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Anonymous Referee #1

We thank the anonymous referee #1 for his/her helpful and knowledgeable comments on our manuscript. Please find our an-

swers to all specific points below in black after the original comments (in grey). We also attached the track-changed manuscript

with new text in blue and text of the old version in red and small. We updated all figures as the reviewer requested a change of

colours and some more details such as regression lines. We removed the old graphics from the track-changed version to limit5

the file size. The line numbers refer to the track-change version.

The spatial distribution of near-surface temperature is characterized with respect to distinct Arctic tundra vegetation com-

munities over the course of two years. Vegetation was found to influence snow cover throughout the autumn, winter, and spring

with seasonally variable effects on soil temperature. However, soil temperature was not significantly correlated with vegetation

type or active layer thickness during the summer.10

General comments:

It’s well established that tundra vegetation affects snow depth/cover and vice versa with co-varying implications for soil

moisture and temperature (see early mountain tundra work by Dwight Billings and Skip Walker among others). However, it’s

not as well known how these processes combine to affect the spatial variability of active layer depth in permafrost regions. The

current study rigorously characterizes seasonal relationships between vegetation, snowpack, and soil temperature in heteroge-15

neous Arctic tundra, but fails to link these results to permafrost dynamics in a meaningful way. I believe the authors could

make this connection by (1) re-framing the results and (2) elaborating on the broader impacts of this work as detailed below.

(1) It wasn’t until I read the final discussion section that I internalized what I think is the main take home message and

contribution of this work: small scale differences in vegetation and snow accumulation do not affect active layer thickness in

this system. I think this (non-)result would generate considerable interest (and citations) if it were highlighted in the abstract,20

the first discussion paragraph, the conclusion, and potentially the title, but it’s difficult to pull out this contribution with the

current focus on vegetation-snow-temperature dynamics that are mostly known already. To put it another way, I think the

rigorous soil temperature/veg/snow measurements could be leveraged to gain new information about active layer dynamics, as

opposed to the main focus being on the measurements themselves.

We thank the reviewer for this comment because it helped us to narrow our focus and stress the most important results.25

We rewrote the abstract including a more general motivation of our study, more detailed results on the summer processes, and

implications for permafrost studies. We added more information to Figure 10. We also changed the first discussion paragraph (l.
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328–332) and changed the order of the sentences in the conclusion. We also added more discussion on this result in Section 4.4

to emphasize the roles of winter versus summer processes for active layer thickness.

(2) The broader impacts of the study are not well developed. Why does winter soil temperature matter if it has no bearing on30

active layer thickness during the summer? What are the implications for shrub expansion or other expected changes/disturbances

in these systems? I found this information particularly wanting in the in the abstract and discussion sections. I see this as a

natural follow on to (1) insofar as it’s your opportunity to describe what the non-result means for future predictions of warming,

permafrost degradation, greenhouse gas emissions, etc. This will increase the impact of your work by clearly demonstrating

the scientific contribution to other scientists, the media, and the general public.35

We added sentences on the broader picture and the implications of our work to the abstract (l. 20–24) and at the end of the

discussion (l. 436–447). We also change the text in multiple other locations to be more precise; these changes are described

below with the specific comments.

Specific comments:

L15-16 “shrinking snow cover” means less snow-covered area or snow covers the same amount of area for less time? Both40

have been observed, decrease in snow cover extent and shorter snow covered periods. We specified this in the text now

(l. 27).

L17-19 This is the type of broader impact statement that I was looking for in the abstract i.e., why does soil temperature

matter? We agree that our abstract did not include the broader picture nor the implications of our work. We moved the

sentence to the abstract and rephrased most other sentences (l. 1–4, 11–24).45

L25-27 It would be helpful if you could describe the thermodynamic mechanism(s) for this. We reordered the paragraphs

to explain these mechanisms right after this sentence. Shrub cover mainly influences the soil temperature through soil

shading in summer and snow trapping in winter (l. 61–64).

L35-36 And presumably to get additional moisture in some cases. We agree and added a comment on this effect to the

manuscript (l. 45).50

L40 Missing words here. Added (l. 51)

L60 Please explain how tall vegetation cools the soil through evapotranspiration. My first thought is that transpiration would

dry the surrounding soil, which would lower its heat capacity and make it more vulnerable to summer warming. We agree

with the reviewer that the heat capacity will be reduced in a dry soil. However, the reduction in thermal conductivity has

the opposite effect. Additionally, evapotranspiration of tall vegetation may contribute to soil cooling as it is an energy55

sink. We added this explanation and a reference (Fisher et al., 2016) to the introduction (l. 66–68).

L65 Wrong word “and”. Corrected (l. 82)

Figure 1 What is the yellow area in (a)? The orange/yellow area is the tundra extent; we clarified this in the caption now.
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Figure 2 The colors used to denote the “tree” and “tall shrub” and the “riparian shrub” and “lichen” vegetation types are

indistinguishable to me. I don’t see the white plus on the map. We changed the colour of ’riparian shrub’ in all figures60

from purple to pink and increased the size of the plus signs.

L139-140 I’ve re-read this statement several times now and still can’t wrap my head around it. Please clarify with particular

attention to double meanings associated with “mean deviation” and “less than” when referencing a negative number. We

rephrased the sentence in a simpler way using ’5 ◦C colder’ instead of ’mean deviation ... less than −5 ◦C’ (l. 168).

L173-174 Is this really the most accurate interpretation of Figure 3 and 4? It seems like the correlations are all over the65

place to me. We clarified that sentence to be more specific. We meant December temperatures are highly correlated with

January/February/March/April temperatures (l. 204–206).

L184-185 Interesting. We agree that this is interesting. The graph below summarises the variability of mean annual temperature

within all vegetation types. Tussock tundra is most variable. In general, vegetation type is not a strong driver of mean

topsoil temperatures as the boxes widely overlap. Although there is a significant relationship, vegetation only explains70

12.5% of the variability of mean annual temperature (Table 2). We added this extra information to the text (l. 218–219).
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L186 I thought the highest soil temps were 0.1C and -0.8C as stated on L183-184? The first numbers were on individual

locations, the second numbers are averaged by vegetation type. We clarified this in the text (l. 219).

L206-207 I’d expect soil temp differences to be damped relative to air temp differences. How did snow cover compare between75

these sensors? We agree, that it could be expected that the soil temperature signal is dampened as compared to the air

temperature. However, the strongest difference of 6.5 ◦C in air temperature was observed in December, with presumably

still less snow than later during the winter. The extremely cold December of 2016 lead to a much faster soil cooling in

the first winter as compared to the second. A part of this inter-annual difference was not used up when January 2017 was,

on average, 1.8 ◦C warmer than 2018. We added the information on the cold December temperatures to the manuscript80

(l. 250–251).
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L214-215 I’m very curious as to why the lichen and dwarf shrub snow depth went up between 2017 and 2018 but the tall

shrub and tussock snow depth went down during the same period. Okay now I see that you invoke wind redistribution

on L222 – might be good to bring in here. We changed the order of the paragraphs (l. 261–264).

L218-219 Can you provide the regression stats to verify this? The statistics for vegetation are listed in Table 2, 2nd and 3rd85

row from the bottom. We added the reference to the table (l. 272). For the other variables, we added Pearson’s correlation

coefficient and regression lines to Figure 7 (and for consistency also to Figure 10 (previously 11) and B2 (previously

8)).

L239-241 This speaks to the first-order control of snow depth as a buffer between air and soil temps. We agree and added the

comment to section 4.3 of the Discussion (l. 390–391).90

Figure 7 The take away messages from this figure would be clearer if you showed significant trendlines in (b) through (e) and

(g) through (j). We added the regression lines in Figures 7 and 10 (previously 11) (for consistency).

L270 I’m not sure how the first and second mentions of “site” on this line are related. Please clarify (and preferably expand),

especially since the first two discussion sentences are prime real estate. The second sentence (and usage of ’site’) was

meant to clarify the limitations of the first sentence. We agree with the reviewer, that a more concise and bold statement95

is better and therefore replaced the sentence (l. 328–332).

L274 Most variable between sensors or through time? Between sensors; we specified this now (l. 335).

L278 Please elaborate on what’s meant by “general pattern”. We were referring to the characteristics of the time series; we

specified this now (l. 343).

L279-280 This conjecture would be a lot stronger if it were supported with citations (there are many) as well as a process-based100

description, especially given the short length of this section. We completely changed the discussion of autumn processes

(Section 4.1, l. 339–350) and added references, in particular to the work by Romanovsky and Osterkamp (1995).

L288-291 Citations are required for everything you wish to invoke here. We added citations to Essery and Pomeroy (2004);

Morse et al. (2012); Sturm et al. (2001); Essery and Pomeroy (2004); Sturm et al. (2005); Swanson (2015) to relate the

statement to other studies (l. 364–367).105

L312 And increasing long-wave emissions. Yes, we agree and added this information (l. 339).

L319 Same comment as L60. We added the information to L60 and an additional reference in the discussion (Pearson et al.,

2013) (l. 400) and the introduction (Fisher et al., 2016) (l. 66–68).

