1	Extending a land-surface model with Sphagnum moss to simulate responses of a northern		Formatted: Section start: Continuous
2 3 4 5 6	temperate bog to whole-ecosystem warming and elevated CO2		• Formatted: Subscript
	Xiaoying Shi ^{1*} , Daniel M. Ricciuto ¹ , Peter E. Thornton ¹ , Xiaofeng Xu ² , Fengming Yuan ¹ , Richard J. Norby ¹ , Anthony P. Walker ¹ , Jeffrey Warren ¹ , Jiafu Mao ¹ , Paul J. Hanson ¹ , Lin Meng ³ , David Weston ¹ , Natalie A. Griffiths ¹		Formatted: Font: 10.5 pt
			Deleted: Modeling the hydrology and physiology of <i>Sphagnum</i> moss in a northern temperate bog ⁴
7 8	¹ Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA		
9 10	² Biology Department San Diego State University, San Diego, CA, 92182-4614, USA		
10 11 12 13 14	³ Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, 50011		
15	* To whom correspondence should be addressed		
16	Corresponding author's email: shix@ornl.gov		
17	Fax: 865-574-2232		
18			
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39			
	1		

42 Abstract

43 44	Mosses need to be incorporated into Earth system models to better simulate
45	peatland functional dynamics under changing environment. Sphagnum mosses are strong
46	determinants of nutrient, carbon and water cycling in peatland ecosystems. However,
47	most land surface models do not include Sphagnum or other mosses as represented plant
48	functional types (PFTs), thereby limiting predictive assessment of peatland responses to
49	environmental change. In this study, we introduce a moss PFT into the land model
50	component (ELM) of the Energy Exascale Earth System Model (E3SM), by developing
51	water content dynamics and non-vascular photosynthetic processes for moss. The model
52	was parameterized and independently evaluated against observations from an
53	ombrotrophic forested bog as part of the Spruce and Peatland Responses Under Changing
54	Environments (SPRUCE) project. Inclusion of a Sphagnum PFT with some Sphagnum
55	specific processes in ELM allows it to capture the observed seasonal dynamics of
56	Sphagnum gross primary production (GPP), albeit with an underestimate of peak GPP.
57	The model simulated a reasonable annual net primary production (NPP) for moss but
58	with less interannual variation than observed, and reproduced above ground biomass for
59	tree PFTs and stem biomass for shrubs. Different species showed highly variable
60	warming responses under both ambient and elevated atmospheric CO2 concentrations,
61	and elevated CO ₂ altered the warming response direction for the peatland ecosystem.
62	Microtopography is critical: Sphagnum mosses on hummocks and hollows were
63	simulated to show opposite warming responses (NPP decreasing with warming on
64	hummocks, but increasing in hollows), and hummock Sphagnum was modeled to have
65	strong dependence on water table height. Inclusion of this new moss PFT in global ELM

66 simulations may provide a useful foundation for the investigation of northern peatland

67 carbon exchange, enhancing the predictive capacity of carbon dynamics across the

68 regional and global scales.

69 Copyright statement

70 This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-71 AC05-00OR22725 with the U.S. Department of Energy. The United States Government 72 retains and the publisher, by accepting the article for publication, acknowledges that the 73 United States Government retains a non-exclusive, paid-up, irrevocable, world-wide 74 license to publish or reproduce the published form of this manuscript, or allow others to 75 do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE 76 77 Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). 78 79 1. Introduction 80 81 Boreal peatlands store at least 500 Pg of soil carbon due to incomplete 82 decomposition of plant litter inputs resulting from a combination of low temperature and 83 water-saturated soils. Because of this capacity to store carbon, boreal peatlands have 84 played a critical role in regulating the global climate since the onset of the Holocene 85 (Frolking and Roulet, 2007; Yu et al., 2010). The total carbon stock is large but 86 uncertain: a new estimation of northern peatlands carbon stock of 1055 Pg was recently 87 reported by Nichols and Peteet (2019). The rapidly changing climate at high latitudes is likely to impact both primary production and decomposition rates in peatlands, 88 contributing to uncertainty in whether peatlands will continue their function as net carbon 89

90	sinks in the long term (Moore et al., 1998; Turetsky et al., 2002; Wu and Roulet, 2014).	
91	Manipulative experiments and process-based models are thus needed to make defensible	
92	projections of net carbon balance of northern peatlands under anticipated global warming	
93	(Hanson et al, 2017; Shi et al., 2015).	
94	Peatlands are characterized by a ground layer of bryophytes, and the raised or	
95	ombrotrophic bogs of the boreal zone are generally dominated by Sphagnum mosses that	
96	contribute significantly to total ecosystem CO ₂ flux (Oechel and Van Cleve, 1986;	
97	Williams and Flanagan, 1998; Robroek et al., 2009; Vitt, 2014). Sphagnum mosses also	
98	strongly affect the hydrological and hydrochemical conditions at the raised bog surface	
99	(Van, 1995; Van der Schaaf, 2002). As a result, microclimate and Sphagnum species	
100	interactions influence the variability of both carbon accumulation rates and water and	
101	exchanges within peatland and between peatland and atmosphere (Heijmans et al., 2004a,	Dele
102	2004b; Rosenzweig et al., 2008; Brown et al., 2010; Petrone et al., 2011; Goetz and Price,	
103	2015). Functioning as keystone species of boreal peatlands, Sphagnum mosses strongly	
104	influence the nutrient, carbon and water cycles of peatland ecosystems (Nilsson and	
105	Wardle, 2005; Cornelissen et al., 2007; Lindo and Gonzalez, 2010; Turetsky et al., 2010;	
106	Turetsky et al., 2012), and exert a substantial impact on ecosystem net carbon balance	
107	(Clymo and Hayward; 1982; Gorham, 1991; Wieder, 2006; Weston et el., 2015; Walker	
108	et al., 2017; Griffiths et al., 2018).	
109	Numerical models are useful tools to identify knowledge some systeming lang term	
109	Numerical models are useful tools to identify knowledge gaps, examine long-term dynamics, and predict future changes. Earth system models (ESMs) simulate global	
111	processes, including the carbon cycle, and are primarily used to make future climate	

112 projections. Poor model representation of carbon processes in peatlands is identified as a leted: water exchanges between and within peatlands

114	deficiency causing biases in simulated soil organic mass and heterotrophic respiratory
115	fluxes for current ESMs (Todd-Brown et al., 2013; Tian et al., 2015). Although most
116	ESMs do not include moss, a number of offline dynamic vegetation models and
117	ecosystem models do include one or more moss plant functional types (PFTs) (Pastor et
118	al., 2002; Nungesser, 2003; Zhuang et al., 2006; Bond-Lamberty et al., 2007; Heijmans et
119	al., 2008; Euskirchen et al., 2009; Wania et al., 2009; Frolking et al., 2010). Several
120	peatland-specific models contain moss species and have been applied globally or at
121	selected peatland sites. For example, the McGill Wetland Model (MWM) was evaluated
122	using the measurements at Degerö Stormyr and the Mer Bleue bogs (St-Hilaire et al.,
123	2010). The peatland version of the General Ecosystem Simulator - Model of Raw Humus,
124	Moder and Mull (GUESS-ROMUL) was used to simulate the changes of daily CO_2
125	exchange rates with water table position at a fen (Yurova et al., 2007). The PEATBOG
126	model was implemented to characterize peatland carbon and nitrogen cycles in the Mer
127	Bleue bog, including moss PFTs but without accounting for microtopography (Wu et al.,
128	2013a). The CLASS-CTEM model (the coupled Canadian Land Surface Scheme and the
129	Canadian Terrestrial Ecosystem Model), which includes a moss layer as the first soil
130	layer, was applied to simulate water, energy and carbon fluxes at eight different peatland
131	sites (Wu et al., 2016). The IAP-RAS (Institute of Applied Physics – Russian Academy
132	of Sciences) wetland methane (CH ₄) model with a 10 cm thick moss layer (Mokhov et al.
133	2007) was run globally to simulate the distribution of CH4 fluxes (Wania et al., 2013).
134	The CHANGE model (a coupled hydrological and biogeochemical process simulator),
135	which includes a moss cover layer (Launiainen et al., 2015), was used to investigate the
136	effect of moss on soil temperature and carbon flux at a tundra site in Northeastern Siberia

k.a.=	
137	(Park et al., 2018). Chadburn et al. (2015) added a surface layer of moss to JULES land
138	surface model to consider the insulating effects and treated the thermal conductivity of
139	moss depending on its water content to investigate the permafrost dynamics. Porada et al.
140	(2016) integrated a stand-alone dynamic non-vascular vegetation model LiBry (Porada et
141	al., 2013) to land surface scheme JSBACH, but JSBACH mainly represent bryophyte and
142	lichen cover on upland forest, not for peatland ecosystem without including an organic
143	soil layer. Druel et al. (2017) investigated the vegetation-climate feedbacks in high
144	latitudes by introducing a non-vascular plant type representing mosses and lichens to the
145	global land surface model ORCHIFEE. Moreover, those models did not consider
146	microtopography and the lateral transports between hummocks and hollows. Two
147	models, the "ecosys" model (Grant et al., 2012) and CLM_SPRUCE (Shi et al., 2015),
148	have been parameterized to represent peatland microtopographic variability (e.g., the
149	hummock and hollow microterrain characteristic of raised bogs) with lateral connections
150	across the topography. Prediction of water table dynamics in the "ecosys" model is
151	constrained by specifying a regional water table at a fixed height and a fixed distance
152	from the site of interest, thereby missing key controlling factors of a precipitation-driven
153	dynamic water table (Shi et al., 2015). The CLM_SPRUCE model (Shi et al., 2015) was
154	developed to parameterize the hydrological dynamics of lateral transport for
155	microtopography of hummocks and hollows in the raised bog environment of the
156	SPRUCE (Spruce and Peatland Responses Under Changing Environments) experiment
157	(Hanson et al., 2017). That model version did not include the biophysical dynamics of
158	Sphagnum moss, and used a prescribed leaf area instead of allowing leaf area to evolve
159	prognostically.

- 160 _____In this study, we introduce a new Sphagnum moss PFT into the model, and migrate
- 161 the entire raised-bog capability into the new Energy Exascale Earth System Model
- 162 (E3SM), specifically into version 1 of the E3SM land model (ELM v1, Ricciuto et al.,
- 163 2018). The objectives of this study are to: 1) introduce a Sphagnum PFT to the ELM

164 model with additional Sphagnum-specific processes to better capture the peatland

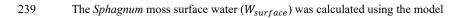
- 165 <u>ecosystem</u>; and 2) apply the updated ELM to explore how an ombrotrophic, raised-dome
- 166 bog peatland ecosystem will respond to different scenarios of warming and elevated
- 167 atmospheric CO₂ concentration.

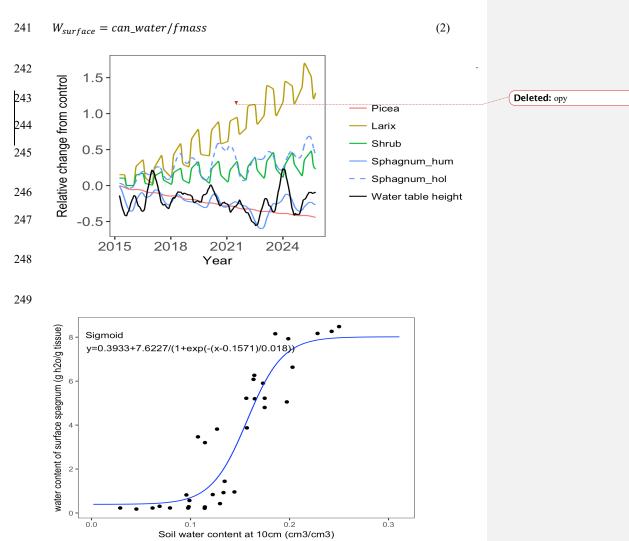
168 2. Model description

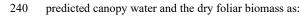
169 2.1 Model provenance

170 ELM v1 is the land component of E3SM v1, which is supported by the US 171 Department of Energy (DOE). Developed by multiple DOE laboratories, E3SM consists 172 of atmosphere, land, ocean, sea ice, and land ice components, linked through a coupler 173 that facilitates across-component communication (Golaz et al., 2019). ELM was 174 originally branched from the Community Land Model (CLM4.5, Oleson et al., 2013), 175 with new developments that include representation of coupled carbon, nitrogen, and 176 phosphorus controls on soil and vegetation processes, and new plant carbon and nutrient 177 storage pools (Ricciuto et al., 2018; Yang et al., 2019; Burrows et al., 2020). Inputs of 178 new mineral nitrogen of ELM are from atmospheric deposition and biological nitrogen 179 fixation. The fixation of new reactive nitrogen from atmospheric N2 by soil 180 microorganisms is an important component of nitrogen budgets. ELM follows the

181 approach of Cleveland et al. (1999) that uses an empirical relationship of biological


Formatted: Normal (Web), Tab stops: Not at 0.5" Formatted: Font: (Default) Times New Roman, 12 pt


Deleted: in review
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Subscript, Not Raised by / Lowered by
Formatted: Font: (Default) Times New Roman, 12 pt, Not Raised by / Lowered by
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto
Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto


183	nitrogen fixation as a function of net primary production to predict the nitrogen fixation.		Formatted: Font: (Default) Times New Roman, 12 pt
184	The model version used in this study is designated ELM_SPRUCE, and includes the new		Deleted: _
185	implementation of Sphagnum mosses as well as the hydrological dynamics of lateral	<	Formatted: Font: Times New Roman, 12 pt, Not Italic
186	transport between hummock and hollow microtopographies. The implementation has		Formatted: Font: (Default) Times New Roman, 12
187	been parameterized based on observations from the S1-Bog in northern Minnesota, USA,		Formatted: Font: (Default) Times New Roman, 12 pt
188	as described by Shi et al. (2015), with additional details provided below.		(pr
189	2.2 Non-vascular plants: <u>Sphagnum mosses</u>		Formatted: Font: Italic
190	To represent non-vascular plant the Sphagnum mosses, we modified the C3 artic	>	Formatted: Font: Not Italic
101			Formatted: Left, Tab stops: Not at 0.5"
191	grasses equations as follows. We considered Sphagnum biomass to be represented mainly		Formatted: Font: Not Italic
192	by leaf and stem carbon (only a very shallow root). In addition, we modified the vascular		
193	C3 arctic grasses equations for photosynthesis and stomatal conductance (see the below		
194	new model development), and the associated parameters as reported by Table 1-3. We		Formatted: Font: Times New Roman
195	use the same framework as for C3 artic grasses, but the Ball-Berry slope term is assumed		
196	to be zero and the intercept term is the conductance term as a function of water content of		
197	Sphagnum mosses. For all other processes like the evapo(transpi)ration and associated		Formatted: Font: Times New Roman, Italic
100			Formatted: Font: Times New Roman
198	parameters not described below, we used the C3 artic grasses equations (reported by	$\langle \rangle \rangle$	Formatted: Font: Times New Roman
199	Oleson et al., 2013). Drying impacts the conductance and affects evapo(transpi)ration of		Formatted: Font: Times New Roman Formatted: Font: Times New Roman, 12 pt, Not
200	the internal water. The SLA and leaf C:N ratio parameters are strong controls on Vcmax,		Raised by / Lowered by Formatted: Font: Times New Roman
201	and therefore overall productivity and Sphagnum moss LAI. The high sensitivities occur		Tormatted. Fort. Times New Koman
202	because LAI is a strong control on evapo(transp)iration.		
	secure 21 is a buong control or apolautopynation.		
203	2.3 New model developments		Deleted: ¶
			Deleted: 2
204	2.3.1 Water content dynamics of <i>Sphagnum</i> mosses		Deleted: 2

8

209	The main sources for water content of Sphagnum mosses are passive capillary	
210	water uptake from peat, and interception of atmospheric water on the capitulum (growing	
211	tip of the moss) (Robroek et al. 2007). Capillary water uptake, the internal Sphagnum	
212	moss water content, is modeled as functions of soil water content and evaporation losses.	
213	Water intercepted on the Sphagnum moss capitulum is modeled as a function of moss	
214	foliar biomass, current canopy water, water drip, and evaporation losses.	
215	Since evaporation at the Sphagnum surface depends on atmospheric water vapor	Formatted: Font: Italic
216	deficit, moss-atmosphere conductance and available water pool which depends on	
217	capillary wicking of water up to the surface, At SPRUCE, the peat volumetric water	Deleted: Since evaporation at the <i>Sphagnum</i> surface depends on capillary wicking of water up to the surface and
218	content is measured at several depths using automated sensors (model 10HS, Decagon	atmospheric water vapor deficit, we developed a relationship between measured soil water content at depth, and surface
219	Devices, Inc., Pullman, WA) calibrated for the site-specific upper peat soil using	Sphagnum water content
220	mesocosms (reference Figure S1, Hanson et al. 2017). During those calibrations, we	Deleted: W
221	periodically sampled the surface Sphagnum for gravimetric water content and water	
222	potential using a dew point potentiometer (WP4, Decagon Devices, Inc.), which also	
223	provided a surface soil water retention curve. The destructive sampling of surface	
224	Sphagnum was primarily hummock species but did included some hollow species, The	Deleted: .
225	automated measurements of peat water content at 10 cm depth were shown to be a good	
226	indicator of surface Sphagnum water content (Fig. 1). Based on this relationship, we	
227	model the water content of <i>Sphagnum</i> moss due to capillary rise ($W_{internal}$) (g water /g	
228	dry moss) as:	
229	$W_{internal} = 0.3933 + 7.6227/(1 + \exp(-(Soil_{vol} - 0.1571))/0.018 $ (1)	
230	where $Soil_{vol}$ is the averaged volumetric soil water of modeled soil layers nearest the	
231	10cm depth horizon (layers 3 and 4 in the ELM v1 vertical layering scheme).	

