extreme event. In many cases one extreme event 
affects adjacent grid cells which may be dominated by a different ecosystem type. However, each 
grid cell (resolution 1/12 degree) has still one dominating ecosystem type. 

5. I miss information on the types of ecosystem that are considered in the study in various places. 
Actually, it seems the only place, where this information can be obtained, is in Fig 4b. The 
information could easily be provided in a table in Section 2, where the ecosystems could also be 
grouped in the three main categories: forest, agriculture and others.


Response: We provided the requested table in section 2 (methods) (p.3). 

6. I miss a discussion of the limitations and potential biases of the data used in the study. This is 
only done for the FLUXNET data in the discussion (Section 4).


Response: We thank the reviewer for this important note. Indeed, we specifically discussed the 
limitations and potential biases of FLUXCOM-RS data as we consider this for the findings of our 
study to be particularly important. We added a section to the Discussions on the limitations of 
temperature and radiation (from ERA5) as well as surface moisture (from GLEAM) (p.16, 275-288). 

Specific comments:

Abstract

7. Page 1, lines 10-11: “On the other hand. . . droughts and heatwaves.” – That would actually 
mean a limitation of the data, which to my understanding hasn’t been discussed in the paper.


Response: We would like to note that the limitations of FLUXCOM-RS are discussed as already 
mentioned by the reviewer (6., see above). However, we extended the discussion to explicitly 
mentioning the lack of sensitivity to droughts and heatwaves (p. 16, l 289-299) and we added a 
more detailed discussion of the limitations of temperature, radiation and surface moisture data as 
outlined above (p.16, 275-288). 

Introduction


8. General: I would find a short paragraph on the structure of the paper at the end of the 
introduction really helpful.


Response: We added a short paragraph on the structure of the paper at the end of the 
introduction (p.17, 301-307). 

9. Page 2, line 27: “the crucial role of timing” – I assume this refers to the timing of the extreme 
events. Please clarify.


Response: Yes, indeed. We clarified it to be “crucial role of timing of the extreme event” 

10. Page 2 line 31: “the least understood aspect” – I wonder whether there is a review paper on 
this or another suitable reference to support this statement.


Response: We apologise for this statement being a bit speculative and changed it into “one 
important aspect”. 



11. Page 2, line 39: ”in some meteorological. . . in ecological processes” – I am not sure, what this 
statement means. Please clarify.


Response: We clarified it as follows: “One option is to use values over some global thresholds to 
detect extremes e.g. to detect temperatures above 40 degree Celsius and to investigate the 
associated anomaly in vegetation productivity. 

12. Page 2, lines 95-96: “extreme relative to their expected value” – I am not sure that I 
understand this. In any case, considering a global absolute threshold would not make much 
sense, while it would make sense to use locally varying thresholds based on the same percentile, 
e.g. the 95th percentile, would.


Response: We fully agree with the reviewer. We changed it into: “Another option is to define 
extreme events relative to some locally varying threshold, e.g. defined by the 95th percentile of the 
distribution of the data. Here, we rely on the latter definition, and refine the definition by taking also 
a joint multivariate distribution of the data with regionally varying thresholds into account.” (p.2, 
39-41). 

Method

13. General: I think it would be nice to properly introduce the acronyms of the various datasets.


Response: We added the acronyms of the data sets (p.3, Data). 

14. Page 3, line 55: “ERA5” – I think it need to be mentioned that in ERA5 vegetation doesn’t vary 
but is prescribed via some climatological value. That has an effect on the turbulent energy fluxes 
at the land surface and, thus, might also affect the near-surface temperature.


Response: We would like to thank the reviewer for this important comment and mention it in the 
extended discussion of the data limitations (p.16, 275-288). 

15. Page 3, line 57: “GLEAM model-data integration framework” – It would be interesting to know 
how and to which extent these data are constrained by observations.


Response: This is indeed an important aspect. GLEAM is driven by precipitation and microwave 
satellite observations to estimate soil moisture. Surface net radiation and near surface air 
temperature (from ERA5) are used to estimate evaporation. We mention it in the discussion (p.16, 
275-288). 

16. Page 3: line 62: “2003-2018 period” – The choice of this particular time period for the study is 
not motivated at all.


Response: This choice represents the common time period of all data sets used. It is mainly 
constrained by GLEAM v3.3.b (starting 2003, ending 2018) and FLUXCOM-RS (starting 2001, 
ending 2018). We added the following sentence: “The time period is chosen as it represents the 
common period of all data sets used at the time of the analysis.” 

17. Page 3, line 71: “for more details see the B” – It is not clear, what this means and what it refers 
to. Appendix B, maybe (see also my comment below)?


Response: We integrated the appendix into the main text of the paper (p.5, Section 2.3 and Figure 
1). 

Results

18. Page 6, line 115: “non-forested land-cover types” – This is one of the (many) places, where 
information on the types of ecosystems is missing. See also my comment above.


Response: We specified the non-forested land-cover types (“savannas, grasslands, open and 
closed shrublands, permanent wetlands”) as well as the agriculture land cover type (“C3 and C4 



croplands as well as C3 and C4 fractions croplands / natural vegetation mosaics”) (p.9/10, 
160-163). 

19. Page 8, lines 136-137: “the most important. . . model” – I find it interesting to note that 
according to this statistical model soil moisture doesn’t seem to play a role. This is, however, in 
contrast to the results presented in Fig. 4b, where soil moisture receives a rather large weight. I 
wonder, how these – at first sight – contrasting results can be reconciled.


Response: We thank the reviewer to point us to this important aspect. We apologise that this 
aspect can be misunderstood. We do not state nor do we want to state that soil moisture does not 
play a role. Soil moisture is one important variable in the statistical model, which we definitely 
should mention. We mention now, that surface moisture ist the fourth most important variable after 
land cover type, as can be seen from Fig. 5(a).. Furthermore, we will tone don the first sentence of 
the paragraph to “Figure 4(a) shows that temperature and soil moisture have some effect on the 
direction of the impact, but  does not consider other potentially important variables. Thus, we 
refine our understanding of the observed patterns using a statistical model.” (p.10 190-191) 

20. Page 8, lines 148-149: “but enhanced productivity. . . contrasting anomalies)” – I am not sure 
what this statement means. Please clarify.


Response: We reformulated the statement and extended the paragraph: “… (spatial contrasting 
anomalies). Apart from an extreme event simultaneously affecting adjacent ecosystems with 
different or even contrasting impacts, it is also possible that one ecosystem shows contrasting 
impacts over time. During startup of the extreme event enhanced productivity may be observed 
which can turn into a contrasting reduced productivity at a later stage of the extreme event. This 
temporal difference in the response with a longer lasting extreme event is considered to be a 
temporally contrasting anomaly. To explicitly quantify … (p.11, 220-225) 

Discussion

21. General: I think it would be important to also discuss the potential implications of the effects 
of extremes on net ecosystem productivity (NEP), given the effects on GPP, to the extent possible.


Response: We added a paragraph on the implications for net ecosystem exchange on p. 16, 
267-274. 

Conclusions

22. General: I think the conclusions need to fill more than the one short paragraph (see my 
comment above). I also wonder, whether it would be helpful with a short summary of the main 
results of the study.


Response: We added a paragraph with a short summary of the main results to the conclusions 
(p.17 301-307) and added a paragraph on our findings with respect to the terrestrial carbon cycle 
as stated above (p.17, 310-315). 

Appendix

23. General: I find the appendix unnecessary. This is because, in my view, Fig. A1 should be part 
of the section on the results (it is discussed quite a bit and is needed to give a complete picture) 
and Fig. B1 doesn’t provide much relevant information (and is not really referred to).


Response: We integrated the appendix in the main text: we included Figure A1 into the result 
section as requested (now. Fig. 2c) and we included the extension of the methods into the method 
section of the paper (p.5, Section 2.3 and Figure 1). 

Figures

24. Figure 1: One of the prominent extreme events (“Russia 2010”) is not linked to a dot in the 
figure. Is this a mistake or doesn’t exist a particular grid point that can be assigned to this event? 




Response: We apologise that the linking line of Russia 2020 is hidden behind “Siberia 2011” at the 
very beginning. We ensured the the link is now visible. 

Also, I think this figure should be extended with the panel representing “other ecosystems”, now 
Fig. A1 in the appendix.


Response: We moved Figure A1 (“other ecosystems”) to the results section (now. Fig. 2c). 

Supplementary material

25. General: An introduction into the structure of the figures, i.e. what the different panels show 
and how they relate to each other. Also, I think it would be helpful to give the “identification” of the 
extreme period and the type of extreme (drought, heat wave or a compound even) in a headline. I 
understand the rational for presenting mean values for temperature and soil moisture, but 
presenting anomalies instead might highlight some of the regional details and would indicate the 
soil moisture/temperature coupling. Also, an indication of the colours/numbers of the different 
ecosystem types shown in the figures would be helpful. That could also be part of the introduction 
to the supplementary material. See also my comment above.


Response: We will revise the Supplementary material. Specifically, we will add a general 
introduction for the structure of the figures and we will add the type of the extreme in a headline. 
However, we would like to present the figures with mean values as they currently are. The rationale 
behind presenting mean values instead of relative anomalies is to illustrate the range of global 
temperatures and surface moisture during extreme events (which are already detected by a relative 
approach). 

Response on the  

Interactive comment by Anonymous Referee 2  

Received and published: 17 April 2020  

Reviewer: The paper investigates the importance of land cover type in controlling the impacts of 
climate extremes relative to other factors using a global upscaled product of GPP. The results 
show that heat and drought events seem to reduce GPP in grasslands and agricultural areas and 
to increase GPP in forests. The work calls for considering different land cover types in the 
assessments of the impact of climate extremes on ecosystem functioning. Overall, the objectives 
of the paper are clear. However, some methodology and results still need further improvement, 
and some Figure needs to do some improved. I would recommend a major revision. Detailed 
comments are listed below: 


Response: We would like to thank the author for the feedback on our manuscript. We address the 
comments in the following more specifically.  

