
Dear Editor and Referees,
please find below our detailed resposens to comments and suggestions by referees 1 and 2 (in blue). In general,
they match our answers given in the public discussion. Three slight divergences the changes suggested in our
the open discussion response to referee 1 are highlighted in bold.

1 Reply to referee 1:

General Comments: Some of the figures were a little hard to interpret due to the large number of model set-ups.
Figures 6, 8, 9, 10 and 12 would really benefit from a legend or key to more quickly pick out which model set-up
is which (a legend on the first relevant plot that is referenced for subsequent plots for example). Interpreting
the plots with reference to the text was di�cult because of this.
We have now added a symbol legend to Figure 6 and refer to this in plots 8, 9, 10 and 12. Note that we have
also increased the number of digits in the regression equations (formerly truncated to 2-4).

Specific Comments: Section 2.7: I found this section a little unclear due to the discussion about the previous op-
timisations. It would help to focus on the parameters varied in this study based on the second 2017 optimisation
and mention more briefly that the plankton parameters were the same as the first 2017 optimisation.
We found it somehow di�cult to rephrase this by just mentioning the first optimisation by Kriest et al. (2017)
in passing (and secondly), We have rewritten this subsection to hopefully make it easier to understand the
sequence of optimisations: “The optimisations presented here are based upon two successive optimisations pre-
sented by Kriest et al. (2017) and Kriest (2017). Both studies applied model MOPS coupled to TMs derived
from MIT28. The cost function, as presented in Equation 1 was calculated after a spin up of 3000 years, as
also used in the present study. In the first optimisation, Kriest et al. (2017) optimised four parameters
related to plankton growth and loss terms, together with b and R�O2:P. The optimal parameters of this first
calibration led to a better agreement of simulated global biogeochemical fluxes to observations of primary and
export production, zooplankton grazing, particle flux at 2000 m, and organic matter burial at the sea floor (Kriest
et al., 2017). In a subsequent optimisation Kriest (2017) kept the four optimal plankton parameters fixed, and
calibrated four parameters related to remineralisation and nitrogen fixation (namely KO2, KDIN, DINmin and
µNFix described in section 2.4), together with b and R�O2:P (see Table 1). This second optimisation by Kriest
(2017) led to a better match to independent estimates of pelagic denitrification, without deteriorating the

matches to observed primary and export production, zooplankton grazing, particle flux at 2000m

and organic matter burial at the sea floor. It is hereafter referred to as MIT28⇤ and serves as the start-
ing point for the four additional optimisations presented in this paper. In particular, we repeated optimisation
MIT28⇤ against (...)”

Line 347: “MOPS coupled to UVic circulation is more robust with respect to changes in parameters.” : the
sentence meaning is unclear, does this mean that the calibrated parameters are similar across the three UVic
circulation used? (In comparison to ECCO or MIT28).
We have replaced this by “The misfit function changes less when the optimal parameters are swapped among
the di↵erent UVic circulations.”

Line 349: ‘. . .the large impact of oxygen on the misfit function. . .”: could you elaborate briefly why this is
the case here.
We have rephrased this by “In the model the global oxygen inventory adjusts dynamically to the combined e↵ects
of circulation and biogeochemical parameters, causing a large impact of this tracer on the misfit function (Kriest
et al., 2017). Therefore, optimisation attempts to reduce the global oxygen bias, which is low for each optimal
model configuration, indicated by the low values along the main diagonal of Figure 7, panel (B).”

Lines 399-413: this analysis assumes that the interactions between circulation, biogeochemistry parameters and
the misfit are linear and additive? Figure 11 suggests that this might not be the case as the delta par and
delta circ bars do not sum to the delta all bar. The analysis in this form is fine (and considering non-linear
interactions would not be easy!) but I think this assumption should be mentioned.
We have changed this to “We note that the individual contributions of �Par and �Circ for both diagnostics do
not add up to �All (Table 3), indicating that the e↵ects of biogeochemical parameters and circulation are not
linear and additive. ”

Lines 453-454: “. . .it prevents fast settling of organic particles out the euphotic zone” is a little unclear. Does
this mean there is e↵ectively an increased residence time of particles in the euphotic zone which equates to a
larger fraction of particles being rem- ineralised before reaching the ocean interior? Is there also an impact of
the plankton model in this instance, e.g., changes in zooplankton grazing?
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Because the plankton parameters have not been changed during optimisation, global grazing follows almost
linearly primary production (r=0.95), and all the statements and conclusions made with respect to the latter
flux apply. In particular, a larger b (slower settling; longer particle retention time at the surface) leads to
an enhanced nutrient turnover in the euphotic zone; but as for primary production, this also depends on the
circulation. We have changed this paragraph to make this clearer: “ (...) and thus primary production as the
ultimate source of export production; on the other hand, it prevents fast settling of organic particles out of the
euphotic zone. Because the plankton parameters were not changed during optimisation, global grazing follows
almost linearly primary production (r = 0.95), and the statements and conclusions made with respect to the
former flux largely apply to grazing (no figure). Therefore, the combined antagonistic e↵ects of b on surface
(and subsurface) nutrient turnover, subsurface nutrient concentrations (as a source of nutrient entrainment and
mixing) and direct organic particle flux in the upper few hundred meters explain the relatively small variation
caused by biogeochemical parameters (...)”

Lines 459-461: “long term storage of nutrients and carbon will, to a large extent, depend on the prescribed
particle flux profile”-the air-sea balance of CO2 might depend on circulation more than nutrients to the gas
exchange component, similarly to the arguments made about O2 previously.
We agree, and have rephrased this as “ Therefore, simulated organic matter supply to the deep ocean and deep
nutrient concentrations will, to a large extent, depend on the prescribed particle flux profile, with potential e↵ects
on the long-term storage of carbon dioxide. ”

Line 469-474: There should be a caveat that these findings are for MOPS specifically.
We have added: “(...) at least for this particular biogeochemical model, (...)”

Figure 4D is very hard to interpret due to the colour contrasts and placement/combination of lines. The panel
is not explicitly mentioned in the text so I would suggest to move the figure to supplementary or separate into
more panels to make it clearer.
We now moved this panel to the supplement (as an additional plot), and have added a legend for the line colours
and thicknesses, to make the plot more easily accessible.

2 Reply to referee 2:

Specific comments: Line 28: the use of two maxima here is a little confusing; can this be clarified at all?; a range
of 180% might even be explicable by such mismatch of OMZ definitions, but I doubt that’s what’s happened
here
We have replaced this by: “(...) Bopp et al. (2013) report a range of variation that is several times the observed
volume, depending on the criterion (maximum oxygen concentration) used for OMZ definition. ”

Line 38: “by hand” is, in part, related to keeping the number of tuning simulations down; were a model to be
inexpensive to run, automatic tuning sampling a large number of parameter sets would likely be preferred
We have added: “To keep the number of computationally expensive, global simulations low, usually (...)”

Line 59: “seems to be” -¿ “has proven to be”
Changed.

Lines 60-69: a very nice framing of the problem
Thank you!

Line 81: it seems remiss not to include even a sentence or two explaining what the TMM is (or what it
comprises); it would spare your readers to present something here
We added a few sentences on this: “All model simulations and optimisations apply the Transport Matrix Method
(Khatiwala, 2007, 2018), as an e�cient “o✏ine” method for ocean passive tracer transport. The TMM repre-
sents advection and mixing in the form of transport matrices that have been calculated from an ocean circulation
model simulation prior to the biogeochemical simulations performed here. For our model simulations we apply
monthly mean transport matrices (TMs), as well as monthly wind speed, temperature and salinity for air-sea
gas exchange.”

Line 87: move this domain information into a table instead?
We would prefer to refrain from adding more information to table 1 (which gives the spatial resolution), and
also rather not add another table to the main paper. However, we now cross-reference between this section and
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Table 1.

Line 104: interesting numbers are reported for this domain, but not the others; it would be good to have all, or
at least some other common information across the TMs
Because the original circulation models di↵er among each other (in their configuration), and because the o✏ine
circulation (in form of TMs) might di↵er from the basic circulation model we’d prefer not to extend too much
on the original circulation model properties, but rather focus on the properties we can derive from the o✏ine
circulation. However, we now present the physical diagnostics discussed in subsections 2.2 and 2.3 in an addi-
tional table in the supplement. (See also below.)

Lines 109-110: what does “accurately represent” here mean?; is it in reference to the circulation strengths you
mention, or something else?
What we wanted to say in in fact, that these modified circulations have not been compared or evaluated agains
the previously published circulations. We replaced this by “We note that none of the circulation configurations,
aside from UHigh, have been previously evaluated against the most commonly used UVic ESCM FCT configu-
ration (e.g., Weaver et al., 2001; Schmittner et al., 2005; Somes et al., 2013).”

Line 123: could a calculation of ventilation timescale (mean, max, and between basins) help separate out the
di↵erences between the TMs?
This is what we tried using the ideal age tracer. See below, we added the values of ideal age of di↵erent water
masses, as well as globally to Table S1 in the supplement.

Line 129: “up to more than 800 years”; any idea why?; that does sound surprising at face value
One possible explanation of the strong increase in ideal age could be a lack of bottom water formation and
ventilation in this model, which a↵ects, for example CFC-11 (Dutay et al., 2002). In fact, the mixing criterion
applied in our paper (>400m) would be too shallow to mix young surface and old deep waters, anyway. We
therefore skipped “, despite its large area of deep mixing”, but mention it below, at the beginning of subsection
3.2 (see below, our reply to Line 169).

Line 130: ah-ha - ages mentioned here, but perhaps these could be added to the table I mentioned before for
clarity
See above; we would rather not “burden” the table with this information, but have added a table on outcrop
area, area of MLD and ideal age in the di↵erent water masses and globally to the supplement.

Line 132: “tracer observations”?; do you mean radiocarbon?
Yes, but also CFCs, temperature, salinity, phosphate, and oxygen. We have changed this sentence to: “con-
strained with transient (radiocarbon, CFCs) and hydrographic (temperature, salinity, nutrients, oxygen) tracer
observations (Khatiwala et al., 2012).”

Lines 137-138: this section feels like it could do with a sentence explaining how this information will be used
later; however, it’s certainly very helpful to elucidate how models might be good / bad
See our reply below, we have rewritten the first paragraph of this section and added a sentence on this.

Line 169: per my earlier remark, how’s Drake Passage transport in the models?; it has a relationship with the
SO properties mentioned
The transport through the Drake passage might, for example influence the properties and formation of SAMW
in the Atlantic section (e.g., Sallee et al., 2010, 2013). However, as noted above we would prefer not to dis-
cuss details of the underlying circulation models too much in this paper. We have rewritten the beginning of
subsection 2.3 as: “The underlying circulation models, from which the TMs and forcing were extracted, dif-
fer in many aspects, such as parameterisation of mixing, forcing, sea-ice, etc., all of which can a↵ect their
dynamic behaviour and the quantities and diagnostics described above. For example, in the Southern Ocean
the eastward transport of waters through the Drake passage can a↵ect the properties and formation of SAMW
(e.g., Sallee et al., 2010, 2013), while parameterisation of sea ice in the models might a↵ect the formation and
ventilation of AABW (Dutay et al., 2002), with consequences for water mass age. It is beyond the scope of this
paper to compare and discuss the details of the circulation models. Instead, to examine the potential impact of
their charactistic features on optimal biogeochemical model parameters (section 3.2), we will focus on three diag-
nostics that can be easily derived from most circulation models (see Table S1 for simulated and observed values).”

Line 204: how is near steady state defined? (presumably in Kriest et al., 2017 ...)
We have examined the transient behaviour of MOPS coupled to ECCO TMs over a simulation time of 9000
years in Kriest and Oschlies (2015). In that paper we focused on global average oxygen and nitrate (or fixed
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nitrogen), as these two properties are subject to processes a↵ected by a variety of time scales (large scale circu-
lation; deep remineralisation; air-sea gas exchange or fixed nitrogen gain and loss in di↵erent ocean basins). In
the analysis we found that after significant variations within the first 3000 years (even with inflection points)
the inventories begin to stabilise. We have now added a note on this, with reference to that paper (in particular:
Figure 2): “Following the simulation of these 10 model setups over 3000 years to near-steady state, after which,
for example, global oxygen and nitrate inventory change only by a small amount (see Figure 2 by Kriest and
Oschlies, 2015), (...)”

Line 210: “many local optima”; good - this is a perennial problem with BGC models
Yes, unfortunately.

Line 214: as these properties are tightly constrained in the real ocean (e.g. via the N:P ratio), is there an
advantage to using all of them?; i.e. could N, O2 or P, O2 be su�cient?; something like carbon - which has a
more plastic relationship with nutrients - might arguably be good too
In the model all three tracers - phosphate, nitrate, oxygen - are subject to di↵erent biogeochemical and physical
processes, and this is the reason why we are using all of them in the combined misfit function: phosphate, as a
conserved property, is not a↵ected by a global bias (and therefore has the least impact on the misfit function;
see Kriest et al., 2017). The oxygen inventory can adapt to the combined physical (air-sea gas exchange; sub-
duction and ventilation) and biogeochemical (particle sinking and remineralisation) processes. So can nitrate,
as its distribution in the ocean is a↵ected by production, export, sinking and remineralisation. In addition, it is
also a↵ected by denitrification and nitrogen fixation, which happen in di↵erent areas, connected through large
scale circulation as well as (local or regional) processes (e.g., upwelling). Therefore, we think that especially the
latter two tracers (nitrate and oxygen) are necessary for the optimisation a model that simulates all three tracers
independently. We agree, that at a later point it will be important to include other types of observations, such as
DIC and alkalinity; but this would require a model that also parameterises the (e↵ects of) calcification, calcite
sinking and dissolution. Finally, given the so far rather unconstrained biological model components (phyto-
and zooplankton, detritus, DOP), we think that it might be even more important to include corresponding
observations (even if they are sparse in space and time) into the optimisation.

Line 239: you could add the total number of simulations here to indicate the total computational load
We added a line on this to table 1.

Line 245: earlier, in relation to burial and riverine input, you suggest that the inventory is not actually fixed,
and can drift by a few percent; which is right?
Actually, we made a mistake here, and should have skipped “inventory” when referring to all nutrients at the
end of section 2.4. Thank you for pointing this out. The form of resupply of buried P (and N) via either
river runo↵ or surface supply alters the spatial distribution of nutrients and oxygen, as well as the inventory of
nitrate and oxygen, but the phosphorus inventory is fixed: global average phosphate remains almost the same
(within 2e-4) between di↵erent model setups mentioned. (The very small change in phosphate inventory is likely
due to faster equilibration when buried phosphate is distributed everywhere at the surface, and/or a slightly
di↵erent contribution of organic P to total P, because of “fertilisation” of the surface.) E↵ects on nitrate and
oxygen are larger, because these inventories can adapt dynamically to a di↵erent nutrient supply and turnover.
This is currently subject to investigation. We have changed the text at the end of section 2.4 accordingly:
“We note that in uncalibrated models (e.g., Kriest and Oschlies, 2015) this creates di↵erences of a few percent
in the global inventory of nitrate and oxygen. Di↵erences in the regional distribution of nutrients and oxygen
are largely comparable in magnitude to those caused by the numerical sinking scheme of detritus (Kriest and
Oschlies, 2011). The e↵ect of this process is subject to further research.”