255	2.3,2 Modeling <i>Sphagnum</i> CO ₂ conductance and photosynthesis	Deleted: 2
256	ELM_SPRUCE computes photosynthetic carbon uptake (gross primary	
257	production, or GPP) for each vascular PFT on a half-hourly time step, based on the	
258	Farquhar biochemical approach (Farquhar et al., 1980; Collatz et al., 1991, 1992), with	
259	implementation as described by Oleson et al. (2013). While, Sphagnum lacks a leaf	
260	cuticle and stomata that regulate water loss and CO2 uptake in vascular plants (Titus et al.	
261	<u>1983). The primary transport pathway for CO_2 is through the cells and is analogous to</u>	
262	mesophyll conductance in higher plants. Thus, we calculate the total conductance to CO2	
263	for Sphagnum mosses by using total water content following the method reported by	Formatted: Font: Italic
264	Williams and Flanagan (1998) described as below. Goetz and Price (2015) also indicated	Formatted: Not Superscript/ Subscript
265	that capillary rise through the peat is essential to maintain a water content sufficient for	
266	photosynthesis for Sphagnum moss species, but that atmospheric inputs can provide small	
267	but critical amounts of water for physiological processes.	Deleted: The internal water content of <i>Sphagnum</i> mosses is observed to affect photosynthesis by constraining the
268	The stomatal conductance for vascular plant types in ELM_SPRUCE is derived	length of the diffusive path for CO ₂ through the variably- hydrated external hyaline cells to the carbon fixation sites (Robroek et al., 2009; Rydin and Jeglum, 2006). Goetz and Price (2015) also indicated that capillary rise through the
269	from the Ball-Berry conductance model (Collatz et al., 1991). That model relates	peat is essential to maintain a water content sufficient for photosynthesis for <i>Sphagnum</i> moss species, but that
270	stomatal conductance to net leaf photosynthesis, scaled by the relative humidity and the	atmospheric inputs can provide small but critical amounts of water for physiological processes. <i>Sphagnum</i> lacks a leaf cuticle and stomata that regulate water loss and CO ₂ uptake
271	CO_2 concentration at the leaf surface. The stomatal conductance (g_s) and boundary layer	in vascular plants (Titus et al. 1983). The primary transport pathway for CO ₂ is through the cells and is analogous to mesophyll conductance in higher plants.
272	conductance (g_b) are required to obtain the internal leaf CO ₂ partial pressure (C_i) of	
273	vascular PFTs:	

274
$$C_i = C_a - (\frac{1.4g_s + 1.6g_b}{g_s g_b}) P_{atm} A_n$$
 (4)

275 where C_i is the internal leaf CO₂ partial pressure, C_a is the atmospheric CO₂ partial

11

- 291 pressure, A_n is leaf net photosynthesis (μ mol CO₂ m⁻² s⁻¹) P_{atm} is the atmospheric
- 292 pressure, g_s is the leaf stomatal conductance, g_b is the leaf boundary layer conductance,
- and values 1.4 and 1.6 are the ratios of the diffusivity of CO₂ to H₂O for stomatal
- 294 conductance and the leaf boundary layer conductance, respectively.
- 295 For *Sphagnum* moss photosynthesis, we followed the method from the McGill
- 296 Wetland Model (St-Hilaire et al. 2010; Wu et al., 2013), which is based on the effects of
- 297 Sphagnum moss water content on photosynthetic capacity (Tenhunen et al., 1976) and
- $298 \qquad \mbox{total conductance of CO}_2 \mbox{ (Williams and Flanagan, 1998), and replaces the stomatal}$
- 299 conductance representation used for vascular PFTs.

$$300 \qquad C_i = C_a - \frac{P_{atm}A_n}{g_{tc}} \tag{5}$$

- 301 The total conductance to $CO_2(g_{tc})$ was determined from a least-squares regression
- 302 described by Williams and Flanagan (1998) as:

303
$$g_{tc} = -0.195 + 0.134W_{total} - 0.0256W_{total}^{2} + 0.0028W_{total}^{3} -$$

304 $0.0000984W_{total}^{4} + 0.00000168W_{total}^{5}$ (6)

- 305 where W_{total} is as defined in equation (3). This relationship is only valid up to the
- maximum water holding capacity of mosses. To be noted that we assume that the
- 307 <u>boundary layer conductance is greater than moss surface layer conductance, and the moss</u>
- 308 <u>surface layer conductance is greater than chloroplast conductance.</u>
- 309 In addition to the water content, the effects of moss submergence were taken into
- 310 account in the calculation of moss photosynthesis. Walker et al. (2017) reported

Formatted: Font: Italic

311	significant impacts of submergence on measured Sphagnum GPP and modeled the effect
312	by modifying the Sphagnum leaf (stem) area index. Submergence in Walker et al. (2017) was
313	expressed as photosynthesising stem area index (SAI) as a logistic function of water table depth.
314	A maximum SAI of 3 was used and the parameter combination that most closely described the
315	GPP data gave a range of water table depth from -10 cm for complete submergence and SAI of
316	~2.5 at 10 cm. This allowed for a range of processes such as floatation of <i>Sphagnum</i> with the
317	water table, and adhesion of water to the Sphagnum capitula. For simplicity, in
318	ELM_SPRUCE, we calculated such impacts on Sphagnum GPP directly as a function of
319	the height of simulated surface water, assuming that GPP from the submerged portion of
320	photosynthetic tissue is negligible. GPP is thus reduced linearly according to the
321	following equation:
322	$GPP_{sub} = GPP_{orig} * (h_{moss} - H_2O_{sfc}) $ ⁽⁷⁾
323	where GPP _{sub} is the GPP corrected for submergence effects, GPP _{orig} is the original GPP,
324	H_2O_{sfc} is the surface water height, and h_{moss} is the height of the photosynthesizing
325	Sphagnum layer above the soil surface, set to 5cm in our simulations. If H ₂ O _{sfc} is equal to
326	or greater than h_{moss} , GPP is reduced to zero. Because in our simulations surface water is
327	never predicted to occur in the hummocks, in practice this submergence effect only
328	affects the moss GPP in the hollows.
328	anects the moss OFF in the honows.
329	3. Methods
330	3.1 Site Description
331	We focused on a high C, ombrotrophic peatland (the S1-Bog) that has a perched
332	water table with limited groundwater influence (Sebestyen et al. 2011, Griffiths and
333	Sebestyen, 2016). This southern boreal bog is located on the Marcell Experimental
	12

- 334 Forest, approximately 40 km north of Grand Rapids, Minnesota, USA (47.50283 degrees 335 latitude, -93.48283 degrees longitude) (Sebestyen et al. 2011), and is the site of the 336 SPRUCE climate change experiment (http://mnspruce.ornl.gov; Hanson et al., 2017). The 337 S1-Bog has a raised hummock and sunken hollow microtopography, and it is nearly 338 covered by Sphagnum mosses. S. angustifolium (C.E.O. Jensen ex Russow) and S. fallax 339 (Klinggr.) occupy 68% of the moss layer and exist in both hummocks and hollows. S. 340 magellenicum (Brid.) occupies ~20% of the moss layer and is primarily limited to the 341 hummocks (Norby et al., 2019). The vascular plant community at the S1-Bog is 342 dominated by the evergreen tree Picea mariana (Mill.) B.S.P, the deciduous tree Larix 343 laricina (Du Roi) K. Koch, and a variety of ericaceous shrubs. Trees are present due to 344 natural regeneration following strip cut harvesting in 1969 and 1974 (Sebestyen et al., 345 2011). The soil of this peat bog is the Greenwood series, a Typic Haplohemist 346 (https://websoilsurvey.sc.egov.usda.gov), and its average peat depth is 2 to 3 m 347 (Parsekian et al., 2012) 348 Northern Minnesota has a subhumid continental climate with average annual 349 precipitation of 768 mm and annual air temperature of 3.3 °C for the time period from 350 1965 to 2005. Mean annual air temperatures at the bog have increased about 0.4 °C per 351 decade over the last 40 years (Verry et al., 2011). 352 3.2 Field measurements 353 Multiple observational pre-treatment data (the data were collected prior to
- initiation of the warming and CO₂ treatments) were used in this study. Flux-partitioned
- 355 GPP of Sphagnum mosses was derived from measured hourly Sphagnum-peat net
- 356 ecosystem exchange (NEE) flux (Walker et al., 2017). The GPP NEE relationship was

Formatted: Subscript

357	also evaluated using observed vegetation growth and productivity allometric and biomass	
358	data on tree species, stem biomass for shrub species (Hanson et al., 2018a and b), and	
359	Sphagnum pre-treatment net primary productivity (NPP) (Norby et al., 2019).	
360	ELM_SPRUCE was driven by climate data (temperature, precipitation, relative humidity,	
361	solar radiation, wind speed, pressure and long wave radiation) from 2011 to 2017	
362	measured at the SPRUCE S1-Bog (Hanson et al., 2015a and b). The surface weather	
363	station is outside of the enclosures and not impacted by the experimental warming	
364	treatments that began in 2015. These data are available at https://mnspruce.ornl.gov/.	
265		
365 366	3.3 Simulation of the SPRUCE experiment	
367	Based on measurements at the SPRUCE site, ELM_SPRUCE includes four	
368	PFTs: boreal evergreen needleleaf tree (Picea), boreal deciduous needleleaf tree (Larix),	
369	boreal deciduous shrub (representing several shrub species), and the newly introduced	
370	Sphagnum moss PFT. Currently ELM_SPRUCE does not include light competition	
371	among multiple PFTs, and thus does not represent cross-PFT shading effects. Our model	
372	also allows the canopy density of PFTs to change prognostically, and their fractional	
373	coverage is held constant. We used measurements from Sphagnum moss collected at a	
374	tussock tundra site in Alaska (Hobbie 1996) to set several of the model leaf litter	
375	parameters for our simulations (Table 1). The values for other parameters have been	
376	optimized based on observations at the SPRUCE site (Table 2 and 3, optimization	
377	methods described in section 3.4). We prescribe both hummock and hollow	
378	https://scratch.mit.edu/projects/411435898microtopographies to have the same fractional	
379	PFT distribution. Consistent with Shi et al. (2015), hummocks and hollows were	

380	modeled on separate columns with lateral flow of water between them. All the
381	ELM_SPRUCE simulations were conducted using a prognostic scheme for canopy
382	phenology (Olesen et al., 2013).
383	The SPRUCE experiment at the S1-Bog consists of combined manipulations of
384	temperature (various differentials up to +9 $^{\mathrm{o}}\mathrm{C}$ above ambient) and atmospheric CO_2
385	concentration (ambient and ambient + 500 ppm) applied in 12 m diameter x 8 m tall
386	enclosures constructed in the S1-Bog. The whole-ecosystem warming began in August
387	2015, elevated CO ₂ started from June 2016, and various treatments are envisioned to
388	continue until 2025. Extensive pre-treatment observations at the site began in 2009.
389	For the ELM_SPRUCE, we continuously cycled the 2011-2017 climate forcing
390	(see section 3.2) to equilibrate carbon and nitrogen pools under pre-industrial
391	atmospheric CO2 concentrations and nitrogen deposition, and then launched a simulation
392	starting from year 1850 through year 2017. This transient simulation includes historically
393	varying CO ₂ concentrations, nitrogen deposition, and the land-use effects of a strip cut
394	and harvest at the site in 1974. These simulations were used to compare model
395	performance with pre-treatment observations. A subset of these observations was also
396	used for optimization and calibration (section 3.4).
397	To investigate how the bog vegetation may respond to different warming
398	scenarios and elevated atmospheric CO2 concentrations, we performed 11 model runs
399	from the same starting point in year 2015. These simulations were designed to reflect the
400	warming treatments and CO ₂ concentrations being implemented in the SPRUCE
401	experiment enclosures. The model simulations include one ambient case (both ambient
402	temperature and CO ₂ concentration), and five simulations with modified input air

403	temperatures to represent the whole-ecosystem warming treatments at five levels (+0 $^{\circ}$ C,
404	+2.25 °C, +4.50 °C, +6.75 °C and +9.00 °C above ambient) and at ambient CO ₂ , and
405	another five simulations with the same increasing temperature levels and at elevated CO_2
406	(900 ppm). In the treatment simulations, we also considered the passive enclosure
407	effects, which reduce incoming shortwave and increase incoming longwave radiation
408	(Hanson et al., 2017). Following the SPRUCE experimental design, there was no water
409	vapor added so that the simulations used constant specific humidity instead of constant
410	relative humidity across the warming levels. All the treatment simulations were
411	performed through the year 2025 by continuing to cycle the 2011-2017 meteorological
412	inputs (with modified temperature and radiation to reflect the treatments) to simulate

413 future years.

414	Table 1: Physiologica	l parameters of Sphagnum mo	osses as given in Hobbie 1996
-----	-----------------------	-----------------------------	-------------------------------

Parameters	Description	Values
lflitcn	Leaf litter C:N ratio (gC/gN)	66
lf_fcel	Leaf litter fraction of cellulose	0.737
lf_flab	Leaf litter fraction of labile	0.227
lf_flig	Leaf litter fraction of lignin	0.036

415

416 **3.4. Model sensitivity analysis and calibration**

417 The vegetation physiology parameters in ELM_SPRUCE were originally derived

418 from CLM4.5 and its predecessor, Biome-BGC, and represent broad aggregations of

419 plant traits over many species and varied environmental conditions (White et al., 2000).

420	To achieve reasonable model performance at SPRUCE, site-specific parameters and	
421	targeted parameter calibration are needed. Since the ELM_SPRUCE contains over 100	
422	uncertain parameters, parameter optimization is not computationally feasible without first	
423	performing some dimensionality reduction. Based on previous ELM sensitivity analyses	
424	(e.g., Lu et al., 2018; Ricciuto et al., 2018; Griffiths et al., 2018), we chose 35 model	
425	parameters for further calibration (Tables 2 and 3). An ensemble of 3000 ELM_SPRUCE	
426	simulations were conducted using the procedure described in 3.3, with each ensemble	
427	member using a randomly selected set of parameter values within uniform prior ranges.	
428	This model ensemble was first used to construct a polynomial chaos surrogate model,	
429	which was then used to perform a global sensitivity analysis (Sargsyan et al., 2014;	
430	Ricciuto et al., 2018). Main sensitivity indices, reflecting the proportion of output	
431	variance that occurs for each parameter, are described in section 4.1.	
432	To minimize potential biases in model predictions of treatment responses, we	
433	calibrated the same 35 model parameters using pre-treatment observations as data	
434	constraints. We employed a quantum particle swarm optimization (QPSO) algorithm (Lu	
435	et al., 2018). While this method does not allow for the calculation of posterior prediction	
436	uncertainties, it is much more computationally efficient than other methods such as	
437	Markov Chain Monte Carlo. The constraining data included year 2012-2013 tree growth	
438	and biomass (Hanson et al. 2018a), year 2012-2013 shrub growth and biomass (Hanson	
439	et al., 2018b), year 2012 and 2014 Sphagnum net primary productivity (Norby et al.,	
440	2017, 2019), enclosure-averaged leaf area index by PFT (year 2011 for tree and year	
441	2012 for shrub and <i>Sphagnum</i>), and year 2011-2013 water table depth (WTD)	

Formatted: Font: Italic

442 observations, aggregated to seasonal averages (Hanson et al., 2015b). The goal of the

- 443 optimization is to minimize a cost function, which we define here as a sum of squared
- 444 errors over all observation types weighted by observation uncertainties. When
- 445 observation uncertainties were not available, we assumed a range of $\pm 25\%$ from the

446 default value. Site measurements were also used to constrain the ranges of two

- 447 parameters: *leafcn* (leaf carbon to nitrogen ratio) and *slatop* (specific leaf area at canopy
- 448 top). The uniform prior ranges for these parameters represent the range of plot to plot
- 449 variability. Optimized parameter values are shown in Table 2 and 3. Section 4 reports the
- 450 results of simulations using these optimized parameters, which were used to perform a
- 451 spinup, transient (1850-2017) and set of 11 treatment simulations (2015-2025) as
- 452 described above.
- 453 Table 2: PFT-specific optimized model parameters

Parameter	Description	Sphagnum	Picea	Larix	Shrub	Range
flnr	Rubisco-N fraction of leaf N	0.2906	0.0678	0.2349	0.2123	[0.05,0.30]
croot_stem	Coarse root to stem allocation ratio	N/A	0.2540	0.1529	0.7540	[0.05,0.8]
stem_leaf ¹	Stem to leaf allocation ratio	N/A	1.047	1.016	0.754	[0.3,2.2]
leaf_long	Leaf longevity (yr)	0.9744	5 ³	N/A	N/A	[0.75, 2.0]
slatop	Specific leaf area at canopy top (m ² gC ⁻¹)	0.00781	0.00462	0.0128	0.0126	[0.004,0.04]
leafcn	Leaf C to N ratio	35.56	70.17	64.84	33.14	[20,75]
froot_leaf ²	Fine root to leaf allocation ratio	0.3944	0.8567	0.3211	0.6862	[0.15, 2.0]
mp	Ball-Berry stomatal conductance slope	N/A	7.50	9.32	10.8	[4.5, 12]

454 Optimized values of PFT-specific parameters. The range column values in brackets indicate the range of

455 acceptable parameter values used in the sensitivity analysis and the optimization across all four PFTs in the 456

- format [minimum, maximum]. N/A indicates that parameter is not relevant for that PFT. 457 ¹for tree PFTs, this parameter depends on NPP. The value shown is the allocation at an NPP of 800 gC m^{-2}
- 458 yr-1.

