Leaf-scale quantification of the effect of photosynthetic gas exchange on Δ^{17} O of atmospheric CO₂

Getachew Agmuas Adnew¹, Thijs L. Pons², Gerbrand Koren³, Wouter Peters^{3,4}, Thomas Röckmann¹

¹Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht University, The Netherlands
 ²Institute of Environmental Biology, Utrecht University, The Netherlands
 ³Department of Meteorology and Air Quality, Wageningen University, The Netherlands
 ⁴Centre for Isotope Research, University of Groningen, The Netherlands

Correspondence to: Getachew Agmuas Adnew (getachewagmuas@gmail.com)

10

1. Discrimination against ¹³C of CO₂

The isotope discrimination against ¹³C (Δ_A^{13} C) associated with photosynthesis for the three-plant species is shown in Figure S8 a) and b) as a function of c_c/c_a and c_i/c_a for C₃ and C₄ plants, respectively. For the C₃ plants, c_c is calculated following (Farquhar and Cernusak, 2012) as:

$$c_{c} = c_{i} - \left(\frac{1 - t^{13}}{1 + t^{13}}\right) \left(\frac{\left(\Delta_{A}^{13}C_{i} - \Delta_{A}^{13}C_{obs}\right)Pc_{a}}{\left(b - a_{m} - \frac{\alpha_{b}}{\alpha_{e}}e\frac{R_{d}}{R_{d} + A}\right)}\right)$$
(S1)

where $\Delta_A{}^{13}C_{obs}$ is the observed discrimination against ${}^{13}C$ and $\Delta_A{}^{13}C_i$ is the discrimination that can be calculated for infinite mesophyll conductance (no mesophyll resistance). t^{13} is a ternary correction factor (considers the collisions between air and CO₂, air and H₂O, CO₂ and H₂O), *b* the fractionation due to uptake by Rubisco, and a_m the sum of the fractionations associated with ${}^{13}CO_2$ dissolution in and diffusion through water, respectively. *e*, R_d , α_e , α_b and *P* are the fractionations during day respiration (decarboxylation), the day respiration rate, the fractionation factor for day respiration with respect to net assimilation, the fractionation factor for C₃ carboxylation, and the pressure of the air surrounding the leaf,

respectively. A detailed description of the equations, best fit parameters and definitions of discrimination factors are given in Table S3.

Experiments at different light intensities are shown in different colors, blue for LL and yellow for HL.

- 30 For ivy and sunflower, $\Delta_A^{13}C$ and c_c/c_a are linearly correlated. As irradiance increases, c_c/c_a and $\Delta_A^{13}C$ decrease. $\Delta_A^{13}C$ for ivy increases from 13‰ to 16‰ when c_c/c_a increases from 0.34 to 0.55 while for sunflower $\Delta_A^{13}C$ ranges from 13‰ to 25 ‰ for c_c/c_a ratios of 0.37 to 0.8. This is due to the lower assimilation rate and generally higher back-diffusion flux at a higher c_c/c_a ratio. When irradiance increases, the assimilation rate increases, c_c/c_a decreases, and less of the CO₂ that has entered the stomata
- 35 diffuses back to the atmosphere. As a result, $\Delta_A^{13}C$ decreases with an increase in light intensity. For maize,

 $\Delta_A{}^{13}$ C is much smaller than for the C₃ plants, ranging from 2.4‰ to 3.5‰ for c_i/c_a ratios of 0.42 to 0.55, and we did not observe a strong correlation between $\Delta_A{}^{13}$ C and c_i/c_a . $\Delta_A{}^{13}$ C vs c_i/c_a is shown in Figure S9 of the for both C₃ plants (sunflower and ivy) and a C₄ plant (maize).

40 2. Leaf cuvette model

In the simple leaf cuvette model, we partitioned the leaf into three different compartments: the intercellular air space, the mesophyll cell, and the chloroplast, as shown in Figure S6. For this model, we assumed an infinite boundary conductance. The conductance from the intercellular air space to the chloroplast, where assimilation takes place (mainly for the C₃ plants), is represented by g_{m13} . The conductance from the intercellular air space to the mesophyll where the CO₂ H₂O exchange occurs is

45 conductance from the intercellular air space to the mesophyll, where the CO₂-H₂O exchange occurs is expressed as g_{m18} .