Line 284: why especially oxygen?
As shown by Kriest et al. (2017), the misfit function is dominated by oxygen, because this tracer can include a
global bias. The Pacific, with its very large volume, and old waters (which memorise the errors in biogeochem-
istry), is especially influential. We added a reference to this paper and a comment: “(...) and the comparatively
large impact of oxygen on the misfit function (see Kriest et al., 2017).”

Line 290: so that readers (like this one) don’t have to scramble back a few pages, perhaps reiterate the default
values once when you mention changes here
Kriest and Oschlies (2015) tested several values for the nitrate and oxygen a�nity, so we find it di�cult to
refer to a default value here, but we now mention the default values for max. rate of nitrogen fixation and
the nitrate threshold of that paper, as well as that for b: “ (...) increasing b from a “default” value of 1.1
(Kriest and Oschlies, 2015) to 1.39. It further results in a high nitrate threshold for the onset of denitrification
(DINmin = 15.8 mmol m�3, compared to the default value of 4 mmol m�3 applied by Kriest and Oschlies,
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2015), a low a�nity of denitrification to nitrate (KDIN = 32 mmol m�3), and a low maximum nitrogen fixation
rate (µNFix = 1.19µmol m�3 d�1; Table 1), which is only about half of the default value applied by Kriest and
Oschlies (2015).”

Line 362: it’s not *completely* independent when the model is optimised to oxygen concentration; although, I
appreciate it’s not a target
We added “largely”.

Line 428: should be “m3” not “m-3”; also, might want to contextualise with a percent of mean
Corrected, thank you. We added “i.e., more than 100 the observed volume.” to put this into context.

Lines 639-640: “on the other hand . . .” is a confusing point; what do you mean?; it seems to suggest
that a “benefit of parameter optimisation” is “helping to search for the best parameter set”; that sounds not
particularly profound; something instead about “necessary level of model complexity”?
We agree, and rewrote this as: “optimisation allows for a “fair” comparison of models of di↵erent complexity
(after each model has been tuned to match some desired quantity best); it can therefore also help to decide about
the necessary level of model complexity.” We skipped the part about model development.

Line 647: “through low ideal age”?
Changed.

Table 1: mean ocean ventilation age from these di↵erent circulations might be an interesting metric; or some
other relevant integral metric of circulation
See our comments above. We now added a table that provides the ideal ages in di↵erent water masses of all 5
circulations. Global average ideal age varies between 583 (UHigh) to 652 (MIT28), reflecting mainly the CDW,
and is now also given in supplementary table S1. However, as we did not find a relation between any optimal
parameter and the CDW age (Table 2), we do not discuss this any further.

Table 3: export production - I like this illustrating of gaps in previous work (which has been more opportunistic
than this study)
Thank you!

Figures: a general point I’d make is that red/blue colour bars are usually for situations where a property (e.g.
a delta) has a definite central point worth marking (e.g. zero); here they’re used broadly, potentially skewing
the reader’s perspective
We agree that red/blue might suggest a delta scale - on the other hand to our knowledge such a colour scale
works well for visually impaired. We have now chosen a colour scale that does not bear such a strong resem-
blance to a delta scale, but should work for visually impaired as well (applies to Figures 1,2,3,5,S1,S2,S5) (see
ferret.pmel.noaa.gov/static/FAQ/graphics/color friendly palettes.html)

Figure 1: you may have tried already, but might delta plots be better? (i.e. show the observations as field
values but models as di↵erences from this)
We tried, but to our opinion delta plot did not help interpretation.

Figure 2: as the observations are missing ice, I’d be inclined to skip it in the models as well
We skipped the hatched area for sea ice.

Figure 3: see general and Figure 1 comments
See above, we changed to di↵erent colour scale.

Figure 4: panel D is rather complicated and ugly
We have skipped this panel, and added it separately as an additional figure in the supplement (see also comment
by referee 1).

Figure 5: change to a much uglier palette; same red / blue issue
See above, we changed to di↵erent colour scale.

Figure 6: I really like this relating of parameter value to circulation property
Thank you. We have now added a symbol legend, based on a comment by reviewer 1.
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Figures 8 and 9: I found these rather di�cult to interpret, although I have no suggestions on how to change
them
We are aware of the fact that these are di�cult to interpret, and tried many di↵erent approaches, but also have
not found any better was to illustrate this.
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Abstract.

Global biogeochemical ocean models are often tuned to match the observed distributions and fluxes of inorganic and organic

quantities. This tuning is typically carried out “by hand”. However, this rather subjective approach might not yield the best fit

to observations, is closely linked to the circulation employed, and thus influenced by its specific features and even its faults. We

here investigate the effect of model tuning, via objective optimisation, of one biogeochemical model of intermediate complexity5

when simulated in five different offline circulations. For each circulation, three of six model parameters have adjusted to

characteristic features of the respective circulation. The values of these three parameters – namely, the oxygen utilisation of

remineralisation, the particle flux parameter and potential nitrogen fixation rate — correlate significantly with deep mixing and

ideal age of NADW and the outcrop area of AAIW and SAMW in the Southern Ocean. The clear relationship between these

parameters and circulation characteristics, which can be easily diagnosed from global models, can provide guidance when10

tuning global biogeochemistry within any new circulation model. The results from 20 global cross-validation experiments

show that parameter sets optimised for a specific circulation can be transferred between similar circulations without losing

too much of the model’s fit to observed quantities. When compared to model intercomparisons of subjectively tuned, global

coupled biogeochemistry-circulation models, each with different circulation and/or biogeochemistry, our results show a much

lower range of oxygen inventory, OMZ volume and global biogeochemical fluxes. Export production depends to a large extent15

on the circulation applied, while deep particle flux is mostly determined by the particle flux parameter. Oxygen inventory,

OMZ volume, primary production and fixed nitrogen turnover depend more or less equally on both factors, with OMZ volume

showing the highest sensitivity, and residual variability. These results show a beneficial effect of optimisation, even when a

biogeochemical model is first optimised in a relatively coarse circulation, and then transferred to a different, finer resolution

circulation model.20

1 Introduction

Global models of marine biogeochemistry are applied to prognostic problems, such as the future exchange of CO2 between

ocean and atmosphere, the evolution of oxygen minimum zones (OMZs) under a changing climate, or future primary produc-

tion, which is the ultimate food source for fish. Unfortunately, in steady state, these models vary greatly in their representation

1



of, for example, ocean oxygen inventory (up to 50% of the current value; Bopp et al., 2013) or primary production (varying by25

more than 90% of present day global production; Bopp et al., 2013). The largest uncertainty is related to OMZ volume – here

Bopp et al. (2013) report a range of ⇡ 180% of present day volume, for OMZ volumes defined by maximum concentrations of

50 and 80 mmol O2 m�3
::::
range

::
of

::::::::
variation

::::
that

:
is
:::::::

several
:::::
times

:::
the

:::::::
observed

:::::::
volume,

:::::::::
depending

:::
on

:::
the

:::::::
criterion

::::::::::
(maximum

::::::
oxygen

::::::::::::
concentration)

::::
used

:::
for

:::::
OMZ

::::::::
definition.

Because these coupled models differ both in their physical and biogeochemical setups, to date the contribution of the different30

model components to this large variation is not clear (e.g., Cabre et al., 2015). Studies indicate a strong impact of physics on

deep oxygen levels, leading to a divergence of up to 150 mmol O2 m�3 (Najjar et al., 2007; Seferian et al., 2013). On the

other hand, Kriest et al. (2012) and Kriest and Oschlies (2015) showed that the impact of biogeochemical model structure

and parameters on deep oxygen profiles can be equally large; also, in the latter study OMZ volume varied among different

biogeochemical model setups up to three times the observed value (for an OMZ criterion of 8 mmol O2 m�3). Thus, so far35

neither oxygen content nor OMZ volume seem well constrained, possibly because of both circulation and biogeochemistry.

In practice, biogeochemical models are often tuned to the corresponding circulation, in order to make the model results

(nutrients, oxygen, organic components) to agree better with observations (e.g., Schwinger et al., 2016). Usually
::
To

:::::
keep

:::
the

::::::
number

::
of

::::::::::::::
computationally

:::::::::
expensive,

:::::
global

::::::::::
simulations

::::
low,

::::::
usually

:
this model calibration is carried out “by hand”, i.e. by

subjectively tuning some biogeochemical model parameters until the models show a “good” fit to the observed tracer fields.40

The criterion for “good” is not absolute - it may consist of a sufficient visual match, good indices of some core statistics,

(e.g., in Taylor plots; Taylor, 2001), the root-mean-squared error of model results vs. observed quantities, or non-parametric

methods such as the Bhattacharya-distance (e.g., Ilyina et al., 2013). Ideally these converge, i.e., they result in a well-defined

set of parameters, which provide an optimal fit for all metrics.

However, biogeochemical models include a high-dimensional parameter space with respect to the biogeochemical constants,45

many of which are not well known. Carrying out a sensitivity study helps to explore a model’s sensitivity to its constants (e.g.,

Kriest et al., 2012), but this is a time-consuming task, both in terms of work-hours and computational time. The computational

demand is amplified by the fact that global biogeochemical ocean models require a long time to equilibrate (many millennia),

owing to the sluggish circulation (e.g., Wunsch and Heimbach, 2008; Primeau and Deleersnijder, 2009), and because biogeo-

chemical processes act in concert with it (e.g., Kriest and Oschlies, 2015). Short spinup times, on the other hand, will produce50

model results that still depend on initial conditions, and can hamper a thorough assessment of model skill. Because of these

difficulties, there is no common recipe for model spinup (and calibration). This complicates model inter-comparison (Seferian

et al., 2016).

Recently, tools have become available to speed up model equilibration, either by efficient offline methods (Khatiwala, 2007),

or by root-finding algorithms that solve for the model’s steady state (Li and Primeau, 2008; Khatiwala, 2008). Using these tools,55

automatic calibration of global biogeochemical ocean models becomes more feasible (e.g., DeVries et al., 2014; Holzer et al.,

2014; Letscher et al., 2015; Kriest et al., 2017; Kriest, 2017). However, these approaches have so far mostly been applied

to biogeochemical models of low complexity, or to circulation models of rather coarse resolution. As physical processes and

resolution can play a large role for the representation of biogeochemical tracer distributions (e.g., Najjar et al., 2007; Duteil
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et al., 2014), it would be desirable to apply optimisation directly to the more highly resolved models applied in prognostic60

simulations. Yet, to date this approach seems
::
has

::::::
proven

:
to be prohibitive, due to the large computational demand mentioned

above.

Therefore, we currently must accept a trade-off between finely resolved representation of physical transport processes, and

well-tested and objectively optimised biogeochemical models. The calibration of model biogeochemistry in one computa-

tionally cheap circulation may elucidate the model’s behaviour in its (biogeochemical) parameter space, and indicate a best65

set of parameters consistent with observed tracer fields. If the mean transport simulated by models were independent from

model resolution, one could then transfer these parameters into the more expensive, high-resolution model. However, like

biogeochemical models, physical parameterisations also reflect an idealised system, which can introduce errors in small- and

large-scale patterns and processes. Biogeochemical model calibration is affected by these physical errors - the resulting optimal

parameters can thus strongly depend on the circulation applied (Löptien and Dietze, 2019). So far it is not clear how model70

dynamics and performance will change, once these calibrated parameters are transferred to a different circulation, that resolves

physical processes in more detail.

To investigate the mutual effects of circulation, biogeochemical model parameters, and model performance we have tested

the effect of five different circulations on the objectively optimised parameters of a biogeochemical model. The ocean models

differ in resolution as well as physical forcing and dynamics. Biogeochemical model calibration against nutrients and oxygen75

was carried out using a quasi-evolutionary algorithm, which carries out a dense scan of a six-dimensional, biogeochemical

parameter space. Differences in optimal parameters are discussed before the background of large-scale physical properties.

In portability experiments we examine model performance when parameters optimal for one circulation are transferred into

another circulation. We finally quantify the effects of changes in parameter sets vs. those of circulation on global quantities

such as oxygen inventory, OMZ volume, and global biogeochemical fluxes.80

2 Models, experiments, and optimisations

2.1 Circulation and physical transport

All model simulations and optimisations apply the Transport Matrix Method (TMM; Khatiwala, 2007, 2018) for tracer transport,

with
::
as

:::
an

:::::::
efficient

:::::::
“offline”

:::::::
method

:::
for

::::::
ocean

::::::
passive

:::::
tracer

:::::::::
transport.

::::
The

:::::
TMM

:::::::::
represents

::::::::
advection

::::
and

::::::
mixing

:::
in

:::
the

::::
form

::
of

::::::::
transport

:::::::
matrices

::::
that

::::
have

::::
been

:::::::::
calculated

::::
from

:::
an

:::::
ocean

:::::::::
circulation

::::::
model

:::::::::
simulation

::::
prior

::
to
:::

the
::::::::::::::

biogeochemical85

:::::::::
simulations

:::::::::
performed

:::::
here.

:::
For

:::
our

::::::
model

:::::::::
simulations

:::
we

:::::
apply

:
monthly mean transport matrices (TMs),

:
as

::::
well

:::
as

:::::::
monthly

wind speed, temperature and salinity (for air-sea gas exchange). One set of TMs and forcing have been derived from a 2.8�

global configuration of the MIT ocean model with 15 vertical levels (Marshall et al., 1997)
::::::::::::::::::::::::::::::::
(Marshall et al., 1997, see also Table 1).