459 ² the fine root pool is used as a surrogate for non-photosynthetic tissue in Sphagnum

460 ³ This parameter was not optimized; we used the default value.

461

463 Table 3: Non PFT-specific optimized model parameters

	Description	Optimized value	Default	Range
r_mort	Vegetation mortality	0.0497	0.02	[0.005, 0.1]
decomp_depth_efolding	Depth-dependence e- folding depth for decomposition (m)	0.3899	0.5	[0.2, 0.7]
Qdrai,0	Maximum subsurface drainage rate (kg m ⁻² s ⁻¹)	3.896e-6	9.2e-6*	[0, 1e-3]
Q ₁₀ _mr	Temperature sensitivity of maintenance respiration	2.212	1.5	[1.2, 3.0]
br_mr	Base rate for maintenance respiration (gC gN m ² s ⁻¹)	4.110e-6	2.52e-6	[1e-6, 5e-6]
crit_onset_gdd	Critical growing degree days for leaf onset	99.43	200	[20, 500]
lw_top_ann	Live wood turnover proportion (yr ⁻¹)	0.3517	0.7	[0.2, 0.85]
gr_perc	Growth respiration fraction	0.1652	0.3	[0.12, 0.4]
r _{drai,0}	Coefficient for surface water runoff (kg m ⁻⁴ s ⁻¹)	6.978e-7	8.4e-8*	[1e-9, 1e-6]

464 465 Optimized and default values for non PFT-specific parameters. The range column values in brackets

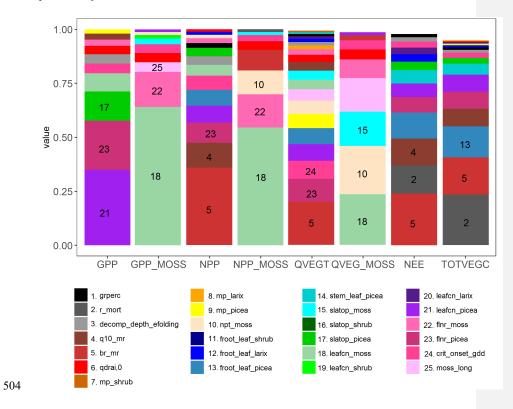
indicate the range of acceptable parameter values used in the sensitivity analysis and the

optimization in the format [minimum, maximum]. * Previously calibrated value from Shi et al (2015) 466 467

468

469 4. Results

470 4.1 Model sensitivity analysis


471 Main effect (first-order) sensitivities are shown for eight model output quantities of

- interest: Total site gross primary productivity (GPP), GPP for the moss PFT only 472
- (GPP_moss), total site net primary productivity (NPP), NPP for the moss PFT only 473
- 474 (NPP_moss), total site vegetation transpiration (QVEGT), evaporation from the moss
- 475 surface (QVEG_moss), net ecosystem exchange (NEE) and site total vegetation carbon

Formatted: Font color: Text 1 Formatted: Normal, No bullets or numbering Formatted: Font: 10 pt

476	(TOTVEGC) (Fig. 2). Out of 35 parameters investigated, 25 show a sensitivity index of
477	at least 0.01 for one of the quantities of interest, and these are plotted on figure 2. In that
478	figure, sensitivities are stacked in order from highest to lowest for each variable, with the
479	height of the bar equal to the sensitivity index. The first order sensitivities sum to at least
480	0.95 for all variables, indicating that higher order sensitivities (i.e., contributions to the
481	sensitivity from combinations of two or more parameters) contribute relatively little to
482	the variance for these quantities of interest.
483	According to this analysis, the variance in total site GPP is dominated by three
484	Picea parameters: the fraction of leaf nitrogen in RuBiCO (flnr_picea), leaf carbon to
485	nitrogen ratio (<i>leafcn_picea</i>) and the specific leaf area at canopy top (<i>slatop_picea</i>). GPP
486	sensitivity for the moss PFT is dominated by the same three parameters, but for the moss
487	PFT instead of Picea (flnr_moss, leafcn_moss, and slatop_moss). For NPP, QVEGT and
488	NEE, the highest sensitivity the maintenance respiration base rate br_mr , similar to
489	earlier results in Griffiths et al. (2017). The maintenance respiration temperature
490	sensitivity Q_{10} mr is also a key parameter for NPP and NEE. The critical onset growing
491	degree day threshold (crit_onset_gdd), which drives deciduous phenology in the spring
492	for the Larix and shrub PFTs, is an important parameter for NPP and NEE. flnr_picea is
493	important for both NPP and QVEGT. For NPP_moss and QVEG_moss, leafcn_moss is
494	and the ratio of non-photosynthesizing tissue to photosynthesizing tissue (<i>npt_moss</i>) are
495	sensitive. For TOTVEGC and NEE, vegetation mortality (<i>r_mort</i>) is also a sensitive
496	parameter. For the site-level quantities of interest, at least 10 parameters contribute
497	significantly to the uncertainty, illustrating the complexity of the model and large number
498	of processes contributing to uncertainty in SPRUCE predictions. For the moss variables,

- 499 there are some cases where significant sensitivities exist for non-moss PFT parameters.
- 500 For example, *leafcn_shrub* is the seventh most sensitive parameter for GPP_moss,
- 501 indicating that competition between the PFTs for resources may be important. In this
- 502 case, uncertainty about parameters on one PFT may drive uncertainties in the simulated

503 productivity of other PFTs.

Figure 2 Sensitivity analysis of ELM-SPRUCE for selected parameters (Table 2 and 3). The
 Colored bars indicate the fraction of variance in site gross primary productivity (GPP), moss-only

- 507 NPP (GPP_MOSS), site net primary productivity (NPP), moss-only NPP (NPP_MOSS), total
- 508 vegetation transpiration (QVEGT), moss evaporation (QVEG_MOSS), site net ecosystem
- 509 exchange (NEE) and total vegetation carbon (TOTVEGC) controlled by each parameter. The
- 510 legend shows the top 25 most influential parameters; the remaining parameters not shown have

511 sensitivities of no more than 0.01 for any of the outputs. All variables represent 2011-2017

512 average values over the ambient conditions. For parameters that are treated as PFT-dependent,

- 513 the PFT is indicated with a suffix (picea, larix, shrub or moss)
- 514

515 4.2 Model evaluation

516 Our model simulates GPP for vascular plants and *Sphagnum* moss in both

517 hummock and hollow settings, with separate calculations for each PFT. Here we use the

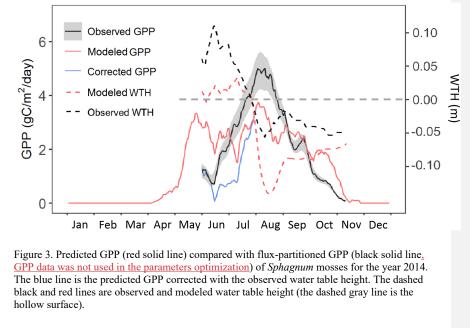
518 model estimate of GPP prior to downregulation by nutrient limitation from the ambient

519 case, based on recent studies indicating that nutrient limitation effects are occurring

520 downstream of GPP (Raczka et al. 2016; Metcalfe et al., 2017; Duarte et al. 2017). This

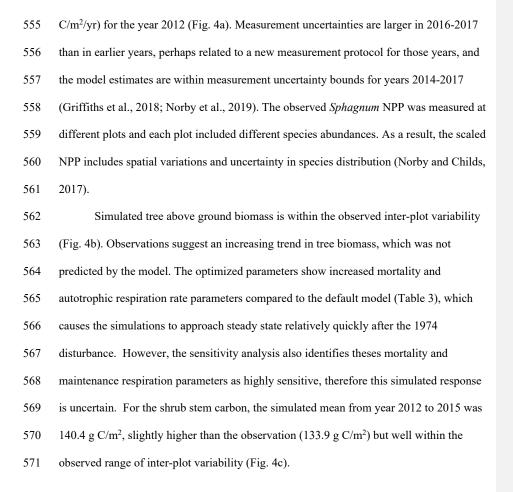
521 treatment of nutrient limitation on GPP has been modified in a more recent version of

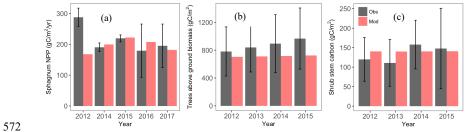
522 ELM, and our moss modifications will be merged to that version as a next step. For now,


523 by referring to the pre-downregulation GPP we are capturing the most significant impact

524 of those changes for the purpose of comparison to observations.

525 Our model simulated two seasonal maxima of *Sphagnum* moss GPP, one at the 526 end of May, and the other in August (Figure 3). Both peaks are lower than the maximum 527 of observed (flux-partitioned) GPP, which occurs in August. Based on results of the 528 sensitivity analysis, it could be that the base rate for maintenance respiration for moss is 529 too high, causing an underestimate of NPP and biomass, which leads to a low bias in 530 peak GPP.


531 During June and October, observations suggest that ELM_SPRUCE over-predicts 532 GPP. The model does limit GPP as a function of the depth of standing water on the bog 533 surface (Eq. 7). The water table height (WTH) above the bog surface is being predicted 534 by the model (dashed red line in Fig. 3), and while the seasonal pattern of higher water


- table in the spring and lower water table in the fall agrees well with observations (dashed black line in Fig. 3), the predicted WTH is generally too low by 5-10 cm. The modeled WTH here is for hollow. We turned off the lateral transport when there is ice on the soil layers above the water table to avoid an unreasonable amount of ice accumulation on the frozen layers, which results in there is no flow from hummock to hollow. Forcing the modeled GPP to respond to observed WTH (during the period with observations) gives a pattern of increasing GPP through June and July which is more consistent with observations (blue line in Fig. 3). We do not have observations for GPP earlier than June,
- 543 due to limitations of the instrumentation when the bog surface is flooded.

553 The model simulated reasonable annual values for *Sphagnum* NPP for the period

554 2014-2017 but showed much lower NPP compared with observation (139 vs. 288 g

573 574 575 576 577 578 579 580	Figure 4. Predicted (red bars) <i>Sphagnum</i> NPP (left), aboveground free biomass (middle) and shrub stem carbon (right) compared with the observations (black bars). Observed NPP data are based on growth of 12-17 bundles of 10 Sphagnum stems in 2012-2015 (unpublished data) and in two ambient plots by the method described by Norby et al. (2019) in 2016-1017 (data in Norby et al. 2017). The Sphagnum NPP data of year 2015-2017, and aboveground tree biomass and shrub stem carbon of year 2014-2015 are independent of the related parameters opitimizaton.	
581	4.3 Simulated carbon cycle response to warming and elevated atmospheric CO ₂	
582	concentration	
583	Different PFTs demonstrated different warming responses for both ambient CO2	
584	and elevated CO ₂ concentration conditions (Fig. 5). Both Larix and shrub NPP increased	
585	with warming under both CO_2 concentration conditions (Fig. 5 b, c, h and i). In addition,	
586	CO2 fertilization stimulates the growth of these two PFTs and the fertilization effect	
587	further increases with warming (Fig. S1, GPP increases more under elevated CO_2	
588	condition than the ambient case). In contrast, Picea NPP decreased with warming levels	
589	(Fig. 5 a and g) for both CO ₂ conditions. For Sphagnum, NPP decreased in hummocks	
590	but increased in hollows with increasing temperature (Fig. 5 d, e, j and k). The CO2	
591	fertilization also stimulate the grow of the Picea and Sphagnum PFTs (Fig. 5 a, d, e g, j	Formatted: F
592	and k). The enclosure-total NPP for all PFTs responded differently to the warming only	
593	and warming with elevated CO ₂ (Fig. 5 f and l). The enclosure-total NPP for each	
594	warming level changed less under the ambient CO2 condition than those with elevated	
595	CO2 condition, and NPP decreased with warming in most of years under ambient CO2	
596	condition but increased under elevated CO ₂ condition (Fig.5 f and l). This result	
597	demonstrated that the elevated CO2 scenario changes the sign of the NPP warming	
598	response for the bog peatland ecosystem.	

ont: Italic

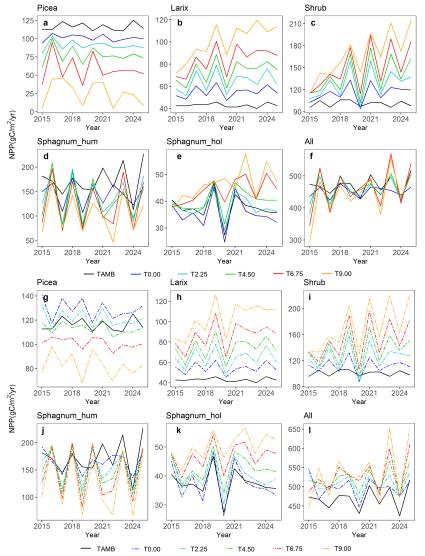


Figure 5 predicted NPP response to warming with ambient atmospheric CO₂ (a-f, solid lines) and
warming with elevated atmospheric CO₂ concentration (g-l, dash lines), the black solid line
TAMB is the ambient temperature and CO₂ case, T0.00 to T9.00 means increasing temperature

- from 0°C to 9°C
- 604

605	Compared with the ambient biomass, the biomass of black spruce (Picea)	
606	significantly decreased but the biomass of Larix significantly increased under the greatest	
607	warming treatment (+9.00°C, Fig.6). Biomass of shrub and hollow Sphagnum also	
608	increased, but less than did Larix. The hummock Sphagnum biomass also showed strong	
609	correlation with water table height at roughly a 3-month lag (the maximum correlation	
610	occurs with an 82-day lag, $R^2=0.56$). <u>NPP is allocated instantaneously into biomass.</u> A	
611	positive NPP anomaly caused by water table shifts leads to higher LAI, which also	
612	increases future productivity for some amount of time even if the water table returns to	
613	normal. Sphagnum biomass has a 1-year turnover time in the simulation. This	Formatted: Font: Italic
614	combination of effects leads to a roughly 3-month timelag. Due to the relative lower	
615	height of the water table in the hummock than the hollow, the simulated hummock	
616	Sphagnum were more significantly water-stressed than the hollow Sphagnum as the water	
617	table height declines. This is consistent with multiple studies finding an increase in	
618	temperatures associated with drought (low water table height) reducing Sphagnum	
619	growth (Bragazza et al., 2016; Granath et al., 2016; Mazziotta et al., 2018). We plotted	
620	the predicted canopy evaporation for hummock and hollow Sphagnum responses to	Formatted: Font: Italic
621	warming and found that both hummock and hollow Sphagnum canopy evaporation	Formatted: Font: Italic
622	increase with warming for both ambient and elevated atmospheric CO ₂ conditions despite	
623	the Larix and shrubs are growing with warming. Moreover, the hollow Sphagnum canopy	Formatted: Font: Italic
624	evaporation warming response is stronger than that of the hummock <i>Sphagnum</i> (Fig. S2).	Formatted: Font: Italic
625	In summary, the growth of bog vegetation is predicted to have species-specific warming	
626	responses that differ in sign and magnitude.	