L319-322 So none of it matters for permafrost? I think you’ve buried the lede here. This non-result should be highlighted as a

main conclusion of your work (see general comments). We now highlighted this finding in the conclusions (l. 460–462)110

and in the abstract (l. 17–24).
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L330-337 This argument is hard to follow We rewrote this section, added more details and references (Morse et al., 2012;

Fisher et al., 2016; Guan et al., 2010; Paradis et al., 2016) to this paragraph to clarify our findings on the snow–active

layer relationships (l. 406–412,425–428).
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Anonymous Referee #2140

We thank the anonymous referee #2 for his/her helpful and knowledgeable comments on our manuscript. Please find our an-

swers to all specific points below in black after the original comments (in grey). We also attached the track-changed manuscript

with new text in blue and text of the old version in red and small. We updated all figures as the reviewer #1 requested a change

of colours. We also added some more details such as regression lines. We removed the old graphics from the track-changed

version to limit the file size. The line numbers refer to the track-change version.145

This paper uses two years of topsoil temperature, snow, and active layer data from six vegetation types within a hetero-

geneous Low Arctic landscape in the northwestern Canadian Arctic to evaluate the relationships among these variables –

vegetation, snow, soil temperature, and active layer depth. With changes in arctic vegetation being readily observed, there

needs to be a greater understanding of how vegetation influences snow dynamics, ground temperature, and ultimately active

layer depth and permafrost. Several papers in the literature do exist on this topic, however, the results collectively are not150

incredibly clear and consistent, and more data and analyses are needed. With a soil temperature dataset as robust as the one

from this study, there are unlimited ways to analyze the data, and everyone will have their own opinion on how best to do that.

The analysis presented here is generally a fine one, and is informative, and therefore I will not give opinions on other ways in

which the analysis could have been done, but rather will provide some constructive comments on the existing analysis.

The following are some general, more specific, and some minor editorial suggestions:155

1) State the depth of the data loggers in the Abstract We added the information to the abstract (l. 6).

2) Line 28 Low Arctic is commonly capitalized, and change the “an” to “a” We removed the sentence in question for other

reasons and corrected other occurrences of Low Arctic (l. 444, 449).

3) Line 37 You mention that tussock tundra is commonly found in depressions, which is not always my experience, and I’m

not sure how widespread that it. Certainly not on the exposed hilltops, but more often I think that tussock tundra is found160

on mesic slopes, as opposed to more saturated lowland positions. We agree with the reviewer that tussock tundra can

often be found on mesic slopes and added this information to the introduction (l. 48). At our site specifically, 95% of the

tussock patches have a slope of less than 4°, which is by far the lowest value of all vegetation types (l. 116–117).

4) Line 40 should be “active layer thickness at the end of summer” Changed (l. 51)

5) Line 88 “gasses” should be “grasses” Changed (l. 106)165

6) Lines 139-140 since you use “summer” here, I was wondering if you should define your seasons first. Also wondering

if there is a better way of stating this – e.g. average topsoil temperature was more than 5 degrees C lower than air

temperature. We changed the order of the paragraphs to first define the seasons before we use this definition. We also

replaced the sentence as suggested (l. 159–165, 168).

7) Lines 140-142 how were these values determined, i.e. the -5 and +7 degrees C differences? We decided to takes these170

thresholds based on the histogram in Figure A1. In case (b) (the average summer topsoil temperature was more than
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5 ◦C colder than air temperature) the three excluded time series where really a lot different from all the others and all

thresholds between -5 and −8 ◦C had the same effect. In case (c) (more than 5% of the single summer measurements

were more than 7 ◦C above air temperature), the definition of the threshold was less clear and more subjective, also based

on a close inspection of the time series. Other values would be possible but we think that we excluded the timeseries175

which were most prone to errors in this way.

8) Line 148 Assuming that you smoothed the data prior to defining the seasons? Did smoothing remove all spikes in the

data such that the winter and summer temperature thresholds yielded continuous seasons, i.e. were there any days within

winter or summer that fell outside of the threshold temperatures? We did not do any additional smoothing despite the two

steps mentioned: (1) average all (365) daily air temperatures for 20 years and (2) smooth using a 7-day moving window.180

As you can see in Figure A2, this removed most spikes and the resulting seasons were continuous. I suppose in many

environments such a simple approach would not yield continuous seasons. In our case, the temperature rise between

winter and summer and the temperature drop end of summer until winter are very steep. Therefore, the definition of

the seasons is not very sensitive to the defined temperature thresholds. We found that seasons defined in this way suit

the data and environment much more than the classical 3-month per season. Especially the winter is clearly longer than185

December to February.

9) Lines 153-154 I understand how the slopes for fall and spring might work directionally as cooling and warming respectively,

but I would imagine that the peak warm and cool days with fall somewhere in the middles of summer and winter

respectively, and therefore the slopes would not be very informative for these seasons. Even if only a few cm below the

soil surface, topsoil temperature generally lags behind air temperature, especially in winter under snow. Thus the coldest190

topsoil temperatures were observed in March, at the end of winter and the rate of cooling in winter is low but consistent

and (we find) interesting. We agree that in summer (especially in the 2nd period), the warmest topsoil temperatures are

not at the end of the season and the slope is less indicative and in some cases negative (when August is cold). We included

the summer slope for consistency and prefer to keep it. However, we added an additional comment on negative summer

slope values (l. 297–298).195

10) Lines 157-158 Would the day when temperatures first drop below 0.5 degrees C be the beginning of the freezing period in

autumn? This should be the case. However, we did not observe a clear beginning of the freezing period as all timeseries

showed significant peaks (warm periods) after the first cold temperatures (Figure 5ab). The freezeback was not very clear

for most sensors.

11) Line 168 remove the comma after “those” Done (l. 199)200

12) Line 181 by “date of thawing” do you mean first date, end date, or both? The statement is true for both, start and end of

thawing. We were mostly interested in the end of the thawing period (as in the sentence just before) and specified this

now (l. 214).
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13) Line 199 give the actual temperature ranges The actual mean October temperatures were −5.3 ◦C and −1.0 ◦C for the

coldest and warmest location in the first period and −2.8 ◦C and 0.2 ◦C in the second period. We added these numbers205

to the manuscript (l. 234–236).

14) Lines 263-264 with regard to the relationship between October soil temperatures and active layer depth, I have a hard time

believing that Oct. temperatures can influence active layer depth – more likely the other way around maybe? Absolutely,

we agree. We replaced the misleading sentence (l. 325).

15) Figure 8 I’m not sure that this figure is very useful. If vegetation is influencing snow depth, than it’s very likely that snow210

depth in one year will be related to snow depth the next year. You might considering removing this. We agree that the

former Figure 8 was not essential and moved it to the appendix (now Figure B2). We prefer to keep it in the manuscript

because it supports our statement on wind redistribution in Section 3.2. Furthermore, the figure illustrates that the any

model snow depth based on vegetation type will be limited by the substantial interannual variability.

16) Figure 7 you discuss these relationships a lot, but I don’t see any statistical analyses on them (with the exception of215

panels (a) and (f)). Are these significant relationships across and within vegetation types? Also, if these relationships are

considered to be causal, then snow depth should be on the x-axis, as it is driving the other variables (again, except panels

(a) and (f)). These relationships are all statistically significant (p<0.01) and we added regression lines and correlation

coefficients to Figure 7 for some (basic) statistical analysis. We also swapped the figure axis because we agree that snow

depth is rather the driver than the response.220

17) Figure 11 same as Figure 7 with regard to the statistical analyses (except panel (a)). Axes are fine in this figure as active

layer depth is the assumed dependent variable. We added regression lines to Figure 10 (previously 11) in the case

of significant (p<0.05) relationships and correlation coefficients to the figure for some (basic) statistical analysis. As

we discuss the differential relationships for different vegetation types in Section 4.4, we added additional panels with

regression lines for lichen and dwarf shrubs and all other vegetation types combined.225

18) Line 327 remove the word “temperature.” Done (l. -410)

19) Lines 332-334 examples of where relationships are being discussed with no statistical analyses The reviewer is right,

we did not show statistical analysis within single vegetation types although we discuss them (in particular for winter

temperature – ALT, snow melt timing – ALT and positive degree days – ALT). We added the statistical analysis of

these relationships for two groups of vegetation types: lichen and dwarf shrubs versus taller vegetation to the results230

Section 3.4 (l. 310–324) and Figure 10 (previously 11). We also expanded the discussion on this topic in Section 4.4 (l.

410–421).