Using this rather coarse spatial grid and a time step length of 1/2 day for tracer transport, a model setup with seven tracers

can be integrated for 3000 years in ⇡ 1-1.5 hours on 4 nodes of Intel Xeon Ivybridge at the North-German Supercomputing90

Alliance (www.hlrn.de). This circulation is hereafter referred to as MIT28. For the second physical model configuration

(hereafter referred to as ECCO) we apply TMs derived from a circulation of the Estimating the Circulation and Climate of the
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Ocean (ECCO) project, which provides circulation fields that yield a best fit to hydrographic and remote sensing observations

over the 10-year period 1992 through 2001 with a horizontal resolution of 1�⇥1� and 23 levels in the vertical (Stammer et al.,

2004). A full spinup (3000 years) of the coupled model requires about 9 hours on 16 nodes of Intel Xeon Ivybridge.95

Finally, three sets of transport matrices have been derived from version 2.9 of the University of Victoria Earth System Climate

Model (UVic ESCM; hereafter called “UVic”; Weaver et al., 2001), a coarse-resolution (1.8�⇥3.6�⇥19 vertical layers) ocean-

atmosphere-biosphere-cryosphere-geosphere model. TM extraction was carried out as described by Kvale et al. (2017). One set

of TMs is identical to that described in Kvale et al. (2017), and includes tidal mixing and a high-mixing scheme in the Southern

Ocean, as well as an increased low latitude isopycnal diffusivity (configuration “UHigh”). This configuration utilizes a vertical100

diffusion coefficient of 0.43 cm2 s�1 to stabilise meridional overturning in its linear, 3rd order upwind-biased advection scheme

(UW3, Holland et al., 1998; Griffies et al., 2008). This vertical diffusion coefficient is more than double the “standard” value of

0.15 cm2 s�1, typically used with the UVic ESCM configured with the default 1st order flux corrected transport (FCT, Weaver

and Eby, 1997) advection scheme. Reasons for the change in advection scheme for the application of the TMM to UVic are

given in Kvale et al. (2017), but it is important to note here that the UW3 configuration has not benefitted from the more than105

two decades of careful parameter adjustments that users of the FCT configuration appreciate. The annual maximum global

meridional overturning strength in the UHigh configuration is 18.5 Sv, but other physical features of the circulation have not

been previously assessed in detail. Two further sets of UVic ESCM TMs do not include regional adjustments to mixing. They

have been tuned to a maximum annual average global overturning circulation of either 20 Sv (named U20) or 17.5Sv (named

U17.5). This tuning was achieved by adjusting the vertical diffusion coefficient (0.409 cm2 s�1 in U17.5, and 0.4179 cm2 s�1110

in U20). The physical circulation parameterisation is otherwise identical to UHigh; utilising UW3 advection and the same

tidal mixing scheme. Differences arising in the calibrations between UVic ESCM TMs therefore reflect both differences in the

application of regional mixing “corrections” (UHigh versus U17.5 and U20), as well as in global overturning strengths and

secondary effects from changed values of the vertical diffusion coefficient. We note that none of the configurations accurately

represent the circulation of the
:::::::::
circulation

::::::::::::
configurations,

:::::
aside

::::
from

:::::::
UHigh,

::::
have

::::
been

:::::::::
previously

::::::::
evaluated

::::::
against

:::
the

:
most115

commonly used UVic ESCM FCT configuration (e.g., Weaver et al., 2001; Schmittner et al., 2005; Somes et al., 2013).

2.2 Properties of circulation models

The five circulations differ in many aspects. First, being supported by observational data, ECCO’s spatial salinity and density

distribution agrees very well with observations, while the MIT28 and UVic circulations show, for example, a too shallow depth

of the � = 27.5-isopycnal in the Atlantic Ocean, and too saline waters in the deep northern North Atlantic (Figure 1 and S1). In120

addition, the three UVic circulations all suffer from a too weak formation and northward propagation of Antarctic Intermediate

Waters (AAIW), as identified from water of low salinity at ⇡ 1000m depth in the southern hemisphere. MIT28, U20 and U17.5

also show a too large outcrop area of dense waters (�✓ � 27.5) in the Southern Ocean, which does not agree with the observed

pattern. Here ECCO and UHigh better match observations.

Striking differences also occur with respect to the annual maximum mixed-layer depth, as derived from a potential density125

difference to the surface of ��✓ � 0.03 (Figure 2), calculated from the models’ monthly mean temperature and salinities.
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Obviously, MIT28 shows a too large area of deep mixing around 60�S in the Southern Ocean, which does not agree with

mixed-layer depths derived from observed temperature and salinity. On the other hand, only this circulation exhibits deep

mixing in the Labrador Sea, which is in agreement with observations. All configurations of UVic exhibit a too large area of

deep mixing in the Southern Ocean, while ECCO tends to underestimate mixing in this area.130

Differences between circulations are also reflected in the global distributions of ages diagnosed from the models. MIT28,

U20 and U17.5 show very old (> 1400 years) waters in the deep northern North Pacific (Figure 3). Here, ECCO and UHigh

contain much younger waters, mostly below 1400 years. In MIT28 the age increases rapidly with depth in the Southern Ocean

(up to more than 800 years), despite its large area of deep mixing. .
:
Especially ECCO, but also UVic exhibit much younger

waters below 2000 m in this region. Finally, the U20 and U17.5 configurations result in too old deep waters in the northern135

North Atlantic (Khatiwala et al., 2012, their Fig. 4). In general, ECCO and UHigh agree much better with mean age constrained

with
:::::::
transient

:::::::::::
(radiocarbon,

::::::
CFCs)

:::
and

::::::::::::
hydrographic

:::::::::::
(temperature,

:::::::
salinity,

::::::::
nutrients,

:::::::
oxygen) tracer observations (Khatiwala

et al., 2012).

To summarise, our applied offline circulations for MIT28 and ECCO differ strongly with respect to resolution and many

global physical properties, with the UVic configurations in between these two. As a data-constrained circulation, ECCO shows140

the best overall agreement with observations of all five circulations.

2.3 Derived indicators of circulation

Based on this first analysis of circulations, we derived three quantities possibly influencing the selection of biogeochemical

parameters during optimisation

:::
The

::::::::::
underlying

:::::::::
circulation

:::::::
models,

:::::
from

::::::
which

:::
the

:::::
TMs

:::
and

:::::::
forcing

:::::
were

:::::::::
extracted,

:::::
differ

::
in

::::::
many

:::::::
aspects,

::::
such

:::
as145

:::::::::::::
parameterisation

:::
of

:::::::
mixing,

:::::::
forcing,

:::::::
sea-ice,

::::
etc.,

:::
all

::
of

::::::
which

:::
can

::::::
affect

::::
their

::::::::
dynamic

:::::::::
behaviour

:::
and

:::
the

:::::::::
quantities

::::
and

:::::::::
diagnostics

::::::::
described

::::::
above.

:::
For

::::::::
example,

::
in

:::
the

::::::::
Southern

::::::
Ocean

:::
the

:::::::
eastward

::::::::
transport

::
of

::::::
waters

:::::::
through

:::
the

:::::
Drake

:::::::
passage

:::
can

:::::
affect

:::
the

:::::::::
properties

:::
and

:::::::::
formation

::
of

:::::::
SAMW

::::::::::::::::::::::::::
(e.g., Sallee et al., 2010, 2013),

::::::
while

::::::::::::::
parameterisation

::
of

:::
sea

:::
ice

:::
in

:::
the

::::::
models

:::::
might

:::::
affect

:::
the

::::::::
formation

::::
and

:::::::::
ventilation

::
of

:::::::
AABW

::::::::::::::::
(Dutay et al., 2002),

::::
with

::::::::::::
consequences

:::
for

:::::
water

::::
mass

::::
age.

::
It

::
is

::::::
beyond

:::
the

:::::
scope

::
of

::::
this

:::::
paper

::
to

:::::::
compare

::::
and

::::::
discuss

:::
the

::::::
details

::
of

:::
the

:::::::::
circulation

:::::::
models.

:::::::
Instead,

::
to

:::::::
examine

:::
the

::::::::
potential150

:::::
impact

:::
of

::::
their

::::::::::::
characteristic

:::::::
features

:::
on

:::::::
optimal

:::::::::::::
biogeochemical

::::::
model

:::::::::
parameters

::::::::
(section

::::
3.2),

:::
we

::::
will

:::::
focus

:::
on

:::::
three

:::::::::
diagnostics

:::
that

::::
can

::
be

:::::
easily

:::::::
derived

::::
from

:::::
most

:::::::::
circulation

::::::
models

::::
(see

::::
Table

:::
S1

:::
for

::::::::
simulated

::::
and

:::::::
observed

::::::
values).

Area of deep mixing: Deep mixing in the North Atlantic supplies oxygen to the ocean (Khatiwala et al., 2012). In the

Southern Ocean mode and intermediate waters acquire their biogeochemical signatures north of the Antarctic Circumpolar

Current (ACC), before being subducted into the interior ocean. These waters then ventilate the thermocline of the subtropics155

in the southern hemisphere (Sallee et al., 2013). However, as also shown in other studies (for example, Sallee et al., 2013,

who found a large variability in Southern Ocean mixed-layer depths simulated by 21 ocean circulation models) the circulations

applied in our study differ strongly in the extent and location of deep mixing in this region. To account for the potential effects

of this variability on optimal parameter choice, we evaluated the area of annual maximum deep mixing in the two regions.

Mixed-layer depth was defined by a density difference of ��✓ � 0.03 (in line with de Boyer Montégut et al., 2004; Dong et al.,160
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2008; Sallee et al., 2013), calculated from monthly mean potential temperature and salinity. For the Southern Ocean (south of

40�S) and the North Atlantic (north of 40�N) we then calculated the area, where the annual maximum mixed-layer exceeds

either 200 or 400 m (the range of mixed-layer depths simulated and observed in the Southern Ocean; Sallee et al., 2013).

Altogether, we thus obtain four different indicators for ocean ventilation through deep ocean mixing .

Outcrop area of mode and intermediate water masses: On centennial timescales the Antarctic Intermediate Water165

(AAIW) and Subantarctic Mode Water (SAMW) formed in the Southern Ocean determine nutrient concentrations in sub-

tropical areas. Their nitrate deficit and isotopic composition carries signatures of denitrification and nitrogen fixation (Rafter

et al., 2013; Tuerena et al., 2015). Given that the models differ so strongly with respect to the surface density in the Southern

Ocean (Figure 1), we evaluated the outcrop area of waters defined by a density of 26.5 �✓ < 27.5 and 27.5 �✓ in both the

Southern Ocean and the northern North Atlantic (defined as above). In the Southern Ocean the first criterion approximately170

reflect SAMW and AAIW combined, and the second criterion Circumpolar Deep Water (CDW) (similar to the definitions

used by Palter et al., 2010; Iudicone et al., 2011; Rafter et al., 2012, 2013). North Atlantic waters defined by densities of

26.5 �✓ < 27.5 and �✓ � 27.5 coincide mainly with the region between 40�N-60�N and the Greenland Sea, respectively

(Figure 1).

Age of water masses: We use the concept of water mass (or ventilation) age as a diagnostic for the combined effects of175

ocean circulation, mixing and ventilation on the time elapsed since a water parcel has been isolated from the atmosphere.

We distinguish between average ideal age in three different water masses by applying the criteria of Matsumoto et al. (2004).

According to their water mass definitions, North Atlantic Deep Water (NADW) comprises all waters in the North Atlantic

between 0� and 60�N and 1500-2500 m depth. North Pacific Deep Water (NPDW) is defined for a region between 0� and 60�N

and 1500-5000 m depth. Finally, Circumpolar Deep Water (CDW) consists of all waters south of 45�S, for a depth between180

1500-5000 m (see also Figure 3). We note that, using these region definitions, the average age of NADW is influenced by waters

of the Eastern Tropical Atlantic (ETA), which are quite old in ECCO circulation (> 400y), and young in UHigh (Figure 3, left

panels). One reason for this could be different rates of overturning, which is between 13 to 14 Sv in ECCO (together with

a weak western boundary current; Wunsch and Heimbach, 2006), while the UVic configurations are characterised by higher

overturning around 17.5 to 20 Sv. Finally, because the eastern tropical Pacific (ETP) is the main region of fixed nitrogen loss185

in the models (Kriest and Oschlies, 2015), but the water age in this region varies strongly among the circulations applied in

our study (Figure S2), we also calculated average age in the Eastern Equatorial Pacific (ETP) between ±20� latitude, east of

160�W, and within 150-500 m depth as a fourth potential indicator.

2.4 The biogeochemical model

For all model simulations we apply the Model of Oceanic Pelagic Stoichiometry (“MOPS”), which simulates the biogeochem-190

ical cycling among phosphate, phytoplankton, zooplankton, dissolved organic phosphorus (DOP) and detritus. The model is

described in detail in Kriest and Oschlies (2015), and we here only give a brief overview on model structure, with focus on

parameters (and processes) affected by optimisation (see below). All components are calculated in units of mmol P m�3. We

assume a constant nitrogen-to-phosphorus ratio of organic matter of 16 [mol N:mol P]. The oxygen demand of aerobic rem-
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ineralisation is given by R�O2:P [mol O2:mol P], following the stoichiometry by Paulmier et al. (2009). In the model oxygen-195

dependent aerobic remineralisation of organic matter follows a saturation curve with half-saturation constant KO2 [mmol m�3].

With declining oxygen, denitrification takes over as long as nitrate is available above a defined threshold DINmin [mmol m�3].

Suboxic remineralisation (denitrification) also follows a saturation curve for the oxidant nitrate, defined by the half-saturation

constant for nitrate, KDIN [mmol m�3]. The model assumes immediate coupling of the different processes involved in ni-

trate reduction to dinitrogen, following the stoichiometry derived by Paulmier et al. (2009). Loss of fixed nitrogen (through200

denitrification) is balanced by a temperature-dependent parameterisation of nitrogen fixation, which relaxes the nitrate-to-

phosphate ratio to d with a maximum rate µNFix [µmol m�3 d�1]. Detritus sinks with a vertically increasing sinking speed:

w = az [m d�1]. With a constant degradation rate r = 0.05 d�1, in equilibrium this is equivalent to a depth-dependent particle

flux curve, corresponding to a power law: F (z) = (z/z0)
�b, with b= r/a (see Kriest and Oschlies, 2008). Depending on the

rain rate to the sea floor, a fraction of detritus deposited at the bottom of the deepest vertical box is buried in some hypothetical205

sediment. Non-buried detritus is resuspended into the deepest box of the water column, where it is treated as regular detritus.

The global annual burial of organic phosphorus and nitrogen is resupplied in the next year via river runoff (when simulated

with MIT28 or ECCO TMs) or at the ocean surface (TMs derived from UVic). We note that in uncalibrated models (e.g., Kriest

and Oschlies, 2015) this creates differences of several a
::::

few
:
percent in the global distribution and inventory of

:::::::
inventory

:::
of

:::::
nitrate

::::
and

:::::::
oxygen.

:::::::::
Differences

:::
in

:::
the

:::::::
regional

:::::::::
distribution

:::
of nutrients and oxygen ,

::
are

::::::
largely

:
comparable in magnitude to210

those caused by the numerical sinking scheme of detritus (Kriest and Oschlies, 2011). The effect of this process is subject to

further research.