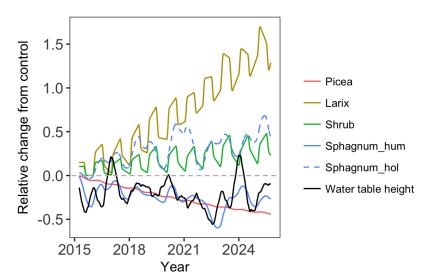


Figure 6 The relative changes of biomass for different PFTs and water table height (the weighted average between hummock and hollow) between +9.00 °C treatment case and the ambient case (+9.00 °C / ambient -1)

631 632 5. Discussion

632 633	Sphagnum moss is the principal plant involved in the peat accumulation in peatland Formatted: Font: Italic
634	ecosystems, and effective characterization of its biophysical and physiological responses
635	has implications for predicting peatland and global carbon, water and climate feedbacks.
636	This study moves us closer to our long-term goal of improving the prediction of peatland
637	water, carbon and nutrient cycles in ELM_SPRUCE, by introducing a new Sphagnum Deleted: and
638	moss PFT, implementing water content dynamics and photosynthetic processes for this
639	nonvascular plant. The Sphagnum model development combined with our previous
640	hummock-hollow microtopography representation and laterally-coupled two-column
641	hydrology scheme enhance the capability of ELM_SPRUCE in simulating high-carbon
642	wetland hydrology and carbon interactions and their responses to plausible environmental
643	changes.

645 646	5.1 Uncertainties in simulating <i>Sphagnum</i> productivity
647	Our predicted peak GPP is similar to the results found by Walker et al. (2017) Formatted: Space After: 0 pt, Widow/Orphan control, Adjust space between Latin and Asian
648	when they calculated the internal resistance to CO ₂ diffusion as a function of <i>Sphagnum</i> unbers, Tab stops: Not at 0.5"
649	water content using a stand-alone photosynthesis model. In both cases, the predicted peak
650	GPP is lower than observations. Walker et al. (2017) were, however, able to capture the
651	observed peak magnitude with a combination of light extinction coefficient, canopy
652	clumping coefficient, maximum shoot area index (SAI), and a logistic function
653	describing the effective Sphagnum SAI in relation to water table. Here we used model
654	default values for the light extinction and canopy clumping coefficients. While the water
655	table impacts Sphagnum productivity in our simulation, modeled leaf (or shoot) area
656	index (LAI) is mainly controlled by NPP and turnover. In addition, we use the default
657	formulation for acclimation of Vcmax in ELM which is based on a 10-day mean growing
658	temperature. At this point we don't have sufficient measurements to test this assumption,
659	but we can prioritize these measurements in the future. <i>Sphagnum</i> temperature is Formatted: Font: Italic
660	computed from surface energy balance but because the current model doesn't have the
661	capacity to estimate the shading effects from trees and shrubs, this may be overestimated.
662	Moreover, biases in predicted water table height contribute to errors in the calculated
663	submergence effect. Improving these biases and assuming an exponential rather than a
664	linear CO ₂ uptake profile may improve representation of the submergence effect. All
665	these aspects may be attribute to the biases of the simulated <i>Sphagnum</i> GPP. We can Formatted: Font: Italic
666	consider this in the future when we have more detailed measurements. Further

667 investigation is thus needed to understand how representative the chamber-based

668	observations from Walker et al. (2017) are of the larger-scale SPRUCE enclosures, and to	
669	reconcile these GPP estimates with plot-level NPP observations (Norby et al., 2019).	Formatted: Font color: Red
670	The hydrology cycle, especially water table depth (WTD) is also a key factor that	
671	influences the seasonality of GPP in Sphagnum mosses (Lafleur et al., 2005; Riutta 2007,	
672	Sonnentag et al, 2010; Grant et al., 2012; Kuiper et al., 2014; Walker et al, 2017). One	
673	key feedback is if the water table declines, there can be enhanced decomposition and	
674	subsidence of the peat layer, which brings the surface down closer to the water table	
675	again. But we currently did not consider the peat layer elevation changes in our model	
676	and this will be one of the future development directions. The capillary rise plays into the	
677	Sphagnum hydrological balance, which varies depending on water table depth and	Formatted: Font: Italic
678	evaporative demand. At short timescales or under rapidly changing conditions, there may	
679	not be equilibration between the Sphagnum water content and the peat moisture.	
680	Generally, the sphagnum water content will equilibrate with the peat on a daily basis	Formatted: Font: Italic
681	outside the plot since the dew point is often reached at night. But inside the warmer plots	
682	since the vapor pressure deficit does not go to zero some disequilibration could remain.	
683	High-frequency latent heat flux data from the site are currently lacking, but could help to	
684	constrain these effects in the future. The current phenology observations also include if	
685	Sphagnum hummock and hollow are wet or dry, and we could look at the relationship	Formatted: Font: Italic
686	with soil water content sensors in the future. Moreover, the equilibration time between	
687	peat moisture and moss water content is reasonable fast, but the timescales for rewetting	
688	should change as the peat dries since the cross section for capillary rise will decline and	
689	thus the maximum flux to the surface will decline. So, at some point, between gravity	
690	potential and reduced hydraulic conductivity the capillarity will not satisfy evaporative	
I		

691	demand (Personal discussion with field expert Jeffrey Warren). Previous studies have	
692	reported that drier and warmer future climates can lower the water table, affecting the	
693	resilience of long-term boreal peatland carbon stocks (Limpens et al., 2008, Dise, 2009,	
694	Frolking et al., 2011). WTD drawdown affects the net ecosystem productivity of boreal	
695	peatlands through its effects on ecosystem respiration and GPP. The interactions between	
696	WTD and GPP, however, vary across peatlands and influence both vascular and	
697	nonvascular plant GPP in different ways (Lafleur et al., 2005), For instance, nonvascular	Deleted:
		Formatted: Font: 12 pt, Font color: Auto
698	plants mostly access water in the near surface shallow peat layers. These layers, however,	Deleted: For instance, nonvascular plants mostly access
699	can drain quickly with receding WTD and high nonvascular evaporative demand, and	water in the near surface shallow peat layers.
700	thus depend on water supply through capillary rise or precipitation (Dimitrov et al., 2011,	
701	Peichl et al., 2014, Druel et al., 2017). If recharge is not adequate, near-surface peat	
702	desiccation occurs thereby cutting off the supply of water to Sphagnum, which	Formatted: Font: Not Italic
703	subsequently dries, leading to rapid decline in GPP (Lafleur et al., 2005, Riutta 2008,	
704	Sonnentag et al., 2010, Sulman et al., 2010, Dmitrov et al., 2011, Kuiper et al., 2014,	
705	Peichl et al., 2014). Thus, for the Sphagnum mosses desiccation occurs and the time	Formatted: Font: 12 pt, Font color: Auto
706	needed before recovery to optimum photosynthetic capacity should be taken into account	
707	in our future work. Alternately, under saturated conditions when the water table is close	
708	to the Sphagnum surface, Sphagnum photosynthesizing tissue can become submerged or	
709	surrounded by a film of water that is likely to reduce the effective LAI of the Sphagnum	
710	and thus reduce photosynthesis (Walker et al., 2017). Submerged Sphagnum can take up	
711	carbon derived from CH4 via symbiotic methanatrophs (Raghoebarsing et al., 2005), but	
712	in any cases CO ₂ diffusion for photosynthesis will dramatically decrease under water.	
713	Larmola et al. (2014) also reported that the activity of oxidizing bacteria provides not	Formatted: Font: 12 pt
I		

717	only carbon but also nitrogen to peat mosses and, thus, contributes to carbon and nitrogen	Formatted: Font: 12 pt
718	accumulation in peatlands, which store approximately one-third of the global soil carbon	
719	pool. We currently didn't consider this kind of CH _d associated carbon and nitrogen	Formatted: Font: 12 pt, Subscript
720	uptake by Sphagnum,	Formatted: Font: 12 pt Formatted: Font color: Red
721	The live green <i>Sphagnum</i> moss layer buffers the exchange of energy and water at	Formatted: Normal
722	soil surface, and regulates the soil temperature and moisture because of its high-water	Formatted: Font: Italic
723	holding capacity and the insulating effect (McFadden et al., 2003; Block et al., 2011;	
724	Turesky et al, 2012; Park et al., 2018). Currently, we apply the same method for the	
725	hummock and hollow Sphagnum water content prediction and can test the model against	Formatted: Font: Italic
726	the measured data when more data are available. Our model still can predict Sphagnum	Formatted: Font: Italic
727	water content differences between these microtopographies as expected, with the water	
728	content of hollows greater than that of hummocks though. In addition, our model is able	
729	to represent the self-cooling effect, although we do not yet have measurements available	
730	to validate the model. The relationship of the differences between vegetation temperature	
731	(TV) and 2m air temperature (TBOT) (TV-TBOT) and canopy evaporation for both	
732	hummock and hollow Sphagnum demonstrated that the differences of TV-TBOT was	Formatted: Font: Italic
733	negative and the canopy evaporation had a negative relationship with TV-TBOT (Fig.	
734	S3). Moreover, Walker et al., (2017) reported that the function of Sphagnum water	
735	content to soil water content or to water table depth they used for the SPRUCE site was	
736	empirical and may not be representative for peatland ecosystem. To better represent the	
737	peatland ecosystem in our model, we will eventually treat the Sphagnum mosses as the	Formatted: Font: Italic
738	"top" soil layer with a lower thermal conductivity and higher hydraulic capacity	
739	(Beringer et al., 2001; Wu et al., 2016; Porada et al., 2016).	Formatted: Font color: Red

Χ	4
5.2 Predicted warming and elevated CO ₂ concentration response uncertainties	
Our model warming simulations suggested that increasing temperature reduced	1
the Picea growth but increased the growth of Larix under both ambient and elevated	
atmospheric CO ₂ conditions. The main reason for this model difference in response for	r
the two tree species is that despite their similar productivity under ambient conditions	,
Picea has more respiring leaf and fine root biomass because of lower specific leaf area	1,
longer leaf longevity, and higher fine root allocation. Therefore, warming results in a	
much larger increase in maintenance respiration relative to changes in NPP for Picea	
compared to Larix (Fig. 5 and Fig. S4). Increased tree growth and productivity in	
response to the recent climate warming for high-latitude forests has been reported	
(Myneni et al., 1997, Chen et al. 1999, Wilming et al. 2004, Chavardes, 2013). On the	
other hand, reductions in tree growth and negative correlations between growth and	
temperature also have been shown (Barber et al., 2000; Wilmking et al., 2004; Silva e	t
al., 2010; Juday and Alix 2012; Girardin et al., 2016; Wolken et at., 2016).	
Our model also predicted increasing growth of shrubs with increased temperat	ure,
similar to simulated increase in shrub cover caused mainly by warmer temperatures ar	ıd
longer growing seasons reported by Miller and Smith (2012) using their model LPJ-	
GUESS. In addition, several other modelling studies have also found increased bioma	ss
production and LAI related to shrub invasion and replacement of low shrubs by taller	
shrubs and trees in response to increased temperatures in tundra regions (Zhang et al.,	
2013; Miller and Smith, 2012; Wolf et al., 2008; Porada et al., 2016; Rydssa et al., 20	17).

Deleted: Alternately, under saturated conditions when the water table is close to the *Sphagnum* surface, *Sphagnum* photosynthesizing tissue can become submerged or surrounded by a film of water that is likely to reduce the effective LAI of the *Sphagnum* and thus reduce photosynthesis (Walker et al., 2017). One study reported that submerged Sphagnum can take up carbon derived from CH4 via symbiotic methanatrophs (Raghoebarsing et al., 2005), but in any cases CO₂ diffusion for photosynthesis will dramatically decrease under water.

Formatted: Space After: 0 pt, Widow/Orphan control, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Tab stops: Not at 0.5"

Formatted: Subscript

Deleted: 2

774	The responses of Sphagnum mosses to warming simulated by ELM_SPRUCE	
775	showed that Sphagnum growth in hollows was consistently higher with increased	
776	temperatures, where water availability was not limiting. Sphagnum growing on	
777	hummocks, on the other hand, showed negative warming responses that are related to the	Deleted: and
778	strong dependency on water table height. <u>A Recent study of the same SPRUCE site</u>	
779	(Norby et al. 2019) had suggested that the hummock-hollow microtopography had a	
780	larger influence on Sphagnum responses to warming than species-specific traits. In	
781	addition, the previous studies had demonstrated that the most dominant mechanism of	
782	Sphagnum warming response was probably through the effect of warming on depth to the	
783	water table and water content of the acrotelm, both of them responded to increasing	
784	temperature (Grosvernier et al., 1997; Rydin, 1985; Weltzin et al., 2001; Norby et al.,	
785	2019). Moreover, desiccation of capitula due to increased evaporation associated with	
786	higher temperatures and vapor pressure deficits can reduce Sphagnum growth	
787	independent of the water table depth (Gunnarsson et al., 2004). We currently used the	
788	same parameters for both hummock and hollow, but could consider species differences in	
789	the future. Norby et al. (2019) investigated different Sphagnum species at the same site	Formatted: Font: Italic
790	and reported there was no support for the hypothesis that species more adapted to dry	
791	conditions (e.g., S. magellanicum and Polytrichum mainly on hummocks) would be more	Formatted: Font: Not Italic
792	resistant to the stress and would increase in dominance, and both hummock and hollow	
793	sphagnum are declining with warming despite the differences between them. This	Formatted: Font: Italic
794	declining trend may be in part due to increased shading from the shrub layer, which is	
795	expanding with warming.	
l		

797	Ecosystem warming can have direct and indirect effects on <i>Sphagnum</i> moss	Formatted: Font: Italic
798	growth. The growth of Sphagnum may be reduced directly by higher air temperature, due	Deleted: Previous studies have shown that moss growth
799	to the relatively low temperature optima of moss photosynthesis (Hobbie et al.,1999: Van	
800	Gaalen, 2007; Walker et al., 2017), On the other hand, increased shading by the shrub	Deleted: , and can be reduced by water stress (Norby et al., 2019)
801	canopy and associated leaf litter could indirectly decrease moss growth (Chapin et al.,	Deleted: Moreove
		Deleted: r
802	1995; Hobbie and Chapin 1998; Van der Wal et al., 2005; Walker et al., 2006; Breeuwer	
803	et al., 2008). In contrast, other studies suggest that Sphagnum growth can be promoted	Deleted: 0
804	via a cooling effect of shading on the peat surface, by alleviating photo-inhibition of	Formatted: Font: Italic
805	photosynthesis and also by reducing evaporation stress (Busby et al., 1978; Murray et al.,	
806	1993; Man et al., 2008; Walker et al., 2015, Bragazza et al., 2016, Mazziotta et al., 2018).	
807	Our model sensitivity analysis also indicated that the parameters of Shrub showing	
808	significant sensitivities to Sphagnum mosses GPP, indicating that competition between	
809	the PFTs for resources might be important. Moreover, ELM_SPRUCE did predict	(Moved (insertion) [1]
810	enhancement of shrub and Larix tree with increased temperatures with both ambient and	Deleted: oes
811	elevated CO ₂ conditions (the leaf area increasing with warming, Fig. S3). Currently	Deleted:
812	ELM_SPRUCE does not include light competition among multiple PFTs, and thus does	
813	not represent cross-PFT shading effects, which may contribute to the warming and	Deleted: .
814	elevated CO ₂ response differences between our model prediction and observed result of	
815	Norby et al. (2019). Meanwhile, we have fixed cover fraction for PFTs in our model may	
816	also contribute to the disagreement of predicted and observed warming responses. While	
817	Norby et al. (2019) showed that the fractional cover of different <u>Sphagnum species</u>	Formatted: Font: Italic
818	declined with warming.	
I		

Sphagnum mosses are sitting on top of high CO ₂ sources. CH ₄ can be a significant		Formatted
carbon sources of submerged Sphagnum (Raghoebarsing et al., 2005; Larmola et al,		Formatted
earboir sources of submerged ppragnam (Ragnocoarsing et al., 2005, Larmoia et al,		Formatted
2014); refixation of CO ₂ derived from decomposition processes also is an important		Formatted
source of carbon for Sphagnum (Rydin and Clymo, 1989; Turetsky and Wieder, 1999).		Formatted
The effects of the elevation of atmospheric CO ₂ on <i>Sphagnum</i> moss are currently		Formatted
disputed, with studies indicating an increase in growth rate (Jauhiainen and Silvde 1999;		Formatted
Heijmans et al. 2001a; Saarnio et al. 2003), decreases in growth rate (Grosvernier et al.		
2001; Fenner et al. 2007) and no response (Van der Hejiden et al. 2000; Hoosbeek et al.		
2002; Toet et al. 2006). Norby et al. (2019) indicated that no growth stimulation of both		
hummock and hollow Sphagnum under elevated CO2 condition, but significant negative		Formatted
effects of elevated CO ₂ on Sphagnum NPP in year 2018 at the same study site.		Formatted
Contrasting responses between Sphagnum species are thought to be coupled with the		Formatted
water availability. In contrast, our model results showed that both hummock and hollow		
Sphagnum growths were stimulated by the elevated CO ₂ concentration, which may be		Formatted
attributed to the fact thatvwe did not consider the light competition between the PFTS		Formatted
(shrub and tree shading effects) and use a fixed cover fraction of Sphagnum,	~	Formatted
<u>The CO_2 vertical concentration profile is assumed to be uniform in the</u>		Formatted
simulations. In the experiment, the enclosure's regulated additions of pure CO2 are		
distributed to a manifold that splits the gas into four equal streams feeding each of the		
four air handling units (Hanson et al., 2017 Fig. 2a), and is injected into the ductwork of		
each furnace just ahead of each blower and heat exchanger. Horizontal and vertical		
mixing within each enclosure homogenizes the air volume distributing the CO ₂ along		
with the heated air. The horizontal blowers in the enclosures together with external wind		