Reviewer: 1. Figure 1 is not intuitive enough; it needs some improvement. It should label the 
specific events name rather than region and year. 


Response: We would like to thank the reviewer for this comment. As the space in the figure itself is 
limited, we would prefer to add specific names rather to the caption of the figure, than to the 
figure itself. However, we would like to note that some of the events have a well known name (e.g. 
Russian Heatwave 2010, Amazon Drought 2010, European Heatwave 2003, ...) but some do not 
have well known or clearly defined names (e.g. Siberia 2011, Horn of Africa 2009). We added the 
specific names to Figure 2. 

Reviewer: 2. I suggest Figure 2 need to label the proportion value. 




Response: We fully agree with the reviewer and would like to thank the reviewer for this 
suggestion. We now provide labels for the proportions in a revised version of the manuscript (now: 
Fig. 3).  

Reviewer: 3. Figure 3a is too orderless. I suggest it needs not to label the events. 


Response: We removed the event specific labels from the figure as requested (now: Fig 4a).  

Reviewer: 4. The authors group land cover classes in forest and agricultural ecosystems, what 
about grasslands? Abstract illustrates GPP in grasslands is generally reduced during heat and 
drought events. And which year the land cover data is?  

Response: We will add more details about grasslands to the result section. Figure 5(b) shows that 
they have a general negative response coefficient in the impact model. We added a paragraph on 
different land cover types including grasslands (p.11, 208-217) 


Reviewer: 5. I am so fusing about the methodology; I suggest to introduce more detailed of the 
method about preprocessing and anomaly detection.  

Response: We added more details about preprocessing and anomaly detection in the method 
section as requested (p.5/6, 88-108, and section 2.3).  

Reviewer: 6. The results section needs further analysis, especially need quantitative analysis.  

Response: We would like to note that the result section provides quantitative statistics on which 
our findings are based. For instance, we provide fractions of the events with reduced / enhanced 
productivity including estimates of uncertainty, or we identify the main drivers of the ecosystems 
response based on gradient boosting machines. We would be very pleased if the reviewer could 
provide more details on which quantitative analysis he is specifically aiming for. Please note, that 
we already extended the presentation of the results in the revised version of the paper. Specifically 
we added a paragraph on different climate ranges (p.10, 176-184), different land cover types (p.11, 
209-217) and extended the section on spatial vs. temporal effects (p.11, .220-225). 
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Abstract. Drought and heat events affect the uptake and sequestration of carbon in terrestrial ecosystems. Factors such as the

duration, timing and intensity of extreme events influence the magnitude of impacts on ecosystem processes such as gross

primary production (GPP), i.e. the ecosystem uptake of CO2. Preceding soil moisture depletion may exacerbate these impacts.

However, some vegetation types may be more resilient to climate extremes than others. This effect is insufficiently understood

at the global scale and is the focus of this study. Using a global upscaled product of GPP that scales up in-situ land CO2 flux5

observations with global satellite remote sensing, we study the impact of climate extremes at the global scale. We find that GPP

in grasslands and agricultural areas is generally reduced during heat and drought events. However, we also find that forests,

if considered globally, appear not in general to be particularly sensitive to droughts and heat events that occurred during the

analyzed period or even show increased GPP values during these events. On the one hand, this is in many cases plausible, e.g.

when no negative preconditioning has occurred. On the other hand, however, this may also reflect a lack of sensitivity in current10

remote sensing derived GPP products to the effects of droughts and heatwaves. The overall picture calls for a differentiated

consideration of different land cover types in the assessments of risks of climate extremes for ecosystem functioning.

1 Introduction

We expect that climate change leads to increases in frequencies, durations, intensities, and spatial extents of droughts and

heatwaves in the next decades (Meehl et al., 2000; Olesen and Bindi, 2002; Seneviratne et al., 2012; Coumou and Robinson,15

2013; Cook et al., 2015; Zscheischler and Seneviratne, 2017). Ecosystems will respond to the events ahead in multiple ways. In

particular the processes controlling the terrestrial carbon balance, i.e. photosynthesis and respiratory processes as well as fires

and e.g. pest-induced mortality are expected to be affected (Peuelas et al., 2004; Ciais et al., 2005; Vetter et al., 2008; Reichstein

et al., 2013; Bastos et al., 2014; Yoshida et al., 2015; Wolf et al., 2016; Brando et al., 2019) (for a recent review see Sippel

et al. (2018)). Given that these responses represent feedbacks to the coupled climate–ecosystem dynamics, it is important to20
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understand which factors generally influence the magnitudes of such impacts at the global scale (Frank et al., 2015). Previous

studies have shown that event duration can be as important as intensity in controlling the reduction of gross primary production

(GPP), which represents the total ecosystem carbon uptake (Granier et al., 2008; von Buttlar et al., 2018; Orth and Destouni,

2018). In particular, compound extreme events, e.g., the combination of drought and heat stress can increase the impact on GPP

as compared to singular stressors (Ciais et al., 2005; AghaKouchak et al., 2014; Zscheischler et al., 2018; von Buttlar et al.,25

2018). Several case studies point to the crucial role of timing
::
of

:::
the

:::::::
extreme

:::::
event in influencing the magnitude of impacts on

ecosystem functioning. Warm and early springs may partly compensate for severe carbon impacts of summer droughts (Wolf

et al., 2016). In contrast, soil moisture depletion in spring can even enhance carbon losses during summer (Buermann et al.,

2013; Sippel et al., 2017a; Buermann et al., 2018).

Probably the least understood
:::
One

:::::::::
important aspect is the question how strongly land cover types modulate drought and heat30

impacts on the fundamental processes controlling ecosystems carbon dynamics, such as gross primary production, ecosystem

respiration, and net ecosystem exchange. Evidence from eddy covariance stations (von Buttlar et al., 2018) and case studies

using spatiotemporal remote sensing derived data (Wolf et al., 2016; Flach et al., 2018) suggest that certain ecosystems are less

vulnerable to heat and drought events than others. However, the question to what degree land cover types shape the impacts of

droughts and heatwaves globally remains unclear. Here we aim to specifically investigate the importance of land cover type in35

controlling the impacts of climate extremes relative to other factors.

When discussing impacts of climate extremes, the crucial question is their definition. If
:::
One

::::::
option

::
is

::
to

:::
use values over some

global thresholds are used to detect extremes e.g. in some meteorological variable and investigate anomalies in ecological

processes, one might find very different impact patterns as compared to events that are extreme relative to their expected

value.Another approach is to consider the joint probability of multiple variables contributing to an event. Here
:
to

::::::
detect40

::::::::::
temperatures

:::::
above

:::
25

::
or

::
30

::::::
degree

::::::
Celsius

::::
and

:
to
:::::::::
investigate

:::
the

:::::::::
associated

:::::::
anomaly

::
in

:::::::::
vegetation

::::::::::
productivity.

:::::::
Another

::::::
option

:
is
::
to
::::::
define

:::::::
extreme

:::::
events

:::::::
relative

::
to

:::::
some

::::::
locally

::::::
varying

:::::::::
threshold,

:::
e.g.

:::::::
defined

::
by

:::
the

::::
95th

:::::::::
percentile

::
of

:::
the

::::::::::
distribution

::
of

::
the

:::::
data.

:::::
Here, we rely on a multivariate extreme event detection algorithm that can detect extremes in multi-dimensional data

sources (Flach et al., 2017, 2018)and
::
the

:::::
latter

::::::::
definition,

::::
and

:::::
refine

::
the

::::::::
definition

:::
by

:::::
taking

::::
also

:
a
::::
joint

::::::::::
multivariate

::::::::::
distribution

::
of

:::
the

::::
data

::::
with

::::::::
regionally

:::::::
varying

:::::::::
thresholds

:::
into

:::::::
account

:::::::::::::::::::::
(Flach et al., 2017, 2018).

:::::::::::
Furthermore,

:::
we

:
restrict our analysis to45

those events that can be also considered a relative drought and heat event. We estimate anomalies regionally i.e. defining ex-

treme events relative to the typical conditions of the regional growing season. We apply this method jointly to air temperature,

surface moisture, and incoming shortwave radiation as fundamental variables to detect relative extreme events. Each event

describes a spatiotemporal context that can be described by its spatial extent and duration (Zscheischler et al., 2013; Mahecha

et al., 2017). The impacts are then assessed in these areas as anomalies in gross primary production (GPP). Our study addresses50

the impacts in the time range between 2003 and 2018 globally in different land cover classes and builds on nonlinear predictive

models to understand the importance of the driving factors (for details see Methods, Section 2).

::
In

:::
the

::::::::
following,

:::
we

::::
will

::::
first

::::
start

::::
with

:::
the

:::::::
Methods

:::::::
(Section

:::
2),

::::::::
including

::
a
:::::::::
subsection

::
on

:::
the

:::::
data,

:::
the

::::::::::::
preprocessing,

:::
the

:::::::
methods

::::
used

:::
for

:::::::
anomaly

:::::::::
detection,

:::
the

:::::::::
subsequent

::::::::
detection

::
of

:::::::::::::::
spatio-temporally

:::::::::
connected

:::::::
extreme

::::::
events,

:::
and

::::::
finally

:::
the

::::::::
statistical

:::::
model

::
to

:::::
infer

:::
the

::::
main

::::::
drivers

::
of

:::
the

:::::
GPP

:::::::
response

::::::
during

:::::::
droughts

::::
and

:::::::::
heatwaves.