2.5 Optimisation algorithm

Optimisation of n= 6 biogeochemical model parameters (see subsection
::::::
section 2.7 for choice of parameters to be optimised)

is carried out using an Estimation of Distribution Algorithm, namely the Covariance Matrix Adaption Evolution Strategy215

(CMA-ES; Hansen and Ostermeier, 2001; Hansen, 2006). The application of this algorithm to the coupled biogeochemistry-

TMM framework has been presented in detail in Kriest et al. (2017), and we here only give a brief overview: In each iteration

(“generation”) the algorithm defines a population of 10 individuals (biogeochemical parameter vectors of length n), sam-

pled from a multi-variate normal-distribution in Rn. Following the simulation of these 10 model setups
::::
over

:::::
3000

::::
years

:
to

near-steady state(3000 years), ,
::::
after

::::::
which,

:::
for

::::::::
example,

:::::
global

:::::::
oxygen

:::
and

::::::
nitrate

::::::::
inventory

::::::
change

::::
only

:::
by

:
a
:::::
small

:::::::
amount220

:::::::::::::::::::::::::::::::::::
(see Figure 2 by Kriest and Oschlies, 2015),

:
the misfit (cost) function (presented in subsection

::::::
section 2.6) is evaluated, and

information of the current as well as previous generations is used to update the probability distribution in Rn such that the

likelihood to sample solutions resulting in a good fit to observations increases. Therefore, the population (the number of model

simulations per generation) in CMA-ES is smaller, and of lower computational demand than in classical evolutionary algo-

rithms, making the algorithm applicable to this computationally expensive problem. On the other hand, with its quasi-stochastic225

sampling CMA-ES can still to a certain degree perform well with misfit functions characterised by a rough topography (i.e.,

many local optima; Kriest et al., 2017; Kriest, 2017).
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2.6 Misfit (cost) function

As in Kriest et al. (2017) and Kriest (2017) the standard misfit to observations J is defined as the root-mean-square error

(RMSE) between simulated and observed annual mean phosphate, nitrate, and oxygen concentrations (Garcia et al., 2006a, b),230

mapped onto the respective three-dimensional model geometry. Deviations between model and observations are weighted by

the volume of each individual grid box, Vi, expressed as the fraction of total ocean volume, VT. The resulting sum of weighted

deviations is then normalised to the global mean concentration of the respective observed tracer:

JRMSE =

3X

j=1

J(j) =

3X

j=1

1

oj

vuut
NX

i=1

(mi,j � oi,j)2
Vi

VT
(1)

j = 1,2,3 indicates the tracer type (phosphate, nitrate, oxygen) and i= 1, ...,N are the model locations of N model grid235

boxes. oj is the global average observed concentration of the respective tracer. mi,j and oi,j are simulated and observed

concentrations, respectively. By weighting each individual misfit with volume, JRMSE serves as a long time-scale geochemical

estimator in contrast to a misfit function focusing, e.g., on (rather fast) turnover in the surface layer, or resolving the seasonal

cycle.

2.7 Parameter optimisations and cross-validation experiments240

Kriest et al. (2017) applied MOPS with

:::
The

:::::::::::
optimisations

::::::::
presented

::::
here

:::
are

:::::
based

::::
upon

::::
two

::::::::
successive

::::::::::::
optimisations

::::::::
presented

::
by

:::::::::::::::::::
Kriest et al. (2017) and

:::::::::::
Kriest (2017).

::::
Both

::::::
studies

:::::::
applied

::::::
model

::::::
MOPS

:::::::
coupled

::
to
:

TMs derived from MIT28to optimise
:
.
:::
The

::::
cost

::::::::
function,

:::
as

::::::::
presented

:::
in

:::::::
Equation

::
1

:::
was

:::::::::
calculated

::::
after

:
a
::::
spin

:::
up

::
of

::::
3000

::::::
years,

::
as

::::
also

::::
used

::
in

:::
the

::::::
present

:::::
study.

:

::
In

::
the

::::
first

:::::::::::
optimisation,

::::::::::::::::::::::::
Kriest et al. (2017) optimised four parameters related to plankton growth and loss terms(in particular:245

light and nutrient affinity of phytoplankton, as well as zooplankton growth and mortality),
:
, together with b and R�O2:P. The

misfit between simulated annual average nutrients and oxygen after 3000 years and observation was computed as described in

Equation 1. The optimal parameters of this first calibration led to a better agreement of simulated
:::::
global

:
biogeochemical fluxes

to observations of primary and export production, zooplankton grazing, particle flux at 2000 m, and organic matter burial at the

sea floor (Kriest et al., 2017). In a subsequent optimisation Kriest (2017) kept the optimised
:::
four

:::::::
optimal plankton parameters250

fixed,
:

and calibrated four parameters related to remineralisation and nitrogen fixation (described above
::::::
namely

:::::
KO2,

::::::
KDIN,

:::::::
DINmin::::

and
:::::
µNFix::::::::

described
:::

in
::::::
section

:::
2.4), together with b and R�O2:P , against the same data set and cost function

:::
(see

::::
Table

:::
1). This second optimisation by Kriest (2017) led to a good

::::
better

:
match to independent estimates of pelagic denitrifi-

cation, and
::::::
without

:::::::::::
deteriorating

:::
the

:::::::
matches

::
to

::::::::
observed

:::::::
primary

:::
and

::::::
export

:::::::::
production,

:::::::::::
zooplankton

:::::::
grazing,

::::::
particle

::::
flux

::
at

::::::
2000m

:::
and

:::::::
organic

:::::
matter

:::::
burial

::
at
:::

the
::::

sea
::::
floor.

::
It
:
is hereafter referred to as MIT28⇤

:::
and

:::::
serves

::
as
::::

the
::::::
starting

:::::
point

:::
for

:::
the255

:::
four

:::::::::
additional

:::::::::::
optimisations

::::::::
presented

::
in

::::
this

:::::
paper.

Based on calibration MIT28⇤
::
In

::::::::
particular, we repeated the optimisation by Kriest (2017)

::::::::::
optimisation

:::::::
MIT28⇤ against Equa-

tion 1 in circulations ECCO, UHigh, U20 and U17.5 described above. In the following we refer to these four additional op-
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timisations and optimal parameter sets as ECCO⇤, UHigh⇤,U20⇤ and U17.5⇤. To test the portability of optimised parameters

to different physical settings, we then transferred the parameter sets of MIT28⇤, ECCO⇤, UHigh⇤,U20⇤ and U17.5⇤ to the260

other four circulations, again simulating each coupled model for 3000 years. Thus, we present results from 25 different model

simulations with five different parameter sets and five different circulations.

3 Results

3.1 Performance of optimised models

When optimised for different circulations the coupled models show similar values of the misfit function J

⇤ (Table 1). The265

misfit decreases with more realistic circulation and physics (according to the criteria described in section 2.2), and is lowest

for ECCO⇤. Global mean phosphate profiles are quite similar, and vary less then 10% of the observed concentrations at depths

below 500 m (Figure 4, panel (A)
:::
and

::::::
Figure

:::
S3,

:::::
black

::::
lines). The low variation of phosphate might be explained by the fixed

phosphorus inventory of the model. Only at the surface, where nutrient concentrations become low, relative variation is larger.

However, despite optimisation some regional mismatches remain: for example, the model when optimised for the three UVic270

circulations shows a considerable overestimate of deep (> 3000 m) phosphate in the Atlantic (Figure S4). All optimal models

further underestimate phosphate in the mesopelagic of the northern North Pacific.

Vertical nitrate profiles are also quite similar to each other ,
::::::
(Figure

::
4,

:::::
panel

:::
(B)

::::
and

::::::
Figure

:::
S3,

:::
red

::::::
lines),

:
although the

nitrate inventory is allowed to adjust dynamically to the loss of fixed nitrogen during denitrification, and its balance through

nitrogen fixation at the sea surface. Because optimisation also attempts to match nitrate observations, the differences between275

the models are nevertheless quite small, and result in deviations of 1-2% of observed global mean nitrate (see Table 1). The

global pattern of nitrate residuals (Figure S5) generally corresponds to that of phosphate. However, the spatial distribution

of fixed nitrogen gain and loss causes variations in the global distribution of the nitrate deficit in relation to phosphate, as

expressed as N⇤ =NO3 � 16⇥PO4 (Figure 5).

In agreement with observations, all optimised models show a large nitrate deficit in the Pacific Ocean, manifest in strongly280

negative N⇤ (Figure 5). This lack of nitrate is caused by denitrification in the ETP, and is balanced by nitrogen fixation in

tropics and subtropics (see Figure S6). In the Atlantic Ocean, where denitrification is largely absent, simulated N⇤ is far less

negative than in other areas, but it is never positive as suggested by the observations. This mismatch can be explained by the

prerequisites of the biogeochemical model applied: In MOPS, nitrogen fixation relaxes nitrate to 16⇥phosphate with a time

constant defined by µNFix whenever N⇤ is negative; otherwise it does not occur. Because of this process parameterisation, N⇤285

is restricted to values  0. Finally, the Southern Ocean has moderate values of N⇤, owing to the mixing of water masses of

different origin. Thus, although global average nutrient profiles match observations well, with little differences among optimal

models, some regional biases remain, which differ among the models. Also, because of the different processes involved in

nutrient turnover, phosphate and nitrate distributions are not exactly the same, with consequences for the nitrate deficit in

different oceanic domains.290
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Global mean oxygen profiles of optimised models vary more strongly than those of nutrients, up to ⇡ 40 mmol O2 m�3 in

the deep ocean, and thus more than 20% the observed value (Figure 4)
:
,
:::::
panel

:::
(C)

:::
and

::::::
Figure

:::
S3,

::::
blue

:::::
lines). Overall, a finer

resolution and a more realistic circulation improve the representation of this tracer, reducing the global oxygen bias, which

ranges from 5.3 mmol O2 m�3 (U17.5⇤) to almost zero (ECCO⇤; Table 1). On a regional scale all models show some common

biases: South of 40�S all optimised models overestimate zonal mean oxygen in subsurface waters above ⇡ 1500 m (MIT28⇤)295

to ⇡ 2000 m (ECCO⇤), or even further downward (UVic simulations; Figure S7). In the Pacific Ocean these too high oxygen

concentrations propagate northward. Finally, in mesopelagic waters of the northern North Pacific all models overestimate

oxygen, especially above 1000 m. Common to all models is further an underestimate of oxygen in subsurface waters (down

to ⇡ 1000 m) in the subtropics and tropics of the southern hemisphere. The Atlantic Ocean is generally characterised by

too low oxygen concentrations at greater depths. Here, the five optimal models differ: ECCO⇤ exhibits too low mesopelagic300

oxygen in the tropical and subtropical Atlantic. MIT28⇤ underestimates oxygen particularly in deep waters of the southern

hemisphere, and north of 60�N. The optimal UVic configurations are biased low in deep waters of the northern hemisphere.

These low oxygen concentrations of the UVic configurations are accompanied by too high phosphate and nitrate in the deep

North Atlantic (Figure S5), and indicate too high remineralisation of organic matter in these depths. Together with circulation

these result in a too strong accumulated signal of remineralisation.305

Thus, while there are common features among the five optimal models, there are also some striking differences especially

in the Atlantic. These differences can be explained with the large impact of the Pacific on the misfit function. Owing to its

large volume,
::
and

:::
the

::::::::::::
comparatively

:::::
large

::::::
impact

::
of

:::::::
oxygen

::
on

:::
the

:::::
misfit

::::::::
function

:::::::::::::::::::
(see Kriest et al., 2017),

:
optimisation will

attempt to minimise especially oxygen misfits in this region, and tune the biogeochemical model parameters to compensate for

potential errors of the respective circulation. These different parameters affect the oxygen distribution in the Atlantic, which310

does not contribute so much to the global misfit. Different physical properties of the circulations then cause divergent patterns

in the oxygen distribution of this region.

3.2 Best parameters of optimisations in different circulations differ

As presented and discussed by Kriest (2017), optimisation of MOPS in the circulation of MIT28 reduces the particle flux length

scale by increasing b

::::
from

:
a
::::::::
“default”

:::::
value

::
of

::::::
⇡ 1.1

:::::::::::::::::::::::
(Kriest and Oschlies, 2015) to 1.39. It further results in a high nitrate315

threshold for the onset of denitrification (DINmin = 15.8 mmol m�3)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(DINmin = 15.8 mmol m�3, compared to the default value of 4 mmol m�3 applied by Kriest and Oschlies, 2015),

a low affinity of denitrification to nitrate (KDIN = 32 mmol m�3), and a low maximum nitrogen fixation rate (µNFix =

1.19µmol m�3 d�1; Table 1),
::::::

which
::
is

::::
only

:::::
about

::::
half

::
of

:::
the

::::::
default

:::::
value

::::::
applied

:::
by

::::::::::::::::::::::
Kriest and Oschlies (2015). The opti-

mised oxygen affinity of remineralisation is very high, as indicated by a low value of KO2 (the half-saturation constant for oxy-

gen). We note that KO2 also regulates the inhibition of denitrification by oxygen; when this parameter becomes very low, den-320

itrification is more strongly inhibited by oxygen. Hence, the optimal model configuration MIT28⇤ induces only moderate den-

itrification, and prevents a decline of the global nitrate inventory through this process (see also Kriest and Oschlies, 2015). The

oxygen demand of remineralisation, R�O2:P, remains close to the value derived from observations (170±10 mmol O2:mmol P;

Anderson and Sarmiento, 1994). Finally, as noted by Kriest (2017), some parameters are only weakly constrained by the misfit
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function: for example, an almost ten-fold increase in KO2 results in a misfit function not larger than 1% of the optimal misfit325

(see also Table 1). One reason for this low sensitivity of the misfit to a variation in KO2, KDIN or DINmin is the small volume

occupied by suboxic zones, where these parameters can play a role for dissolved inorganic tracer concentrations (Kriest, 2017).

Optimising the same set of parameters in either the three different UVic circulations or the ECCO circulation also results

in a high threshold for the onset of denitrification, DINmin (Table 1). As for MIT28⇤ the dependencies of oxic and suboxic

remineralisation on oxygen or nitrate, expressed through KO2 and KDIN, may vary largely within the parameter space without330

having a large impact on the misfit function.

In contrast, R�O2:P and b are constrained very well by the misfit function, as indicated by the narrow range of parameters that

result in a good fit to observations. For example, all solutions of the ECCO⇤, which result in a misfit within 1% of the optimal fit

require a b value between 1.4 and 1.5, and a stoichiometric demand for oxygen between 150 and 154 mol O2: mol P (Table 1).

Optimal R�O2:P decreases from 170 mol O2: mol P (MIT28⇤) over 162 mol O2: mol P (UHigh⇤) to 151 mol O2: mol P335

(ECCO⇤). The exponent determining the shape of the particle flux curve, b, also varies among the five optimisations, between

1.27 (UHigh⇤) and 1.46 (ECCO⇤). The range of good (within 1% of the optimal fit) values for b differs between ECCO⇤ and

UHigh⇤ (b between 1.2-1.3). Also, the range for good values for R�O2:P of ECCO⇤ does not overlap with that of the other

optimisations.