_	
ſ	Formatted: Font: Italic
F	Formatted: Subscript
F	Formatted: Subscript
F	Formatted: Font: Italic
F	Formatted: Subscript
F	Formatted: Font: Italic
F	Formatted: Subscript
F	Formatted: Font: Italic

Formatted: Font: Italic	
Formatted: Subscript	

d: Font: Italic

d: Font: Italic ed: Subscript

ed: Font: Italic ed: Font: Font color: Blue ed: Tab stops: Not at 0.5" + 2.69"

- 851 <u>eddies ensure vertical mixing</u>. We do not have routine automated CO₂ concentration data
- 852 <u>below 0.5m.</u> The moss layer may well be experiencing higher concentrations than
- assumed by the model, but such an impact will be minimized during daylight hours.
- 854 Preliminary isotopic measurements imply a significant fraction of carbon assimilated by
- the moss may come from subsurface respired CO_2 (i.e., CO_2 with older ¹⁴₄C signatures
- predating bomb carbon that can only be sourced from deeper peat, Hanson et al., 2017).
- 857 <u>However, the observed elevated CO₂ response is smaller than simulated (Hanson et al.,</u>
- 858 <u>2020</u>). Understanding the drivers of elevated CO₂ response or lack thereof is a key topic
- 859 for future work and we will consider this effect in future assessments of the isotopic
- 860 <u>carbon budgets for the SPRUCE study.</u>
- 861 _____To better investigate the *Sphagnum* warming and elevated CO₂ responses, we should
- also focus on revealing the interactions with Shrub and nitrogen availability (Norby et al.,
- 863 <u>2019</u>). Nitrogen (N₂) fixation is a major source of available N in ecosystems that receive
- 864 low amounts of atmospheric N deposition, like boreal forests and subarctic tundra (Lindo
- 865 et al., 2013, Weston et al, 2015, Rousk et al., 2016, Kostka et al., 2016). For example,
- 666 <u>diazotrophs are estimated to supply 40-60% of N input to peatlands (Vile et at., 2014)</u>
- 867 with high accumulation of fixed N into plant biomass (Berg et al., 2013). Nevertheless,
- 868 N₂ fixation is an energy costly process and is inhibited when N availability and reactive
- 869 <u>nitrogen deposition is high (Gundale et al., 2011; Ackermann et al., 2012; Rousk et al.,</u>
- 870 <u>2013). This could limit ecosystem N input via the N₂ fixation pathway. We are measuring</u>
- 871 Sphagnum associated N2 fixation at the SPRUCE site and found that rates decline with
- 872 increasing temperature (Carrell et al. 2019 Global Change Biology). We are continuing
- 873 these measurements to see if they correlate with the GPP empirical relationship from

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

(Formatted: Font color: Red

Moved up [1]: ELM_SPRUCE does predict enhancement of shrub and Larix tree with increased temperatures with both ambient and elevated CO₂ conditions (the leaf area increasing with warming, Fig. S3). Norby et al. (2019) showed that the fractional cover of different Sphagnum species declined with warming, but while ELM_SPRUCE allows the canopy density of PFTs to change prognostically,

Deleted: ELM_SPRUCE does predict enhancement of of shrub and Larix tree with increased temperatures with both ambient and elevated CO₂ conditions (the leaf area increasing with warming, Fig. S3). Norby et al. (2019) showed that the fractional cover of different Sphagnum species declined with warming, but while ELM_SPRUCE allows the canopy density of PFTs to change prognostically, their fractional cover is held constant.

Formatted: Font: Italic Formatted: Subscript

890	Clevand (1999), or if temperature disrupts that association. Once finished, results will be
891	used to represent N fixation by the Sphagnum layer and testing with measurements.
892	It is also encouraging that while we did not use leaf-level gas exchange
893	observations in our optimization, the increased maintenance respiration base rate and
894	temperature sensitivity compared to default (table 2) is largely consistent with pre-
895	treatment leaf level observations (Jensen et al., 2019). In the future, a multi-scale
896	optimization framework that can assimilate leaf and plot-level observations
897	simultaneously should lead to improved model predictions and reduced uncertainties for
898	the treatment simulations. If similar patterns observed in ambient conditions continue
899	during the treatments, incorporating seasonal variations in leaf photosynthetic parameters
900	may also further improve the simulated response to warming (Jensen et al., 2019).
901	Overall, while the sensitivity analysis is useful to indicate the key parameters and
902	mechanisms responsible for uncertainty, our ability to quantify prediction uncertainty is
903	limited because we consider only a single simulation with optimized parameters. Ideally,
904	we should perform a model ensemble that represents the full range of posterior
905	uncertainty over simulations that are consistent with the pre-treatment observations, and
906	also a range of possible future meteorological conditions. This is currently being done for
907	SPRUCE with the TECO carbon cycle model (Jiang et al., 2018), but the computational
908	expense of ELM_SPRUCE currently prohibits this approach. By combining new
909	surrogate modeling approaches (e.g. Lu et al., 2019) with MCMC techniques, it may be
910	possible to achieve this in the near future. This will help to reduce prediction
911	uncertainties, which currently prevail in the future carbon budget of peatlands and its
912	feedback to climate change (McGuire et al., 2009).

913	The algorithms used to represent moss (e.g. Williams and Flanagan) are
914	transferable to and have been applied by other modeling groups in other
915	peatlands. However, we expect that certain parameters will vary, for example, the
916	microtopographic parameters, the relationship between peat moisture and internal water
917	content, and moss properties such as C:N ratio. The parameter sensitivity analysis
918	informs us as to the most important parameters responsible for prediction uncertainty,
919	and can inform how to prioritize these measurements. Collecting these measurements
920	from a variety of sites will be a necessary preliminary exercise. In addition to the
921	simulations aimed at improved understanding of bog response to experimental
922	manipulations at the plot-scale, we are pursuing model implementations at larger spatial
923	scales. The model framework described in this study is capable of performing regional
924	simulations, although the current simulations were designed for mechanistic
925	understanding of Sphagnum mosses hydrological and physiological dynamics at the plot-
926	level.
927	
928	§. Summary
929	In this study, we reported the development of a Sphagnum moss PFT and
930	associated processes within the ELM_SPRUCE model. Before being used to examine the
931	ecosystem response to warming and elevated CO_2 at a temperate bog ecosystem, the
932	updated model was evaluated against the observed Sphagnum GPP and annual NPP,
933	aboveground tree biomass and shrub stem biomass. The new model can capture the
934	seasonal dynamics of moss Sphagnum GPP, but with lower peak GPP compared to site-
935	level observations, and can predict reasonable annual values for Sphagnum NPP but with

Formatted: Font: 12 pt

Deleted: ¶

5.3 Outstanding issues and future directions¶ → The present modeling framework works well for hydrological dynamics (Shi et al., 2015), vegetation responses (this study), and reconstructing CH₄ dynamics (Ricciuto et al., in review) within the S1-Bog in Minnesota. It will thus be migrated into the E3SM. However, more developments of ELM_SPRUCE are still needed before widespread applications.¶

The live green moss layer buffers the exchange of energy and water at soil surface and regulates the soil temperature and moisture because of its high-water holding capacity and the insulating effect (McFadden et al., 2003; Block et al., 2011; Turesky et al, 2012; Park et al., 2018). Nevertheless, we currently include only one Sphagnum moss PFT, and will eventually treat the Sphagnum mosses as the "top" soil layer with a lower thermal conductivity and higher hydraulic capacity than a mineral soil layer (Wu et al., 2016). We also intend to model light competition, the shading effect of shrub expansion, and the changes of Sphagnum community composition. Moreover, the new implementation would allow for the simulation of the moss layer acting as a barrier for the water and energy exchange from the underlying organic soil layer with the atmosphere. In addition, we also plan to investigate the ecosystem consequences of loss of Sphagnum from this ecosystem.¶ The current model version is not able to simulate the biogeophysical changes that occur due to the long-term accumulation of peat in the bog; however, previous literature reported that there is a need to develop relatively realistic peatland growth models where the rates of ecosystem processes are a function of climate and the inherent autogenic properties of peatlands (Frolking et al., 2010, Belyea and Baird, 2006; Dies, 2009). Thus, future work requires modeling the peat accumulation and associated feedbacks among hydrology, vegetation communities, and peat properties. This would also facilitate the simulation of basic patterns of peat accumulation over millennia in northern peatlands, including accumulation rates, vegetation and fen-bog transitions, and future impacts from the potential loss of peat under warming scenarios. Nitrogen (N2) fixation is a major source of available N in ecosystems that receive low amounts of atmospheric N deposition, like boreal forests and subarctic tundra (Lindo et al., 2013, Weston et al, 2015, Rousk et al., 2016, Kostka et al., 2016). For example, diazotrophs are estimated to supply 40-60% of N input to peatlands (Vile et at., 2014) with high accumulation of fixed N into plant biomass (Berg et al., 2013). Nevertheless, N2 fixation is an energy costly process and is inhibited when N availability and reactive nitrogen deposition is high (Gundale et al., 2011; Ackermann et al., 2012; Rousk et al., 2013). This could limit ecosystem N input via the N_2 fixation pathway. A recent study showed that N_2 fixation activity in the S1-bog was negatively correlated with temperature (Carrell at al., 2019). However, for the current ELM SPRUCE, N2 fixation process is only tied to the whole-ecosystem NPP for all PFTs and is not mechanistic. We will focus on this process in future model development.

In addition to the simulations aimed at improved understanding of bog response to experimental

... [1]

- 1070 lower interannual variation. Our model largely agrees with observed tree and shrub
- 1071 biomass. The model predicts that different PFTs responded differently to warming levels
- 1072 under both ambient and elevated CO₂ concentration conditions. The NPP of the two
- 1073 dominant tree PFTs (black spruce and *Larix*) showed contrasting responses to warming
- 1074 scenarios (increasing with warming for Larix but decreasing for black spruce), while
- 1075 shrub NPP had similar warming response to Larix. Hummock and hollow Sphagnum
- 1076 showed opposite warming responses: hollow Sphagnum shows generally higher growth
- 1077 with warming, but the hummock Sphagnum demonstrates more variability and strong
- 1078 dependence with water table height. The ELM predictions further suggest that the effects
- 1079 of CO₂ fertilization can change the direction of the warming response for the bog
- 1080 peatland ecosystem, though observations of Sphagnum species at the site does not yet
- 1081 appear to support this (Norby et al. 2019).
- 1082 Data availability. The model code we used is available here:
- 1083 <u>https://github.com/dmricciuto/CLM_SPRUCE</u>. The datasets and scripts were used for the figures
- 1084 is here: <u>https://github.com/dmricciuto/CLM_SPRUCE/tree/master/analysis/Shietal2020</u>
- 1085 1086

1087

Acknowledgements

- 1088 Research was supported by the U. S. Department of Energy, Office of Science,
- 1089 Biological and Environmental Research Program. Oak Ridge National Laboratory is
- 1090 managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-
- 1091 AC05-000R22725.
- 1092
- 1093 References:

Deleted:

- 1095 Ackermann, K., Zackrisson, O., Rousk, J., Jones, D. L., and DeLuca, T. H.: N2 fixation 1096 in feather mosses is a sensitive indicator of N deposition in boreal forests, Ecosystems, 1097 15, 986-998, 2012.
- Barber, V. A., Juday, G. P., and Finney, B. P..: Reduced growth of Alaskan white spruce 1098 1099 in the twentieth century from temperature-induced drought stress, Nature, 405,668-1100 673, 2000.
- 1101 Beringer, J., Lynch, A., Chapin, F., Mack, M., and Bonan, G.: The Representation of
- 1102 Arctic Soils in the Land Surface Model: The Importance of Mosses, J. Climate, 14, 3324-1103
- 3335, doi:10.1175/1520-0442(2001)014<3324:TROASI>2.0.CO;2, 2001.
- 1104 Berg, A., Danielsson, A., and Sevensson, B.H.: Transfer of fixed-N from N2-fixing 1105 cyanobacteria associated with moss sphagnum riparium results in enhanced growth of 1106 the moss, plant and soil, 362, 271-278, https://doi.org/10.1007/s11104-012-1278-4, 1107 2013.
- 1108 Blok, D., Heijmans, M., Schaepman-Strub, G., Van Ruijven, J., Parmentier, F., 1109 Maximov, T., and Berendse, F.: The cooling capacity of mosses: Controls on water 1110and energy fluxes in a Siberian tundra site, Ecosystems, 14, 1055-1065, 2011.
- 1111 Bond-Lamberty, B., Peckham, S. D., Ahl, D. E., and Gower, S. T.: Fire as the dominant
- 1112 driver of central Canadian boreal forest carbon balance, Nature, 450, 89-92, 2007.
- Bragazza, L., Buttler, A., Robroek, B. J., Albrecht, R., Zaccone, C., Jassey, V. E., and 1113 1114 Signarbieux, C.: Persistent high temperature and low precipitation reduce peat carbon
- 1115 accumulation, Global Change Biology, 22, 4114-4123,
- 1116 https://doi.org/10.1111/gcb.13319, 2016.
- Breeuwer, A., Heijmans, M. M., Robroek, B. J., and Berendse, F.: The effect of 1117
- 1118 temperature on growth and competition between Sphagnum
- species, Oecologia, 156(1), 155-167, doi:10.1007/s00442-008-0963-8, 2008. 1119
- Brown, S. M., Petrone, R. M., Mendoza, C., and Devito, K. J.: Surface vegetation 1120 1121 controls on evapotranspiration from a sub-humid Western Boreal Plain wetland,
- 1122 Hydrological Processes, 24(8), 1072-1085, 2010.
- 1123 Busby, J.R., Bliss, L.C., and Hamilton, C.D.: Microclimate control of growth rates and
- 1124 habitats of the Boreal Forest Mosses, Tomenthypnum nitens and Hylocomium
- 1125 splenden, Ecol Monogr, 48, 95-110, 1978.
- 1126 Burrows, S.M., Maltrud, M.E., Yang, X., Zhu, Q., Jeffery, N., Shi., X., Ricciuto, D.M.,
- 1127 Wang, S., Bisht, G., Tang, J., Wolfe, J. D., Harrop, B. E., Singh, B., Brent, L., Zhou,
- 1128 Tian, Cameron-Smith P. J., Keen, N., Collier, N., Xu, M., Hunke, E.C., Elliott, S.M.,
- 1129 Turner, A.K., Li, H., Wang, H., Golaz, J.-C., Bond-Lamberty, B., Hoffman, F.M.,
- 1130 Riley, W.J., Thornton, P.E., Calvin, K., and Leung, L.R.: The DOE E3SM coupled 1131 model v1.1 biogeochemistry configuration: overview and evaluation of coupled

Formatted: Font: Times New Roman, 12 pt Formatted: Indent: Left: 0", First line: 0", Space Before: Auto, After: Auto

Formatted: Font: Times New Roman, 12 pt

Deleted: Belyea, L. R. and Baird, A. J.: Beyond "The limits to peat bog growth": Cross-scale feedback in peatland development, Ecol. Monogr., 76, 299-322, 2006.

Deleted:

1136 1137 1138 1139	 carbon-climate experiments, J. Adv. Model Earth Sy., <u>12, e2019MS001766</u>, <u>https://doi.org/10.1029/2019MS001766</u>, 2020, Gorham, E.: Northern peatlands: role in the carbon cycle and probable responses to climatic warming, Ecological Applications, 1, 182-195, 1991. 	Deleted: in review Deleted: 19
1140 1141 1142	Camill, P. and Clark, J. S.: Long-term perspectives on lagged ecosystem responses to climate change: permafrost in boreal peatlands and the grassland/woodland boundary, Ecosystems, 3, 534–544, 2000.	
1143 1144 1145 1146	Chadburn, S., Burke, E., Essery, R., Boike, J., Langer, M., Heiken- feld, M., Cox, P., and Friedlingstein, P.: An improved representa- tion of physical permafrost dynamics in the JULES land-surface model, Geosci. Model Dev., 8, 1493–1508, doi:10.5194/gmd- 8- 1493-2015, 2015.	Formatted: Font: Times New Roman, 12 pt
1147 1148 1149	Chapin, F. S. III, Shaver, G.R., Giblin, A.E., Nadelhoffer, K.J., and Laundre, J.A.: Responses of Arctic tundra to experimental and observed changes in climate, Ecology, 76, 694-711, 1995.	
1150 1151 1152 1153	Carrell, A.A., Kolton, M., Warren, M.J., Kostka, J.E., and Weston, D. J.: Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes, Glob. Change Biol., 25, 2993-3004, dio:10.1111/gcb.14715, 2019.	
1154 1155 1156 1157 1158 1159 1160 1161 1162	 Chavardes, R. D., L. D. Daniels, P. O. Waeber, J. L.Innes, and C. R. Nitschke.: Unstable climate-growth relations for white spruce in southwest Yukon, Canada, Climatic Change, 116, 593-611, 2013. Chen, W. J., Black, T. A., Yang, P.C. Barr, A.G. Neumann, H. H., Nešić, Z., Blanken, P. D. Novak, M. D., Eley, J., Ketler, R., and Cuenca, R. H.:Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest, Glob. Change Biol., 5, 41-53, 1999. Clymo, R. S. and Hayward, P.M.: The ecology of Sphagnum, in: Bryophyte Ecology, edited by: Smith, A. I. E., Chapman and Hall Ltd., London, New York, 229-289, 1982. 	
1163 1164 1165 1166	Collatz, G.J., Ball, J.T., Grivet, C. and Berry, J.A.: Physiological and environmental- regulation of stomatal conductance, photosynthesis and transpiration - a model that includes a laminar boundary-layer, Agricultural and Forest Meteorology, 54, 107- 136,1991.	
1167 1168	Collatz, G.J., Ribas-Carbo, M. and Berry, J.A.: Coupled photosynthesis- stomatal model for leaves of C4 plants, Australian Journal of Plant Physiology, 19, 519-538, 1992.	
1169 1170 1171	Cornelissen, H.C., Lang, S.I., Soudzilovskaia, N.A., and During, H.J.: Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry, Annals of Botany, 99, 987–1001, 2007.	