::
In

:::
the

:::::::
Results

:::::::
(Section

:::
3),

:::
we55
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:::
will

::::
first

::::
show

:::::
more

::::::::
generally

:::
the

:::::::::
associated

::::::::::
productivity

:::::
during

::::::::
droughts

:::
and

:::::::::
heatwaves

::
in

:::::
forest

::::::::::
ecosystems

:::
and

::::::::::
agricultural

:::::::
systems.

:::::
Then,

:::
we

::::
will

::::::
explain

:::
the

::::::::
observed

:::::::::
responses,

:::
first

:::::
with

:
a
::::::
simple

::::::::
graphical

::::::::
approach,

::::
and

::::
then

:::
we

:::
will

::::::::
quantify

:::
the

:::::
drivers

:::
of

::
the

::::::::
observed

::::::::
responses

::::
with

::
a

::::::::
statistical

::::::
model.

::
In

:::
the

:::::::::
Discussion

:::::::
(Section

:::
4),

::
we

::::
will

:::
first

::::::::
elaborate

:::
on

::::
other

:::::::
studies,

:::::
which

:::::
found

:::::::::
contrasting

:::::::::
responses

::
to

::::::
climate

::::::::
extremes,

:::
and

::::
will

::::
then

:::::
show

:::
how

::::
our

::::::
findings

::::
can

::
be

:::::::::
interpreted

:::::
(with

:
a
:::::::
specific

::::
focus

:::
on

:::::
forest

:::::::::::
ecosystems).

::::::
Finally,

:::
we

::::::
discuss

:::::::
potential

::::::
biases

:::
and

:::::::::
limitations

::
of

:::
our

::::::::
approach

::::
and

::
of

:::
the

:::
data

::::
used

::::
and

:::::
finish60

::::
with

::::
some

:::::::::::
Conclusions

:::::::
(Section

::
5).

:

2 Methods

For detecting hydrometeorological extreme events across ecosystems we need (i) a set of variables describing hydrometeo-

rological extreme events and their impacts on productivity (Section 2.1), (ii) a detection algorithm (Section 2.2), and (iii) an

approach to evaluate the hydrometeorological extremes with regard to responses in different ecosystems (Section 2.4).65

Table 1.
:::::::
Grouping

::
of
:::
the

:::::::
different

::::::::
ecosystems

::
in

:::
the

:::::::
categories

:::::
forest,

:::::::::
agriculture

:::
and

::::
other.

::::
Land

:::::
Cover

::::
Class

:::::::
Category

:::::
Mixed

:::::
Forest

:::::
Forest

::::::::
Deciduous

:::::::
Broadleaf

:::::
Forest

: :::::
Forest

::::::::
Evergreen

::::::::
Needleleaf

:::::
Forest

:::::
Forest

::::::::
Deciduous

::::::::
Needleleaf

:::::
Forest

: :::::
Forest

::::::::
Evergreen

:::::::
Broadleaf

:::::
Forest

:::::
Forest

:::::
Woody

::::::::
Savannas

::::
Other

:

:::::::
Savannas

::::
Other

:

::::::::
Grasslands

: ::::
Other

:

::
C3

:::::::
Cropland

:
/
::::::
Natural

::::::::
vegetation

::::::
mosaic

::::::::
Agriculture

:

::
C3

::::::::
Croplands

: ::::::::
Agriculture

:

::
C4

:::::::
Fraction

:::::::
Cropland

:
/
::::::
Natural

::::::::
vegetation

:::::
mosaic

: ::::::::
Agriculture

:

::
C4

:::::::
Fraction

::::::::
Croplands

::::::::
Agriculture

:

::::
Open

:::::::::
Shrublands

::::
Other

:

::::
Close

:::::::::
Shrublands

::::
Other

:

::::::::
Permanent

:::::::
Wetlands

::::
Other

:

:::::
Urban

:::
and

::::::
built-up

::::
Other

:

2.1 Data

To detect hydrometeorological extreme events we use 2-m air temperature, incoming shortwave radiation (both from ERA5,

original resolution 0.25�, Copernicus Climate Change Service (C3S) (2017)), and surface moisture (v3.2
:
.3b, original resolution

0.25� from the GLEAM model-data integration
::::::
Global

:::::
Land

::::::::::
Evaporation

::::::::::
Amsterdam

:::::
Model

:::::::::
(GLEAM)

:
framework, (Miralles
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et al., 2011; Martens et al., 2017)). We consider surface moisture as a hydrometeorological variable due to its importance for70

drought detection although it is influenced by vegetation. The impacts of the identified extremes are quantified as anomalies in

gross primary productivity (GPP, original resolution 1
12

� from
:::
the

::::::
remote

::::::
sensing

::::::
driven

:::::::
Fluxcom

:::::::
product

:
(FLUXCOM-RS,

:
)

Tramontana et al. (2016)). Anomalies in GPP are computed as deviations from the mean seasonal cycle excluding the extreme

year itself. The selected hydrometeorological variables have global coverage and a common spatial resolution of 0.25�, and

are used at an eight-daily temporal resolution covering the 2003–2018 period.
:::
The

::::
time

::::::
period

::
is

::::::
chosen

::
as

::
it
:::::::::
represents

:::
the75

:::::::
common

::::::
period

::
of

:::
all

::::
data

:::
sets

::::
used

:::
(at

:::
the

::::
time

:::
of

:::
the

::::::::
analysis).

:
Land cover classes at 1

12

� resolution
::::
(from

:::
the

::::
year

::::::
2010)

were obtained from MODIS (
::
the

::::::::
Moderate

::::::::::
Resolution

:::::::
Imaging

:::::::::::::::
Spectroradiometer

::::::::
(MODIS,

:
collection 5, Friedl et al. (2010))

We group the available land cover classes in forest ecosystems (land cover classes containing "forest"), agricultural ecosystems

(containing "crop"), and, all remaining other land cover types
:::::
(Table

::
1).

2.2 Preprocessing and anomaly detection80

We compute deviations from a smoothed median seasonal cycle in the hydrometeorological variables, which we denote as

anomalies. For detecting extreme events, we apply a multivariate anomaly detection procedure described in detail in (Flach

et al., 2018). It (i) accounts for seasonal changes in the variance of the anomalies using a moving window technique, and (ii)

uses climatic similarities to obtain more robust thresholds for extreme event detection via spatial replicates as proposed by

Mahecha et al. (2017) (for more details see the
::::::
Section 2.3).85

The extreme event detection algorithm itself is applied to the set of hydrometeorological anomaly time series and returns

anomaly scores computed by kernel density estimation. Kernel density estimation showed good performance among other

possible methods and accounts for nonlinearities in the data (Flach et al., 2017). The resulting anomaly scores can be interpreted

as a univariate index of deviation from the general multivariate pattern. We consider the highest 5% of the anomaly scores to

be extreme events (95th percentile), which is within the typical range of percentiles defining extreme events (McPhillips et al.,90

2018).

::
In

::::
more

::::::
detail,

:::
the

::::::::
procedure

::::::
works

::
as

::::::
follows

::::
(for

::::
more

::::::
details

:::
see

:::::::::::::::
Flach et al. (2018)

:
):
:

1.
:::::
select

:::
one

:::::
pixel

::::
and

:::::
some

::::::
spatial

::::::::
replicates

::::::
(here:

::::
four

::::::
spatial

:::::::::
replicates

::
as

:::::::
defined

:::
by

:::::::
Section

::::
2.3)

::
to

::::::
obtain

::::
five

::::::::::
considerably

::::::
similar

::::
time

:::::
series

:::
of

::::::::::
temperature,

::::::::
radiation

:::
and

::::::
surface

::::::::
moisture.

:

2.
::::::
subtract

::
a
:::::::::
smoothed

::::::
median

::::::::
seasonal

:::::
cycle

:::::
from

::::
each

::::
time

::::::
series

::
to

::::::
obtain

:::::::::
anomalies

:::::::::
(deviations

:::::
from

:::
the

:::::::
normal95

::::::::::
seasonality)

:::
and

::::
their

:::::::::
covariance

::::::
matrix

::
Q.

:

3.
:::::
select

:
a
:::::::
seasonal

::::::::
window

::
of

:
3
:::::::

months
::
in

:::::
each

::::
years

::::::
(three

::::::
months

::::::
would

:::::::::
correspond

:::
to

:::
e.g.

:::
all

::::::::
summers

::
in

:::
the

:::::
years

:::::
under

::::::::
scrutiny).

4.
:::::::::
standardize

:::
the

:::::::::
anomalies

::
to

::::
zero

::::
mean

::::
and

:::
unit

::::::::
variance.

:
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5.
:::::::
compute

:::::
kernel

:::::::
density

::::::::
estimates

:::::
using

:
a
:::::::
standard

:::::::::::
multivariate

::::::
normal

:::::
kernel

::
K
::::
with

:::
the

::::::::::
covariance

:::::
matrix

:::
Q.

:::::
Using

::
a100

::::::::::
multivariate

::::::
normal

:::::
kernel

::::::::
accounts

::
for

:::::
linear

::::::::::
correlations

::::::
among

:::
the

:::
set

::
of

::::
input

::::::::
variables

:::::
(here:

::::::::
radiation,

:::::::::::
temperature,

::::::
surface

::::::::
moisture),

:::::
while

::::::::
allowing

:::
for

::::::::
non-linear

::::::
shapes

::
of

:::
the

::::
data

::::::::::::::::
(Flach et al., 2017).