Optimal µNFix also varies considerably among the different optimisations, from 1 to 3 µmol m�3 d�1. Here, the range340

of good parameter values for U20⇤ (1.0-1.4 µmol m�3 d�1) does not overlap with that of ECCO⇤, UHigh⇤ and U17.5⇤

(all between 1.5-3 µmol m�3 d�1). Overall, MIT28⇤ and U20⇤ benefit from a low maximum nitrogen fixation rate around

1 µmol m�3 d�1, while the other models require a larger rate between 2-3 µmol m�3 d�1.

Therefore, to achieve a good fit to observations different circulations seem to require markedly different parameters for the

oxygen utilisation by remineralisation, (R�O2:P), the exponent determining the particle flux curve (b) and the potential rate of345

nitrogen fixation (µNFix). Other parameters vary little (DINmin), or (as indicated by overlapping ranges of good parameters)

the differences among them might not be relevant (KO2 and KDIN) for a misfit function targeting on the global scale. It is

important to note that the relevant parameters do not seem to be correlated with each other (Figure S8). Apparently, different

characteristics of each circulation influence the choice of the optimisation algorithm for the optimal values of R�O2:P, b and

µNFix.350

To investigate the potential dependence of optimal parameters on circulation, we examined the area of dense-water outcrop

and deep mixing in two different regions (see section 2.3 for definition). Together with average age of four different regions

or water masses, we investigate 12 different diagnostics for each circulation for their influence on optimal biogeochemical

parameter estimates. In most cases the optimal parameters are not correlated with physical properties (Table 2). However, the

oxygen demand of remineralisation, R�O2:P is significantly correlated with the area of deep mixing in the northern North355

Atlantic for maximum mixed-layer depths of 200 and 400 m (p < 0.05). For both criteria R�O2:P increases with increasing

area of deep mixing (Figure 6). In addition, R�O2:P also correlates with a deep mixing area defined by > 200 m in the

Southern Ocean, albeit not significantly (Table 2). In other words, more vigorous mixing in areas of deep, intermediate or

mode water formation allows for a higher oxygen utilisation by remineralisation. Parameter b describing the particle flux curve
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correlates significantly with the ideal age of NADW (Table 2), and increases with increasing age of this water mass (Figure 6).360

Finally, the maximum potential rate of nitrogen fixation µNFix correlates with the outcrop area of waters with moderate density

(26.5 �✓ < 27.5) waters in the Southern Ocean. An increase in the outcrop area of these waters - which correspond roughly

to the sum of AAIW and SAMW - results in an increase of optimal maximum nitrogen fixation rate (Figure 6). The age of

mesopelagic waters in the ETP seems to play a small role, despite the fact that it is an important area in the global nitrogen

budget (Figure S6). Possible reasons for the dependence of these three parameters on physical diagnostics will be discussed in365

section 4.1.

3.3 Cross-validation experiments: Can we transfer parameters optimal for one circulation to another circulation?

Given that three optimal parameters differ among the model circulations, we investigate model performance and dynamics

when these parameter sets are swapped among circulations. Of course, every coupled model performs best (with respect to

J

⇤ of Equation 1) when simulated with parameters optimal for the respective circulation, as indicated by the lowest relative370

misfit along the main diagonal in panel (A) of Figure 7. When exchanging the biogeochemical parameters optimal for ECCO

or MIT28 circulation with parameters optimised in any other circulation, the model performance with respect to respect to

J

⇤ deteriorates. MOPS coupled to UVic circulation is more robust with respect to changes in parameters
:::
The

:::::
misfit

::::::::
function

::::::
changes

::::
less

:::::
when

:::
the

::::::
optimal

::::::::::
parameters

:::
are

:::::::
swapped

::::::
among

:::
the

:::::::
different

:::::
UVic

::::::::::
circulations.

Likewise, the
:
In

::::
the

:::::
model

::::
the

:::::
global

:::::::
oxygen

::::::::
inventory

:::::::
adjusts

::::::::::
dynamically

::
to
::::

the
::::::::
combined

::::::
effects

:::
of

:::::::::
circulation

::::
and375

:::::::::::::
biogeochemical

:::::::::
parameters,

:::::::
causing

:
a
::::
large

::::::
impact

::
of

::::
this

::::
tracer

:::
on

:::
the

:::::
misfit

:::::::
function

::::::::::::::::
(Kriest et al., 2017).

:::::::::
Therefore,

::::::::::
optimisation

:::::::
attempts

::
to

::::::
reduce

:::
the global oxygen biasis ,

::::::
which

:
is
:
low for each optimal model configuration, indicated by the low values

along the main diagonal of Figure 7, panel (B). Likely, the large impact of oxygen on the misfit function (Kriest et al., 2017) causes

the good representation of the oxygen inventory in the optimised models. The oxygen bias induced by the changes in parameter

set and circulation depends on the combination of these two: For example, the low value for R�O2:P and the high value for380

b of ECCO⇤ causes a large overestimate of the oxygen inventory in any other circulation (indicated by warm colours in the

second column of Figure 7, panel (B)). Vice versa, applying optimal parameter sets from MIT28⇤, UHigh⇤, U20⇤ or U17.5⇤

to the ECCO circulation results in a too low oxygen inventory (indicated by cold colours in the second row from the bottom

of Figure 7, panel (B)). When swapping parameter sets among the different configurations of the UVic circulation, the effect

is much less pronounced. Apparently, despite their different overturning and mixing, the UVic circulations are more similar to385

each other than those of MIT28 and ECCO. We note that these large differences in oxygen inventory arise mainly from deeper

(27.5 �✓) layers, while the oxygen inventories of waters lighter than �✓ = 27.5 are quite similar (Figure S9).

OMZ volume is biased low for the parameter set of ECCO⇤, and in the MIT28 circulation (Figure 7, panel (C)). This

underestimate is likely caused by the very low R�O2:P and high b of ECCO⇤, or the vigorous mixing in the MIT28 circulation,

which both tend to increase subsurface oxygen concentrations. Otherwise, OMZ volume does not seem to be closely related to390

the parameter set or circulation, likely because this diagnostic is
:::::
largely

:
independent of the applied misfit function, and depends

on the local circulation pattern (see discussion by Sauerland et al., 2019).
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Thus, because of different physical model properties, the biogeochemical model MOPS, when coupled to the MIT28 and

ECCO circulation requires unique and different sets of parameters for optimal model performance. In the UVic circulations the

model is more flexible with regard to parameters; yet, when aiming for independent diagnostics such as OMZ volume, there is395

no clear relationship between OMZ volume and changes in parameter set or circulation.

3.4 Effect of parameters and circulation on phosphate and oxygen concentrations in different water masses

Because of the regional biases of nutrients and oxygen in the North Atlantic, North Pacific and Southern Ocean (see section 3.1),

and because the values of R�O2:P and b selected in the calibration process correlate significantly on water mass properties of the

NADW, NPDW and CDW (section 3.2), we here examine more closely how these parameters affect the large scale distribution400

of phosphate (as a conserved nutrient) and oxygen, which can adjust dynamically at the model’s air-sea interface, and is thus a

non-conservative tracer.

Kriest et al. (2012) showed that b, the parameter determining the particle flux length scale, has a large influence on the

distribution of phosphate along the “conveyor belt” (i.e., along waters of different age), in agreement with the results obtained

by Bacastow and Maier-Reimer (1991) and Kwon and Primeau (2006). We here carry out an analysis similar to that by Kriest405

et al. (2012) and evaluate average phosphate and oxygen within the NADW, NPDW and CDW, with region definitions as

described above for water mass age (subsection
::::::
section 2.3).

Within each circulation a smaller value of b (corresponding to faster sinking particles) increases phosphate in the NPDW, and

decreases it in the NADW (Figure 8, panel (A)), confirming the pattern found by Kriest et al. (2012). When plotting average

phosphate in the NPDW against average phosphate in the CDW there is no such relationship, but the average value in the CDW410

varies only little (Figure 8, panel (B)), and is near the observed value of 2.26 mmol m�3. The spread of phosphate concentra-

tions caused by different parameter sets (same symbol with different colours) is about the same (between 0.1-0.15 mmol m�3)

as the spread caused by different circulations (different symbols of the same colour). Thus, both biogeochemistry and circula-

tion seem to play an equally large role for the distribution of phosphate between NADW and NPDW. The variation caused by

biogeochemical parameters is smaller for CDW, indicating that in this region physical processes play a larger role.415

In contrast to phosphorus, the oxygen inventory is not fixed, but regulated by the interplay of circulation, air-sea gas ex-

change, and biogeochemical turnover. Because of this we find a pattern that is very different from that of phosphate when

examining the distribution of average oxygen in different water masses. Now, within each circulation average oxygen in the

NPDW increases almost linearly with average oxygen in the CDW and NADW (Figure 9), highlighting the role of these waters

for the ventilation of the deep North Pacific. In most circulations, a large value of R�O2:P results in a low oxygen content in all420

water masses. All optimised coupled model configurations suggest average oxygen between 220-250 mmol m�3 in the NADW.

For the NPDW all optimised models simulate average oxygen concentrations around 150 mmol m�3, and thereby overestimate

the observed value of 125 mmol m�3 by one fifth. Average oxygen in the CDW of optimal model simulations varies between

⇡ 210� 240 mmol m�3, encompassing the observed value of 215 mmol m�3. Thus, given the quite wide range of potential

parameter values, optimisation improves the global oxygen bias (see Table 1), but some residual regional bias especially in the425

NPDW remains.
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3.5 Effect of parameters and circulation on global oxygen inventory and OMZ volume

A declining trend of global average oxygen with increasing R�O2:P is also reflected in panel (A) of Fig. 10, but circula-

tion also plays a role for the oxygen inventory, with the ECCO circulation showing the lowest values. To have a closer look

at the individual contributions of circulation and biogeochemistry to the overall variability of oxygen inventory and OMZ430

volume we have calculated their maximum spread caused by varying only the circulation (keeping the biogeochemical pa-

rameter set constant; �Circ) and by varying only the biogeochemical parameters (keeping the circulation constant; �Par).

For example, to determine �Circ for global average oxygen or OMZ volume (here denoted as X), for each parameter set

i simulated with the five different circulations j = 1...5 we compute the difference between the maximum and minimum

value �Xi =max(Xi,j=1...5)�min(Xi,j=1...5), and then determine the maximum of these differences: �Circ=max(�Xi).435

The computation of �Par is done analogously. We also compute the maximum across all optimal model configurations

�Opt=max(Xi=j)�min(Xi=j), and across all 25 experiments presented in this study: �All=max(Xi,j)�min(Xi,j).

Using this approach, a value for �Par close to �All indicates that the model variability is mainly induced by the biogeochem-

ical parameter set, whereas a relatively large value for �Circ indicates a major impact of circulation. Table 3 and Figure 11

show the results of this comparison, and Figure 12 illustrates the variability for each circulation or parameter set, normalised440

by the average over all optimal models. Note that the longest horizontal or vertical line in Figure 12 corresponds to �Par and

�Circ in Table 3, while the width of the grey shaded square corresponds to �All.

Firstly, biogeochemical parameters (�Par) as well as circulation (�Circ) play an about equally large role for the global

average oxygen, which varies by ⇡ 24 mmol m�3 (Table 3 and Fig. 11), or about ±15% of the average optimal value (see

also Figure 12). The variation decreases to less than one fourth of this value if we restrict our analysis to only optimal models445

(�Opt); as noted above, this strong decrease arises because all optimal models have adjusted R�O2:P to account for different

ventilation in the high latitudes. Considering all 25 experiments, i.e., the accounting for variation induced by both biogeochem-

ical and physical configurations (�All), leads to a variation six times as large as for the optimal configurations (�Opt).

The variability is much more pronounced when considering the OMZ volume as defined by two criteria, 50 mmol m�3

and 80 mmol m�3. Again, both circulation and parameter set play an about equally large role; but the impact of changes in450

parameters or circulation varies across the different models (Fig. 12). For example, applying the parameter set of MIT28⇤ to a

different circulation causes a very strong increase in OMZ volume (vertical black lines in Fig. 12), while model MOPS coupled

to the circulation of MIT28 is quite robust with respect to different parameters (horizontal black lines in Fig. 12). On the other

hand, when coupled to the ECCO circulation the biogeochemical model is quite sensitive to the biogeochemical parameter set

(horizontal red lines in Fig. 12), but its optimal parameter set ECCO⇤ has a smaller effect when applied to other circulations455

(vertical red lines in Fig. 12). This diverging effect of parameters and circulation among the different models eventually causes

a large spread of 67.2⇥ 1015 m�3
:
3 of global OMZ volume across all model experiments (�All in Table 3 and Fig. 11). ,

::::
i.e.,

::::
more

::::
than

:::::
100%

:::
the

::::::::
observed

:::::::
volume.

:
The effects are even more pronounced when considering a criterion of 80 mmol m�3

for OMZ definition (Table 3). The OMZ volume does not show any consistent trend with b, R�O2:P, or circulation (Fig. 10,

14



panel (B)), although models with high b and low R�O2:P tend to result in a smaller OMZ volume. The circulation of MIT28460

shows the lowest OMZ volume.

To summarise, oxygen inventory and OMZ volume are almost equally influenced by physics and biogeochemistry. Opti-

misation reduces the spread induced by either biogeochemistry or physics to about 30% percent for average oxygen, but less

for OMZ volume, which varies strongly across all model experiments.
:::
We

::::
note

:::
that

:::
the

:::::::::
individual

:::::::::::
contributions

::
of

:::::
�Par

::::
and

:::::
�Circ

:::
for

::::
both

::::::::::
diagnostics

:::
do

:::
not

::::
add

::
up

:::
to

:::::
�All

:::::
(Table

:::
3),

:::::::::
indicating

::::
that

:::
the

::::::
effects

::
of

::::::::::::::
biogeochemical

:::::::::
parameters

::::
and465

:::::::::
circulation

::
are

::::
not

:::::
linear

:::
and

:::::::
additive.

:

3.6 Effect of parameters and circulation on global biogeochemical fluxes

Oxygen and nutrient distributions are influenced by the production of organic matter in the euphotic zone, and its subsequent

transport to the ocean interior by physical and biogeochemical processes. In addition, denitrification in combination with

nitrogen fixation can affect the global nitrogen inventory, and the spatial distribution of the nitrate deficit (see section 3.1). We470

finally here investigate how these fluxes are affected by the two parameters R�O2:P and b.