CO₂ balance

- 50 First, we solve for the CO₂ mole fractions in the atmosphere (c_a) , the intercellular air space (c_i) , the mesophyll cell (c_m) and the chloroplast (c_c) . The main assumptions in the leaf cuvette model are: -
 - The system is in steady state $\left(\frac{dc_i}{dt} = 0 = g_s c_a + g_{m18} c_m g_i c_i g_{m18} c_i\right)$
 - The mixing in the cuvette is perfect (i.e. $c_a = c_o$)
 - Boundary layer resistance can be neglected
- 55 The conductance between intercellular space and mesophyll is assumed to be 3 times higher than the conductance between intercellular space and chloroplast (i.e. $g_{m18} = 3 \times g_{m13}$).

Furthermore, we used a 100 ppm downdraw of CO_2 for each photosynthesis experiment. The mixing ratio of CO_2 entering the cuvette and leaving the cuvette is 500 ppm and 400 ppm, respectively. The leaf area, flowrate and assimilation rate used for the model are 30 cm², 0.7 L min⁻¹ and 20.0 mol m⁻²s⁻¹, respectively.

flowrate and assimilation rate used for the model are 30 cm², 0.7 L min⁻¹ and 20.0 mol m⁻²s⁻¹, respectively. The CO₂ mole fractions in all leaf reservoirs are calculated for each given c_m/c_a ratio, by assuming $g_{m18} = 0.3 \text{ mol m}^{-2}s^{-1}$).

Next, we assume a value for the C¹⁸OO mole fraction inside the cuvette ($c_{a,C1800}$). From the mole fractions 65 $c_{a,C1800}$ and $c_{m,C1800}$ and the conductance $g_{s,C1800}$ and $g_{m18,C1800}$ we can calculate the inflow of C¹⁸OO 65 into the intercellular air space. Since the system is in steady state, the inflow and outflow of C¹⁸OO for 67 the intercellular air space are equal and hence we can determine the mole fraction $c_{i,C1800}$. The ingoing 68 C¹⁸OO is known from the airflow rate and $c_{e,C1800}$, the outgoing C¹⁸OO depends on the airflow rate and 69 $c_{a,C1800}$ and the plant uptake of C¹⁸OO is A_{n,C1800} = $g_{s,C1800} \times (c_{a,C1800} - c_{i,C1800})$. By using an iterative 70 procedure we can improve our estimate for $c_{a,C1800}$. Note that for each update in $c_{a,C1800}$, we also update

the corresponding c_{i,C1800}

¹³CO₂ balance

75 Next, we calculate the steady state ${}^{13}CO_2$ mole fractions in the different model reservoirs and subsequently, we determine the discrimination $\Delta^{13}C$. The additional assumptions used are:

- For the fractionation factors we use $a_{13s} = 4.4$, $a_m = 1.8$ ‰ and b = 29‰
- The uptake of CO₂ scales linearly with the CO₂ mole fraction in the chloroplast ($A_n = k \times c_c$) and similarly for ¹³CO₂ we have: $A_{n,13CO2} = k \times (1 b) \times C_{c,13CO2}$
- 80

We solve the steady state ¹³CO₂ balance by performing 2 nested iterations. First, we do an initial guess for the atmospheric ¹³CO₂ mole fraction (C_{a,13CO2}). Next, we do an initial guess for the photosynthetic uptake of ¹³CO₂ (A_{n,13CO2}). In the 'inner' iteration loop we use $c_{a13,CO2}$ and $A_{n,13CO2}$ to calculate the ¹³CO₂ mole fractions in all leaf reservoirs. From the ¹³CO₂ mole fraction in the chloroplast ($c_{c,13CO2}$) and the linear assimilation factor (k × (1 - b)) we can calculate the corresponding $A_{n,13CO2}$ and compare this to our

85 linear assimilation factor (k × (1 - b)) we can calculate the corresponding $A_{n,13CO2}$ and compare this to our initial guess. Using an iterative procedure, we can find the $A_{n,13CO2}$ that corresponds to the assumed $c_{a,13CO2}$.