:

6.
::::::::
transform

:::
the

:::::::
resulting

:::::::::
univariate

:::::
index

::
of

:::::::::
deviations

:::::
from

:::
the

::::::
general

::::::::::
multivariate

:::::::
pattern

:::
into

::
a
:::::
score

::
of

::::::::::
normalized

::::
ranks

:::::::
between

:::
0.0

:::::
(very

:::::::
normal)

:::
and

:::
1.0

::::::::::
(extremely

::
far

:::::
away

::::
from

:::
the

:::::
dense

:::::::
regions

::
of

:::
the

::::::::::
multivariate

::::::::::
distribution)

:

7.
:::::
select

:::
the

::::
data

:::::
points

::::::
higher

::::
than

:
a
::::::::

threshold
:::

of
::::
0.95

::
to

::::::
obtain

:::
5%

::
of

:::
the

::::
data

:::
as

::::::::::
multivariate

:::::::
extreme

::::::
events.

:::
5%

::
is
::
a105

:::::
typical

::::::
choice

:::
for

:::::::
extreme

:::::
event

:::::::
detection

::::::::::::::::::::
(McPhillips et al., 2018)

:
.

8.
::::::::
memorize

:::
the

:::::::
extreme

:::::
events

::::
and

:::
the

:::::::
obtained

:::::
score

:::
for

:::
the

:::::::
selected

::::
pixel

:::
and

::::::
season

:

9.
:::::
repeat

:::
the

::::::::
procedure

:::::
(3-8)

::
in

:
a
:::::::
running

:::::::
moving

::::::
window

:::
of

:
3
:::::::
months

:::::
length

:

10.
:::::
repeat

:::
the

::::::::
procedure

::::
with

:::
the

::::
next

:::::
pixel.

:

::::
Note

:::
that

::::
the

:::::::
extreme

:::::
events

:::
so

::
far

:::
are

:::::::::::
multivariate

:::::::
extreme

:::::
events

::
in
::::
any

::::::::
direction

::
of

:::
the

::::::::
variables,

:::
i.e.

:::::::::
depending

:::
on

:::
the110

::::
input

::::::::
variables

::::
they

::::
may

::::::
contain

:::::::::
heatwaves

::
as

::::
well

:::
as

::::
cold

:::::
spells,

::::::::
droughts

::
as

::::
well

::
as

:::::::::
extremely

:::
wet

:::::::
periods,

::
as

::::
well

::
as
:::::

their

:::::::::::
compounding

::::::::::::
combinations.

::
A

:::::::
selection

::
of
::::::::
droughts

:::
and

:::::::::
heatwaves

:::::
takes

::::
place

::
at
::
a
::::
later

::::
step

:::
(see

:::::::
Section

::::
2.4).

Figure 1.
::::
Map

::
of

::
the

::::
first

::::
three

::::::
leading

:::::::
principal

:::::::::
components

::::
(PCs)

::::::
colored

::::::::
according

::
to

:::
the

::::::::
colorspace

:::
hue

:::::
(PC1),

::::::::
saturation

:::::
(PC2),

::::
and,

::::::
lightness

::::::
(PC3).

2.3
:::::::
Climatic

::::::::::
similarities

::
to

::::::
obtain

::::::
spatial

:::::::::
replicates

:::
We

::::::
follow

:::
the

:::::::::
procedure

::::::::
described

::::
and

:::::::::
developed

::
by

:::::::::::::::::::
Mahecha et al. (2017),

::::::
which

::::
was

::::::::
extended

::
to

:::
the

:::::::::::
multivariate

::::
case

::
by

:::::::::::::::
Flach et al. (2018)

:
.
::
In

:::::::::
summary,

:::
the

::::
used

::::::::
approach

:::::::
defines

::::::::::
climatically

:::
and

:::::::::::::
phenologically

::::::
similar

:::::::
regions

:::
by

:::::
using

:::
the115

::::::
leading

::::::::
principal

::::::::::
components

:::::
(here:

:::::
three)

:::
of

:::
the

:::::::
seasonal

::::::
cycles

::
of

:::
the

:::::::::::::::::
hydrometeorological

::::::::
variables

:::::::::::
(temperature,

:::::::
surface

:::::::
moisture,

:::::::::
radiation)

::
in

:::::::
addition

::
to

:::
the

:::::::::
vegetation

:::::
proxy

:::::
(gross

:::::::
primary

::::::::::::
productivity).

::::::
Similar

::::::
cycles

:::::
appear

:::
in

::
the

:::::
same

::::::
region

::
of

:::
the

:::::::
obtained

::::::::
principal

:::::::::
component

:::::
space

:::::::
(Figure

:::
1).

:::::
Thus,

:
a
::::::
simple

:::::::::::
classification

:::
can

:::
be

:::::::
obtained

:::
by

:::::::
dividing

:::
the

::::::::
principal
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:::::::::
component

:::::
space

:::
into

:::::::
equally

::::
sized

::::::
cubes.

::::
Here

:::
we

:::
use

:::
25

:::::
breaks

:::
for

::::
each

:::
of

::
the

::::
first

:::::
three

:::::::
principal

:::::::::::
components,

:::::
which

:::::
leads

::
to

:::
814

::::::
classes

:::::::
globally

:::
of

::::::
similar

::::::
climate

::::
and

:::::::::
phenology.

:::
For

::::
each

:::::
pixel,

:::
we

:::::::
sample

:::
four

:::::::
random

::::::
spatial

::::::::
replicates

:::::
from

::::
each120

:::::
region

::
to

:::::::::
efficiently

:::
run

:::
the

::::::::
anomaly

::::::::
detection

::::::::
workflow

:::::::
globally

::::::::::
(previously

:::
the

::::::::
procedure

::::
was

::::
used

:::
for

:::::::
Europe

:::::
only).

::::
The

::::::
number

::
of
:::::::

random
::::::

spatial
:::::::::
replicates

:::::::
depends

:::
on

:::
the

:::::::
number

::
of

:::::::::::
observations

::
in

::::
each

::
3
::::::
month

::::::
period

:::
and

:::
the

::::::
length

:::
of

:::
the

::::
time

:::::
series

:::::
(here:

:::
16

::::
years

:::
of

::::
data,

::::
each

::::
with

:::
11

:::::::::::
observations

:::
per

:
3
:::::::

months
::::::
period

::::
leads

::
to
::::

176
:::::::::::
observations

:::
for

::::
each

::::::
spatial

:::::::
replicate,

::::
thus

::::
880

::::::::::
observations

:::
for

:::
the

:::::
pixel

:::
and

:::
its

:
4
::::::
spatial

:::::::::
replicates),

::::::
which

::
is

:
a
:::::::::
reasonable

:::::::::::
compromise

:::::::
between

:::::::
stability

::
of

:::
the

:::::
results

:::
for

:::::::
extreme

:::::
event

::::::::
detection

:::
and

::::::::::::
computational

::::::::
efficiency

::
to

::::
run

::
the

::::::::
anomaly

::::::::
detection

::::::::
procedure

::::::::
globally.125

2.4 Framework for extracting event-based statistics

We use the extracted binary information (extreme / non-extreme) to compute statistics based on the spatio-temporal structure

of the extreme events similar to (Lloyd-Hughes, 2011; Zscheischler et al., 2013; Mahecha et al., 2017; Chen et al., 2019).

Extreme voxels are considered to belong to the same extreme event if they are connected within a 3 x 3 x 3 (long x lat x

time) cube. Note that this definition includes connections over edges. We compute event-based statistics from the 1000 largest130

extreme events globally as introduced also for the Russian heatwave (Flach et al., 2018). Specifically, we calculate affected

volume, centroids, mean and integral of GPP separately for positive and negative anomalies, as well as the distance between

the centroids of the positive and the negative anomalies of GPP during the event. We consider an event to be predominantly a

relative drought (relative heatwave) if more than 50% of the surface moisture (temperature) values during the extreme event are

beneath (exceed) the 5th (95th) percentile of the variable. We select drought (n= 98) and heat (n= 44) events and combined135

drought–heat events (n= 71), which are taking place during the growing season (total n= 213), i.e. the centroid of the event is

within the half year encompassing the seasonal GPP maximum. Our statistics account for the spherical geometry of the Earth

by weighting with the cosine of latitude.

Furthermore, we evaluate if the positive and negative anomalies in GPP during the event predominantly have a spatial or

temporal component. Therefore, we split the event in parts with enhanced and parts with reduced productivity. Between those140

two parts, we compute the spatio-temporal distance between the centroids of each part. We consider positive and negative

GPP anomalies to occur predominantly spatially if the temporal distance of the centroids is almost simultaneous, i.e. less than

one time step in the data (eight days). GPP anomalies are considered to be predominantly temporally changing if the spatial

distance of the centroids is less than 110 km (approximately one degree at the equator). Both, spatial and temporal components

can be found for centroids which are more than 110 km and more than eight days away.145

2.5 Statistical model of GPP during extreme events

As we detect heatwaves and droughts relative to the mean seasonal patterns, positive or negative GPP anomalies during the

droughts and heatwaves may additionally be influenced by differences in the conditions in the hydrometeorological variables

during the extreme event, differences in background climate in which the vegetation is growing, or duration and affected area of

the event. We use gradient boosting machines (Friedman, 2001) to predict average GPP anomalies during the event as a function150

of mean surface moisture, mean temperature, mean radiation during the event, duration, affected area, land cover class, and
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mean climate during the growing season, i.e. mean temperature and surface moisture during all growing seasons between 2003

and 2018. We tune model parameters (shrinkage parameter, depth of the trees, bag fraction, minimal number of observations

per node) by following a workflow described in Elith et al. (2008) using a hyper grid search from 100 different random

initialisations of splitting the data into training (75%) and testing (remaining 25%). We compute uncertainty of the variable155

importance measure described in (Friedman, 2001) from each of the 100 best models of the hyper grid search. Additionally

we use an approach based on Local Interpretable Model-agnostic Explanations (LIME), which tries to predict each single

observation in a black box model based on locally weighted regression (Ribeiro et al., 2016). Here, this approach helps to

understand (1) the effect of specific land cover classes, and (2) the direction of the effect.