In our model experiments simulated global primary production depends slightly more on circulation (�Circ) than on biogeo-

chemical parameters (�Par; Table 3, Figures 11 and 12). An increase in b (corresponding to slowly sinking particles) causes

primary production to increase (Figure 10, panel (D)), likely because of the higher nutrient retention in the euphotic zone,

shallow remineralisation and enhanced entrainment of nutrients into the surface layers. Because the latter process depends on475

physical dynamics, we also find an influence of the circulation model on global primary production. Further, our optimisations

did not include parameters relevant for plankton dynamics at the surface, which can also explain the comparatively large impact

of circulation. The variation across all optimal models of our study (�Opt) is much smaller (about one third) than the variation

across all model experiments (�All).

Circulation also plays a large role for export production (particle flux through 100-130 m, depending on model grid), as480

it supplies new nutrients to the well-lit upper ocean which will, under steady state conditions, be exported again. Somehow

surprisingly, export production is not strongly determined by b (Fig. 10, panel (E)). This parameter affects directly the sink-

ing of organic matter out of the euphotic zone. On the other hand, it determines the subsurface concentration of nutrients,

as a source for upwelling and entrainment of nutrients. A large b, corresponding to slow sinking and shallow remineralisa-

tion, increases nutrients within and below the euphotic zone, and thus primary production
:
as

:::
the

::::::::
ultimate

::::::
source

::
of

::::::
export485

:::::::::
production; on the other hand, it prevents fast settling of organic particles out of the euphotic zone. The combined effect

explains the
:::::::
Because

:::
the

::::::::
plankton

:::::::::
parameters

:::::
were

:::
not

:::::::
changed

::::::
during

:::::::::::
optimisation,

::::::
global

::::::
grazing

:::::::
follows

::::::
almost

:::::::
linearly

::::::
primary

:::::::::
production

::::::::::
(r = 0.95),

:::
and

:::
the

:::::::::
statements

:::
and

::::::::::
conclusions

::::
made

::::
with

::::::
respect

::
to
:::
the

::::::
former

::::
flux

::::::
largely

::::
apply

::
to

:::::::
grazing

:::
(no

::::::
figure).

:::::::::
Therefore,

:::
the

::::::::
combined

::::::::::
antagonistic

::::::
effects

::
of

:
b

:::
on

::::::
surface

::::
(and

::::::::::
subsurface)

::::::
nutrient

::::::::
turnover,

:::::::::
subsurface

:::::::
nutrient

::::::::::::
concentrations

::
(as

::
a
:::::
source

::
of
:::::::
nutrient

::::::::::
entrainment

:::
and

:::::::
mixing)

:::
and

:::::
direct

:::::::
organic

::::::
particle

::::
flux

::
in

:::
the

:::::
upper

:::
few

:::::::
hundred

::::::
meters490

::::::
explain

:::
the relatively small variation caused by biogeochemical parameters on export production (�Par; Table 3 and Figures

11 and 12), which is only about half as much the variation due to circulation (�Circ).
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Deep particle flux, on the other hand, is almost entirely determined by b, and circulation plays a negligible role for this flux

(Fig. 10, panel (F)). The large influence of this parameter is also reflected in its range over all model simulations, which is only

slightly larger than the range of flux in optimally configured models (Table 3). Therefore, simulated organic matter supply to495

the deep ocean , and long term storage of nutrients and carbon
:::
and

:::::
deep

::::::
nutrient

::::::::::::
concentrations

:
will, to a large extent, depend

on the prescribed particle flux profile,
::::
with

::::::::
potential

:::::
effects

:::
on

:::
the

::::::::
long-term

:::::::
storage

::
of

::::::
carbon

::::::
dioxide.

The loss of fixed nitrogen through pelagic denitrification is tightly related to the extent of OMZs, and thus varies quite

strongly among the different experiments, with no clear trend for either b, R�O2:P (Figure 10, panel (C)) or µNFix (no figure).

The range of variation due to parameters and circulation is about equally large (about 50% of the average optimal global flux;500

Table 3 and Fig. 11). Overall, this global flux is affected by both circulation and changes in biogeochemical parameters, which

induce changes of about ±30% around the mean optimal flux for each model circulation or parameter set (Fig. 12). Global fixed

nitrogen loss of the optimised models varies much less, likely because optimisation adjusts the parameters to match observed

nitrate profiles.

To summarise,
::
at

::::
least

:::
for

:::
this

::::::::
particular

:::::::::::::
biogeochemical

::::::
model circulation and biogeochemistry affect global biogeochem-505

ical fluxes in different ways. While primary production and fixed nitrogen loss are almost equally influenced by physics and

biogeochemistry, export production depends mainly on physics. Deep particle flux, on the other hand, is affected to a large

extent by b. Optimisation reduces the spread induced by changing either biogeochemistry or physics to about 50% percent for

fixed nitrogen loss and for primary production (compare � Opt with � Circ or � Par). In contrast, there is no such reduction

in model variability for export production (which is mainly determined by circulation) or deep particle flux (which is mainly510

determined by b).

4 Discussion

4.1 Why do different circulations require different parameters?

As we have seen in section 3.2, three optimal parameters depend significantly on three unique diagnostics that result from

different features of the circulation model. These diagnostics are related to the northern North Atlantic and the Southern515

Ocean; the ETP seems to play a lesser role.

The strong correlation of R�O2:P with the area of deep mixing clearly confirms that these two model properties (physics

and biogeochemistry) regulate global ocean oxygen distribution and inventory in concert. The larger the area of deep mixing,

the more oxygen can – or should – be respired in the model, in order to match observed oxygen concentrations. Despite

optimisation, the optimal models show an average oxygen concentration of ⇡ 145 mmol m�3 in the NPDW (Figure 9), which520

is higher than the observed value of 125 mmol m�3. Given that the models differ strongly in their physical properties, this

residual mismatch of all optimal models especially in the NPDW may point towards a deficiency of the biogeochemical model.

For example, the spatially homogeneous, and thus inflexible, particle flux profile may not be adequate to simulate the very

dynamic response of ecosystem dynamics and particle size structure to regionally variable mixing and nutrient supply (e.g.,

Guidi et al., 2015; Marsay et al., 2015). Here, a more flexible model resulting in variable sinking speeds of particles (e.g.,525
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Gehlen et al., 2006; Niemeyer et al., 2019), or, more generally, spatially flexible remineralisation length scales (e.g., Weber

et al., 2016), might be of advantage.

The parameter determining particle flux, b, correlates with the ideal age of NADW (Figure 6). This physical diagnostic

comprises several aspects of circulation: a large area of deep mixing in the northern North Atlantic supplies this region with

“young” waters. At the same time, a strong Atlantic Meridional Overturning circulation (AMOC) and/or confined Deep West-530

ern Boundary current (DWBC) can more quickly export the preformed properties to the southern parts of the basin. Depending

on the parameterisation of mixing and other physical processes, biogeochemical tracers are distributed more efficiently in the

west-east direction, or mixed with deeper waters. When these combined properties of a model cause a long residence time of

waters in the NADW, the resulting age of this water mass will be quite high, and vice versa.

The circulations applied in our study vary with regard to several aspects in this region: in contrast to all other models the535

circulation of MIT28 has a large area of deep mixing in the north, including the Labrador Sea (see Figure 2). There is also a

quite strong and wide transport of young waters in the western part of the North Atlantic via the DWBC, as indicated by the

southward propagation of relatively young waters between 1500-2500 m in the western part of the basin (Figure 3). At the

same time there is a strong lateral spreading of these young waters from the western part (see also Dutay et al., 2002). All

processes combined lead to relatively young average age of NADW in MIT28. ECCO, in contrast, shows only comparatively540

shallow mixing in the northern North Atlantic (Figure 2), little southward transport of these waters in the DWBC (Wunsch and

Heimbach, 2006), and a large extent of older waters in the Eastern Tropical Atlantic (Figure 3). This circulation is characterised

by the oldest average age of NADW.

Our optimisations suggest that models with old NADW adjust to a large b, or slow particle sinking (for example, b=

1.46 of ECCO⇤). As ideal age becomes younger, optimal b decreases. Why is this the case? So far, we can not attribute this545

exclusively to the area of deep mixing (Table 2), or, for example, to the overturning circulation, which is quite low in ECCO

(between 13-14 Sv; Wunsch and Heimbach, 2006), moderate (17.5 and 18.5 Sv) in U17.5 and UHigh, and high (20 Sv) in U20.

Instead, the average age of NADW, and resulting optimal b, likely reflects the combined effects of various model physical and

biogeochemical parameterisations: the adjustment of b to smaller values decreases shallow production and remineralisation

(see Figure 10). It also increases export of phosphorus to deep waters, and finally to the NPDW (see Figure 8). Circulation550

models with high physical turnover in the NADW (e.g., UHigh), as indicated by young NADW, can more easily resupply

nutrients to surface waters, and therefore balance the loss due to particle sinking in this region.

As shown in Figure 6, the maximum potential rate of nitrogen fixation µNFix increases with area of surface waters defined

26.5 �⇥ < 27.5 in the Southern Ocean, i.e., waters reflecting the formation and ventilation of AAIW and SAMW. A broad

view of large scale circulation and the spatial separation of fixed nitrogen loss and gain helps to understand the adjustment555

of maximum nitrogen fixation rate to physical processes in the Southern Ocean. Denitrification is a very localised process,

occurring mainly in the Eastern Tropical Pacific (ETP) (Figure S6). On the other hand, simulated nitrogen fixation takes place

throughout large parts of the tropical and subtropical regions of the Pacific, Atlantic and Indian Ocean. Even though nitrogen

fixation in the Atlantic accounts only for a fraction of global fixed N gain (see also Marconi et al., 2017, for evidence from

observations), in our models it nevertheless contributes to the stabilisation of the global fixed-nitrogen budget. A very negative560
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N⇤, as arises from denitrification in the ETP, has to arrive in the Atlantic for nitrogen fixation to trigger a competitive advantage

of nitrogen fixation. These two regions in the Atlantic and Pacific Ocean are connected through large scale circulation, which

transports N⇤ on centennial to millennial time scales from areas of fixed nitrogen loss to areas of fixed nitrogen gain. When

passing the CDW of the Southern Ocean, these waters can act as a “mixer of deep waters with distinct isotopic signatures and

nutrient stoichiometry” (Tuerena et al., 2015); the resulting mixed properties provide the source of AAIW and SAMW. The565

subsequent transport via AAIW and SAMW then can trigger nitrogen fixation, e.g., in the Atlantic, and balance the nitrate

deficit arising mainly in the Pacific Ocean.

As shown in Figure 5, the nitrate deficit N⇤ differs among the different models. For example, MIT28⇤ exports water with an

N-deficit of ⇡ 3 mmol m�3 from the Southern Ocean to the low latitudes (promoting nitrogen fixation). This model adjusts to

a low rate of maximum potential nitrogen fixation of 1.19 µmol m�3 d�1. On the other hand, UHigh⇤ simulates SAMW and570

AAIW that contain a lower N-deficit of ⇡ 2 mmol m�3, which – depending on phosphate availability – will result in lower

nitrogen fixation. The optimal high parameter of UHigh⇤ of almost 3 µmol m�3 d�1 can partially compensate for this. The

effect of N⇤ is, however, not consistent across all optimal models: U17.5⇤ also shows a small nitrate deficit in this region, but

has a still relatively low maximum nitrogen fixation rate. Here, other effects might play a role, such as a stronger ventilation

and consequently younger waters in the ETP (Figure S2), which induce a smaller OMZ (Table 1), less denitrification in this575

region (Figure S6), and thus a lower nitrate deficit in this area, that is to be eventually balanced by nitrogen fixation.

In our analysis we have combined outcrop area of two water masses, SAMW and AAIW into one single diagnostic. Sep-

arating the impact of the two water masses on this parameter, we find that the correlation of µNFix with SAMW outcrop

area (when defined as by 26.5 �⇥ < 27.0) is less significant (r = 0.81) than that with AAIW (27.0 �⇥ < 27.5;r = 0.88),

which is somehow in contrast to the findings by Palter et al. (2010). Their model experiments showed that the largest fraction580

(between 45 to 68%, depending on model configuration) of water volume at the surface between 30�S and 30�N stems from

SAMW, highlighting the role of this water mass for nutrient supply in the tropics and subtropics. A possible explanation for

this difference between our results and the results by Palter et al. (2010) could be the slightly different definition of water

masses. Further, in our models waters denser than �⇥ = 26.5 are influenced by the small nitrate deficit of surface waters in the

subtropical southern hemisphere (Figure 5), which moderates the signal arising from denitrification in the Pacific.585

4.2 Can optimisation help to improve model performance?

As shown in section 3.2, each circulation requires its own set of parameters for an optimal fit to dissolved inorganic tracers.

Optimisation facilitates the identification of these constants; on the other hand, it requires many model evaluations, so this

approach is prohibitive for models of high resolution because of computational constraints. It would be desirable to optimise a

biogeochemical model in a computationally cheaper circulation and then transfer the optimal parameters to a different model590

that includes more physical details, but is computationally more expensive. However, as shown in Sections 3.3, 3.5 and 3.6,

model performance can deteriorate when simulated with non-optimal parameters, and result in a considerable spread of the

independent diagnostics. Is there any advantage of calibrating biogeochemical models in these rather coarse scale, simplified
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circulations, if the parameters are to be transferred to a different circulation? To answer this question, we here discuss the

model variability before the background of earlier model studies and observed estimates.595

The mean diagnostic across all 25 model experiments (Mean(All) of Table 3) differs only slightly from the mean across only

the optimal model configurations (Mean(Opt)), and is close to observed quantities (Table 3), in agreement with Kriest et al.

(2017) and Kriest (2017), who found that optimisation against global nutrients and oxygen can help to improve global model

performance. Further, the overall maximum variation across all 25 experiments (�All of Table 3) is usually less than 50%

of that found by Bopp et al. (2013), who examined seven global models of different biogeochemical structure and circulation600

for their global average oxygen, OMZ volume, primary and export production. This indicates that optimisation can help to

improve model performance and reduce its uncertainty, even if parameters were optimised in a different circulation.

4.2.1 Model uncertainty, oxygen inventory and OMZ volume

As shown in section 3.5 changes in circulation and biogeochemical parameters affect model performance with respect to global

average oxygen about equally, resulting in an overall variation that is less than 25% of the observed value (�All of Table 3). In605

contrast, the global OMZ volume shows a large response to variations in circulation and model parameters, and varies by more

than 100% (�All of Table 3) to 200% (Bopp et al., 2013) of the observed volume. To our knowledge, no global model study

exists so far that systematically distinguishes between the effects of circulation and biogeochemistry on global OMZ volume;

our study suggests that both are equally important. Even the range across optimal models (�Opt) is still quite large, which can

be explained by the fact that the target of optimisation (the RMSE to nutrients and oxygen, as of Equation 1) is only weakly610

correlated to the fit to OMZs (Sauerland et al., 2019). Application of a revised misfit function, or multi-objective optimisation

as presented by Sauerland et al. (2019), can help to better constrain the relevant model parameters, and better represent OMZs.