1174 1175	Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440, 165-173, 2006.	
1176 1177 1178	Dimitrov, D. D., Grant, R. F., LaFleur, P. M., and Humphreys, E.: Modelling the effects of hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog, J. Geophys. ResBiogeo, 116, G04010, doi:10.1029/2010JG001586, 2011.	
$ 1 179 \\ 1 180 \\ 1 181 \\ 1 81 $	Dorrepaal, E., Toet, S., van Logtestijn, R. S. P., Swart, E., van de Weg, M. J., Callaghan, T. V., and Aerts, R.: Carbon respiration from subsurface peat accelerated by climate warming in the sub- arctic, Nature, 460, 616-619, 2009.	Deleted: Dise, N. B.: Peatland response to global change, Science, 326, 810- 811, https://doi.org/10.1126/science.1174268, 2009.
1182 1183	Druel, A., Peylin, P., Krinner, G., Ciais, P., Viovy, N., Peregon, A., Barstrikov, V., Kosykh, N., Mironycheva-Tokareva, N.,; Towards a more detailed representation of	Formatted: Normal (Web), Space Before: 0 pt, After: 0 pt
1184	high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-	Formatted: Font: Times New Roman, 12 pt
1185	VEGv1.0), Geoscientific Model Development, 10(12), 4693–4722,	Formatted: Font: Times New Roman, 12 pt
1186	https://doi.org/10.5194/gmd-10-4693-2017, 2017.	Formatted: Font: Times New Roman, 12 pt
1107		Formatted: Font: Times New Roman, 12 pt
1187 1188	Duarte, H. F., Raczka, B. M., Ricciuto, D. M., Lin, J. C., Koven, C. D., Thornton, P. E., Bowling, D. R., Lai, C. T., Bible, K. J. and Ehleringer, J. R.: Evaluating the	Formatted: Font: Times New Roman, 12 pt
1189	Community Land Model (CLM4.5) at a coniferous forest site in northwestern United	Field Code Changed
1190 1191	States using flux and carbon-isotope measurements, Biogeosciences, 14(18): 4315-4340, DOI: 10.5194/bg-14-4315-2017, 2017.	Formatted: Hyperlink, Font: Times New Roman, 12 pt
1192	Euskirchen, E.S., McGuire, A.D., Chapin, F.S. III, Yi, S., and Thompson, C.C.: Changes	Formatted: Font: Times New Roman, 12 pt
1193	in vegetation in northern Alaska under scenarios of climate change, 2003–2100:	
1194	implications for climate feedbacks, Ecological Applications 19: 1022-1043, 2009.	
1195 1196	Farquhar, G.D., von Caemmerer, S. and Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90, 1980.	
1197	Fenner, N., Ostle, N.J., Mcnamara, N., Sparks, T., Harmens, H., Rey- nolds, B., and	
1198	Freeman, C.: Elevated CO2 effects on peat- land plant community carbon dynamics	
1199	and DOC production, Ecosystem, 10,635-647,2007.	Formatted: Font: Do not check spelling or
1200 1201 1202 1203	Frolking, S. and Roulet, N.T.: Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions, Glob. Change Biol. 13, 1079-1088, 2007.	grammar
1203 1204 1205 1206 1207 1208 1209 1210 1211	 Frolking, S., Talbot, J., Jones, M. C., Treat, C. C., Kauffman, Tuittila ES., and Roulet, N.: Peatlands in the Earth's 21st century coupled climate-carbon system, Environ. Rev.,19, 371-396, 2011. Girardin, M. P., Bouriaud, O., Hogg, E. H., Kurz, W., Zimmermann, N. E., Metsaranta, J. M., Jong, Rogier de, Frank, D. C., Esper, J., Büntgen, U., Guo, X., and Bhatti, J.: No growth stimulation of Canada's boreal forest under half-century of combined warming and CO₂ fertilization, Proceedings of the National Academy of Science, 113(52), E8406–E8414, 2016. 	Deleted: Frolking, S., Roulet, N. T., Tuittila, E., Bubier, J. L., Quillet, A., Tal- bot, J., and Richard, P. J. H.: A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation, Earth Syst. Dynam., 1, 1-21, doi:10.5194/esd-1-1-2010, 2010.

- Goetz, J.D., and Price, J.S.: Role of morphological structure and layering of Sphagnum
 and Tomenthypnum mosses on moss productivity and evaporation rates, Canadian
 Journal of Soil Sciences. DOI:10.4141/ CJSS-2014-092, 2015.
- 1223 Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D.,
- Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D.C., Baldwin, S. A., Bisht, G.,
 Bogenschutz, P. A., Branstetter, M., Brunke, M., A., Brus, S.R., Burrows, S.M.,
- 1226 Cameron-Smith P. J., Donahue, A. S., Deakin, M., Easter, R. C., Evans, K. J., Feng,
- 1227 Y., Flanner, M., Foucar, J., G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E.,
- 1228 Hoffman, M. J., Hunke, E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W.,
- 1229 Klein, S. A., Larson, V. E., Leung, L. R., Li, H., Lin, W., Lipscomb, W.H., Ma, P.-L.,
- 1230 Mahajan, S., Maltrud, M., E., Mametjanov, A., McClean, J. L., McCoy, R. B., Neale,
- 1231 R.B., Price, S. F., Qian, Y., Rasch, P. J., Reeves Eyre, J.E.J., Riley, W. J., Ringler, T.
- 1232 D., Roberts, A. F., Roesler, E. L., Salinger, A. G., Shaheen, Z., Shi, X., Singh, B.,
- 1233 Tang, J., Taylor, M. A., Thornton, P. E., Tuner, A. K., Veneziani, M., Wan, H., Wang,
- 1234 H., Wang, S., Williams, D. N., Wolfram, P. J., Worley, P. H., Xie, S., Yang, Y., Yoon,
- 1235 J.-H., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang, C., Zhang, K., Zhang, Y.,
- 1236 Zheng, X., Zhou, T., Zhu, Q.: The DOE E3SM coupled model version 1: Overview
 1237 and evaluation at standard resolution, J. Adv. Model Earth Sy, 11(7), 2089-2129,
 1238 https://doi.org/10.1029/2018MS001603, 2019.
- Gong, J., Roulet, N., Frolking, S., Peltola, H., Laine, A.M., Kokkonen, N., and Tuittila,
 E.-S.: Modelling the habitat preference of two key sphagnum species in a poor fen as
 controlled by capitulum water retention, Biogeosciences Discussions,
 https://dio.org/10.5194/bg-2019-366, 2019.
- 1243 Gorham, E.: Northern peatlands: role in the carbon cycle and probable responses to climatic warming, Ecological Applications, 1, 182-195, 1991.
- Grant, R. F., Desai, A. R., and Sulman, B. N.: Modelling contrasting responses of
 wetland productivity to changes in water table depth, Biogeosciences, 9, 4215-4231,
 2012.
- Granath, G., Limpens, J., Posch, M., Mücher, S., and De Vries, W.: Spatio-temporal
 trends of nitrogen deposition and climate effects on Sphagnum productivity in
- European peatlands, Environmental Pollution, 187, 73-80, https://doi.org/10.1016/j.
- envpol.2013.12.023, 2014Griffiths, N. A., and Sebestyen, S. D.: Dynamic vertical
- profiles of peat porewater chemistry in a northern peatland, Wetlands, 36(6), 1119-
- 1253 1130, 2016.
- Griffiths, N. A., and Sebestyen, S. D.: Dynamic vertical profiles of peat porewater
 chemistry in a northern peatland, Wetland, 36, 1119-1130, doi:10.1007/s13157-0160829-5, 2016.
- Griffiths, N. A., Hanson, P. J., Ricciuto, Iversen, C. M., Jensen, A.M., Malhotra, A.,
 McFarlane, K. J., Norby, R. J., Sargsyan, K., Sebestyen, S. D., Shi, X., Walker, A. P.,
- 1259 Ward, E. J., Warren, J. M., and Weston, D, J.:Temporal and spatial variation in
- 1260 peatland carbon cycling and implications for interpreting responses of an ecosystem-
- 1261 scale warming experiment, Soil Sci. Soc. Am. J., 81(6), 1668-1688,
- 1262 doi:10.2136/sssaj2016.12.0422, 2018.

1263	Grosvernier, P., Matthey, Y., and Buttler, A.: Growth potential of three Sphagnum		
1264	species in relation to water table level and peat properties with implications for their		
1265	restoration in cut-over bogs, Journal of Applied Ecology, 34(2), 471-483.		
1266	https://doi:10.2307/2404891,1997.		
1267	Grosvernier, P.R., Mitchell, E.A.D., Buttler, A., Gobat, J.M.: Effects of elevated CO ₂ and +		Formatted: Normal, Indent: Left: 0", First line:
1268	nitrogen deposition on natural regeneration processes of cut-over ombrotrophic peat bogs		0", Space Before: Auto, After: Auto
1269	in the Swiss Jura mountains, Glob Change Prot Areas 9, 347-35, 2001.		Formatted: Font: Do not check spelling or grammar
1270	Gundale, M.J., DeLuca, T.H., and Nordin, A.: Bryophytes attenuate anthropogenic		Deleted: ¶
1271	nitrogen inputs in boreal forests, Glob. Change Biol., 17, 2743-2753, 2011.		
1070	Cumeroscen II. Crambara C. & Nilsson M. Crowth mechanics and interconsilia		E-muster de En dèlate Diblie avec des la deute l'afte
1272 1273	Gunnarsson, U., Granberg, G., & Nilsson, M.: Growth, production and interspecific competition in <i>Sphagnum</i> : effects of temperature, nitrogen and sulphur treatments		Formatted: EndNote Bibliography, Indent: Left: 0", Hanging: 0.5", Space After: 0 pt, Line
1273	on a boreal mire, <i>New Phytologist</i> , 163(2), 349-359, https://doi:10.1111/j.1469-		spacing: single
			Formatted: Font: (Default) Microsoft YaHei
1275	<u>8137.2004.01108.x, 2004.</u>	*****	Formatted: Form: (Derault) Microsoft Farier
1276	Hanson, P. J., Riggs, J.S., Nettles, W. R., Krassovski, M. B., and Hook L. A.: SPRUCE		Deleted: ¶
1277	deep peat heating (DPH) environmental data, February 2014 through July 2015, Oak		
1278	Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge,		
1279	Tennessee, U.S.A. https://doi.org/10.3334/CDIAC/spruce.013, 2015a.		
1280	Hanson, P.J., Riggs, J.S. Dorrance, C., Nettles, W.R., and Hook, L.A.: SPRUCE		
1281	Environmental Monitoring Data: 2010-2016. Carbon Dioxide Information Analysis		
1282	Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge,		
1283	Tennessee, U.S.A. http://dx.doi.org/10.3334/CDIAC/spruce.001, 2015b.		
1284	Hanson, P. J., Gill, A. L., Xu, X., Phillips, J. R., Weston, D. J., Kolka, R. K., Riggs, J.		
1285	S., and Hook, L. A.: Intermediate-scale community-level flux of CO2 and CH4 in a		
1286	Minnesota peatland: putting the SPRUCE project in a global context,		
1287	Biogeochemistry, 129(3), 255-272, 2016.		
1288	Hanson, P. J., Riggs, J.S., Nettles, W.R., Phillips, J.R., Krassovski, M.B., Hook, L.A.,		
1289	Gu, L., Richardson, A.D., Aubrecht, D.M., Ricciuto, D.M., Warren, J.M., and Barbier,		
1290	C.: Attaining whole-ecosystem warming using air and deep-soil heating methods with		
1291	an elevated CO2 atmosphere, Biogeosciences, 14, 861-883, 2017.		
1292			
1293	Hanson, P.J., Phillips, J.R., Wullschelger, S. D., Nettles, W. R., Warren, J. M., Ward, E.		
1294	J.: SPRUCE Tree Growth Assessments of Picea and Larix in S1-Bog Plots and		
1295	SPRUCE Experimental Plots beginning in 2011, Oak Ridge National Laboratory, TES		
1296	SFA, U.S. Department of Energy, Oak Ridge, Tennessee,		
1297	U.S.A. https://doi.org/10.25581/spruce.051/1433836, 2018a.		
1298			
1299	Hanson, P.J., Phillips, J.R., Brice, D.J., and Hook, L.A.: SPRUCE Shrub-Layer Growth		
1300	Assessments in S1-Bog Plots and SPRUCE Experimental Plots beginning in		
1301	2010. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak		
1302	Ridge, Tennessee, U.S.A. https://doi.org/10.25581/spruce.052/1433837, 2018b.		Formatted: Justified, Indent: Left: 0", Hanging:
1303	Hanson, P. J., Griffiths, N.A., Iversen, C.M., Norby, R. J., Sebestyen, S. D., Phillips,		0.25", No widow/orphan control, Don't adjust
1304	Jeffrey, J. R., Chanton, P., Kolka, R. K., Malhotra, A., Oleheiser, K. C., Warren, J. M.,		space between Latin and Asian text, Don't adjust space between Asian text and numbers

1307	Shi, X., Yang, X., Mao, J., and Ricciuto, D., M.: Rapid net carbon loss from a whole-	
1308	ecosystem warmed peatland. AGU Advances, 1, e2020AV000163,	
1309	https://doi.org/10.1029/2020AV000163, 2020.	
1310	Heijmans, M., Arp, W.J., Berendse, F.: Effects of elevated CO ₂ and vascular plants on	Formatted: Space Before: Auto, After: Auto
1311	evapotranspiration in bog vegetation, Glob Change Biol 7:817-827, 2001.	Formatted: Subscript
1312 1313 1314	Heijmans, M.M.P.D., Arp, W.J., and Chapin, F.S. III.: Carbon dioxide and water vapour exchange from understory species in boreal forest, Agricultural and Forest Meteorology 123,135-147, DOI:10.1016/j. agrformet.2003.12.006, 2004a.	Formatted: Font: Do not check spelling or grammar
1315 1316 1317	Heijmans, M.M.P.D, Arp, W.J., and Chapin, F.S. III.: Controls on moss evaporation in a boreal black spruce forest. Global Biogeochemical Cycles 18(2), 1-8, DOI:10.1029/2003GB002128, 2004b.	
1318 1319 1320	Heijmans, M.M. P. D., Mauquoy, D., van Geel, B., and Berendse, F.: Long-term effects of climate change on vegetation and carbon dynamics in peat bogs. Journal of Vegetation Science 19, 307-320, 2008.	
1321 1322 1323	Hobbie, S.E., and Chapin, F.S. III.: The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming, Ecology, 79,1526-1544, 1998.	
1324 1325	Hobbie, S.E., Shevtsova, A., and Chapin, F.S.III.: Plant responses to species removal and experimental warming in Alaskan Tus- sock Tundra. Oikos 84,417-434, 1999.	
1326 1327 1328	Hoosbeek, M.R., Van Breemen, N., Vasander, H., Buttler, A., Berendse, F.: Potassium limits potential growth of bog vegetation under elevated atmospheric CO2 and N deposition, Glob. Change Biol., 8,1130-1138, https://doi.org/10.1046/j.1365-	Formatted: Indent: Left: 0", First line: 0"
1329	<u>2486.2002.00535.x, 2002.</u>	Formatted: Font: Do not check spelling or grammar
1330 1331 1332	Ise, T., Dunn, A. L., Wofsy, S. C., and Moorcroft, P. R.: High sensitivity of peat decomposition to climate change through water table feedback, Nat. Geosci., 1, 763- 766, 2008.	(j
1333	Jauhiainen, J., Silvola, J.: Photosynthesis of Sphagnum fuscum at long-term raised CO2	Formatted: Indent: Left: 0", First line: 0"
1334	concentrations, Annales Botanici Fennici, 36,11-19, 1999,	Formatted: Font: Do not check spelling or grammar
1335 1336 1337 1338 1339	Jensen, A.M., Warren, J. M., Hook, L. A., Wullschleger, S. D., Brice, D.J., Childs, J., and Vander Stel, H.M.: SPRUCE S1 Bog Pretreatment Seasonal Photosynthesis and Respiration of Trees, Shrubs, and Herbaceous Plants, 2010-2015, Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A., https://doi.org/10.3334/CDIAC/spruce.008, 2018.	
1340 1341 1342	Jensen, A.M., Warren, J. M., King, A., Ricciuto, D.M., Hanson, P. J., and Wullschleger, S. D.:Simulated projections of boreal forest peatland ecosystem productivity are sensitive to observed seasonality in leaf phenology, Tree Physiology, 39(4), 556-572,	Formatted: Space After: 12 pt, No widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers

1343	doi: 10.1093/treephys/tpy140, 2019	Deleted: 1
1344 1345 1346 1347 1348 1349 1350 1351	 Jiang, J., Huang, Y., Ma, S., Stacy, M., Shi, Z., Ricciuto, D. M., Hanson, P. J., and Luo, Y.: Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO₂ and a Gradient of Experimental Warming, J. Geophys. ResBiogeo, 123(3), 1057-1071, doi: 10.1002/2017JG004040, 2018. Juday, G. P., and Alix, C.: Consistent negative temperature sensitivity and positive influence of precipitation on growth of floodplain Picea glaucain Interior Alaska, Canadian Journal of Forest Research, 42, 561-573, 2012. 	Deleted: ¶
1352 1353 1354	Kostka, J.E., Weston, D.J., Glass, J.B., Lilleskov, E.A., Shaw, A.J., and Turetsky, M.R.: The Sphagnum microbiome: new insights from an ancient plant lineage, New Phytologist, 211(1):57-64, 2016	Formatted: Indent: Left: 0", First line: 0"
1355 1356 1357	Kuiper, J. J., Mooij, W. M., Bragazza, L., and Robroek, B. J.: Plant functional types define magnitude of drought response in peatland CO ₂ exchange, Ecology, 95, 123- 131, https://doi.org/10.1890/13-0270.1, 2014.	
1358 1359 1360 1361	Lafleur, P. M., Hember, R. A., Admiral, S. W., and Roulet, N. T.: Annual and seasonal variability in evapotranspiration and water table at a shrub-covered bog in southern Ontario, Canada, Hydrol. Process., 19, 3533–3550, https://doi.org/10.1002/hyp.5842, 2005.	
1362 1363	Larmola, T., Leppänen, S. M., Tuittila, EStiina, Aarva, M., Merilä, P., Fritze, H., <u>Tiirola, M.: Methanotrophy induces nitrogen fixation during peatland development</u> ,	Formatted: Normal (Web), Space Before: 0 pt, After: 0 pt
1364	PNAS, 734-739, www.panas.org/cgi/dio/10.1073/pnas.1314284111, 2014.	Formatted: Font: Times New Roman, 12 pt
1365 1366 1367 1368	Launiainen, S., Katul, G. G., Lauren, A., and Kolari, P.: Coupling boreal forest CO ₂ , H ₂ O and energy flow by a vertically structured forest canopy-Soil model with separate bryophyte layer. Ecological Modelling, 312, 385-405. https://doi.org/10.1016/j.ecolmodel.2015.06.007, 2015.	(Formatted: Font: Times New Roman, 12 pt
1369 1370 1371 1372 1373 1374	 Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., Roulet, N., Rydin, H., and Schaepman-Strub, G.:Peatlands and the carbon cycle: From local processes to global implications-A synthesis, Biogeosciences, 5(5), 1475-1491, doi:10.5194/bg-5-1475-2008, 2008. Lindo, Z, and Gonzalez, A.: The bryosphere: an integral and influential component of the earth's biosphere, Ecosystems, 13, 612–627, 2010. 	
1375 1376 1377	Lindo, Z., Nilsson, M.C., and Gundale, M.J.: Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change, Glob. Change Biol., 19(7),2022-35, 2013.	
1378 1379 1380	Lu, D., Ricciuto, D.M., Stoyanov, M., and Gu, L.: Calibration of the E3SM Land Model Using Surrogate-Based Global Optimization, J Adv Model Earth Sy, 10(6), 1337- 1356, doi: 10.1002/2017ms001134, 2018.	

- Lu, D., and Ricciuto, D.M.: Efficient surrogate modeling methods for large-scale Earth
 system models based on machine-learning techniques, Geosci Model Dev, 12(5),
 1791-1807, doi: 10.5194/gmd-12-1791-2019, 2019.
- Man, R., Kayahara, G.J., Rice, J.A., and MacDonald, G.B.: Eleven- year responses of a
 boreal mixedwood stand to partial har- vesting: light, vegetation, and regeneration
 dynamics, For Ecol Manag 255,697-706, 2008.
- Mazziotta, A., Granath, G., Rydin, H. and Bengtsson F.: Scaling functional traits to
 ecosystem processes: Towards a mechanistic understanding in peat mosses, Journal of
 Ecology, DOI:10.1111/1365-2745.13110, 2018.
- Metcalfe, D. B., Ricciuto D. M., Palmroth, S., Campbell, Hurry, C., V., Mao, J., Keel, S.
 G., Linder, S., Shi, X., Näsholm, T., Ohlsson, K. E. A., Blackburn, M., Thornton, P. E.
 and Oren, R.: Informing climate models with rapid chamber measurements of forest
 carbon uptake, Global Change Biology, 23(5), 2130-2139, DOI: 10.1111/gcb.13451,
- 1396 2017.1397 McFadden, J.P., Eugster, W., Chapin, F.S.III.: A regional study of the controls on water
- vapor and CO2 exchange in Arctic tundra, Ecology, 84,2762-76, 2003.
- 1399 McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L., Hayes, D.
- J., Heimann, M., Lorenson, T. D., Macdonald, R. W. and Roulet, N.: Sensitivity of the
 carbon cycle in the Arctic to climate change, Ecol. Monogr., 79, 523-555, 2009.
- Miller, P. A. and Smith, B.: Modelling Tundra Vegetation Response to Recent Arctic
 Warming, Ambio, 41, 281-291, https://doi.org/10.1007/s13280-012-0306-1, 2012.
- 1404 Mokhov, I.I., Eliseev, A.V., and Denisov, S.N.: Model diagnostics of variations in

1405 methane emissions by wetlands in the second half of the 20th century based on

- 1406 reanalysis data, Dokl. Earth Sci., 417(1),1293-1297, 2007.
- Moore, T.R., Roulet, N.T., and Waddington, J.M.: Uncertainty in predicting the effect of
 climate change on the carbon cycling of Canadian peatlands, Clim. Change, 40, 229 245, 1998.
- 1410 Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R.: Increased
- 1411 plant growth in the northern high latitudes from 1981 to 199,1 Nature, 386,698-702,1412 1997.
- Murray, K.J., Tenhunen, J.D., and Nowak, R.S.: Photoinhibition as a control on
 photosynthesis and production of Sphagnum mosses, Oecologia, 96,200-207, 1993.
- 1415 Nichols, J.E., and Peteet, D.M.: Rapid expansion of northern peatlands and doubled
- 1416 estimate of carbon storage, Nat. Geosci. 12, 917-921, doi:10.1038/s41561-019-0454-z,
 1417 2019.

- Nilsson, M.C., and Wardle, D.A.: Understory vegetation as a forest ecosystem driver: 1418 1419 evidence from the northern Swedish boreal forest, Frontiers in Ecology and the
- 1420 Environment, 3, 421-428, 2005.
- 1421 Norby, R.J., and Childs, J.: Sphagnum productivity and community composition
- 1422 in the SPRUCE experimental plots. Carbon Dioxide Information Analysis
- 1423 Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak
- 1424 Ridge, Tennessee, U.S.A. http://dx.doi.org/10.3334/CDIAC/spruce.xxx, 2017.
- 1425 Norby, R.J., Childs, J., Hanson, P.J., and Warren, J.M ..: Rapid loss of an ecosystem 1426 engineer: Sphagnum decline in an experimentally warmed bog, Ecology and 1427
- Evolution, 9(22), 12571-12585, https://doi.org/10.1002/ece3.5722, 2019.
- 1428 Nungesser, M. K.: Modelling microtopography in boreal peatlands: Hummocks and 1429 hollows, Ecol. Model., 165(2-3), 175-207, 2003. 1430
- 1431 Oechel, W.C., and Van Cleve, K .: The role of bryophytes in nutrient cycling in the taiga, 1432 in Ecological Studies, Vol. 57: Forest Ecosystems in the Alaskan Taiga, edited by: 1433 Van Cleve, K., Chapin III, F. S., Flanagan, P.W., Viereck, L.A., and Dyrness, C.T.,
- 1434 Springer-Verlag, New York, 121-137,1986.
- 1435 Oleson, K. W., Lawrence, D. W., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D.,
- 1436 Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C., Thornton, P. E., Bozbiyik,
- 1437 A., Fisher, R., Heald, C. L., Kluzek, E., Lamarque, J., Lawrence, P. J., Leung, L. R.,
- 1438 Lipscomb, W., Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., and Yang,
- 1439 Z.: Technical description of version 4.5 of the Community Land Model (CLM),
- 1440 NCAR/TN-503+STR, NCAR Technical Note, 2013.
- 1441 Park, H., Launiainen, S., Konstantinov, P. Y., Iijima, Y., and Fedorov, A. N.: Modeling 1442 the effect of moss cover on soil temperature and carbon fluxes at a tundra site in 1443 northeastern Siberia, J. Geophys. Res.-Bioge, 123, 3028-3044, https://doi.org/ 10.1029/2018JG004491, 2018. 1444
- 1445 Parsekian, A. D., Slater, L., Ntarlagiannis, D., Nolan, J., S. Sebestyen, D., Kolka, R. K., 1446 and Hanson, P. J.: Uncertainty in peat volume and soil carbon estimated using ground-1447 penetrating radar and probing. Soil Sci. Soc. Am. J., 76, 1911-1918. DOI: 1448 10.2136/sssaj2012.0040, 2012.
- Pastor, J., Peckham, B., Bridgham, S., Weltzin, J., and Chen, J.: Plant community 1449
- 1450 dynamics, nutrient cycling, and alternative stable equilibria in peatlands, The
- 1451 American Naturalist 160, 553-568, 2002.
- Peichl, M., Öquist, M., Löfvenius, M. O., Ilstedt, U., Sagerfors, J., Grelle, A., Lindroth, 1452 1453 A., and Nilsson, M. B.: A 12-year record reveals pre-growing season temperature and 1454 water table level threshold effects on the net carbon dioxide exchange in a boreal fen, 1455 Environ. Res. Lett., 9, 055006, https://doi.org/10.1088/1748-9326/9/5/055006, 2014.
- 1456 Petrone, R., Solondz, D., Macrae, M., Gignac, D., and Devito, K.J.: Microtopographical 1457 and canopy cover controls on moss carbon dioxide exchange in a western boreal plain 1458 peatland, Ecohydrology, 4, 115-129, 2011.

1462	Porada, P., Ekici, A., and Beer, C.; Effects of bryophyte and lichen cover on permafrost	
1463	soil temperature at large scale, The Cryosphere, 10(5), 2291–2315,	
1464	https://doi.org/10.5194/tc-10-2291-2016, 2016, 2016,	
1465	Raczka, B., Duarte, H. F., Koven, C. D., Ricciuto, D.M., Thornton, P. E., Lin, J. C. and	N
1466	Bowling, D. R.: An observational constraint on stomatal function in forests: evaluating	\sim
1467	coupled carbon and water vapor exchange with carbon isotopes in the Community	\sim
1468	Land Model (CLM4.5), Biogeosciences, 13(18), 5183-5204, DOI: 10.5194/bg-13-	C
1469	5183-2016, 2016.	
1470	Raghoebarsing, A. A., Smolders, A.J.P., Schmid, M.C., Rijpstra, W.I.C., Wolters-Arts,	
1471	M., Derksen, J., Jetten, M.S.M., Schouten, S., Sinninghe Damsté, J.S., Lamers,	
1472	L.P.M., Roelofs, J.G.M., Op den Camp, H.J.M., and Strous, M.: Methanotrophic	
1473	symbionts provide carbon for photosynthesis in peat bogs. Nature, 436, 1153-1156,	
1474	doi:10.1038/nature03802, 2005.	
1475		
1476	Ricciuto, D. M., Sargsyan, K., and Thornton, P.E.: The Impact of Parametric	
1477	Uncertainties on Biogeochemistry in the E3SM Land Model, J Adv Model Earth Sy,	
1478	10(2), 297-319, doi: 10.1002/2017ms000962, 2018.	
1479	Ricciuto, D.M., Xu, X., Shi, X., Wang, Y., Song, X., Schadt, C.W., Griffiths, N. A., Mao,	
1480	J., Warre, J., M., Thornton, P.E., Chanton, J., Keller, J., Bridgham, S., Gutknecht, J.,	
1481	Sebestyen, S. D., Finzi, A., Kolka, R., and Hanson P.J.: An Integrative Model for Soil	
1482	Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis,	
1483	J. Geophys. ResBiogeo, In review, 2019.	
1484	Riutta, T., Laine, J., and Tuittila, ES.: Sensitivity of CO2 exchange of fen ecosystem	
1485	componetrs to water level variation, Ecosystem, 10(5), 718-733, 2007.	
1105		
1486	Robroek, B.J.M., Limpens, J., Breeuwer, A., and Schouten, M.G.C.: Effects of water	
1487	level and temperature on performance of four Sphagnum mosses. Plant	
1488	Ecology, 190, 97-107, 2007.	
1489	Robroek, B.J.M., Schouten, M.G.C., Limpens, J., Berendse F. and Poorter, H.: Interactive	

Porada, P., Weber, B., Elbert, W., Pöschl, U., and Kleidon, A.: Estimating global carbon

uptake by lichens and bryophytes with a process-based model, Biogeosciences, 10,

6989-7033, doi:10.5194/bg-10-6989-2013, 2013.

- 1490 effects of water table and precipitation on net CO2 assimilation of three co-occurring
- Sphagnum mosses differing in distribution above the water table, Glob. Change Biol.,15, 680-691, 2009.
- Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A.,
 Root, T., Estrella, N., Seguin, B., Tryjanowski, P., Liu, C., Ravlins, S., and Imeson,
 A.: Attributing physical and biological impacts to anthropogenic climate
- 1496 change, Nature, 453, 353-357, doi:10.1038/nature06937, 2008.

1459

1460

1461

1497Rydin, H.: Effect of water level on desiccation of Sphagnum in relation to surrounding1498Sphagna, Oikos, 45(3), 374-379, https://doi:10.2307/3565573, 1985.