3 Results160

Our analysis based on a 5% threshold in the multivariate anomaly scores leads to a detection of 213 events (98 relative droughts,

44 relative heatwaves, 71 compound drought–heatwaves) between 2003 and 2018.

If we only discriminate forest and agricultural ecosystems, we find substantial differences in the direction of the GPP anoma-

lies during extreme droughts and heatwaves in the growing season. In agricultural
:::
(C3

:::
and

:::
C4

::::::::
croplands

:::
as

:::
well

:::
as

::
C3

:
and

:::
C4

:::::::
fractions

::::::::
croplands

:
/
::::::
natural

:::::::::
vegetation

:::::::
mosaics)

::::
and other non-forest land-cover types ,

::::::::
(savannas,

::::::::::
grasslands,

::::
open

:::
and

::::::
closed165

:::::::::
shrublands,

::::::
woddy

::::::::
savannas,

:::::::::
permanent

::::::::
wetlands,

:::::
urban

::::
and

::::::::
built-up), GPP was reduced during the identified events (agricul-

tural land-cover types: 64% (56–72%) reduction, Figure 2 (a); other ecosystems 60% (53–67%), Appendix Figure 2)
:::::
Figure

::
2

:::
(c)). In forested areas, instead, a majority of 71% (63-78%, 95% confidence interval) of events shows enhanced productivity

(Figure 2 (b)). The dichotomy described in the instantaneous response patterns confirms the overall statistics. Events with their

centroid in France 2003, Russia 2010, and Germany 2018 all show bidirectional GPP anomalies that coincide with land-covery170

::::::::
land-cover

:
type transitions between predominantly forested land cover and others (a detailed illustration of the different events

is provided in the supplementary materials)
:
.
:
Figure 3 summarizes these findings across all events by relating the global in-

tegral areas of positive and negative anomalies in GPP during extreme events to the dominant land cover type.
::::
Note

::::
that

:::
the

:::::::
numbers

::
in

::::::
Figure

:
3
:::
are

::::::::::
proportions

::
of

:::
the

:::::::
affected

::::::::::
space-time

::::::
volume

::
of

:::
the

:::::::
extreme

::::::
events

:::
and

::::
thus

:::::::
slightly

:::::::
different

:::::
from

::
the

::::::::::
proportions

::
of

:::
the

:::::::
number

::
of

::::::
events

:::::::
reported

:::::
earlier

::
in
::::
this

:::::::::
paragraph.175

The events analyzed here are based on relative radiation, heat and water availability anomalies (see Methods). To better

understand the role of absolute climate conditions we show the reported GPP anomalies in the terms of absolute temperatures

and surface moisture levels in Figure 4(a). The figure shows that reduced rates of GPP tend to coincide with very low surface

moisture and high temperature (eight-daily averages).

::::::::::
Furthermore,

::::
we

::::
show

:::
the

::::::
events

::
in
:::::::

climate
:::::
space

:::::
under

::::::
which

::::
they

:::::
occur,

::::
i.e.

:::
the

:::::::
average

:::::::::::
temperatures

:::::
during

::::::::
growing180

:::::
season

::::
and

::::::
average

:::::::
surface

:::::::
moisture

::::::
during

:::::::
growing

::::::
season

::::::
(Figure

:::::
4(b)).

:::::
Here,

:::
we

::::
can

:::
see

:::
that

:::
the

::::::
events

:::::
under

:::::::
scrutiny

:::
are

:::::::
detected

::
as

:::::::
extreme

::::::
events

::::::
relative

:::
to

:::
the

::::::
normal

:::::::
growing

::::::
season

::::::::::
conditions.

:::::
Thus,

:::
the

:::::::
relative

::::::
drought

::::
and

::::
heat

::::::
events

:::
are

::::::::
occurring

::
in

::::
very

:::
hot

:::
and

:::
dry

:::::::
climates

::::::
(upper

:::
left

::
of

::::::
Figure

::::
4(c))

::
as

::::
well

::
as

::
in
::::
very

::::
wet

:::
and

::::
cold

:::::::
climates

::::::
(lower

::::
right

::
of

::::::
Figure

::::
4(c)).

::::
We

:::
can

:::
see

:
a
::::::::
tendency

:::::::
towards

:::::::
stronger

:::::::
negative

:::::::
impacts

::
of

::::
heat

::::
and

::::::
drought

::::::
events

::
in

:::::
hotter

:::::::
climates

:::::::
(Figure

:::::
4(c)).

::
A
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::::::
similar

:::::
effect

:
is
::::
not

::
so

::::::
clearly

::::::
visible

:::
for

::::
very

:::
hot

:::
and

:::
dry

::::::::
climates.

::
A

::::::
reason

::::
may

::
be

::
a

::::::
limited

::::::
number

:::
of

::::
data

:::::
points

:::::::
towards185

::
the

:::::
upper

::::
left

:::::::
direction

::
in

::::::
Figure

::::
4(c).

:::::::::::
Furthermore,

::::
heat

:::
and

:::::::
drought

:::::
events

::
in

::::::
usually

::::
wet

:::
and

::::
cold

:::::::
climates

:::
are

:::
not

:::::::::
associated

::::
with

:::::::
negative

::::::
impacts

:::
or

:::
are

::::
even

:::::::::
associated

::::
with

::
an

:::::::::::
enhancement

::
of

:::::::::::
productivity,

:::
e.g.

:::::
when

:::::
more

::::::::
radiation

::
or

::::::::::
temperature

::
is

:::::::
available

::::::
during

:::
the

:::::
event

::
in

:::::::
normally

::::::
energy

::::::
limited

::::::::
systems.

Delineating different ecosystems within this space shows that they are arranged along decreasing surface moisture values.

Most extreme events in forests tend to occur under slightly higher surface moisture conditions compared to agricultural and190

other ecosystems (Figure 4(b)). Forests are hit less frequently critical dry conditions for which we predominantly observe

reduced productivity. In contrast, we observe reduced productivity during the events for agricultural ecosystems, which expe-

rience frequently critical hot and dry conditions (Figure 4(b
:
c)).

While Figure 4(a) shows that temperature and soil moisture have some effect on the direction of the impacts, they are

insufficient to explain
::::::
impact,

:::
but

::::
does

::::
not

:::::::
consider

:::::
other

:::::::::
potentially

::::::::
important

::::::::
variables.

:::::
Thus,

:::
we

::::::
refine

:::
our

::::::::::::
understanding195

::
of the observed patterns in detail

::::
using

:
a
:::::::::
statistical

:::::
model. To unravel the importance of land cover type and other factors we

predict average GPP anomalies using gradient boosting machines (R2 = 0.43, Friedman (2001) Section 2.5) and explore their

relative variable importance. Growing season temperature, event duration, and land cover type,
::::

and
::::::
surface

::::::::
moisture

:
are, in

decreasing order, are the most important variables in the statistical model (Figure 5(a)).

Apart from identifying important variables that explain the GPP anomalies during drought and heat anomalies, we disen-200

tangle the direction of each factor’s effect in the model, and, in particular for specific land cover classes.
:::::::
Negative

::::::
model

:::::::::
coefficients

:::
are

:
a
::::::::
negative

::::::::::
contribution

::
of

:::
the

::::::::
respective

:::::::
variable

::
to
:::
the

::::
GPP

::::::::
anomaly,

:::
i.e.

:::
the

:::::::
variable

:::::::::
contributes

::
to

::
a

:::::::
stronger

::::::
impact.

::
In

:::::::
contrast,

::
a
:::::::
positive

:::::
model

:::::::::
coefficient

::
is

:::::::::
associated

::::
with

:
a
:::::::
positive

::::::::::
contribution

::
of

:::
the

:::::::::
respective

:::::::
variable

::
to

:::
the

::::
GPP

:::::::
anomaly.

:::::
Thus,

:::::::
positive

::::::
model

:::::::::
coefficients

:::::::
weaken

:::
the

::::::
impact

::
of

:::
the

:::::::
extreme

::::::
event,

:::::
which

::::
may

::::
even

::::
lead

::
to

:::
an

:::::::::::
enhancement

::
of

::::
GPP

::::::
during

:::
the

:::::::
extreme

::::::
event.205

Whereas growing season temperature and duration show a negative model coefficient, i.e. a longer duration and a warmer

climate are associated with a stronger impact, as expected, productivity a
:::::::

greater
:::::::::
availability

::
of

::::::::
radiation

::::
and

:::::
higher

:::::::
surface

:::::::
moisture

::::::
during

:::
the

::::
event

::::::
reduce

:::
the

::::::
impact

:::
on

:::::::::
vegetation.

::::::::::
Productivity in different land cover types is influenced in contrasting ways:

:::::
Forest

::::::::::
ecosystems

:
(Land cover types including

forests and woody savannas
::::::
’forest’

::
in

::
its

::::::
name) show increased average GPP during the extreme events. In contrast, agricul-210

tural ecosystems (land cover types including crops) , grasslands, savannas, and other land cover types
:::::::::
’cropland’

::
in

::
its

::::::
name)

reduce average GPP anomalies (Figure 5(b)). Warmer growing season climates and higher temperatures during the event are

associated with negative GPP anomalies. In contrast, greater availability radiation and higher surface moisture have a positive

influence on the impact.

::
On

:::::
land

:::::
cover

::::
level,

:::::
there

::
is

::::
one

::::::::
exception

::
of

:::
the

::::::::::
agricultural

::::::::::
ecosystems

::::::
having

:
a
:::::
more

::::::
neutral

::::::
model

:::::::::
coefficient.

::::::
These215

::
are

::::
’C3

:::::::::
croplands

:
/
::::::
natural

:::::::::
vegetation

:::::::::
mosaics’.

::::::::
However,

::::
’C3

:::::::::
croplands’

:::::
itself,

::::
’C4

:::::::
fraction

:::::::::
croplands’

::::
and

::::
’C4

:::::::
fraction

::::::::
croplands

:
/
::::::
natural

:::::::::
vegetation

:::::::
mosaics’

:::
all

::::
show

::::::::
negative

::::::::::
coefficients.