Nevertheless, the mean of all models in our study deviates by less than 5% from the observed mean. Obviously, a good

representation of nutrients and oxygen can improve the fit to OMZs to some extent.

However, many global circulation models suffer from a deficient representation of physical processes in the tropics and615

subtropics, for example in their representation of the equatorial undercurrent (Dietze and Loeptien, 2013), or from inadequate

ventilation from the Southern Ocean and North Pacific (see Cabre et al., 2015, and citations therein). The first problem can

possibly be cured by a higher resolution, which leads to a more realistic OMZ ventilation by equatorial and off-equatorial

undercurrents (Duteil et al., 2014). Parameterisation of intermediate jets (Getzlaff and Dietze, 2013) can also lead to a better

agreement of the models. Tuning of biogeochemistry before the background of inadequate physics could compensate for the620

physical errors, but also result in misleading model parameterisations (’overtuning’), with potential consequences for future

projections (Löptien and Dietze, 2019). Given the yet unexplored structural and parameter sensitivity of models employed in

global assessments, and the large error with respect to OMZ volume and expansion (Table 3; Cocco et al., 2013; Bopp et al.,

2013; Cabre et al., 2015), a careful analysis of different error sources (physical and biogeochemical) can help to determine the

reasons for model divergence. The study presented here can serve as a first step towards this.625
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4.2.2 Model uncertainty and global biogeochemical fluxes

The loss of fixed nitrogen through pelagic denitrification is tightly linked to OMZs, and therefore also almost equally influenced

by circulation and biogeochemical parameters. Our average optimal model estimates are in agreement with recent estimates

by Eugster and Gruber (2012) and Somes et al. (2013). The variation due to biogeochemical parameters is lower than found

by Somes et al. (2013), who varied the nitrate threshold for denitrification from 20 to 32 mmol m�3, i.e. a wider range than630

identified by our objective parameter calibration (see Table 1).

Average global primary production of the models lies well within the range of observed estimates (Carr et al., 2006), and

depends slightly more on circulation than on biogeochemical parameters, similar to the results obtained in the sensitivity study

by Schmittner et al. (2005). That study included a wide range of sinking and mixing parameterisations, which might explain

the larger variation compared to our results. Applying three different circulations to one biogeochemical model, Seferian et al.635

(2013) found a spread of primary production which comparable to our experiments.

Quite many global model studies analysed the impact of circulation on global export production. Najjar et al. (2007) found an

effect of circulation more than ten times larger than in the present study, which can likely be explained by the nutrient-restoring

approach applied in their simple model. Using a more complex biogeochemical model, export production in the study by

Seferian et al. (2013) varied only by ⇡ 3 Pg C y�1, which is closer to the effects of circulation found in our study. The large640

effects observed by Schmittner et al. (2005) can again likely be ascribed to the wide range of parameterisations tested.

Using a biogeochemical model similar to the one applied by Najjar et al. (2007), Kwon et al. (2009) found an increase in

export production of ⇡ 5 Pg C y�1 when increasing b from 1.1 to 1.4 (about the range tested in our study). Again, this can

possibly be explained by the nutrient restoring approach, which does not account for the interplay between particle export and

remineralisation in surface and subsurface layers.645

Therefore, our model experiments show a lower sensitivity of global export production on biogeochemical parameters or

circulation than the previous studies. Some part of this difference could be explained by the large variation in physical model

setup (in the study by Schmittner et al., 2005), or by the very different structure of the biogeochemical model applied (Najjar

et al., 2007; Kwon et al., 2009). The large sensitivity of export production in the study by Najjar et al. (2007) also reflects on

the range of deep particle flux (as diagnosed from export production times 0.052), which is almost ten times higher than in the650

present study.

Our experiments suggest that even though circulation does play a large role for export production, deep particle flux is

mainly determined by parameter b. As a consequence, the sensitivity of export production to circulation noted by Najjar et al.

(2007) and in the present study does not necessarily imply an equally large sensitivity of deep particle flux (and resulting

remineralisation and deep oxygen consumption) on physical model features, which is somehow in contrast to the conclusions655

drawn by Najjar et al. (2007).
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4.3 The effect of model complexity

To summarise, in all cases studied here biogeochemical parameter optimisation can help to narrow down the model uncertainty

induced by circulation and biogeochemical parameters. Even if parameters optimised in one circulation are later transferred to

a different circulation the resulting spread is mostly around 50% that of the model intercomparison presented by Bopp et al.660

(2013). However, that study included models that diverged not only in physics, but also in the biogeochemical structure, which

might introduce another source of variability. To have a closer look at this we finally contrast the results of model MOPS, which

we consider as a model of intermediate complexity, with an equivalent optimisation of a much simpler model “RetroMOPS”

presented by Kriest (2017).

RetroMOPS is a four-component model that simulates only phosphate, nitrate, oxygen and dissolved organic phosphorus,665

but includes the same structural form for particle flux and remineralisation as model MOPS. When coupled to MIT28, and

optimised against the same data set and misfit function presented above, the performance and global fluxes of RetroMOPS

are very similar to MOPS (in the same circulation; Table 3 and Kriest, 2017)). For primary production the difference between

RetroMOPS and MOPS is about as large as when MOPS is simulated with different parameter sets within a given circulation.

One reason for this is the fact that the optimisation of RetroMOPS by Kriest (2017) aimed only at the parameters related670

to particle sinking and remineralisation, but not at parameters related to phytoplankton growth and loss terms; an additional

optimisation of these parameters may likely have produced smaller differences.

Therefore, after optimisation a simple model can perform quite well with respect to large-scale biogeochemical quantities, in

agreement with earlier findings (Kriest et al., 2012; Kwiatkowski et al., 2014; Galbraith et al., 2015), illustrating the benefit of

parameter optimisation: on the one hand, optimisation allows for a “fair” comparison of models of different complexity (after675

each model has been tuned to match some desired quantity best); on the other hand it can also support model development, by

helping to search for the best parameter set.
:
it
:::
can

::::::::
therefore

::::
also

::::
help

::
to

:::::
decide

:::::
about

:::
the

:::::::::
necessary

::::
level

::
of

:::::
model

::::::::::
complexity.

:

5 Conclusions

Optimisation of a global biogeochemical ocean model coupled to five different circulations achieved a good fit to observed

nutrients and oxygen with partly different biogeochemical parameters. We identified three parameters that depend significantly680

on characteristic features of circulation, as summarised in Figure 13. Areas of deep ventilation in the North Atlantic and in

the Southern Ocean determine how much oxygen is supplied to the ocean via air-sea gas exchange and subsequent mixing.

As a consequence, optimisation of the model in circulations with vigorous ventilation triggers a high oxygen demand of

remineralisation during optimisation. Fast turnover and mixing of NADW, as expressed through
:::
low

:
ideal age, affects the

parameter responsible for the timescale and vertical extent of remineralisation of sinking particles. Here, models characterised685

by relatively young waters in the NADW adjust to deeper sinking and remineralisation, with consequences for the large scale

distribution of phosphate. Finally, the combined outcrop area of SAMW and AAIW determines the optimal maximum rate of

nitrogen fixation. This may be explained with the role of the Southern Ocean as “mixer” for waters of different origin and

nitrogen deficit (Tuerena et al., 2015). The extent and properties of waters originating from this region (and their fixed nitrogen
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deficit), in conjunction with denitrification within the OMZs then set the stage for the competitive advantage of cyanobacteria in690

tropical and subtropical waters. Models with a small outcrop area of these waters benefit from a low maximum rate of nitrogen

fixation, and vice versa. In conclusion, when aiming for a good fit to large-scale biogeochemical quantities, key properties of

the underlying circulation model should be considered; depending on region and tracer of interest, these key properties may,

however, be different from those of our study.

Cross-validation experiments showed that the optimal parameters could be swapped between the different circulations to a695

limited extent. Parameters affect biogeochemical model performance in different ways: while the stoichiometric demand of

oxygen during remineralisation affects, for example, the ocean oxygen inventory, the particle flux parameter b determines the

large-scale distribution of nutrients, in line with earlier studies (Bacastow and Maier-Reimer, 1991; Kwon and Primeau, 2006;

Kriest et al., 2012).

Compared to other intercomparisons of global coupled models tuned more subjectively, our overall variation of biogeo-700

chemical key properties is at least 50% smaller, with different contributions from circulation and biogeochemical parameters.

For example, export production seems to be mainly determined by circulation, while deep particle flux is determined almost

entirely by the particle flux parameter b. Other biogeochemical diagnostics are affected more or less equally by circulation and

biogeochemical parameters. Finally, OMZ volume is very sensitive to changes in circulation and biogeochemical parameters,

and varies most strongly across all model experiments.705

However, models considered in global intercomparisons usually differ also in their biogeochemical structure and complexity.

Our experiments suggest that after optimisation the differences due to model structure are much smaller than those due to model

parameters or circulation. This indicates that a simpler model can perform as well as a more complex model (with respect to

the metrics and diagnostics applied here), similar to the results obtained by Kriest et al. (2012), Kwiatkowski et al. (2014) and

Galbraith et al. (2015). It also illustrates how biogeochemical parameter optimisation can aid model development: whenever710

new components or parameterisations are introduced to a global model, this new model has to be tuned in order to match

observations on global or regional scales. Often, the choice of appropriate parameters is not easy, and requires extensive testing

and sensitivity analysis. Automatic (algorithmic) optimisation can make calibration more efficient, simplifying the search for

a good model match to observed quantities. For a given misfit function it can also support decisions about the necessary level

of model complexity.715

Therefore, our experiments suggest that global biogeochemical ocean models benefit from optimisation, even if this was

carried out in a circulation differing from that of the “target” circulation. However, to date there is no guarantee that a model

showing a good fit to observed quantities in steady state (i.e., when simulated in a preindustrial or present day, climatological

physical forcing) will exhibit the correct response when applied to transient scenarios reflecting future climate change. As

shown here and in earlier studies (Cocco et al., 2013; Cabre et al., 2015; Löptien and Dietze, 2019), OMZs seem to be partic-720

ularly sensitive to both biogeochemical and physical parameters. Accounting for the match between simulated and observed

OMZs during optimisation can reduce the model spread in steady state (Sauerland et al., 2019). Extending the simulation of

optimal models to future states could then inform us about their sensitivity to changes in circulation and forcing, and may pro-
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vide a better constraint on their uncertainties. Thus, the study presented here serves as a first step to unravel the uncertainties

associated with the divergence of global biogeochemical model performance and uncertainty.725
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Table 2. Correlation coefficient r for the regression of three optimal model parameters against physical diagnostics. The outcrop area of

dense waters in the northern (> 40�N) and southern (> 40�S) hemisphere is given for two different density intervals. Outcrop area for deep

mixing in the North Atlantic (> 40�N) and Southern Ocean (> 40�S) is given for two different criteria of maximum deep mixing (200m

and 400m). Mean water mass age is given for four different water masses. See text for further details. Significant correlations (p < 0.05) are

denoted by bold face.

Parameter Physical diagnostic

Area MLD North Atlantic Area MLD Southern Ocean

200m 400m 200m 400m

R
�O2:P 0.916 0.950 0.875 0.465

µNFix -0.492 -0.405 -0.332 -0.263

b -0.280 -0.425 -0.499 -0.210

Area Outcrop North Area Outcrop South

26.5-27.5 >27.5 26.5-27.5 >27.5

R
�O2:P -0.329 0.460 -0.641 0.792

µNFix 0.449 -0.361 0.890 -0.746

b -0.287 0.050 -0.538 0.202

Ideal Ages

NADW CDW NPDW ETP

R
�O2:P -0.358 0.273 0.787 -0.266

µNFix -0.083 -0.380 -0.857 -0.070

b 0.914 0.136 0.069 0.334
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Table 3. Mean (across all experiments and optimal models) and range of variation of global biogeochemical model properties and fluxes

across different parameter sets (circulation constant; � Par), and different circulations (parameters constant; � Circ), as well as across the

five different optimal models MIT28⇤, ECCO⇤, uHigh⇤, U20⇤ and U17.5⇤ (� Opt). � Mod shows the difference between MIT28⇤ of this

study and model RetroMOPS of Kriest (2017). Observed oxygen and OMZ volume from Garcia et al. (2006b, mapped onto ECCO grid);

observed global flux ranges derived from estimates by Carr et al. (2006, primary production), Dunne et al. (2007, export production), Lutz

et al. (2007, export production; radiogen. calib.), Honjo et al. (2008, mean particle flux), Guidi et al. (2015, particle flux), Eugster and Gruber

(2012, median fixed nitrogen loss) and Somes et al. (2013, fixed nitrogen loss of best data-constrained model).

Mean (All) Mean (Opt) � Mod � Par � Circ � Opt � All

Global mean O2 (observed: 174.17 mmol m�3)

This study 177.2 177.6 0.1 24.1 24.3 6.8 43.0

Bopp et al. (2013) 95.0

OMZ Volume (50 mmol m�3; observed: 57.0⇥ 1015 m3)

This study 54.9 52.1 0.7 39.4 55.4 39.0 67.2

Bopp et al. (2013) 212.5

OMZ Volume (80 mmol m�3; observed: 119.1⇥ 1015 m3)

This study 122.3 112.8 0.6 112.0 119.8 73.3 145.9

Bopp et al. (2013) 328.9

Fixed N loss (observed estimates: 52-76 Tg N y�1)

This study 67.7 67.4 1.9 35.1 33.8 17.4 44.9

Somes et al. (2013)$ 53.6

Primary Production (observed estimates: 40-60 Pg C y�1)

This study 47.4 47.2 9.1 8.17 12.27 5.65 18.95

Schmittner et al. (2005)§ 20.1 24.5 48.5

Seferian et al. (2013) 8.64

Bopp et al. (2013) 47.8

Export Production (observed estimates: 4.6-9.6 Pg C y�1)

This study 6.86 6.86 0.23 0.49 1.08 1.05 1.20

Schmittner et al. (2005)§ 2.2 8.4 11.2

Najjar et al. (2007) 10

Kwon et al. (2009)† ⇡5

Seferian et al. (2013) 3.0

Bopp et al. (2013) 3.2

Sedimentation (2000m) (observed estimates: 0.33-0.43 Pg C y�1)

This study 0.36 0.36 0.02 0.16 0.06 0.16 0.19

Najjar et al. (2007)‡ 0.52
$ experiments 1-3; § For �Circ we have omitted the experiment with Kb = 0 of the study by Schmittner et al. (2005), and refer only to

experiments 2, 8 and 12. For �Par we report the difference between experiments 12 and 13, and for �All the maximum spread across

experiments 2 to 13. † We refer to Figure 2b of Kwon et al. (2009), but consider only a range of 1.1  b  1.4 for �Par, to be

comparable to our range of b. ‡ Calculated from export production ⇥(75/2000)0.9 = 0.052.
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Figure 1. Density (�⇥) at 25 m (left panels), and salinity along sections at 23�W and 140�W (middle and right panels), of forcing from

(top to bottom) MIT28, UHigh and ECCO circulation. The lower panel shows observations mapped onto ECCO geometry. Density has been

derived from annual mean potential temperature and salinity. Contour lines highlight isopycnal of �✓ = 26.5 and �✓ = 27.5.
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Figure 2. Annual maximum mixed-layer depths of models and observations (gridded onto ECCO model geometry). Mixed-layer depths have

been determined from a density difference of �✓ = 0.03 (density calculated from monthly mean temperature and salinity). Square pattern in

high latitudes denotes regions with an ice coverage of at least 50%.