20) Finally, with regard to the Discussion and Conclusions, the vegetation may indeed have an effect on active layer depth,

through its effect on snowpack, as vegetation is effecting the snowpack, which is driving snowmelt and spring/summer

temperature regimes. We agree that vegetation has an effect on active layer thickness or, at least, there is a correlation. As235
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we describe in the results Section 3.4, vegetation explains 34% of the ALT variability (Table 2). We describe this effect

as ’weak’ even though it is statistically significant. We agree that this correlation is likely due to winter snow effects and

added an additional comment to the discussion (l. 436).
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Abstract. Soil temperatures in permafrost regions are highly heterogeneous on small scales, in part due to variable snow and vegetation coverConnections between

vegetation and soil thermal dynamics are critical for estimating the vulnerability of permafrost to thaw with continued cli-

mate warming and vegetation changes. The interplay of complex biophysical processes results in a highly heterogeneous

soil temperature distribution on small spatial scales. Moreover, the temperature distribution that results from the interplay of complex biophysical

processes link between topsoil temperature and active layer thickness remains poorly constrained. Sixty-eight temperature log-5

gers were installed at 1–3 cm depth to record the distribution of topsoil temperatures at the Trail Valley Creek study site in

the Northwestern Canadian Arctic. The measurements were distributed across six different vegetation types characteristic for

this landscape. Two years of topsoil temperature data were analysed statistically to identify temporal and spatial characteris-

tics and their relationship to vegetation, snow cover, and active layer thickness. The mean annual topsoil temperature varied

between −3.7 ◦C and 0.1 ◦C within a 1.2km distance, with an approximate average across the landscape of −2.3 ◦C in 2017 and −1.7 ◦C in 2018. 0.5 km2.10

The observed variation can, to a large degree, be explained by variation in snow cover. Differences in height between vegetation types

cause spatially variable snow depth during winter , leading to spatially variable snow melt timing in spring, causing pronounced differences in topsoil mean temperature and tem-

perature variability during those time periods. Summer topsoil temperatures were quite similar below most vegetation types , and not consistently related to snow depth are

strongly related with vegetation type and show complex associations with late-summer thaw depth. While cold winter soil

temperature is associated with deep active layers in the following summer at lichen and dwarf shrub tundra, we observed15

the opposite beneath tall shrubs and tussocks. In contrast to winter observations, summer topsoil temperature is similar

below all vegetation types with an average summer topsoil temperature difference of less than 1 ◦C. Moreover, there is no

significant relationship between summer soil temperature or cumulative positive degree days and active layer thicknessat

the end of August. The small-scale pattern of vegetation and its influence on snow cover height and snow melt governs the annual topsoil temperature in this permafrost-underlain

landscape. Altogether, our results demonstrate the high spatial variability of topsoil temperature and the active layer thick-20

ness even within specific vegetation types. Given that vegetation type defines the direction of the relationship between

topsoil temperature and active layer thickness in winter and summer, estimates of permafrost vulnerability based on re-

mote sensing or model results will need to incorporate complex local feedback mechanisms of vegetation change and

permafrost thaw.
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1 Introduction25

Arctic ecosystems are changing rapidly, with widespread reports of air temperature increase (IPCC, 2013), shrinking snow cover

(?)decreasing area and duration of snow cover (AMAP, 2017), and warming and degrading permafrost (Biskaborn et al.,

2019). Permafrost thaw also depends on local influences on the transfer of heat into the ground including vegetation, hydrology, and

soil physical properties. Connections between vegetation and soil thermal dynamics are critical for estimating the vulnerability of permafrost to thaw with continued

climate warming and vegetationchanges, hydrology, and vegetation. Permafrost ecosystems are undergoing rapid vegetation change with30

increasing shrub abundance, cover, and biomass in many regions (Tape et al., 2006; Myers-Smith et al., 2011; Sturm et al.,

2001b; McManus et al., 2012; Lantz et al., 2013; Frost and Epstein, 2014). Yet, permafrost models and remote-sensing-driven

monitoring approaches are still limited in their representation of small–scale spatial variability of snow and vegetation (Langer

et al., 2013; Zhang et al., 2014; Park et al., 2016).

The interaction of vegetation and active layer thickness is very complex if the energy balance and soil properties are consid-35

ered simultaneously (Loranty et al., 2018). Observational evidence indicates that increased shrub cover reduces summer soil temperatures and decreases seasonal

permafrost thaw depths (Anisimov et al., 2002; Walker et al., 2003, 2008; Blok et al., 2010), but tall shrub expansion in the tundra warms soils on annual timescales (Loranty and

Goetz, 2012).

? found the largest offset between air and soil temperature in the low Arctic at an mean annual air temperature of roughly −10 ◦C due to snow cover and vegetation variability.

In winter, snow insulates the soil from the cold air temperature. The resulting difference between the soil and air temperature is40

important for the ground thermal regime and thus permafrost temperatures (Zhang, 2005). This temperature difference varies widely in space,

and how faithfully this parameter is represented differs widely in different land surface models (?). The insulating effect of snow is driven by snow depth, texture, and density, which

are affected by snow redistribution and the formation of depth hoar (?Pomeroy et al., 1997). Vegetation affects snow depth and density because tall shrubs

trap snow (Pomeroy et al., 2006; Sweet et al., 2014); also some vegetation types preferentially grow in locations with deeper

snow cover in order to be protected from cold air temperatures (Sturm et al., 2005b)and profit from additional moisture in spring45

(Grippa et al., 2005; Sturm et al., 2005b). This association leads to warm soil temperature in winter below tall shrubs (Lantz

et al., 2009; Frost et al., 2018) and in tussock tundra which is commonly found in depressions (and experiences found in poorly drained areas

in our study region (with long freeze–back periods), but also occurs on mesic slopes elsewhere; in contrast, lichen tundra

is usually associated with wind exposed hill tops and ridges which accumulate the least snow (Pomeroy et al., 1997; Burn and

Kokelj, 2009).50

Snow melt timing is considered to be one of the most important drivers of active layer thickness at the end of summer

(Chapin et al., 2005; Wilcox et al., 2019). However, in certain areas the strong association may also be an artefact of the

confounding relationship with other variables which strongly affect the active layer thickness. For instance, wind-blown ridges

with thin snow cover and hence early snow melt snowmelt also tend to store less organic matter, and are therefore less insulating

, (Michaelson et al., 1996) than more sheltered locations where more snow is deposited. Also, depressions and tall shrub sites55

that accumulate deep snow cover and exhibit late snow melt snowmelt are expected to be moister and to accumulate more peat

and organic soil as compared to wind-exposed ridges (Walker et al., 2008)(Walker et al., 2008; Pajunen et al., 2011). Therefore, the

thicker moss and organic layer at tussock and tall shrub sites may be the factor that helps to keep the active layer cooler and
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shallower, rather than the late snow melt (Walker et al., 2008; Frost et al., 2013; Loranty et al., 2018). snowmelt (Walker et al., 2008; Frost et al.,

2013; Loranty et al., 2018).60

Observational evidence indicates that increased shrub cover reduces summer soil temperatures and decreases sea-

sonal permafrost thaw depths (Anisimov et al., 2002; Walker et al., 2003, 2008; Blok et al., 2010), but tall shrub expansion

in the tundra warms soils on annual timescales (Loranty and Goetz, 2012). Summer surface temperature is influenced by re-

duced by tall vegetation through radiation shading and rainfall interception and evaporation (Loranty and Goetz, 2012; Zwieback et al., 2019). Tall

vegetation cover is more closely coupled to increased soil organic matter (Pajunen et al., 2011) and decreased soil moisture during summer. These factors generally lead to reduced65

evapotranspiration (Loranty and Goetz, 2012; Zwieback et al., 2019). Increased evapotranspiration may reduce summer

soil warming below tall shrubs (Frost et al., 2018) as less energy is available below the canopy and the soil tends to be drier and is thus more insulating. as it is an

energy sink and decreases soil moisture and thus soil thermal conductivity during summer (Fisher et al., 2016). While

these factors lead to reduced summer warming underneath shrubs, the magnitude and even the sign of this association varies

in space and time. To exploit vegetation cover as a proxy for permafrost soil temperatures in summer, detailed observations of70

soil temperature and vegetation cover are required. The influence of all these factors on active layer thickness is complex and

spatially variable, highlighting the difficulty of attributing active layer thickness trends to any one particular variable.

This study assesses This study quantifies the complex relationship between vegetation cover, snow, topsoil temperature and

active layer thickness and explores the local seasonal variability of the three four components. We hypothesise that in winter the

dependence of topsoil temperatures on vegetation is largely shaped by the association of vegetation with snow depth, owing75

to the strong insulating effect of snow. Moreover, we expect that in summer tall vegetation cools the soil through shading and evapotranspiration. We also

hypothesise that the timing of snow melt and accumulation will be snowmelt is a dominant control on topsoil temperature during spring and autumn,

with snow melt being largely affected by interactions between vegetation and snow depth.

active layer thickness. Moreover, we expect that active layer thickness is reduced by tall vegetation through shading in

summer. In the current study, we aim to quantify the topsoil temperature variability and elucidate the correlation between such variability and vegetation cover, thus80

improving improve our understanding of the feedback mechanisms in the complex permafrost–vegetation–atmosphere system

across the four seasons. The results provide a basis for upscaling and modelling attempts and assess for assessing the potential

of vegetation remote sensing for permafrost applications.