The 'outer' iteration loop is aimed at finding the steady state atmospheric ${}^{13}CO_2$ mole fraction ($c_{a,13CO2}$) using a mass balance for ${}^{13}CO_2$. We know the ${}^{13}CO_2$ mole fraction of the ingoing air ($c_{in,13CO2}$), we have

90 assumed value for outgoing air ($c_{a,13CO2}$) and have calculated the corresponding photosynthetic uptake ($A_{n,13CO2}$). From the resulting imbalance, we can come up with a new guess for $c_{a,13CO2}$. After each update of our estimate for $c_{a,13CO2}$, we repeat the 'inner' iteration loop to update $A_{n13,CO2}$.

95 C¹⁸OO balance

To solve the C¹⁸OO balance, we assume on top of the earlier mentioned assumptions:

- For the fractionation of C¹⁸OO for diffusion through stomata and diffusion into the mesophyll
- 100
- cell, we used $a_{18s} = 8.8$ ‰ and $a_{18w} = 0.8$ ‰, respectively
- The isotopic exchange between CO₂ and water in the mesophyll is fast enough to reach complete equilibration, which is a function of temperature
- Isotopic equilibration between CO₂ and water does not occur in the intercellular air space
- 105 We assume for the leaf water signature $\delta^{18}O_{\text{leaf}} = 10.467\%$ VSMOW and for the leaf water temperature $T_{\text{leaf}} = 22^{\circ}C$, from which we can calculate the $\delta^{18}O$ signature and therefore (using c_m from above) the C¹⁸OO mole fraction in the mesophyll (c_{m, C18OO}). Next, we assume a starting value for the C¹⁸OO mole fraction inside the cuvette (c_{a, C18OO}). From the steady state mass balance, we can then determine the mole fraction c_i, c_{18OO} ($c_i = \frac{g_s c_a + g_{m18} c_m}{g_s + g_m}$). The ingoing C¹⁸OO is known from the airflow rate and c_{e,C18OO}, the outgoing C¹⁸OO depends on the airflow rate and c_{a,C18OO} and the plant uptake of C¹⁸OO is A_{n,C18OO} =

A similar mass balance is implemented for C¹⁷OO, the fractionation of C¹⁷OO for diffusion through stomata and diffusion into the mesophyll cell we used $a_{17s} = 4.4$ ‰ and $a_{18w} = 0.382$ ‰, respectively. We

115 assume for the leaf water signature $\delta^{18}O_{\text{leaf}} = 5.39\%$ VSMOW.

 $g_{s,C1800} \times (c_{a,C1800} - c_{i,C1800}).$

```
def
   clumpy e170(key1,var1,Cin,d170in,d180in,An,Aleaf,key2,var2,qm13C,d170 leaf,d180 lea
    f,print table=False):
     .....
120
       _____
    ___
       Description:
125
       CLUMPy (Clumped isotopes Leaf Uptake Model in Python) calculates the outgoing
   D170
       signature for a leaf in the cuvette experiment as described by Adnew et al.
       List of input variables:
```

- Experimental conditions

*airflow rate of air entering cuvette [L/min] 135 *drawdown CO2 drawdown [ppm]

- Ingoing air characteristics

	Ce	ingoing C	02 mixing rati	Lo [ppm]	
140	d170e	ingoing d	170 signature	[permil	VSMOW]
	d180e	ingoing d	180 signature	[permil	VSMOW]

- Leaf properties

145	An	net assimilation rate [umol/(m2s)]
	Aleaf	leaf area [cm2]
	**gs	<pre>stomatal conductance [mol/(m2s)]</pre>
	**Ci Ca	CO2-in-intercellular-space to CO2-in-atmosphere ratio [-]
	**Cm Ca	CO2-in-mesophyll to CO2-in-amtosphere ratio [-]
150	gm13C	conductance between intercellular space and chloroplast
[mol/(m2s)]	

- Leaf water characteristics

155 d170_leaf leaf water d170 signature [permil VSMOW] d180 leaf leaf water d180 signature [permil VSMOW]

Notes:

. . .