34



Figure 3. Simulated ideal age (years) averaged over 1500-2500 m in the North Atlantic (NADW; left panels), and as zonal mean for the

Atlantic (mid panels) and the Pacific (right panels). Boxes indicate regions of NADW, NPDW, CDW and ETP (see Fig. S2 for detailed plot).

35



Figure 4. Global mean vertical profiles of phosphate (A), nitrate (B) and oxygen (C). Thin lines denote range across all 25 model experiments,

shaded areas the range across the five optimal model experiments and the thick lines the average of optimal model experiments. Stars denote

observed profiles. The right panel (D) shows the range (as percent of observations) across optimal models as thick lines and the range across

all model experiments as thin lines. Black lines: phosphate; red lines: nitrate; blue lines: oxygen. Prior to averaging, all model have been

regridded onto the ECCO grid, using nearest neighbour filling in the vertical, and linear interpolation horizontally.
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Figure 5. Excess nitrate N⇤ (N⇤ =NO3�16⇥PO4) of optimal model configurations, averaged over the euphotic zone (left panels), and of

zonal mean nitrate and phosphate in the Atlantic and Pacific (middle panels and right panels, respectively). Lines denote density of �✓ = 27

and �✓ = 27.5.
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Figure 6. Optimal parameters for which the correlation of Table 2 is significant at p < 0.05, plotted against physical diagnostics. Symbols

indicate the different model optimisations. Small squares: MIT28⇤. Large squares: ECCO⇤. Circles: UHigh⇤. Triangles: U20⇤. Inverted

triangles: U17.5⇤. Lines denote the regression of optimal parameters against the respective circulation diagnostic. Vertical bars at the upper

plot boundary indicate observed diagnostic.

Figure 7. Three different model diagnostics for all cross-validation experiments with parameter set i and circulation j: (A) normalised

misfit Ji,j/J
⇤

j � 1, where J⇤

j is the lowest misfit for each circulation j. (B) oxygen bias (model minus observation, [mmol m�3]). (C)

OMZ volume (as percent of total ocean volume) bias. OMZs are defined by 50 mmol m�3. The x-axis denotes the optimal parameter sets

of MIT28⇤, ECCO⇤, UHigh⇤, U20⇤, U17.5⇤ and the y-axis the circulation. Pluses along the main diagonal indicate the optimal model

simulation for each circulation (i= j), i.e., MIT28⇤, ECCO⇤, UHigh⇤, U20⇤, U17.5⇤.
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Figure 8. Average phosphate in the northern North Pacific Deep Water (NPDW; between 0�N and 60�N, and 1500-5000 m; see Text) plotted

against average phosphate in the northern North Atlantic Deep Water (NADW; between 0�N and 60�N, and 1500-2500m; panel (A)) or

Circumpolar Deep Water (CDW; south of 45�S, 1500-5000 m; panel (B)), of all 25 model experiments. Small squares: MIT28 circulation.

Large squares: ECCO circulation. Circles: UHigh circulation. Triangles: U20 circulation. Inverted triangles: U17.5 circulation.
:::
(See

::::
also

:::::
symbol

::::::
legend

::
in

:::
Fig.

::
6.)

:
The colour indicates the value of parameter b. Pluses indicate the optimal parameter set. Stars indicate observed

values. Thin black lines extending from the stars denote the distance between observation and each optimal model configuration.

Figure 9. As Figure 8, but for average oxygen and parameter R
�O2:P (colour scale).
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Figure 10. Normalised biogeochemical diagnostics plotted against parameter b: (A) Global average oxygen, (B) OMZ volume defined by

concentrations < 50 mmol m�3, (C) global fixed N loss, (D) global primary production, (E) export production and (F) organic particle flux

at 2000 m. All diagnostics X expressed as relative deviation to the mean of the five optimal model simulations (Xi,j/X̄
⇤

i � 1), where j and

i denote different combinations of circulation j and parameter set i, and X̄⇤

j the average of all optimal model configurations (see Table 3 for

values). Colour denotes value of parameter R
�O2:P. Symbols denote circulation: Small squares: parameter set of MIT28⇤. Large squares:

ECCO⇤. Circles: UHigh⇤. Triangles: U20⇤. Inverted triangles: U17.5⇤.
:::
(See

::::
also

::::::
symbol

:::::
legend

::
in

:::
Fig.

::
6.)

:
Optimal model configurations are

indicated by pluses.

Figure 11. Effect of variation in biogeochemical parameters (�Par), circulation (�Circ) and across all model experiments (�Circ) on (A)

global average oxygen, (B) OMZ volume defined by a concentration of < 50 mmol m�3, (C) global fixed nitrogen loss, (D) global primary

production, (E) export production and (F) organic particle flux at 2000 m, as listed in Table 3. Symbols denote values from Bopp et al. (2013,

large squares), Schmittner et al. (2005, small squares), Seferian et al. (2013, circles), Najjar et al. (2007, diamonds), Somes et al. (2013, plus)

and Kwon et al. (2009, cross).

40



Figure 12. Effect of variation in circulation and biogeochemical parameters on normalised diagnostics. (A) global average oxygen, (B)

OMZ volume defined by a concentration of < 50 mmol m�3, (C) global fixed nitrogen loss, (D) global primary production, (E) export

production and (F) organic particle flux at 2000 m. All diagnostics X are expressed as relative deviation to mean of the five optimal model

simulations (Xi,j/X̄
⇤

j � 1), where j and i denote different combinations of circulation j and parameter set i, and X̄⇤

j is the average of

all optimal model configurations (see Table 3 for values). Each panel shows the range of the normalised diagnostic when the parameter

set is kept constant and circulation varied (vertical lines), and when circulation is kept constant and the parameter set is varied (horizontal

lines). Symbols denote the optimal model configuration. Colour denotes circulation and optimal parameter set. Black: circulation MIT28 or

parameter set of MIT28⇤. Thick blue: UHigh/UHigh⇤. Medium blue: U20/U20⇤. Thin blue: U17.5/U17.5⇤. Red: ECCO/ECCO⇤. Symbols

denote optimal model configurations
::
(see

::::
also

::::::
symbol

:::::
legend

::
in
:::

Fig.
::
6).

:
The grey-shaded area shows total variation across all 25 model

experiments, corresponding to � All in Table 3. Note that the maximum variation due to parameter within each circulation (�Par of Table 3)

is given by the longest horizontal line in each panel. Likewise, the maximum variation due to circulation within each parameter set (�Circ

of Table 3) is given by the longest vertical line.
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ATLANTIC PACIFICSOUTHERN OCEAN

NADW

AABW

NPDW

AABW

AAIW + SAMW AAIW + SAMW

CDWEq Eq

NPIW

area of deep mixing 
affects O2:P stoichiometry

area of deep mixing 
affects O2:P stoichiometry

area of SAMW + AAIW outcrop
affects N2 fixation rate

age of NADW
affects particle flux length scale

Figure 13. Cartoon depicting the simplified large scale circulation pattern of the Atlantic and Pacific Ocean, and the dependence of three

biogeochemical parameters R
�O2:P, b and µNFix of physical properties.
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Table S1.
::::::
General

::::
setup

:::
and

::::::::
properties

::
of

:::::::
different

:::::
offline

::::::::::
circulations.

:::
See

::::::
section

:::
2.1

::
for

:::::
more

:::::::::
information

::
on

:::
the

::::
setup

:::
of

::
the

::::::
offline

:::::::::
circulations.

::::::
MIT28⇤

: :::::
UHigh⇤

: ::::
U20⇤

: :::::
U17.5⇤

: :::::
ECCO⇤

: :::
Obs

:::::::
(ECCO)

:::::
Ocean

:::::
model:

: :::::
MIT28

:::
UVic

: :::
UVic

: :::
UVic

: :::::
ECCO

::::::::
Horizontal

::::::::
resolution:

:::::::::
2.8� ⇥ 2.8�

:::::::::
3.6� ⇥ 1.8�

:::::::::
3.6� ⇥ 1.8�

:::::::::
3.6� ⇥ 1.8�

:::::::::
1.0� ⇥ 1.0�

::::::::
1.0� ⇥ 1.0�

:

::::::
Vertical

::::::::
resolution:

:
15

: :
19

: :
19

: :
19

: :
23

: ::
23

Outcrop area (m2 ⇥ 1013)

:::::
North:

:::::::::::
26.5 � < 27

: ::::
0.347

: ::::
0.556

: ::::
0.590

: ::::
0.596

: ::::
0.461

: ::::
0.446

:::::
North:

:::::::::::
27 � < 27.5

: ::::
0.380

: ::::
0.501

: ::::
0.430

: ::::
0.430

: ::::
0.444

: ::::
0.436

:::::
North:

:::::::
27.5 �

::::
0.521

: ::::
0.124

: ::::
0.088

: ::::
0.088

: ::::
0.204

: ::::
0.191

:::::
South:

:::::::::::
26.5 � < 27

: ::::
1.595

: ::::
2.101

: ::::
1.847

: ::::
1.846

: ::::
2.093

: ::::
2.451

:::::
South:

:::::::::::
27 � < 27.5

: ::::
2.477

: ::::
3.301

: ::::
2.593

: ::::
2.566

: ::::
2.850

: ::::
2.909

:::::
South:

:::::::
27.5 �

::::
1.955

: ::::
0.369

: ::::
0.948

: ::::
0.970

: ::::
0.482

: ::::
0.407

Deep MLD area (m2 ⇥ 1012)

:::::
North:

::::
Area

::::
MLD

:::::
� 200

::
m
: ::::

7.279
: ::::

5.492
: ::::

5.476
: ::::

5.476
: ::::

4.255
: ::::

3.679

:::::
North:

::::
Area

::::
MLD

:::::
� 400

::
m
: ::::

3.373
: ::::

2.875
: ::::

2.888
: ::::

2.942
: ::::

1.685
: ::::

1.130

:::::
South:

::::
Area

::::
MLD

:::::
� 200

::
m
: :::::

29.269
:::::
27.945

:::::
28.148

:::::
27.964

:::::
16.873

:::::
14.047

:

:::::
South:

::::
Area

::::
MLD

:::::
� 400

::
m
: ::::

5.860
: ::::

9.669
: :::::

14.672
:::::
14.242

::::
0.478

: ::::
3.193

Ideal age (y)

::::::
NADW

:::
154

:::
131

:::
167

:::
208

:::
209

::::
CDW

: :::
597

:::
370

:::
376

:::
336

:::
461

:::::
NPDW

: :::
1399

: :::
1269

: :::
1398

: :::
1348

: :::
1229

:

:::
ETP

: :::
300

:::
227

:::
220

:::
208

:::
314

:::::
Global

:::
652

:::
583

:::
628

:::
605

:::
643
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Figure S1. Density at 25 m (left panels), and salinity along sections at 23�W and 140�W (middle and right panels), of circulations (top to

bottom) UHigh, U20 and U17.5 circulation. The lower panel shows observations mapped onto UVic geometry. Density has been derived

from annual mean potential temperature and salinity. Contour lines in left panels highlight isopycnal of �✓ = 26.5 and �✓ = 27.5.
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Figure S2. Ideal age averaged over 150 to 500 m in the eastern tropical and subtropical Pacific of (left to right) MIT28, ECCO, UHigh, U20

and U17.5. Units are in years.

Figure S3.
::::

Range
::
of

:::::::
variation

::
in

:::::
global

:::::
mean

::::::
vertical

:::::
profiles

:::
(as

::::::
percent

::
of

::::::::::
observations)

:::::
across

::::::
optimal

::::::
models

:::::
(thick

:::::
lines)

:::
and

:::::
across

::
all

:::::
model

:::::::::
experiments

::::
(thin

:::::
lines).

:::::
Black

:::::
lines:

::::::::
phosphate;

:::
red

:::::
lines:

:::::
nitrate;

::::
blue

:::::
lines:

::::::
oxygen.

::::
Prior

::
to

::::::::
averaging,

:::
all

:::::
model

::::
have

::::
been

:::::::
regridded

::::
onto

::
the

:::::
ECCO

::::
grid,

:::::
using

:::::
nearest

::::::::
neighbour

:::::
filling

:
in
:::

the
::::::
vertical,

:::
and

:::::
linear

::::::::::
interpolation

:::::::::
horizontally.
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Figure S4. Deviation between simulated and observed phosphate of optimised models. Left panels: deviation of nitrate averaged over 1500-

5000 m. Middle panels: deviation between zonal mean nitrate in the Atlantic. Right panels: deviation between zonal mean nitrate in the

Pacific. Lines in the left panels indicate regions where maximum mixed-layer depth (calculated as in Fig. 2) is equal or larger than 400 m.

Lines in the middle and right panels indicate potential density, averaged zonally. Units are in mmol m�3.
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Figure S5. As Figure S4, but for nitrate.
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Figure S6. Vertically integrated nitrogen fixation (top) and denitrification (bottom) in the optimal model runs. Fluxes (colourbar) are in

mmol N m�2 y�1. Numbers in panels give globally integrated flux.
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Figure S7. As Figure S4, but for oxygen.
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Figure S8. Pairs of optimal parameters for the five model optimisations. Colour indicates model type. Dark blue: MIT28⇤. Light blue:

ECCO⇤. White: UHigh⇤. Orange: U20⇤. Dark red: U17.5⇤. Horizontal and vertical bars indicate the uncertainty range (parameters for which

misfit Ji deviates less than 1% from the optimal misfit J⇤ (Ji/J
⇤ � 1�J , with �J = 0.01).
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Figure S9. Vertically integrated deviation (kmol m�2) of simulated to observed oxygen in three different domains, for simulations with

ECCO circulation and the three different parameter sets of ECCO⇤, MIT28⇤ and UHigh⇤). Upper panels: for domain between � = 26.5 and

� = 27.0. Middle panels: for domain between � = 27.0 and � = 27.5. Lower panels: for domain of � > 27.5. Thin lines denote the outcrop

areas of the water masses. The left panels show the bias of zonal integrals (in Pmol O2) for simulations with parameters of ECCO⇤ (red),

UHigh⇤ (blue) and MIT28⇤ (black).
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