2 Methods

2.1 Field site, soil, and vegetation85

The Trail Valley Creek research site is located at the tree line in the tundra-taiga transition zone 45 km north of Inuvik,

Northwest Territories, Canada, east of the Mackenzie Delta (133.499 °E133.499 °W, 68.742 °N, Figure 1a). The mean annual air

temperature in the 1999 – 2018 period was −7.9 ◦C (Environment and Climate Change Canada, 2019). During this 20-year

period, it rose by 1.1 ◦C per decade and the strongest warming trend was observed in May with an increase of 2.8 ◦C per

decade (Environment and Climate Change Canada, 2019). Although the site is only 70 km south of the Arctic Ocean, the90

climate is continental and summers can be quite warm (Figure B1). The study site is underlain by continuous permafrost
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Tree Tall shrub Riparian shrub

Dwarf shrub Tussock Lichen

(a) (b)

(c) (d) (e)

(f) (g) (h)

250m

Figure 1. (a) Location of the Trail Valley Creek research station, Northwest Territories, Canada and Arctic tundra extent in orange colour

(data from Walker et al., 2005), (b) airborne orthophoto (Polar 5 airplane, MACS camera, 08/2018) of the site including topsoil temperature

measurement locations, (c–h) six vegetation types used in this study.

100–150m thick (Marsh et al., 2008) and is characterised by an active layer 25–100 cm deep at the end of summer. The

catchment is dominated by mineral-earth hummocks which have a 5 cm thick organic layer and are underlain by fine grained

material composed of roughly one third sand, one third silt, and one third clay (Quinton et al., 2000). Between the hummocks

is a several decimeters thick peat layer, known as the inter-hummock zone (Quinton et al., 2000). The permafrost is ice-rich95

and thus susceptible to warming and thawing (Burn and Kokelj, 2009).

Gently rolling hills structure the lowland landscape (Marsh et al., 2010) and provide habitats for different tundra vegetation

types and, in favourable locations, forest patches. The vegetation can be divided into six main types (Figure 1c–h) based on the

classification by Walker et al. (2005):

1) Trees can be found in river channels and on adjacent slopes as well as in isolated patches. While trees growing in the forest100

patches can reach 10m height, trees in isolated patches are usually 0.5–2.5m tall (Anders et al., 2018)(Anders et al., 2018;

Antonova et al., 2019). The tree species are white and black spruce (Picea glauca and Picea mariana) (Palmer et al.,

2012). Forest patches cover roughly 2% of the landscape (Grünberg and Boike, 2019).
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2) Tall shrub tundra is characterised by sparse patches of green alder (Alnus alnobetula) (Street et al., 2018); tall shrubs on

hill slopes grow 3–5m apart. While the alder shrubs are up to 2m tall, the area between the shrubs is covered by shorter105

shrub species such as dwarf birch (Betula glandulosa) and by gasses grasses and sedges. Tall shrubs (class S2 (low-shrub

tundra) in Walker et al. (2005)) cover at least 11% of the wider Trail Valley Creek area (Grünberg and Boike, 2019).

3) Riparian shrub tundra can be found next to streams and at water tracks. Willow (Salix) species dominate these areas and

grow up to 2.1m tall. Additional shrub species include green alder and dwarf birch. Riparian shrubs (class S2 (low-shrub

tundra) in Walker et al. (2005)) cover about 14% of the landscape (Grünberg and Boike, 2019).110

4) Dwarf shrub tundra is one of the most abundant vegetation types growing on hill tops and slopes. In general, dwarf birch

forms a dense canopy 20–50 cm high; in extreme cases it can reach 1m. Dwarf birch is often complemented by shorter

dwarf shrubs such as Labrador tea (Ledum palustre) and mountain cranberry (Vaccinium vitis-idaea), forbs (e.g. sweet

coltsfoot, Petasites frigidus), graminoids, mosses, and lichen (Street et al., 2018). Dwarf shrubs (class S1 (erect dwarf-

shrub tundra) in Walker et al. (2005)) cover roughly 24% of the landscape (Grünberg and Boike, 2019).115

5) Tussock tundra is mostly located in flat, poorly drained areas in our study region. At our site specifically, 95% of the

tussock patches have a slope of less than 4°, which is by far the lowest value of all vegetation types. Tussock–

forming sedges such as cotton grasses (Eriophorum) and Carex species dominate. However, a variety of dwarf shrubs

such as dwarf birch, willows, Labrador tea, mountain cranberry, bilberry (Vaccinium uliginosum), crowberry (Empetrum

nigrum), bearberry (Arctostaphylos uva-ursi), and cloudberry (Rubus chamaemorus) are also present and mosses can be120

found between the tussocks. The vegetation height is 10–30 cm in general. Tussock tundra (class G4 (tussock-sedge,

dwarf-shrub, moss tundra) in Walker et al. (2005)) is the most abundant vegetation type in the study area with roughly

37% coverage (Grünberg and Boike, 2019).

6) Lichen tundra is dominated by lichen and dwarf shrubs 3–15 cm high, including mostly Labrador tea, mountain cranberry,

crowberry, bearberry, and cloudberry. Some graminoids may also be present. Lichen tundra (class S1 (erect dwarf-shrub125

tundra) in Walker et al. (2005)) covers about 10% of the study area (Grünberg and Boike, 2019).

The approximate current spatial distribution of the six vegetation types and water is shown in Figure 2. The extent of tall shrub

cover has expanded in the past and is likely to increase in the future at the Trail Valley Creek study site (MacKay, 1995; Lantz

et al., 2010).

2.2 Field measurements130

Topsoil temperature was measured for two years at 68 locations distributed below different vegetation types at a maximum

distance of 1200m between the sensors in the study area (Figure 1b). We used iButtonr temperature loggers (DS1922L) at

11 bit (0.0625 ◦C) resolution with an accuracy of 0.5 ◦C provided by the manufacturer. The sensors are 17mm in diameter and

6mm thick. Before deployment, we coated them with plastic to ensure water resistance. We tested all sensors in an ice bath
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1 km

Tree

Tall shrub

Riparian shrub

Dwarf shrub

Tussock

Lichen

Water

Figure 2. Vegetation map of the study region using the vegetation types as described above (Grünberg and Boike, 2019); the map is based on

airborne orthophotos and vegetation height derived from airborne laser scanning (Anders et al., 2018); the white square indicates the study

site extent including all sensor locations (white plus signs) as shown in Figure 1b.

and verified the temperatures measured at the zero curtain. As all sensors had zero-curtain temperatures between −0.12 ◦C and135

0.30 ◦C, we assume that the accuracy provided by the manufacturer is realistic.

We installed all temperature loggers as close as possible to the surface (soil, moss, or lichen) but deep enough to be protected

from solar radiation (typically 1–3 cm deep). The measurement interval was every three hours, the measurement periods were

27 August 2016, 17:00 (local time) to 03 September 2017, 08:00 and 04 September 2017, 05:00 to 22 August 2018, 14:00. In

between the two measurement periods, the sensors had to be removed in order to obtain data records and were reinstalled at140

the same positions. We peeled off the coating, read out the data, and used tape as the new coating, as the plastic could not be

reapplied in the field setting. This was done in the field to assure that each sensor was reinstalled as close as possible to the

original location. However, the coating was different and possibly the micro-location and the contact to the surrounding moss,

lichen or soil also differed slightly. Thus, we treated the two periods separately in our statistical analysis.
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We classified the vegetation type into one of the six categories described above at each topsoil temperature location based145

on observations in the field and pictures taken while installing and removing the sensors. Maximum vegetation height was

measured from 04–06 August 2019 within 30 cm around the sensor position.

Depth to the frozen soil was measured on 22 and 23 August 2018 three times around each topsoil temperature location within

a 30 cm radius. We averaged the three values before continuing with the statistical analysis. Thawing of the soil potentially

continues until freeze–back starts in October; thus, maximum thaw depths were not recorded. Snow depth was measured150

on 30 April 2017 approximately at the topsoil temperature locations based on a hand-held GPS because the flags marking

each location were buried below the snow. In 2018, snow depth was measured by calculating the difference between a digital

elevation model (DEM) of the snow and a DEM of the bare ground. The snow DEM was created using structure from motion

photogrammetry in the software Pix4Dmapper (Pix4D SA, 2019), using images taken by an eBee Plus RTK at 3.5 cm/pixel

resolution on 22 April 2018 (Mann, 2018). The 1m resolution bare ground DEM was created using airborne LiDAR acquired155

in 2008 (Hopkinson et al., 2009). The resulting 1m resolution snow depth raster was calibrated using 1370 Magnaprobe (Sturm

and Holmgren, 2018) snow depth measurements taken between 19 and 25 April 2018.