- 160 * The user can call the function with the value of airflow or drawdown for var1. The user is required to specify which input parameter is given by using the keyl variable.
- 165 ** The user can call the function with the value of gs, Ci Ca or Cm Ca for var2. The user is required

to specify which input parameter is given by using the key2 variable.

```
170 ---
      .....
      *****
175
      #
                                          #
      # INITIALIZATION
      #
                                          #
      ********
180
      # -- Import statement
      import numpy as np
      # -- Output settings
      print diag d170a = False
185
      print diag d180a = False
      ****
      #
                                          #
      # MODEL SETTINGS
                                          #
190
      #
                                          #
      ****
      # -- Test key1
      if (key1=='airflow'):
195
         airflow = var1 # L/min
      elif (key1=='drawdown'):
         drawdown = var1 # ppm
      else:
         print ('Error: key1 not recognized')
200
         return
      # -- Test kev2
      if (\text{key2}=-'\text{qs'}):
         gs = var2 \# mol/(m2s)
205
      if (key2=='Ci Ca'):
         Ci Ca = var2 \# -
      elif (key2=='Cm Ca'):
         Cm Ca = var2 \# -
      else:
210
         print ('Error: key2 not recognized')
         return
      ****
      #
                                          #
215
      # MODEL PARAMETERS
                                          #
      #
                                          #
      ****
```

```
# -- Isotope reference
220
        R17 VSMOW = 0.0003799 \# -
        R18 VSMOW = 0.0020052 # -
        # -- Reference line
        RL = 0.528 #
225
        # -- Physical constants
        Vm = 24.5 \# L/mol
        # -- 170 fractionations
230
        lambda kinetic = 0.509 # (Young et al., 2002)
        lambda equilibration = 0.5229 \# (Barkan and Luz, 2012)
        # -- 180 fractionations
        a180 diff = 8.8 # permil (Farguhar et al., 1993)
235
        a180 lig = 0.8 # permil (Farquhar et al., 1993)
        a180 eq = 42.2 # permil (Brenninkmeijer et al., 1983)
        *****
        #
                                                      #
240
                                                      #
        #
         CALCULATION
        #
                                                      #
        ****
        # ==== CO2 MIXING RATIOS
245
        # -- CO2 assimilation
        CO2 assimilation = An*1.0e-6*Aleaf*1.0e-4 # molCO2/s
        # -- Test key1
250
        if (key1=='airflow'):
            # -- CO2 fluxes
            CO2 inflow = airflow/60.0/Vm*Ce*1.0e-6 # molCO2/s
            CO2 outflow = CO2 inflow-CO2 assimilation # molCO2/s
255
            # -- Cuvette condition
            Ca = CO2 outflow/(airflow/60.0) *Vm*1.0e6 # ppm
        # -- Test key1
260
        if (key1=='drawdown'):
            # -- Airflow
            airflow = CO2 assimilation*60.0*Vm/(drawdown*1.0e-6) # L/min
265
            # -- Cuvette condition
            Ca = Ce-drawdown # ppm
        # -- Mesophyll conductance
```