:::::
These

::::::::::
agricultural

:::::::
systems

::
are

::::::
highly

::::::::
managed,

:::
so

::::
their

::::::::
difference

::::
may

::
be

:::::
more

::::::
related

::
to

:::::::::::
management

:::
than

::
to
:::::::::
ecological

::::::::::
differences.

::::::
Mostly

::
in

:::
the

::::::::
temperate

::::
and

:::::
boreal

::::
zone

:::::::
located

:::::
mixed

::::::
forests,

:::::::::
deciduous

::::::::
broadleaf

::::::
forests

:::
and

::::::::
evergreen

:::::::::
needleleaf

::::::
forests

::::::
exhibit

:::
the

::::
most

:::::::
positive

:::::
model

:::::::::::
coefficients.

::
In

:::
the
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::::::
tropical

::::
zone

:::::::
located

::::::::
evergreen

::::::::
broadleaf

::::::
forests

:::::
show

:::
the

::::
least

:::::::
positive

::::::
model

:::::::::
coefficient.

::
In

:::::::
between

::::::
forests

::::
and

:::::::::
grasslands220

:::
and

::::::::
savannas,

::::::
woody

::::::::
savannas

:::::
have

:::
still

:::::::::::
considerably

:::::
many

:::::
trees

::
in

:::::
each

::::
grid

::::
cell.

::::
They

::::
are

:::::::::
positioned

::::
with

:
a
:::::::

positive
:::

to

::::::
neutral

:::::
model

:::::::::
coefficient

:::
on

:::
the

::::::::
transition

::::::::
between

::::::
forests

:::
and

:::::::::
savannas.

::::::::
Savannas

:::
and

:::::::::
grasslands

:::
are

:::::
both

::::::::
associated

:::::
with

:
a
:::::::
negative

::::::
model

:::::::::
coefficient

::::::::::
comparable

::
to

::::::::::
agricultural

:::::::
systems.

:::::
Open

:::
and

::::::
closed

:::::::::
shrublands

:::
as

::::
well

::
as

:::::::::
permanent

::::::::
wetlands

::::::
exhibit

:
a
:::::::
negative

:::::::::
coefficient.

::::::
Urban

:::
and

:::::::
built-up

::
is

:::::::::
associated

::::
with

:
a
::::::
neutral

::::::::::
coefficient.

We showed that
::
the

:
land cover type is one of the major factors influencing the

:::::::
direction

:::
of

:::
the GPP anomaly during the225

::
an

:::::::
extreme

:
event. A single hydrometeorological extreme event

:::
with

::
a

:::::
given

:::::::::
magnitude

:::
and

::::::::
duration can affect two or more

adjacent land cover types simultaneously with potentially contrasting impacts (spatial contrasting anomalies), but enhanced

productivity can also be observed earlier than reduced productivity (or vice versa, temporally contrasting anomalies)
:
.
:::::
Apart

::::
from

:::
an

:::::::
extreme

:::::
event

:::::::::::::
simultaneously

:::::::
affecting

::::::::
adjacent

::::::::::
ecosystems

::::
with

::::::::
different

::
or

:::::
even

:::::::::
contrasting

::::::::
impacts,

::
it

::
is

::::
also

:::::::
possible

:::
that

::::
one

::::::::
ecosystem

::::::
shows

:::::::::
contrasting

:::::::
impacts

::::
over

:::::
time,

:::
i.e.

::::
with

:::::::::
increasing

:::::::
duration.

:::::::
During

::::::
startup

::
of

:::
the

:::::::
extreme230

::::
event

::::::::
enhanced

:::::::::::
productivity

::::
may

:::
be

:::::::
observed

::::::
which

:::
can

::::
turn

::::
into

::
a

:::::::::
contrasting

:::::::
reduced

:::::::::::
productivity

::
at

:
a
::::
later

:::::
stage

:::
of

:::
the

::::::
extreme

::::::
event.

::::
This

::::::::
temporal

::::::::
difference

::
in
:::

the
::::::::

response
::::
with

::
a

:::::
longer

::::::
lasting

:::::::
extreme

:::::
event

::
is

:::::::::
considered

::
to
:::

be
:
a
::::::::::

temporally

:::::::::
contrasting

:::::::
anomaly. To explicitly quantify the role of spatial vs. temporal effects on the GPP anomalies during extreme events

we split each event in parts with enhanced and reduced GPP anomalies and compute the centroidal distance in space and time.

In fact, positive and negative GPP anomalies mostly co-occur simultaneously in adjacent spatial regions (116 events of 213235

events in total within ± 8 days, Figure 6). Especially for large scale events (large volume), a considerable distance of the

anomalies can be observed in space and time. However, taking
:
as

::::
well

::
in
:::::
space

:::
as

::
in

:::::
time.

:::::
Thus,

::::
these

:::::::
extreme

::::::
events

:::::
show

:::::
spatial

::
as

::::
well

:::
as

:::::::
temporal

::::::::::
contrasting

:::::::::
anomalies.

::::::
Taking

:
only the temporal distance into account, we have more events with

enhanced productivity before the reduced productivity (temporal distance <�8 days, n= 44) than after
:::::
events

::::
with

:::::::
reduced

::::::::::
productivity

:::::
before

::::::::
enhanced

:::::::::::
productivity (> 8 days, n= 33).240
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(b) Forests
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Figure 2. Relative drought and heat events coloured
:::::
colored

:
with the relative anomaly in gross primary productionfor (a) agricultural and

(b) forest ecosystems. Point sizes are proportional to
:::::
Figure

::
is

:::::::
continued

:::
and

::::::::
described

::
in

::::
detail

:::
on the affected volume of the space-time

event
:::
next

::::
page. The largest and some well known events are labelled.
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(c)
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Figure 2.
::::::
Relative

::::::
drought

:::
and

:::
heat

:::::
events

::::::
colored

::::
with

::
the

::::::
relative

::::::
anomaly

::
in

::::
gross

::::::
primary

:::::::::
production

::
for

::
(a)

:::::::::
agricultural,

:::
(b)

::::
forest

:::
and

:::
(c)

::::
other

::::::::
ecosystems

::::::::::
(continued).

::::
Point

::::
sizes

::
are

::::::::::
proportional

::
to

::
the

:::::::
affected

:::::
volume

::
of
:::
the

::::::::
space-time

:::::
event.

:::
The

::::::
largest

:::
and

::::
some

:::
well

::::::
known

:::::
events

::
are

::::::
labeled.

::::
Note

::::
that

:::
one

::::
single

:::::::
extreme

::::
event

:::
can

:::::
affect

::::::
adjacent

:::
grid

:::::
cells.

::::
Each

::
of

::::
these

::::::
adjacent

::::
grid

::::
cells

:::
may

::
be

::::::::
dominated

:::
by

:
a
::::::
different

:::::::::
ecosystem

::::
type.

::::
These

:::::::
extreme

:::::
events

:::
will

:::::
appear

:::::
more

:::
than

:::::
once,

::
i.e.

::
in
:::
(a),

:::
(b),

::::
and

::
(c)

::::
each

::::
with

::
the

::::
grid

::::
cells

::
of

:::
part

::
of

:::
the

::::::
extreme

::::
event

:::::::
affecting

::
the

::::::::
respective

::::::::
ecosystem.

:::::
Labels

:::
are

::
as

::::::
follows:

:::::::::::
Compounding

::::::
drought

:::
and

:::::::
heatwave

::
in

::
the

::::::
United

::::
States

:::::
2012,

::::
most

::::::::
commonly

:::::
known

::
as

:::
US

::::::
drought

::::
2012

:::::
(USA

:::::
2012),

:::::::::::
compounding

:::::::
European

::::::
drought

::::
and

:::::::
heatwave

:::::
2003,

::::::::
commonly

:::::
known

::
as

::::::::
European

:::::::
heatwave

::::
2003

::::::
(Europe

:::::
2003),

::::::::::
compounding

::::::::
European

::::::
drought

:::
and

:::::::
heatwave

::::
2018

::::::
(Europe

:::::
2018),

:::::::::::
compounding

:::::
eastern

::::::::
European

::::::
drought

:::
and

:::::::
heatwave

::::
2015

:::::::
(Europe

:::::
2015),

:::::::
Siberian

:::::::
heatwave

::::
2011

:::::::
(Siberia

:::::
2011),

:::::::::::
compounding

::::::
western

::::::
Russian

::::::
drought

::::
and

:::::::
heatwave

:::::
2010,

::::::::
commonly

:::::
known

::
as

::::::
Russian

:::::::
heatwave

:::::
2010

:::::
(Russia

::::::
2010),

::::::::::
compounding

:::::::
Amazon

::::::
drought

:::
and

:::::::
heatwave

::::
2010,

::::::
mostly

:::::
known

::
as

:::::::
Amazon

::::::
drought

::::
2010

:::::::
(Amazon

:::::
2010),

::::::
drought

::
in

:::::
Brazil

::::
2012

:::::
(Brazil

:::::
2012),

:::::::::::
compounding

::::::
drought

:::
and

:::::::
heatwave

:
at
:::

the
::::::
greater

::::
Horn

::
of

:::::
Africa

::::
2009

::::
(Horn

::
of
:::::
Africa

::::::
2009),

::::::::::
compounding

:::::
Indian

::::::
drought

:::
and

::::::::
heatwave

::::
2009

:::::
(India

:::::
2009),

::::::::::
compounding

::::::
drought

::::
and

:::::::
heatwave

::
in

:::::
China

::::
2011

:::::
(China

:::::
2011).