2.3 Data analysis

We analysed the topsoil temperature data separately for the four seasons. The definition of seasons used in our statistical

analysis is based on mean daily air temperatures of the last 20 years (1999–2018) at Trail Valley Creek (Environment and160

Climate Change Canada, 2019). To obtain a complete 20-year record, we gapfilled the Trail Valley Creek data using a

piecewise linear regression with data from the climate stations in Inuvik, 45 km further south. Furthermore, we smoothed

the average annual cycle using a 7-day moving window (Figure A2). We defined winter as all days with average air

temperature below −15 ◦C (06 November - 10 April) while summer was defined as air temperature above 8 ◦C on average

(10 June - 25 August). The periods in-between were defined as spring and autumn (Figure A2).165

Before analysis, we checked the quality of all time series data during the two measurement periods and removed the series

if (a) the data record had more than 10% data gaps (4 series), (b) the mean deviation of topsoil temperature minus air temperature in summer was less

than −5 ◦C average summer topsoil temperature was more than 5 ◦C colder than air temperature indicating that the sensor

was either buried too deep and affected by the permafrost or affected by running water (3 series), or (c) more than 5% of the

single summer measurements were more than 7 ◦C above air temperature indicating additional sensor warming by direct solar170

radiation (8 series) (Figure A1). We used air temperature measurements by Environment and Climate Change Canada (2019)

at Trail Valley Creek for this comparison. The number of remaining data series in each measurement period per vegetation type

is listed in Table 1.

The definition of seasons used in our statistical analysis is based on mean daily air temperatures of the last 20 years (1999–2018) at Trail Valley Creek (Environment and Climate

Change Canada, 2019). To obtain a complete 20-year record, we gapfilled the Trail Valley Creek data using a piecewise linear regression with data from the climate stations in Inuvik,175

45km further south. Furthermore, we smoothed the average annual cycle using a 7-day moving window (Figure A2). We define winter as all days with average air temperature

below −15 ◦C (06 November - 10 April) while summer is defined as air temperature above 8 ◦C on average (10 June - 25 August). The periods in-between are defined as spring

and autumn (Figure A2).
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Table 1. Number of data series per vegetation type in each measurement period; period 1: 27 August 2016, 17:00 (local time) to 03 September

2017, 08:00 and period 2: 04 September 2017, 05:00 to 22 August 2018, 14:00.

Vegetation type Number of data series

Period 1 Period 2

Tree 3 3

Tall shrub 17 15

Riparian shrub 2 2

Dwarf shrub 15 17

Tussock 14 14

Lichen 10 9

Total 61 60

We calculated a variety of different characteristics for each topsoil temperature series, namely (I) the mean value for the

whole year, each season, and each month, (II) the range of all three hourly values between the 10th and the 90th percentile180

for the whole year, each season, and each month, (III) the slope of a linear regression of all daily average values within each

season, i.e. the rate of warming or cooling, (IV) the cumulative sum of positive degree days from the beginning of the melt

season until the end of August, (V) the day of the year when the soil temperature first rose above −0.5 ◦C which indicates the

beginning of the thawing period, (VI) the day of the year when the soil temperature first rose above 0.5 ◦C which indicates the

end of the thawing period, and (VII) the day of the year when the soil temperature first drops below −0.5 ◦C which indicates185

the end of the freezing period in autumn. We used −0.5 ◦C and 0.5 ◦C as thresholds instead of 0 ◦C to account for sensor

uncertainty. We used Python 3.6 to analyse the topsoil temperature series. In boxplots, we always show the absolute minimum

and maximum as whiskers, the 25th and 75th percentile as the box, and the median as a line within the box.

In terms of statistical analysis, we calculated used linear models (lm in R) to calculate Pearson’s correlation coefficients and

linear regressions for all numerical variables and to determine whether the variables were significantly related at α= 0.05.190

In a first step, we used data of all vegetation types. In the second step, we split the data into two subsets, one containing

the upland vegetation types Lichen tundra and Dwarf shrub tundra and one containing all other vegetation types. To assess

the relationship of vegetation type to topsoil temperature characteristics, active layer thickness, and snow depth, we used a linear

model (lm in R) to estimate the adjusted R2 and the fraction of variance explained by vegetation type. Prior to the analysis, we

excluded the vegetation types ’tree’ and ’riparian shrub’, as we do not have enough measurement series for these types. We195

assessed the impact of vegetation type on topsoil temperature characteristics based on all data series from both measurement

periods. By analysing the two periods separately in the statistical model we accounted for the systematic differences between

the years. For example, the summer of 2017 was warmer and started earlier than the summer of 2018. When we were interested

in the impact of vegetation type on active layer thickness and snow depth, we used all sensor locations, even those , for which
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we removed the temperature record, for example due to missing data. Results which were not significant at a level of 0.05 are shown in grey. We200

used R version 3.4 for all statistical analyses.

3 Results

We found a complex relationship complex spatial relationships between the different topsoil temperature characteristics, snow depth,

active layer thickness, and vegetationin space. In general, the temperatures correlate well for all mean topsoil temperatures of the months

between December and April were strongly correlated (Figures 3 and 4). This implies that locations with relatively cold205

December topsoil temperatures were generally still colder than average in April. Locations which are were colder in win-

ter correspond corresponded to warmer topsoil temperatures in May; however, the correlation of May temperatures with winter

temperatures is was much stronger for the first period (September 2016 – August 2017) than for the second (September 2017

– August 2018) . The summer temperatures between June and September are were also highly correlated. In the first period,

November topsoil temperature correlates correlated well with October values and thus belongs belonged to autumn, while Novem-210

ber correlates correlated more strongly with the winter months in the second period. Due to the long winter, the mean annual

topsoil temperature correlates correlated strongly with the topsoil temperature of the winter months, while it is was almost un-

correlated with the summer topsoil temperature. The end date of the spring thawing period is was strongly related to winter

temperatures, snow depth and active layer thickness. Contrary to this, the date of thawing is not end of thawing was not significantly

related to summer topsoil temperature (Figures 3 and 4).215

The annual mean topsoil temperature recorded by all single sensors varies varied between −3.7 ◦C and −0.8 ◦C in the first

period and between −3.7 ◦C and 0.1 ◦C in the second period. In both periods, we find found both the warmest and the coldest

values in tussock tundra. On averageThe substantial variability within single types contributed to the low fraction of variance

explained by vegetation (Table 2). If all locations within each vegetation type were averaged, lichen tundra has had the

coldest topsoil temperature with −2.6 ◦C and −2.3 ◦C in the first and second period, respectively. The warmest average topsoil220

temperature of −2.0 ◦C and −1.3 ◦C in the first and second period were measured below tall shrubs. If we consider considered the

approximate landscape fractions of each vegetation type (Section 2.1), we estimate estimated a mean annual topsoil temperature

of −2.3 ◦C and −1.7 ◦C in the first and second period, respectively.

3.1 Soil temperature and vegetation in autumn

The two years 2016 and 2017 had different meteorological conditions in autumn. While air temperature dropped gradually to225

−7 ◦C before the first snowfall in 2016 (Figure B1a), daily mean air temperature had only dropped to 0 ◦C by the date of the

start of the snow accumulation in autumn 2017. Thus, the topsoil was significantly cooler in October 2016 as compared to 2017

(Figure 5d).

Autumn topsoil temperatures and cooling rates are were not significantly related to vegetation type (Figure 5a–d, Table 2).

The same is was true for the start of the frozen period, which is was almost identical at most sensor locations independent230

of vegetation type (Figure 5e). However, we observed considerable variability in the mean temperature within each vegeta-
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Figure 3. Pearson’s correlation coefficients (R) of all topsoil temperature characteristics (◦C), active layer thickness (cm), and snow depth

(cm) in the first period (September 2016 to August 2017).

tion type, at the landscape level, and between the different years. Considering the complete autumn season (26 August – 05

November), the mean autumn temperatures vary varied between −0.9 ◦C and 1.2 ◦C in 2016 and between 0.3 ◦C and 1.7 ◦C in

2017. For October only, the range of mean topsoil temperatures was even higher, with a difference of 4.3 ◦C and 3.0 ◦C between between

−5.3 ◦C and −1.0 ◦C for the coldest and the warmest locations in 2016 and 2017, respectively the first period and between −2.8 ◦C235

and 0.2 ◦C in the second period (Figure 5d). Similar differences can be observed in the cooling rates, which varied most
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Figure 4. Pearson’s correlation coefficients (R) of all topsoil temperature characteristics (◦C), active layer thickness (cm), and snow depth

(cm) in the second period (September 2017 to August 2018).

strongly within tussock tundra and tall shrubs. Some locations within these two types cool cooled down more than twice as fast

as other locations (Figure 5c).

Relationship of vegetation and topsoil temperature characteristics, active layer thickness, snow depth, and vegetation height expressed by the fraction of variance explained by

vegetation type in a statistical model (lm(response ~ period + vegetation type)) and the adjusted R2; complete data set accounting for the measurement period of topsoil temperature240

first; results which are not significant at a level of 0.05 are shown in grey.
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Table 2. Relationship of vegetation and topsoil temperature (T) characteristics, active layer thickness, snow depth, and vegetation

height expressed by the fraction of variance explained by vegetation type in a statistical model (lm(response ~ period + vegetation

type)) and the adjusted R2; complete data set accounting for the measurement period of topsoil temperature first; results which are not

significant at a level of 0.05 are shown in grey.