270	gm180 = 3.0*gm13C # mol/(m2s)
270	<pre># Test key2 if (key2=='gs'):</pre>
275	# Intercellular CO2 mixing ratio Ci = Ca-An/gs # ppm
	# Mesophyll CO2 mixing ratio Cm = Ci-An/gm180 # ppm
280	<pre># Test key2 if (key2=='Ci_Ca'):</pre>
285	# Intercellular CO2 mixing ratio Ci = Ci_Ca*Ca # ppm
285	# Mesophyll CO2 mixing ratio Cm = Ci-An/gm180 # ppm
290	<pre># Stomatal conductance gs = An/(Ca-Ci) # mol/(m2s)</pre>
	<pre># Test key2 if (key2=='Cm_Ca'):</pre>
295	# Mesophyll CO2 mixing ratio Cm = Cm_Ca*Ca # ppm
200	<pre># Combined stomatal-mesophyll conductance gtot = An/(Ca-Cm) # mol/(m2s)</pre>
300	<pre># Stomatal conductance gs = 1.0/(1.0/gtot-1.0/gm180) # mol/(m2s)</pre>
305	# Intercellular CO2 mixing ratio Ci = Ca-An/gs # ppm
	# ==== C1700 MIXING RATIOS
310	<pre># Mesophyll C1700 mixing ratio d170m = 1000.0*((d170_leaf/1000.0+1)*((a180_eq/1000.0+1.0)**lambda_equilibration)-1.0) #</pre>
315	permil VSMOW R17m = (d170m/1000.0+1.0)*R17_VSMOW # - Cm_170 = 2*R17m*Cm # ppm
510	# C1700 conductances gs_170 = gs*((1.0-a180_diff/1000.0)**lambda_kinetic) # mol/(m2s) gm180_170 = gm180*((1.0-a180_liq/1000.0)**lambda_kinetic) # mol/(m2s)

320	# Ingoing C1700 mixing ratio R17e = (d170in/1000.0+1.0)*R17_VSMOW # - Ce_170 = 2*R17in*Ce # ppm
325	<pre># C1700 signature d170a = d170in # permil VSMOW max_qq = 100 # - relax_qq = 0.5 # - for qq in np.arange(max_qq):</pre>
330	# Atmospheric C1700 mixing ratio R17a = (d170a/1000.0+1.0)*R17_VSMOW # - Ca_170 = 2*R17a*Ca # ppm
335	# Intercellular d170 signature Ce_170 = (Ca_170*gs_170+Cm_170*gm180_170)/(gs_170+gm180_170) # ppm R17i = 0.5*Ci_170/Ci # - d170i = 1000.0*(R17i/R17_VSMOW-1.0) # permil VSMOW
340	<pre># Calculate C1700 fluxes inflow_C1700 = airflow/60.0/Vm*Ce_170*1.0e-6 # molC1700/s leafuptake_C1700 = (Ca_170-Ci_170)*gs_170*1.0e-6*Aleaf*1.0e-4 # molC1700/s outflow_C1700 = inflow_C1700-leafuptake_C1700 # molC1700/s</pre>
345	# Copy previous d170a signature d170a_prev = d170a # permil VSMOW
350	<pre># Calculate new d170a signature Ca_170 = outflow_C1700/(airflow/60.0)*Vm*1.0e6 # ppm R17a = 0.5*Ca_170/Ca # - d170a_diff = 1000.0*(R17a/R17_VSMOW-1.0)-d170a # permil VSMOW d170a = d170a+relax_qq*d170a_diff # permil VSMOW</pre>
355	<pre># Print diagnostics if (print_diag_d170a): print ('') print ('d170a iteration ', qq+1) print ('')</pre>
360	print ('Ca_170 ', Ca_170) print ('Ci_170 ', Ci_170) print ('Cm_170 ', Cm_170) print ('R17a ', R17a) print ('R17i ', R17i) print ('B17m ', B17m)
365	print ('d170in ', d170e) print ('d170a ', d170a) print ('d170i ', d170i) print ('d170m ', d170m) print ('')
270	print()