Formatted: Font: Times New Roman, 12 pt Formatted: Indent: Left: 0", Hanging: 0.19"

-(Formatted: Font: Times New Roman, 12 pt
~(Formatted: Font: Times New Roman, 12 pt
~(Formatted: Font: Times New Roman, 12 pt
`(Field Code Changed
	Formatted: Hyperlink, Font: Times New Roman, 12 pt

Formatted: Font: Times New Roman, 12 pt

1499 1500 1501	Rydin, H., and Clymo, R. S.: Transport of carbon and phosphorus-compounds about Sphagnum. Proceedings of the Royal Society Series B-Biological Sciences, 237(1286), 63-84, https://doi:10.1098/rspb.1989.0037, 1989.	
1502	Rousk, K., Rousk, J., Jones, D.L., Zackrisson, O., DeLuca, and T.H.: Feather moss	Deleted: ¶
1503	nitrogen acquisition across natural fertility gradients in boreal forests, Soil Biol	Rydin, H., and Jeglum, J.: The Biology of Peatlands, 343
		pp., Oxford University Press, New York, 2006.
1504	Biochem, 61, 86-95, 2013.	
1505	Rousk, K., and Michelsen, A.: The sensitivity of Moss-Associated Nitrogen Fixtion	
1505	towards Repeated Nitrogen Input, Plos One, 11(1), e0146655,	
1507	https://doi.org/10.1371/journal.pone.0146655, 2016.	
1307	https://doi.org/10.15/1/journal.pone.0140055, 2010.	
1508	Rydsaa, J. H., Stordal, F., Bryn, A., and Tallaksen, L. M.: Effects of shrub and tree cover	
1509	increase on the near-surface atmosphere in northern Fennoscandia, Biogeosciences,	
1510	14, 4209-4227, https://doi.org/10.5194/bg-14-4209-2017, 2017.	
1511	Saarnio, S., Jarvio, S., Saarinen, T., Vasander, H., Silvola, J.: Minor changes in	Formatted: EndNote Bibliography, Indent: Left: 0", Hanging: 0.5"
1512	vegetation and carbon gas balance in a boreal mire under a raised CO_2 or	o, hanging. 0.5
1513	NH4NO3 supply, Ecosystems 6:46-60, https://doi.org/10.1007/s10021-002-	
1514	<u>0208-3, 2003.</u>	
1515	Sargsyan, K., Safta, C., Najm, H. N., Debusschere, B. J., Ricciuto, D.M., and Thornton,	Deleted: 1
1516	P.E.: Dimensionality Reduction for Complex Models Via Bayesian Compressive	
1517	Sensing, International Journal for Uncertainty Quantification, 4(1), 63-93, doi:	
1518	10.1615/Int.J.UncertaintyQuantification.2013006821, 2014.	
1519	Sebestyen, S. D., Dorrance, C., Olson, D. M., Verry, E. S., Kolka, R. K., Elling, A. E.,	
1520	and Kyllander, R.: Long-term monitoring sites and trends at the Marcell Experimental	
1521	Forest, in: Peatland biogeochemistry and watershed hydrology at the Marcell	
1522	Experimental Forest, edited by: Kolka, R. K. Sebestyen, S. D., Verry, E. S., and	
1523	Brooks, CRC Press, New YorK, 15-71, 2011.	
1504	Shi, X., Thornton, P. E., Ricciuto, D. M., Hanson, P. J., Mao, J., Sebestyen, S. D.,	
1524		
1525	Griffiths, N. A., and Bisht, G.: Representing northern peatland microtopography and	
1526	hydrology within the Community Land Model, Biogeosciences, 12(21), 6463-6477,	
1527	https://doi.org/10.5194/bg-12-6463-2015, 2015.	
1528 1529	Silva, L. C. R., Anand, M., and Leithead, M. D.: Recent widespread tree growth decline	
	despite increasing atmospheric CO2, PLoS ONE, 5(7), e11543, doi:	
1530	10.1371/journal.pone.0011543, 2010.	
1531	Seminartes O. Ven Den Konne C. Den A.C. and Chen Lean the 14' 1' 1'	
1532	Sonnentag, O., Van Der Kamp, G., Barr, A.G., and Chen, J.: on the relationship between	
1533	water table depth and water vapor and carbon dioxide fluxes in a minerotrophic fen,	
1534	Glob. Change Biol., 16(6), 1761-1776, https://doi.org/10.1111/j.1365-	
1535	2486.2009.02032.x, 2010.	
1536	St-Hilaire, F., Wu, J., Roulet, N. T., Frolking, S., Lafleur, P. M., Humphreys, E. R., and	
1537	Arora, V.: McGill wetland model: evalu- ation of a peatland carbon simulator	
1538	developed for global assessments, Biogeosciences, 7, 3517-3530, 2010.	
1520	Sulman, B. N., Desai, A. R., Saliendra, N. Z., Lafleur, P. M., Flana- gan, L. B.,	
1539		
1540	Sonnentag, O., Mackay, D. S., Barr, A. G., and Kamp, G. V. D.: CO2 fluxes at	

1545 1546	northern fens and bogs have opposite responses to inter-annual fluctuations in water table, Geophys. Res. Lett., 37, L19702, doi:10.1029/2010GL044018, 2010.		
1547 1548 1549 1550 1551	 Tarnocai, C.: The effect of climate change on carbon in Canadian peatlands, Glob Planet Change, 53, 4, 222-232, 2006. Tenhunen, J.D., Weber, J.A., Yocum, C.S. and Gates, D.M.: Development of a photosynthesis model with an emphasis on ecological applications, Oecologia, 26,101-119, 1976. 		
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561	 Tian, H., Lu,C., Yang, J., Banger, K., Huntinzger, D. N., Schwalm, C. R., Michalak, A. M., Cook, R., Ciais, P., Hayes, D., Huang, M., Ito, A., Jacobson, A., Jain,A., Lei, H., Mao,J., Pan, S., Post, W.M, Peng, S., Poulter,B., Ren, W., Ricciuto,D.M., Schaefer, K., Shi, X., Tao,B., Wang, W., Wei, Y., Yang, Q., Zhang, B., and Zeng, N.: Global patterns of soil carbon stocks and fluxes as simulated by multiple terrestrial biosphere models: sources and magnitude uncertainty, Global Biogeochem Cycles, 29, 775-792, doi:10.1002/2014GB005021, 2015. Titus, J. E., Wagner, D.J., and Stephens, M.D.: Contrasting Water Relations of Photosynthesis for 2 Sphagnum Mosses, Ecology, 64, 1109-1115, 1983. 	Ē	Peleted: .
1562 1563 1564 1565	Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. A. G., and Allison, S. D.: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717–1736, doi:10.5194/bg-10-1717-2013, 2013.		
1566 1567 1568	Toet, S., Cornelissen, J.H., Aerts, R., van Logtestijn, R.S., de Beus, M., Stoevelaar, R.: Moss responses to elevated CO2 and variation in hydrology in a temperate lowland peatland. Plants and climate change. Springer, Netherlands, pp 27-42, 2006.		
1569	Turetsky, M. R., Wieder, R. K., and Vitt, D. H.: Boreal peatland C fluxes under varying	s	eleted: ¶
1570 1571 1572	permafrost regimes, Soil Biol. Biochem.,34,907-912, 2002. <u>Turetsky, M. R., and Wieder, R. K.: Boreal bog Sphagnum refixes soil-produced and</u> <u>respired 14CO₂, Ecoscience, 6(4), 587-591.</u>		ormatted: Font: Do not check spelling or ammar
1573	https://doi:10.1080/11956860.1999.11682559, 1999.	C	
1574 1575	Turetsky, M.R., Mack, M.C., Hollingsworth, T.N., and Harden, J.W.: The role of mosses in ecosystem succession and function in Alaska's boreal forest, Canadian Journal of		Deleted: ¶
1576	Forest Research 4, 1237-1264, 2010.		
1577	Turetsky, M. R., Bond-Lamberty, B., Euskirchen, E., Talbot, J., Frolking, S., McGuire,		
1578 1579	A. D., and Tuittila, ES.: The resilience and functional role of moss in boreal and arc- tic ecosystems, New Phytol., 196, 49-67, doi:10.1111/j.1469- 8137.2012.04254.x,		
1579	2012.		
1581			
1582 1583	Van, B. N.: How Sphagnum bogs down other plants, Trends Ecol. Evol, 10, 270-275, 1995.		
1584 1585	Van Der Heijden, E., Verbeek, S.K., Kuiper, P.J.C.: Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat		ormatted: Indent: Left: 0", First line: 0", Space fore: Auto, After: Auto

1589	moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.), Warnst. Glob Change	
1590	Biol 6, 201-212, https://doi.org/10. 1046/j.1365-2486.2000.00303.x, 2000,	Deleted: 1
1591 1592 1593	van der Schaaf, S.: Bog hydrology, in: Conservation and Restoration of Raised Bogs: Geological, Hydrological and Ecological Studies, edited by: Schouten, M.G.C., The Government Stationery Office, Dublin, 54-109, 2002.	
1594 1595	van der Wal, R., Pearce, I.S.K and Brooker, R.W.: Mosses and the struggle for light in a nitrogen-polluted world, Oecologia, 142,159-68, 2005.	
1596	Van Gaalen, K. E., Flanagan, L. B., and Peddle, D. R.: Photosynthesis, chlorophyll	Formatted: EndNote Bibliography, Indent: Left: 0", Hanging: 0.25", Space Before: 0 pt, After: 0 pt, Line spacing: Double
1597	fluorescence and spectral reflectance in Sphagnum moss at varying water contents,	Formatted: Font: (Default) Times New Roman, Not
1598	Oecologia, 153(1), 19-28, doi:10.1007/s00442-007-0718-y, 2007.	Italic Formatted: Font: (Default) Times New Roman, Not
1599	Verry, E. S., and Jansenns, J.: Geology, vegetation, and hydrology of the S2 bog at the	Italic
1600	MEF: 12,000 years in northern Minnesota, in Peatland biogeochemistry and watershed	Formatted: Comment Text
1601 1602	hydrology at the Marcell Experimental Forest, edited by R. K. Kolka S. D. Sebestyen, E. S. Verry, K.N. Brooks, CRC Press, New YorK, 93-134, 2011.	Deleted: 1
1002	Toomaanaanaa	
1603 1604 1605 1606 1607	Vile, M. A., Kelman Wieder, R., Živković, T., Scott, K. D., Vitt, D. H., Hartsock, J. A., Iosue, C. L., Quinn, J.C., Petix, M., Fillingim, H.M., Popma, J.M.A., Dynarski, K.A., Jackman, T. R., Albright, C.M., and Wykoff, D. D. : N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands, Biogeochemistry, 121, 317-328, https://doi.org/10.1007/ s10533-014-0019-6, 2014.	
1608 1609	Vitt, D. H.: A key and review of bryophytes common in North American peatlands, Evansia, 31, 121-158, 2014.	
1610 1611 1612 1613	Wania, R., Ross, I., Prentice, I.C.: Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes, Global Biogeochem. Cycles 23, GB3014, doi:10.1029/2008GB003412, 2009.	
1614 1615 1616 1617 1618 1619 1620	 Wania, R., Melton, J. R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Chen, G., Eliseev, A. V., Hopcroft, P. O., Riley, W. J., Subin, Z. M., Tian, H., van Bodegom, P.M., Kleinen, T., Yu, Z., Singarayer, J. S., Zurcher, S., Lettenmaier, D. P., Beerling, D. J., Denisov, S. N., Prigent, C., Papa, F., and Kaplan, J. O.: Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP), Geosci. Model Dev., 6, 617-641, 2013. 	
1621 1622	Walker, M.D., Wahren, C.H., Hollister, R.D., Henry, G.H.R., Ahlquist, L.E., Alatalo, J.M., Bret-Harte, M.S., Calef, M.P., Callaghan, T.V., Carroll, A.B., Epstein, H.E.,	

1623 Jonsdottir, I.S., Klein, J.A., Magnusson, B., Molau, U., Oberbauer ,S.F., Rewa, S.P.,

1626 1627 1628 1629	Robinson, C.H., Shaver, G.R., Suding, K.N., Thompson, C.C., Tolvanen, A., Totland, O., Turner, P.L., Tweedie, C.E., Webber, and P.J., Wookey, P.A.: Plant community responses to experimental warming across the tundra biome, Proc Natl Acad Sci USA, 10,31342-6, 2006.	
1630 1631 1632	Walker, T. N., Ward, S. E., Ostle, N. J., and Bardgett, R. D.: Contrasting growth responses of dominant peatland plants to warming and vegetation composition, Oecologia, 178, 141-151, https://doi.org/10.1007/s00442-015-3254-1, 2015.	
1633 1634 1635 1636	Walker, A. P., Carter, K. R., Gu, L., Hanson, P. J., Malhotra, A., Norby, R.J., Sebestyen, S. D., Wullschleger, S. D., Weston, D. J.: 2017. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog, J. Geophys. ResBiogeo, 122, 1078-1097, https://doi.org/10.1002/2016JG003711, 2017.	
1637 1638	Wang, H., Richardson, C. J., and Ho, M.: Dual controls on carbon loss during drought in peatlands, Nature Climate Change, 5, 58- 587, 2015.	
1639 1640 1641	Ward, S. E., Ostle, N. J., Oakley, S., Quirk, H., Henrys, P. A., and Bardgett, R. D.: Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition, Ecol. Lett., 16, 1285-1293, 2013.	
1642	Weltzin, J. F., Harth, C., Bridgham, S. D., Pastor, J., and Vonderharr, M.: Production and	Formatted: Indent: Left: 0", Hanging: 0.25"
1643	microtopography of bog bryophytes: response to warming and water-table	
1644	manipulations, Oecologia, 128(4), 557-565, https://doi:10.1007/s004420100691,	
1645	<u>2001.</u>	
1646 1647 1648 1649 1650	Weston, D.J., Timm, C.M., Walker, A.P., Gu, L., Muchero, W., Schmuta, J., Shaw, A. J., Tuskan, G. A., Warren, J.M., and Wllschleger, S.D.: Sphagnum physiology in the context of changing climate: Emergent influences of genomics, modeling and host- microbiome interactions on understanding ecosystem function, Plant, Cell and Environment, 38, 1737-1751, doi: 10.1111/pce.12458, 2015.	Deleted: 1
1651 1652 1653	White, M. A., Thornton, P. E., Running, S. W., and Nemani, R. R.: Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net primary production controls, Earth Interactions, 4(3), 1-85, 2000.	
1654 1655 1656	Wieder R. K.: Primary production in boreal peatlands. In: Boreal peatland ecosystems, edited by: Wieder, R. K., and Vitt, D. H., Springer-Verlag, Berlin Heidelberg, Germany, 145-163, 2006.	
1657		
1658 1659	Wiley, E., Rogers, B. J., Griesbauer, H. P., and Landhausser, S. M.: Spruce shows greater sensitivity to recent warming than Douglas-fir in central British Columbia, Ecosphere 9(5), e02221, 10.1002/ecs2.2221, 2018Williams T.G. and Flanagan, L.B.: Measuring	

- and modelling environmental influences on photosynthetic gas exchange in Sphagnumand Pleurozium, Plant Cell and Environment, 21, 555-564, 1998.
- Williams T.G. & Flanagan L.B.: Measuring and modelling environmental influences on photosynthetic gas exchange in *Sphagnum* and Pleurozium, Plant Cell and Environment, 21, 555-564,1998.
- Wilmking, M., Juday, G. P., Barber, V. A., and Zald, H. S. J.: Recent climate warming
 forces contrasting growth responses of white spruce at treeline in Alaska through
 temperature thresholds, Glob. Change Biol. 10,1724-1736, 2004.
- Wolf, A., Callaghan, T. V., and Larson, K.: Future changes in vegetation and ecosystem
 function of the Barents Region, Climatic Change, 87, 51-73,
- 1671 https://doi.org/10.1007/s10584-007-9342-4, 2008.
- Wolken, J. M., Mann, D. H., Grant, T. A., Lloyd, A. H., Rupp, T.S., and Hollingsworth,
 T. N.: 2016. Climate-growth relationships along a black spruce topose-quence in
 interior Alaska, Arctic, Antarctic, and Alpine Research, 48,637-652, 2016.
- 1674 Interior Alaska, Arctic, Antarcuc, and Alpine Research, 48,657-652, 2016.
- 1676 Wu, J., Roulet, N. T., Sagerfors, J., Nilsson, M. B.: Simulation of six years of carbon
 1677 fluxes for a sedge-dominated oligotrophic minerogenic peatland in Northern Sweden
 1678 using the McGill Wetland Model (MWM), J. Geophys. Res. -Biogeosciences,
 1679 dio:10.1002/jgrg.20045, 2013.
- Wu, Y. and Blodau, C.: PEATBOG: a biogeochemical model for analyzing coupled
 carbon and nitrogen dynamics in northern peatlands, Geosci. Model Dev., 6, 1173 1207, doi:10.5194/gmd-6-1173-2013, 2013.
- Wu, J. and Roulet, N. T.: Climate change reduces the capacity of northern peatlands to
 absorb the atmospheric carbon dioxide: The different responses of bogs and fens,
 Global Biogeochem. Cycles, doi.org/10.1002/2014GB004845, 2014.
- Wu, Y., Verseghy, D. L., and Melton, J. R.: Integrating peatlands into the coupled
 Canadian Land Surface Scheme (CLASS) v3.6 and the Canadian Terrestrial
- 1688 Ecosystem Model (CTEM) v2.0, Geosci. Model Dev., 9, 2639-2663,
- doi:10.5194/gmd-9-2639-2016, 2016.
- Yang, X., Ricciuto, D. M., Thornton, P. E., Shi, X., Xu, M., Hoffman, F., Norby R. J.:
 The effects of phosphorus cycle dynamics on carbon sources and sinks in the Amazon region: a modeling study using ELM v1, J. Geophys. Res.-Biogeo, 124, https://doi.org/10.1029/2019JG005082, 2019.
- Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S.J.: Global peatland
 dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37, L13402,
 doi:10.1029/2010GL043584, 2010.

- 1697 Yurova, A., Wolf, A., Sagerfors, J., and Nilsson, M.: Variations in net ecosystem 1698 exchange of carbon dioxide in a boreal mire: Modeling mechanisms linked to water 1699 table position, J. Geophys. Res.-Biogeo., 112, G02025, doi:10.1029/2006JG000342, 1700 2007
- 1701 Zhang, W. X., Miller, P. A., Smith, B., Wania, R., Koenigk, T., and Doscher, R.: Tundra
- 1702 shrubification and tree-line advance amplify arctic climate warming: results from an 1703 individual- based dynamic vegetation model, Environ. Res. Lett., 8, 034023,
- 1704 https://doi.org/10.1088/1748-9326/8/3/034023, 2013.
- 1705 Zhuang, Q., Melillo, J.M., Sarofim, M.C., Kicklighter, D.W., McGuire, A.D., Felzer, 1706
- B.S., Sokolov, A., Prinn, R.G., Steudler, P.A., and Hu, S.: CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st 1707
- 1708 century, Geophys. Res. Lett., 33, L17403, dio:10.1029/2006GL026972, 2006.
- 1709
- 1710

Page 40: [1] Deleted

I

x

Shi, Xiaoying