Response Fraction of variance Adjusted R2

Mean annual T (◦C) 0.125 0.25

Date of first T>0 ◦C 0.548 0.55

Cumulative degree days (◦C) 0.071 0.56

Mean T May (◦C) 0.543 0.53

Mean T July (◦C) 0.118 0.10

Mean T October (◦C) 0.035 0.51

Mean T March (◦C) 0.355 0.56

T slope spring (◦C/day) 0.327 0.40

T slope summer (◦C/day) 0.058 0.51

T slope autumn (◦C/day) 0.053 0.09

T slope winter (◦C/day) 0.432 0.56

Active layer thickness 2018 (cm) 0.342 0.31

Snow depth 2017 (cm) 0.699 0.68

Snow depth 2018 (cm) 0.584 0.56

Vegetation height (cm) 0.427 0.40

Response Fraction of variance Adjusted R2 Mean annual T (◦C) 0.125 0.25 Date of first T>0 ◦C 0.548 0.55 Cumulative degree days (◦C) 0.071 0.56 Mean T May (◦C) 0.543

0.53 Mean T July (◦C) 0.118 0.10 Mean T October (◦C) 0.035 0.51 Mean T March (◦C) 0.355 0.56 T slope spring (◦C/day) 0.327 0.40 T slope summer (◦C/day) 0.058 0.51 T

slope autumn (◦C/day) 0.053 0.09 T slope winter (◦C/day) 0.432 0.56 Active layer thickness 2018 (cm) 0.342 0.31 Snow depth 2017 (cm) 0.699 0.68 Snow depth 2018 (cm)

0.584 0.56 Vegetation height (cm) 0.427 0.40245

3.2 Soil temperature, snow, and vegetation in winter

There were significant differences in soil temperature between the two winter seasons (06 November - 10 April). Average top-

soil temperatures were roughly 2 ◦C colder beneath all vegetation types in the winter 2016/2017 as compared to the following

year. This observation agrees well with the difference in mean winter air temperature of −20.3 ◦C and −18.2 ◦C in the first and

second period, respectively (Figure B1a). The extremely cold December of 2016 (6.5 ◦C colder than in the second period)250

led to a much faster soil cooling in the first winter as compared to the second (Figure B1a).
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Figure 5. Topsoil temperature series of (a) October 2016 and (b) October 2017 representing autumn of the two different measurement

periods; mean of all measurements below four different vegetation types in colour, the range of all single sensors in light grey and the range

of all sensors between the 10th and 90th percentile in darker grey; the beginning of snow accumulation was derived from the Trail Valley

Creek weather station albedo data; boxplots of all measurements per vegetation type with boxes of the first period left and the second period

right and dotted; for riparian shrubs and trees all single observations are shown with filled symbols for the first period and open symbols for

the second; (c) rate of cooling in autumn; (d) mean October topsoil temperature; (e) date when the freezing is completed.

There is was a strong relationship between vegetation type and topsoil temperature in winter. Topsoil under tall shrub tundra

stays stayed warmest, followed by topsoil beneath tussock, dwarf shrub, and lichen tundra (Figure 6). Vegetation type explains

explained 36% of the topsoil temperature variations in the coldest month (March) in a single year and 43% of the cooling

rate during winter (Table 2). The coldest mean temperatures are were associated with the highest temperature variations below255

lichen tundra (Figure 6).

Snow depth strongly mediates mediated the association between vegetation type and winter soil temperatures. Different veg-

etation types show showed characteristic snow depth values (Figure 7a, f6e). The deepest snow cover is was associated with tall

shrubs, followed by tussock tundra and dwarf shrubs while lichen tundra is was characterised by the shallowest snow cover.

Vegetation explains explained 70% and 58% of the observed snow depth variability in 2017 and 2018, respectively (Table 2).260

The predictability of snow depth from vegetation type is limited by the differences in snow cover in different years. For

example, the snow depth at the end of April 2017 reached higher maximum and lower minimum values as compared
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Figure 6. Topsoil temperature series of (a) March 2017 and (b) March 2018 representing the coldest topsoil temperatures in winter of the

two different measurement periods; the mean of all measurements below four different vegetation types is shown in colour, the range of all

single sensors is shown in light grey, and the range of all sensors between the 10th and 90th percentile is shown in darker grey; boxplots of

all measurements per vegetation type are shown with boxes of the first period on the left and boxes representing the second period on the

right and dotted; all single observations for riparian shrubs and trees are shown by filled symbols for the first period and open symbols for

the second; (c) rate of cooling in winter; (d) mean March temperature; (e) range snow depth end of March temperatureApril.

to 2018 indicating a stronger snow redistribution. The correlation between snow depth values of the different years was

R2 = 0.49 (Figure B2).

Several winter and spring topsoil temperature characteristics are were also very strongly related to snow cover, in particular265

the day of the year when the topsoil warms warmed above 0 ◦C, the topsoil temperature slope during winter cooling, and the

mean temperature of the winter and spring months (Figure 7). In 2018, snow depth was less strongly related to vegetation or

topsoil temperature characteristics than in 2017 (Figure 7, bottom row).

The predictability of snow depth from vegetation type is limited by the differences in snow cover in different years. For example, the snow depth at the end of April 2017 reached

higher maximum and lower minimum values as compared to 2018 indicating a stronger snow redistribution. The correlation between snow depth values of the different years is270

R2 = 0.49 (Figure B2).

Snow depth measured at the end of April in 2017 and 2018 at approximately the same locations. right column, Table 2).
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Figure 7. The relationship between snow depth end of April 2017 (top rowleft column) and 2018 (bottom rowright column) and (a, f) vegetation

type; (b, g) rate of cooling in winter; (c, hd) mean temperature in March; (de, if) day of year when the topsoil warms above 0 ◦C; (eg, jh)

mean temperature in May; the symbol colours refer to different vegetation types (see e.g. Figure 6); the numbers indicate the Pearson’s

correlation coefficient R2; the thin lines are regression lines of significant (p< 0.05) relationships.

3.3 Soil temperature, snow, and vegetation in spring

Starting from the beginning of May, the relationship between vegetation and topsoil temperature is was opposite to that found

in winter (Figure 8a, b). In general, topsoil temperatures beneath all vegetation types are were very similar in the last few days275

of April. The soil below lichen tundra warms warmed up first and most strongly and shows showed the most pronounced diel

variation. Dwarf shrub tundra is was still cooler in May and warms warmed up a bit more slowly than lichen tundra. Tussock
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tundra topsoil temperatures rise rose above 0 ◦C even later; tall shrub temperatures were the last to reach positive temperatures

in 2017 and were similar to tussock tundra in 2018. This order becomes became apparent in the slope of spring temperatures, in

the mean May temperatures, and in the day of the year when the thawing period ends ended (Figure 8c–e). Using a statistical280

model, we find found that vegetation type explains explained 54% of the observed variability in the end of the thaw date and the

mean May temperature and 33% of the variability in the spring warming rate (Table 2).
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Figure 8. Topsoil temperature series of (a) May 2017 and (b) May 2018 representing spring of the two different measurement periods; mean

of all measurements below four different vegetation types is shown in colour, the range of all single sensors is shown in light grey, and the

range of all sensors between the 10th and 90th percentile is shown in darker grey; boxplots of all measurements per vegetation type are

represented by boxes of the first period on the left and the second period on the right and dotted; for riparian shrubs and trees all single

observations are shown with filled symbols for the first period and open symbols for the second; (c) rate of warming in spring; (d) mean May

temperature; (e) date when thawing is complete.

Furthermore, snow melt timing is snowmelt timing was different between the years. Our observations of topsoil temperature

indicate that the snow melt indicated that the snowmelt period of the entire landscape was 20 and 40 days long in 2017 and 2018,

respectively (Figure 8e). This observation is was in contrast to the more spatially variable snow distribution observed in 2017285

(Figure B2). The long melt period in 2018 is was associated with a 3.4 ◦C colder mean May air temperature and more cold spells

as compared to May 2017 (Environment and Climate Change Canada, 2019) (Figure B1). However, due to the differences in

snow melt snowmelt timing, the cold May air temperatures in 2018 did not necessarily translate into cold topsoil temperatures.

While lichen tundra measurements indeed reveal revealed colder May topsoil temperatures in 2018, both years are were similar
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for dwarf shrub soil and May 2018 is was associated with later warmer topsoil temperatures below tussock tundra and tall290

shrubs.