.
:
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Figure 3. Proportion of GPP anomalies with reduced or enhanced productivity and their distribution in the different ecosystems (growing

season events from 2003-2018). Bar sizes are proportional to the affected volume of the identified events.
:::::::
Numbers,

::::::
denote

:::::::::
percentages

::
of

::
the

::::::
affected

::::::
Volume

:::
for

::::
each

::
of

::
the

::::::::
categories.

:
Forests tend to be associated with enhanced productivity rates, while agricultural ecosystems

tend to be associated with reduced productivity.
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Figure 4. (a) Mean temperature and surface moisture during the

relative drought and heat events
::
and

:::
(b)

::::::
growing

:::::
season

:::::::::
temperature

:::
and

::::::
growing

::::::
season

::::::
surface

:::::::
moisture for forests and agricultural

ecosystems. Size and color of the points denote the affected space–

time volume and the direction of the impact on productivity. (b
:
c)

Average conditions in temperature and surface moisture
:::::
during

::
the

:::::
events for all ecosystems. Colored lines enclose 25% and 50% of

the events within forest, agricultural and other ecosystems.
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Figure 5. (a) Variable importance of the ten best gradient boosting machines predicting average GPP anomalies during the events, and

(b) direction and feature weight of the variables explaining GPP anomalies of the individual events based on linear regression via local

interpretable model-agnostic explanations (LIME).
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Figure 6. Each extreme event is split into parts with enhanced and reduced GPP anomalies. The centroidal distance between both parts in

space and time shows whether contrasting GPP anomalies are predominantly taking place temporally, spatially or spatio-temporally. Point

sizes are proportional to the event’s affected volume.
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4 Discussion

Contrasting responses of ecosystems to climate extremes, e.g. in the US in 2012 (Wolf et al., 2016) or in Russia in 2010 (Flach

et al., 2018), are not singular cases but are shown to be frequent phenomena in response to hydrometeorological extreme

events at the global scale. Within the same extreme event, reduced and enhanced productivity can be observed simultaneously

in adjacent spatial regions. This finding complements previous studies on temporal (Wolf et al., 2016; Sippel et al., 2017a;245

Buermann et al., 2018) or spatial contrasting responses (Jolly et al., 2005; Zaitchik et al., 2006; Lewińska et al., 2016).

This study provides evidence that the impacts of extreme drought or heat anomalies on GPP during growing seasons is,

firstly a function of event duration and long-term climate, but secondly, also depends on the affected land cover type. In

particular the tendency towards positive vs. negative responses seems to be controlled by tree cover (similar to the results of

Ivits et al. (2014); Walther et al. (2019)), i.e. forests seem to show higher resilience to drought and heat anomalies on the250

short term, which is reflected in a tendency towards positive GPP anomalies during the events. However, our results are based

on events that are extreme relative to the regional normal conditions. In the supplementary materials we illustrate a range of

events in more detail. For instance, a relative drought or heatwave in a typically wet ecosystem can boost productivity as well

as a heatwave in ecosystems that are typically cold (see cases reported e.g. for China 20011, India 2009, and the Siberian

heatwave 2011). Both water stress and temperature affect ecophysiological processes in a nonlinear manner. Heat events below255

optimal temperatures enhance photosynthesis (Wang et al., 2017), or photosynthesis may be enhanced by the radiation surplus

during dry periods (Walther et al., 2019) especially at higher latitudes (Bachmair et al., 2018) and as long as ecophysiological

limits are not violated. Yet, the prevalence of certain land cover types is partly controlled by climatic gradients, and therefore

land cover cannot really be considered independently of the mean climatological conditions that likewise play a role (Figure

4(a)). Climate conditions also lead to adaptation of physiological processes. For instance, forests in dry ecosystems may be260

characterized by a more conservative water use strategy (Teuling et al., 2010; van Heerwaarden and Teuling, 2014; Ramos

et al., 2015) and adapted to drought compared to analogous land cover types whose biogeographic history experienced colder

and more moderate conditions (Doughty et al., 2015). Moreover, forests have access to deeper soil water compared to other

ecosystems (Yang et al., 2016; Fan et al., 2017). The degree of isohydricity may further differentiate the response of forests, as

it differs between tree species (Roman et al., 2015; Ruehr et al., 2015; Yi et al., 2017).265

Our study only reports on GPP responses during the climatic anomaly without considering the legacy of the events. Re-

sponses may emerge with some time lag between weeks to months (Schwalm et al., 2012; Ruehr et al., 2015), or even at longer

time scales (years) (Saatchi et al., 2013; Anderegg et al., 2015). Hence, finding enhanced productivity of forests during some

heat event does not exclude increased mortality in the long-term. Forest ecosystems are known to potentially respond much

delayed to environmental stress, which can trigger strong secondary impacts like insect outbreaks (Hicke et al., 2006; Rouault270

et al., 2006; Allen et al., 2010), or fires (Brando et al., 2014). In contrast, agricultural systems are known to be very directly

vulnerable to droughts (De Keersmaecker et al., 2016; Bachmair et al., 2018). We choose the growing season as time period

of interest, which is notably different than summer for some regions, e.g. in the Mediterranean where more positive responses

to warm anomalies in the cold season may be expected (Sippel et al., 2017b), and also impacts of droughts may be less than
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during the dry season (Huang et al., 2018). Note that due to complex interactions between GPP and ecosystem respiration no275

direct translation of the results into net ecosystem exchange is expected (Richardson et al., 2007)

:::
Our

::::::
results

:::
for

:::::
gross

:::::::
primary

::::::::::
productivity

:::
do

:::
not

:::::::::
necessarily

::::::::
translate

::::::
directly

::::
into

:::
net

:::::::::
ecosystem

:::::::::
exchange,

::::::
because

:::::
GPP

:::
and

:::::::::
ecosystem

:::::::::
respiration

:::::::
interact

:::
in

:
a
::::::::

complex
::::
way

:::::::::::::::::::::
(Richardson et al., 2007).

:::::::::
However,

::::::::
studying

:::
the

:::::::
Russian

:::::::::
Heatwave

::::
2010

:::::::::::::::::
Bastos et al. (2014)

::::
found

:::
an

:::::::
increase

::
in

:::::::::
autotrophic

::::::::::
respiration

::::
rates

::
in

::::::
forests,

:::::::
whereas

:::::
crops

:::::::
declined

:::::
their

:::::::::
respiration

::::
rates.

::::::::::::::::
Flach et al. (2018)

:::::::
observed

::::::
similar

::::::::::
differences

:::::::
between

::::::
forests

:::
and

::::::::::
agricultural

:::::::
systems

:::
for

:::::
gross

::::::
primary

:::::::::::
productivity280

::
as

::::
well

::
as

:::
for

:::
net

:::::::::
ecosystem

:::::::::::
productivity

::::::
during

:::
the

:::::::
Russian

:::::::::
Heatwave.

::::
This

:::::::::
similarity

::::::
would

::::::
suggest

::::
that

:::
the

:::::::
increase

:::
in

:::::::::
autotrophic

:::::::::
respiration

:::
for

:::::
forest

::::::::::
ecosystems

::::::
during

:::
the

::::::::
heatwave

::::
does

:::
not

:::::
offset

:::::::
potential

::::::
carbon

:::::
gains

::
of

::::::::
available

::::::::
radiation

:::
and

::::::::::
temperature

::
in
::::

this
::::::::
particular

::::::
energy

:::::::
limited

:::::
forest

::::::::::
ecosystem.

::::::::
Although,

:::::
these

:::::::
findings

:::::::
remain

::::
case

::::::
studies

::::::
which

:::
are

::
as

::::
such

:::::::
difficult

::
to

:::::::::
generalize,

:::
we

::::::
would

::::::
expect

::
to

:::
see

::::::
similar

::::::::
responses

:::
for

:::
net

:::::::::
ecosystem

:::::::::::
productivity

::
as

:::
for

:::::
gross

:::::::
primary

::::::::::
productivity.285

Another aspect to discuss is data quality.
::
We

::::
use

:::::
ERA5

::::
data

:::
for

:::::::
radiation

::::
and

::::::::::::::::
2m-air-temperature.

::
In

::::::::
particular

:::
for

:::
the

:::::
latter

:::
one

::::
there

:::
are

:::::::::
indications

::::
that

::::::::::::::::
2m-air-temperature

:::::
might

::
be

:::::::
slightly

:::::::::::::
underestimated:

:::::
Land

::::::
surface

::::::::::
temperature

::
is

::::::
known

::
to

::::
have

:
a
:::::
slight

::::
cold

::::
bias

::::
over

:::
the

:::::::
Iberian

::::::::
Peninsula

::::
due

::
to

:::::
effect

::
of

:::::::::
prescribed

:::::::::
vegetation

::::
and

::::::::::
topography

:::::::::::::::::::
(Johannsen et al., 2019)

:
.

::::
This

:::
bias

::::::
might

::::::
further

:::::::
translate

::::
into

:::::::
turbulent

::::::
energy

::::::
fluxes

:::
and

:::::::::
eventually

::::
also

::::::
affects

::::::::::::::::
2m-air-temperature.

:::::::::
However,

::
as

:::
we

:::
use

:
a
::::::
relative

::::::::
detection

:::::::
scheme,

:
a
:::::::::
systematic

:::::::
seasonal

::::
cold

::::
bias

::
in

::::::::::
temperature

:::::
would

:::
not

::::::
change

:::
the

::::::::::
occurrence

::
of

::::::
relative

::::
heat290

:::::
events

::
in

:::
our

::::::
study.

::
In

::::::::
additions,

::
it

::::::
should

::
be

:::::
noted

::::
that

:::::
ERA5

::::
data

:::
has

::
a

::::::::::
considerably

:::::
better

::::
data

::::::
quality

::::
than

:::
its

::::::::::
predecessor

:::::::::::
ERA-Interim

:::::::::::::::::::
(Johannsen et al., 2019)

:
,
:::
and

::
is

::::
thus

:::::::
preferred

:::
in

:::
this

:::::
study.