3.4 Soil temperature, active layer thickness, and vegetation in summer

Topsoil temperatures in summer are were more similar for all vegetation types than spring or winter temperatures (Figure 9a,

b). In summer 2017, dwarf shrub tundra had the coolest summer temperatures. The other three vegetation types (excluding
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Figure 9. Topsoil temperature series of (a) July 2017 and (b) July 2018 representing summer of the two different measurement periods; mean

of all measurements below the four different vegetation types is shown in colour, the range of all single sensors is shown in light grey, and

the range of all sensors between the 10th and 90th percentile is shown in darker grey; boxplots show all measurements per vegetation type

with boxes of the first period on the left and the second period on the right and dotted; for riparian shrubs and trees all single observations are

shown with filled symbols for the first period and open symbols for the second; (c) rate of warming in summer; (d) mean July temperature;

(e) cumulative sum of positive degree days until the end of August.

tree/riparian shrub) have had almost identical mean values and the distributions largely overlap overlapped (Figure 9c, d). In 2018,295

the difference between dwarf shrubs and the other vegetation types was much smaller and the mean summer slope is was almost

equal for lichen, dwarf shrub, and tall shrub tundra, while tussock tundra warmed at a slightly lower rate. Some locations had

negative summer slopes in 2018 as the end of summer was relatively cool. The temperature difference between the two

years is was much larger than the variability between vegetation types. The 2018 mean summer air temperature was 2.7 ◦C

cooler than in 2017. This difference translates translated into topsoil temperatures which arewere, on average per vegetation type,300
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1.3–2.2 ◦C colder in 2018, with the smallest difference for dwarf shrubs. The small difference between vegetation types is

was also reflected in the low fraction of July mean temperature variance (12%) that can could be explained by the vegetation

type (Table 2). Lichen tundra featured slightly higher cumulative degree days than the other three vegetation types, which all

showed similar values on average (Figure 9e). Even though the influence of vegetation type on cumulative degree days is was

statistically significant, vegetation only explains explained 7% of the observed variability (Table 2).305

There is was a weak association between active layer thickness and vegetation type. On average, we found deeper active

layers below lichen and dwarf shrub tundra as compared to tussock and tall shrub tundra (Figure 10ai). The variability in active

layer thickness within each vegetation type was substantial. Correspondingly, vegetation was only weakly related to active

layer thickness at the end of summer as it explains explained only 34% of the variability between different locations (Table 2).
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Figure 10. The relationship between active layer thickness ate the end of August 2018 and (ai) vegetation type; (ba,e,j) mean topsoil winter

temperature; (cb,f,k) rate of topsoil cooling in winter; (dc,g,l) day of the year when the topsoil warms above 0 ◦C; (ed,h,m) cumulative sum

of positive degree days until the end of August of the same year; top row: lichen and dwarf shrub tundra; middle row: tussock, tall shrub,

riparian shrub and tree; bottom row: all vegetation types; the numbers indicate the Pearson’s correlation coefficient R2; the thin grey

lines are regression lines of significant (p< 0.05) relationships.

In terms of The relationship between active layer thickness and topsoil temperature characteristics depended on vegetation310

type. If we considered all vegetation types jointly, active layer thickness is was most strongly related to the date when the

topsoil temperature first rises rose above 0 ◦C in spring (Figure 10dl). While a moderate association exists existed with other

18



spring, autumn, and winter characteristics, such as the cooling rate in winter (Figure 10ck), summer characteristics show no

did not show a significant correlation with active layer thickness when all measurements are vegetation types were considered

(Figure 10e). However, when we consider only the dwarf shrub locations, sensors with higher degree days are m). If we split the data in two subsets, lichen315

and dwarf shrub tundra revealed very different winter characteristics as compared to the other vegetation types. While

cold winter temperatures were associated with deeper active layers in the following summer for lichen and dwarf shrub

tundra (Figure 10e). Deep active layers are also associated with higher topsoil temperatures in October a), tall shrub and tussock locations with cold

winter temperatures developed shallow active layers (Figure 4). Within vegetation types, the thawing degree day correlation is very weak for tall

shrubs (and other types), and so is the date of the first T>0. 10e). The spring temperature characteristics were not significantly related to320

active layer thickness for tall shrub and tussock locations (Figure 10g). Conversely, the date of the first T>0 also apparently

explains explained a moderate fraction of the active layer thickness variance within lichen and dwarf shrub tundra . For tall shrubs,

we can observe that warmer winter temperatures are (Figure 10c). Higher positive degree days were associated with deeper active layers

below dwarf shrub and lichen tundra (Figure 10b). d), however, this relationship was not statistically significant (p=0.08).

We observed significantly higher topsoil temperatures in October at locations with deep active layers (Figure 4).325

4 Discussion

In this study, we analysed how local variability of vegetation cover relates to topsoil temperature, active layer thickness and

snow depth at one site at the Arctic forest–tundra transition. Both the observed variabilityand the absolute values are site dependentWe found

distinct vegetation effects in the four seasons, which were partly counteracting each other in terms of the overall topsoil

temperature and active layer thickness variability. In particular, low vegetation lead to an inverse relationship between330

winter temperature and active layer thickness and summer topsoil temperature did not influence active layer thickness

significantly.

In agreement with Kropp et al. (2020) we found that winter topsoil temperatures controlled annual mean temperatures,

and that topsoil below tussocks and tall shrub tundra was generally warmer than topsoil below short-statured vegetation.

Furthermore, we found that topsoil temperature was most variable in space under the snow cover in winter and during snow335

melt snowmelt in May, while the spatial variability was less pronounced in summer and autumn, which agrees well with Gisnås

et al. (2014).

4.1 Vegetation and soil temperature in relation to autumn processes

While vegetation Vegetation type did not play a significant part in the autumn topsoil temperature variation , we (Figure 5), which

agrees well with Romanovsky and Osterkamp (1995) who observed very similar dates of the start of ground freezing340

across three sites up to 63 km apart. On the other hand, Frost et al. (2018) found that tall shrubs experienced a delayed

start of freezing by almost one month as compared to other vegetation types. We found that at all locations the general pattern

topsoil temperature signal was dominated by air temperature and snowfall timing. HoweverThe importance of snowcover onset

for soil temperature was highlighted by many authors, including Ling and Zhang (2003); Zhang (2005).
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While all vegetation types had similar average autumn temperatures and cooling rates, we observed considerable vari-345

ability between different locations and years. within single types as well as between years. The temporal variability of the start of

freezing was described by Romanovsky and Osterkamp (1995), who found up to 18 days difference in the start of freez-

ing date at a single location between 1987 and 1992. In their study, the temporal variability was higher than the spatial

variability although the stations were up to 63 km apart. On the other hand, we observed considerable local variability

of up to 39 days difference in the timing of the first below zero topsoil temperatures in a single year (Figure 5e). This350

variability is potentially driven by the soil cover of mosses or lichen, soil moisture, and microtopography rather than vascu-

lar plants. The importance of soil moisture in the freezing period was highlighted by Morse et al. (2016). We observed

the largest range of mean October topsoil temperatures in tussock tundra (Figure 5d) which may be caused by a large

range of moisture conditions depending on the microtopography in this vegetation type. However, it should be noted that

variations in the sensor depth will play a major role in autumn when steep temperature gradients can be expected.355

4.2 Vegetation and soil temperature in relation to winter snow processes

In winter, warm soil temperatures can be expected at locations with more snow such as below tall shrubs and in poorly drained

and somewhat sheltered tussock-dominated areas (Lantz et al., 2009; Frost et al., 2018). The snow observed at our measurement

locations was indeed deepest in tall-shrub areas, where soils were also the warmest in winter (Figure 7a, f6e). Across all

vegetation types, the differences in snow depth influenced the winter topsoil temperatures, temperature variability, and cooling360

rates. Winter temperatures were coldest and most variable at vegetation types associated with low snow, in particular below

lichen tundra and, to a lesser extent, below dwarf shrubs (Figure 6c).

The variability of snow depth within vegetation types (Figure 7a, f6e) is likely due to (I) topography and microtopography

influencing the deposition of blowing snow (Essery and Pomeroy, 2004; Morse et al., 2012), (II) vegetation height and

density differences within one vegetation type (Sturm et al., 2001a; Essery and Pomeroy, 2004; Sturm et al., 2005a) and365

(III) factors other than snow limiting shrub growth such as poor soil, too much or too little soil moisture, disturbances, and

slow colonisation (Swanson, 2015).

We also observed variability in the relationship between snow depth and winter topsoil temperature characteristics such as

the soil cooling rate and the mean and range of temperature values in the winter months (Figure 7b, c, g, ha–d). The topography

of the site is gentle and cannot account for major differences in cold-season insolation; therefore, the variability is likely largely370

due to differences in snow density and texture. autumn soil moisture, snow density, and snow texture. Differences in snow density

and texture across the landscape can be caused by snow compaction at wind exposed sites, by loose snow accumulating within

shrub canopies, and by the formation of depth hoar. We do not have detailed snow observations at our measurement locations

to analyse such differences in detail. However, our results suggest that, for the same snow depth, topsoil temperatures in March

are colder at lichen sites as compared to dwarf shrub sites (Figure 7c, hd). This agrees very well with the observation that375

lichen tundra can be found at the most wind-exposed ridges. While historical surveys of snow density did not find differences

between lichen and dwarf shrub tundra at the site (0.22 gcm−3, Wilcox et al. (2019)), snow texture and depth hoar formation
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likely differed between shrub and shrub-free areas (Belke-Brea et al., 2020), leading to differences in the heat conductivity of

each snowpack.

4.3 Vegetation and soil temperature in relation to spring processes380

In spring, a thick snow cover delays soil warming and thus results in a reversal of the topsoil temperature – vegetation type

relationship. We observed similar topsoil temperatures beneath all vegetation types in the last few days of April. The soil below

tall shrubs was coldest in May, followed by the temperatures below tussocks and dwarf shrubs, while lichen tundra topsoil was

already the warmest (Figure 8d).

We found that the date when the topsoil warmed above 0 ◦C was strongly related to vegetation type in 2017, and less so in385

2018 (Figure 8e). A strong relationship can be expected due to the influence of vegetation on snow depth, snow density, and

snow melt snowmelt energetics (Pomeroy et al., 2006; Wilcox et al., 2019). The weaker relationship in 2018 is likely due to the

more complex spring weather patterns including multiple periods of warming and subsequent freezing periods. The colder

May air temperature in 2018 was associated with colder topsoil temperatures below lichen tundra and warmer topsoil

temperatures below tall shrubs, where the snow melted later as compared to May 2017 (Figure 8d). This indicates a390

first-order control of snow depth as a buffer between air and topsoil temperature.

In general the presence of shrubs enhances snow melt snowmelt as soon as branches stick out of the snow, thus reducing surface

albedo and increasing long-wave emissions (Pomeroy et al., 2006; Marsh et al., 2010). Wilcox et al. (2019) made extensive

measurements of snow-free date with a drone at the same study site in 2016 and showed that dwarf shrub areas become snow

free earlier than non-shrub areas, regardless of snow depth and hillslope aspect. However, we did not observe this relationship395

at our locations, likely due to the small number of points we measured at compared to Wilcox et al. (2019). Instead, we found

the topsoil warmed above 0 ◦C first slightly earlier at the lichen tundra locations, even though they were similar in snow depth

to the dwarf shrub locations (Figure 7d, ie, f).

4.4 Vegetation and soil temperature in relation to summer processes and active layer thickness

Although shrubs may reduce summer soil warming through shading and evapotranspiration (Frost et al., 2018)(Pearson et al.,400

2013; Frost et al., 2018), in our study, the summer difference between all vegetation types is very small, and shrub tundra is

comparable to tussock tundra in terms of topsoil temperature (Figure 9 and B3). Lichen tundra topsoil warms up slightly more,

in particular during mid-day, but the average difference is less than 1 ◦C.

These generally small differences in topsoil temperature likely contribute to the weak relation between vegetation type and

summer temperature characteristics (Figure 10a, ei, m, Table 2).405

On the other hand, winter and spring temperature characteristics such as the date when the topsoil warmed above 0 ◦C, are

strongly related to active layer thickness (Figure 10). At first glance, our data suggest that the snow-free date and thus the

length of the summer period is the most important driver for active layer thickness (Figure 10l). The strong influence of

snow-free date on active layer thickness has been highlighted in several other studies (Chapin et al., 2005; Wilcox et al., 2019).

temperature At first glance, our data suggest that the However, if we consider single vegetation types, the importance of snowmelt timing410
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is strongly reduced. In particular, for tall vegetation (tall shrubs, riparian shrubs, trees) and tussock tundra we did not

observe any correlation between snow-free date and thus the length of the summer period is the most important driver for active layer thickness

at the end of summer (Figure 10g).

While mean winter temperature is not significantly related to active layer thickness , while awarm at the landscape scale,

we found opposite effects for upland vegetation (lichen and dwarf shrubs) as compared to tall vegetation and tussocks415

(Figure 10a, e, j). Warm winter temperature is unexpectedly associated with a shallow active layer in upland areas, while

warm winter temperature is related to deep active layers below tall vegetation and tussocks (Figure 10b, d). However, this a,

e). This agrees well with results by Morse et al. (2012) from the outer Mackenzie Delta. They found that deep snow was

associated with thick active layers in alluvial sites whereas it was associated with thin active layers in upland terrain.

The opposite response of active layer thickness to mean winter temperature (and other winter and spring characteristics)420

below different vegetation types may be an artefact of the spatial correlation between snow depth and soil properties (Loranty

et al., 2018). For instance, both snow depth and organic layer thickness tend to be shallow on exposed lichen-covered ridges,

and the latter favours deeper active layers. If we consider single vegetation types with presumably more uniform soil conditions, the importance of snow melt timing

is strongly reduced. In particular, for tall shrubs and tussocks warm winter temperatures are related to deep active layers (Figure 10b) while the relationship with snow melt timing

is weak for these two types (Figure 10d)As organic and moss layer thickness are important controls of active layer thickness (Fisher425

et al., 2016), the positive relationship between organic layer thickness and snow depth masks the actual effects of snow

on the active layer thickness. Similarly, correlations between soil moisture, ice content, and snow depth may be different

across the landscape, with variable effects on active layer development (Guan et al., 2010). It should also be noted that it

was not recorded whether active layer thickness measurements were taken in a hummock or inter-hummock zone, which due

to their vastly different soil properties, have a stronger effect on active layer thickness than any other variable (Wilcox et al.,430

2019). This reduces our ability to draw inferences from our active layer thickness measurements.

Vegetation type is thus a useful proxy for predicting topsoil temperatures in winter, through its modification of snowpack height, density, and texture. Conversely, its predictive

value in summer is poor. The generally weak relationship between vegetation typeand Summer topsoil temperature is only weakly related with veg-

etation type, which agrees well with Paradis et al. (2016). Vegetation type explains 12% of the variability of the summer

topsoil temperature and 34% of the variability of active layer thickness we found in our study hinders upscaling approaches (Table 2),435

likely through its effects on snow depth. The generally weak relationships hinder upscaling approaches based on veg-

etation such as in Nelson et al. (1997); Widhalm et al. (2017). This is likely related to variable soil thermal properties, as one would expect a strong

relation between We found that thawing degree days and are not correlated with active layer thickness for uniform soil properties. This is

not the case at our site across vegetation types(Figure 10m) at the landscape scale, echoing previous findings by (Nelson et al., 1997)Nelson

et al. (1997). This is likely related to variable soil thermal properties and soil moisture. Within dwarf shrubsshrub and lichen440

tundra, where more uniform soil properties conditions may be expected, larger cumulative positive degree days are indeed as-

sociated with deeper active layers. Again, as we did not record whether active layer thickness measurements were made in hummocks or inter-hummock zones, a

large portion of the variance remains unexplained. In summary, our observations suggest that vegetation type is a better predictor of the near-

surface thermal regime in winter than in summer in the low Arctic Low Arctic. Furthermore, the soil temperature – active layer

thickness relationship differs between dwarf shrubs and tall shrubs. Both vegetation types are currently expanding in the445
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Arctic (Ropars and Boudreau, 2012; Tape et al., 2012) and our results indicate that their future distribution will govern the

importance of summer versus winter processes for active layer thickness.

5 Conclusions

Based on topsoil temperature data from 68 sensors at a low Low Arctic tundra site, we found large small-scale variability

within and between vegetation types as well as between years and seasons. The spatial variation of the mean annual soil450

temperature was dominated by the winter signal. Autumn topsoil temperatures were dominated by atmospheric forcing

and only weakly related to vegetation type. Conversely, vegetation type explained approximately one half of the variability

in winter and spring soil temperature. An even stronger relation was observed between vegetation type and end-of-winter

snow depth. Snow depth and, most likely, snow structural differences in space lead to pronounced differences in topsoil mean

temperature and temperature variability in the winter and spring months and in snow melt snowmelt timing, all of which were455

strongly related to vegetation type. Summer topsoil temperatures were less variable in space, similar below most vegetation types, and not significantly related to

active layer thickness at the end of August. At the landscape scale, we found that active layer thickness was most strongly related to snow melt

snowmelt timing. However, if we considered only specific vegetation types with presumably more similar soil conditions, mean

winter temperature and summer thawing degree days played a more important part. The spatial variation of the mean annual soil temperature was dominated

by the winter signalUnexpectedly, warm winter topsoil temperature was associated with shallow active layers below lichen and460

dwarf shrub tundra, whereas we found the opposite beneath other vegetation types. Summer topsoil temperatures were

similar below all vegetation types and not significantly related to active layer thickness at the end of August. To conclude,

vegetation can, with limitations, be used as a proxy for snow depth variability at the local scale, but it is a poor proxy for

summer and autumn topsoil temperature or active layer thickness.

Data availability. The topsoil temperature data used in this study is published in Pangaea (doi:10.1594/PANGAEA.918615).465
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Figure A1. Histograms of the deviation of topsoil temperature minus air temperature in summer; (a) mean and (b) 95th percentile of the

deviations for each sensor in each measurement period; data series coloured in red were removed from the analysis because (a) the average

deviation was less than −5 ◦C indicating that the sensor was either buried too deep and affected by the permafrost or affected by running

water (3 series) or (b) more than 5% of the single summer measurements were more than 7 ◦C above air temperature indicating additional

sensor warming by direct solar radiation (8 series); air temperature data by Environment and Climate Change Canada (2019).
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Figure A2. Mean annual cycle of air temperature at Trail Valley Creek for 1999–2018, gap-filled data series; daily values and values smoothed

with a seven-day moving window as used for definition of the seasons; data by Environment and Climate Change Canada (2019).
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Appendix B: Results
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Figure B1. Meteorological conditions at the Trail Valley Creek weather station during the two study periods including snow cover estimated

from daily albedo > 0.4 indicated as shaded area. (a) Air temperature by Environment and Climate Change Canada (2019) and median topsoil

temperature of each vegetation type; (b) daily mean values of four component radiation.
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