:

::::::::::
Furthermore,

::::
we

:::
use

::::::::
GLEAM

:::::::
surface

::::::::
moisture.

::::::::
GLEAM

::
is

::::::
driven

:::
by

::::::
ERA5

::::
data,

::::
thus

::::::
errors

::
in

::::::
ERA5

:::::
might

:::::::
further

::::::::
propagate

::::
into

::::::::
GLEAM.

:::::::::::
Additionally,

::::::::
GLEAM

::
is
::::::

known
:::

to
::::::::::::
underestimate

:::::::::::::::::::::
soil-moisture-temperature

::::::::
coupling

::::
due

::
to

::::
soil

:::
and

:::::::::
vegetation

::::::::::::
characteristics,

::
in
:::::::::
particular

::
for

:::::::::
temperate

:::
and

::::::::::
continental

:::::::
climates

::::::::::::::::::
(Gevaert et al., 2017).

::::
This

::::
may

::::
lead

::
to

:::
an295

::::::::::::
overestimation

::
of

:::
the

:::::::::
remaining

:::
soil

::::::::
moisture

::
in

::::::
energy

:::::::
limited

::::::
regimes

::::
and

::
to

:::
an

:::::::::::::
underestimation

::
of

::::
soil

::::::::
moisture

::
in

:::::
water

::::::
limited

:::::::
regimes.

::
It

::::::
implies

:::
an

:::::::::::::
underestimation

::::::::::::::
(overestimation)

::
of

:::::::
drought

:::::::
intensity

:::
for

::::::
energy

::::::
(water)

:::::::
limited

::::::
regimes

:::
in

:::
our

:::::
study.

::::::::
However,

:::::::
GLEAM

::
is
::::
still

::::
best

::
in

::::::::
capturing

:::::
latent

:::
heat

::::
flux

::::::::
dynamics

:::::::::
compared

::
to

::::
other

::::::::
products

:::::::::::::::::
(Gevaert et al., 2017)

:
,

:::
and

::
it
::::::::
therefore

::::::
seems

::
to

::
be

:::::::::
reasonable

::
to

::::
rely

::
on

::::::::
GLEAM

::
to

:::::
detect

::::::::
droughts

:::
and

:::::::::
heatwaves

::
in

:::
our

:::::
study.

:

Gross primary productivity from FLUXCOM-RS may inherit errors from the underlying remote sensing products; these300

have, in particular, been discussed for tropical forests (Asner et al., 2004; Asner and Alencar, 2010; Wu et al., 2018). Recently,

Stocker et al. (2019) showed at the global scale that remote sensing retrieved GPP underestimates drought impacts due to

soil moisture effects on light use efficiency. Comparing our estimates of GPP impacts to published data from eddy covariance

stations for two case studies (US 2012, (Wolf et al., 2016), and Europe 2003 (Ciais et al., 2005; Reichstein et al., 2007))

indicates that we do indeed underestimate GPP impact. Thus,
::::::
impacts.

:::::
This

::::
lack

::
of

:::::::::
sensitivity

::
of

::::::::::::::
FLUXCOM-RS

::::
GPP

:::
to305

:::::::
droughts

:::
and

:::::::::
heatwaves

:::::
seems

::
to
:::
be

:
a
:::::
more

::::::
general

:::::
issue

::
of

::::
GPP

::::::::
estimates

::
as

::::
well

::
as

::
in

::::::
remote

:::::::
sensing

::
in

:::::::
general: we suspect

that in addition to the GPP estimates used by Stocker et al. (2019), also FLUXCOM-RS GPP underestimates the impacts

of climate extreme events specifically for forest ecosystems. As FLUXCOM-RS
::::::::::
additionally exhibits a good agreement for
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forests globally with GPP estimates based on solar-induced fluorescence (Walther et al., 2019).
:::::
Thus, the lack of sensitivity to

drought and heat impacts in forest ecosystems may be a more general issue in remote sensing data.310

5 Conclusions

We
::
To

::::::::::
understand

:::
the

:::::
effect

:::
of

::::::::
different

:::::::::
vegetation

:::::
types

:::
and

:::::
other

::::::
factors

:::
to

:::
the

::::::::
response

::
of

:::::::
drought

::::
and

:::::::::
heatwaves

:::
we

:::::::
analyzed

::::
213

:::::
events

:::::::
between

:::::
2003

:::
and

:::::
2018

:::::::
globally.

:::::::::
Generally,

:::
we

:::
find

::::
that

:::::::
extreme

:::::
events

::
of

::
a
:::::
given

:::::
extent,

:::::::::
magnitude

::::
and

:::::::
duration

::::
often

:::::
affect

::::::::
different

:::::::
adjacent

:::::::::
vegetation

:::::
types,

::::
each

:::::::::
vegetation

::::
type

::::::::
differing

::
in

::::
their

:::::::
specific

:::::::
response

::
to
:::
the

::::::
event.

::::::::::
Quantifying

::::
these

::::::::
findings,

:::
we

:::
find

::::
that

::::::::
vegetation

::
is
::::
one

::::::::
important

:::::::
variable

:::::
which

:::
has

:::
to

::
be

:::::::::
considered

:::
for

::::::::::::
understanding

:::
the315

:::::
impact

:::
of

::::::
climate

:::::::::
extremes.

:::::::
Whereas

::::::::::
agricultural

::::::::
systems,

:::::::::
grasslands,

::::::::
savannas

:::
and

::::::::::
shrublands

:::
are

::::
most

::::::::
impacted

:::
in

:::::
terms

::
of

::::
gross

:::::::
primary

:::::::::::
productivity,

::::::
forests

:::
are

:::
not

::::::::::
particularly

:::::::
sensitive

::
to

:::
the

:::::::
extreme

:::::
event

::
or

::::
even

:::::
show

::::::::
enhanced

:::::
gross

:::::::
primary

::::::::::
productivity

:::::
during

:::
the

::::::
events.

:

:::::
Thus,

::
we

:
conclude that a more differentiated consideration of the role of land cover reveals firstly major differences between

forest and agricultural
::::::
forests,

::::::::::
agricultural

:::
and

:::::
other

:
ecosystems. These differences may originate from a different (micro-320

)climate or different water management strategies including the access to deeper soil water or point to more strongly lagged

impacts in forest ecosystems. However,

:::
Our

:::::::
findings

:::::
imply

:::
for

::::::
future

::::::
climate

::::
that

:::::
forest

::::::::::
ecosystems

::::
may

::
be

::::::
crucial

:::
for

:::::::::
mitigating

:::::::::
immediate

:::::::
negative

:::::::
impacts

:::
on

::
the

::::::
carbon

:::::
cycle

::
of

:::
an

:::::::::
increasing

::::::
number

:::
of

:::::::::
heatwaves.

::::::::
However,

::::::
longer

::::::
lasting

:::::::::
heatwaves,

::::::
drying

::
in

:::::::::
continental

:::::::
climates

:::
or

:
a
::::::::::::::
disproportionate

:::::::
increase

::
in

:::::::
summer

:::::::::::
drought–heat

::::::
events

:::
due

::
to
:::::::
mutual

:::::::::::
dependencies

::::
may

::::
lead

:::::
more

::::::::
frequently

:::
to

::::::
critical325

:::::::
moisture

:::::::::
conditions

:::
for

:::::
which

:::
we

:::::::
observe

::::::::
negative

::::::
impacts

:::
for

::::::
forests

::::
and

::
to

::::::
which

::::::
forests

:::
are

:::
not

::::
well

:::::::
adapted

:::
to.

::::
This

::
is

:::::::::
particularly

::::::
critical

::
as

:::::
forest

::::::::
recovery

:::::
times

:::
are

::::::::::::
multi-decadal.

::::::::
However, the lack of sensitivity of forest ecosystems to droughts and heatwaves is stronger than we would expect it to be.

Thus, we think that our results also point towards deficiencies in FLUXCOM-RS derived GPP which are potentially a more

general issue in remote sensing derived indices of vegetation activity. These deficiencies call for the development of new global330

GPP products with a higher sensitivity to droughts and heatwaves, which can unravel the role of forest ecosystems in a more

frequently hot and dry future climate.

Data availability. We use data originating from the FLUXCOM initiative (http://www.fluxcom.org), the GLEAM model data integration

framework (https://www.gleam.eu/), and ERA5 (https://cds.climate.copernicus.eu/cdsapp#!/home). The harmonized data set is available

within the project Earth System Data Lab (ESDL) and can be accessed here: https://www.earthsystemdatalab.net/index.php/interact/data-335

lab/.
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6 Other ecosystems

Relative GPP anomalies of other ecosystems (except forests and agriculture) during droughts and heatwaves. Point sizes are

proportional to the (space–time) volume of the extreme event..

6 Technical details on the spatial segmentation340

We follow the procedure described and developed by Mahecha et al. (2017), which was extended to the multivariate case

by Flach et al. (2018). In summary, the used approach defines climatically and phenologically similar regions by using the

leading principal components (here: three) of the seasonal cycles of the hydrometeorological variables (temperature, surface

moisture, radiation) in addition to the vegetation proxy (gross primary productivity). Similar cycles appear in the same region

of the obtained principal component space (Figure 1). Thus, a simple classification can be obtained by dividing the principal345

component space into equally sized cubes. Here we use 25 breaks for each of the first three principal components, which leads

to 814 classes globally of similar climate and phenology. For each pixel, we sample four random spatial replicates from each

region to efficiently run the following anomaly detection workflow globally (previously the procedure was used for Europe

only).

Map of the first three leading principal components (PCs) colored according to the colorspace hue (PC1), saturation (PC2),350

and, lightness (PC3).
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