	# Clear loop index del qq
375	# Determine convergence conv_d170a = np.abs((d170a-d170a_prev)/d170a_prev) # -
380	<pre># Test convergence if (conv_d170a > 1.0e-6): print ('WARNING: Convergence in outgoing d170 signature less than 1.0e-6') print ('conv ', conv_d170a) print()</pre>
	# ==== C1800 MIXING RATIOS
385	<pre># Mesophyll C1800 mixing ratio d180m = 1000.0*((d180_leaf/1000.0+1)*(a180_eq/1000.0+1.0)-1.0) # permil VSMOW R18m = (d180m/1000.0+1.0)*R18_VSMOW # - Cm_180 = 2*R18m*Cm # ppm</pre>
390	<pre># C1800 conductances gs_180 = gs*(1.0-a180_diff/1000.0) # mol/(m2s) gm180_180 = gm180*(1.0-a180_liq/1000.0) # mol/(m2s)</pre>
395	<pre># Ingoing C1800 mixing ratio R18e = (d180e/1000.0+1.0)*R18_VSMOW # - Ce_180 = 2*R18in*Ce # ppm</pre>
400	<pre># C1800 signature d180a = d180e # permil VSMOW max_pp = 100 # - relax_pp = 0.5 # - for pp in np.arange(max_pp):</pre>
405	# Atmospheric C1800 mixing ratio R18a = (d180a/1000.0+1.0)*R18_VSMOW # - Ca_180 = 2*R18a*Ca # ppm
410	<pre># Intercellular d180 signature Ci_180 = (Ca_180*gs_180+Cm_180*gm180_180)/(gs_180+gm180_180) # ppm R18i = 0.5*Ci_180/Ci # - d180i = 1000.0*(R18i/R18_VSMOW-1.0) # permil VSMOW</pre>
415	<pre># Calculate C1800 fluxes inflow_C1800 = airflow/60.0/Vm*Cin_180*1.0e-6 # molC1800/s leafuptake_C1800 = (Ca_180-Ci_180)*gs_180*1.0e-6*Aleaf*1.0e-4 # molC1800/s outflow_C1800 = inflow_C1800-leafuptake_C1800 # molC1800/s</pre>
420	# Copy previous d180a signature d180a_prev = d180a # permil VSMOW
720	# Calculate new d180a signature 2

Ca 180 = outflow C1800/(airflow/60.0)*Vm*1.0e6 # ppm R18a = 0.5*Ca 180/Ca # d180a diff = 1000.0*(R18a/R18 VSMOW-1.0)-d180a # permil VSMOW 425 d180a = d180a+relax pp*d180a diff # permil VSMOW # -- Print diagnostics if (print diag d180a): print ('-----') 430 print ('d180a iteration ', pp+1) print ('-----') print ('Ca 180 ', Ca 180) ', Ci_180) ', Cm_180) print ('Ci 180 print ('Cm 180 435 ', R18a) print ('R18a ', R18i) print ('R18i ', R18m) print ('R18m ', d180e) print ('d180in print ('d180a ', d180a) , d180i) 440 print ('d180i ', d180m) print ('d180m print ('-----') print() 445 # -- Clear loop index del pp # -- Determine convergence conv d180a = np.abs((d180a-d180a prev)/d180a prev) # -450 # -- Test convergence if (conv d180a > 1.0e-6): print ('WARNING: Convergence in outgoing d180 signature less than 1.0e-6') print ('conv ', conv d180a) 455 print() # ==== EXCESS-170 # -- Calculate e170 in regions 460 e170e = 1.0e6*(np.log(d170e/1000.0+1.0)-RL*np.log(d180e/1000.0+1.0)) # per meg e170a = 1.0e6*(np.log(d170a/1000.0+1.0)-RL*np.log(d180a/1000.0+1.0)) # per meg e170i = 1.0e6*(np.log(d170i/1000.0+1.0)-RL*np.log(d180i/1000.0+1.0)) # per meg e170m = 1.0e6*(np.log(d170m/1000.0+1.0)-RL*np.log(d180m/1000.0+1.0)) # per meg 465 **** # # # # RESULTS # # **** 470 # -- Test print settings if print table:

	# Print parameters				
475	print ('====================================				=')
	print ('CO2 mixing ratio	s ')			
	print (' ingoing	Се	%8.1f	ppm' %(Ce))	
	print (' atmosphere	Ca	%8.1f	ppm' %(Ca))	
	print (' intercellular	Ci	%8.1f	ppm' 응(Ci))	
480	print (' mesophyll	Cm	%8.1f	ppm' %(Cm))	
	print				
	print ('d170 signatures')			
	print (' ingoing	d170e	%8.1f	permil VSMOW' %(d170e))	
	print (' atmosphere	d170a	%8.1f	permil VSMOW' %(d170a))	
485	print (' intercellular	d170i	%8.1f	permil VSMOW' %(d170i))	
	print (' mesophyll	d170m	%8.1f	permil VSMOW' %(d170m))	
	print				
	print ('d180 signatures')			
100	print (' ingoing	d180e	%8.1f	permil VSMOW' %(d180e))	
490	print (' atmosphere	d180a	%8.1f	permil VSMOW' %(d180a))	
	print (' intercellular	d180i	%8.1f	permil VSMOW' %(d180i))	
	print (' mesophyll	d180m	%8.1f	permil VSMOW' %(d180m))	
	print				
105	print ('e170 signature')				
495	print (' ingoing	e170e	%8.2f	per meg' %(e170e))	
	print (' atmosphere	e170a	%8.2f	per meg' %(e170a))	
	print (' intercellular	e170i	%8.2f	per meg' %(e170i))	
	print (' mesophyll	e170m	%8.2f	per meg' %(e170m))	
500	print ('====================================				=')
500	print()				

return d170a, d180a, e170a

505

3. Derivation of the ¹⁸O-photosynthetic discrimination

Following (Farquhar and Lloyd, 1993), the assimilation rate for $C^{16}O^{16}O$ is calculated as:

510

$$A = \frac{c_a - c_m}{r_m}$$
(S2)

where *A*, r_m , c_a , c_m are the assimilation rate, resistance as CO₂ diffuses from the leaf surrounding to the CO₂-H₂O exchange site, the mole fraction of CO₂ in the air surrounding the leaf and at the CO₂-H₂O exchange site, respectively. The assimilation rate for C¹⁸O¹⁶O is calculated as:

$${}^{18}R_{A} \times A = \frac{{}^{18}R_{a} \times c_{a} - {}^{18}R_{m} \times c_{m}}{\alpha^{18}{}_{m} \times r_{m}}$$
(S3)

where α^{l_8} is the fractionation factor as C¹⁸O¹⁶O diffuses from the leaf surrounding to the CO₂-H₂O exchange site. Dividing equation 2 by equation 1 leads to:

520

$${}^{18}R_{A} = \frac{{}^{18}R_{a} \times c_{a} - {}^{18}R_{m} \times c_{m}}{\alpha^{18}{}_{m} \times (c_{a} - c_{m})}$$
(S4)

$$\frac{{}^{18}R_{A}}{{}^{18}R_{a}} = \frac{c_{a} - \frac{{}^{18}R_{m}}{{}^{18}R_{a}} \times c_{m}}{\alpha^{18}{}_{m} \times (c_{a} - c_{m})}$$
(S5)

$$\frac{{}^{18}R_{a}}{{}^{18}R_{A}} = \frac{\alpha^{18}{}_{m} \times (c_{a} - c_{m})}{c_{a} - \frac{{}^{18}R_{m}}{{}^{18}R_{ma}} \times c_{m}}$$
(S6)

$$\frac{{}^{18}R_{a}}{{}^{18}R_{A}} - 1 = \frac{\alpha^{18}{}_{m} \times (c_{a} - c_{m})}{c_{a} - \frac{{}^{18}R_{m}}{{}^{18}R_{a}} \times c_{m}} - 1$$
(S7)

Using the definitions

525

 $\Delta_{A}^{18}O_{FM} = \frac{{}^{18}R_{a}}{{}^{18}R_{A}} - 1$ (S8)

And

$$\delta^{18} O_{ma} = \frac{{}^{18}R_m}{{}^{18}R_a} - 1 \tag{S9}$$

$$\Delta_{A}{}^{18}O_{FM} = \frac{\alpha^{18}{}_{m} \times (c_{a} - c_{m})}{c_{a} - c_{m} \times (\delta^{18}O_{ma} + 1)} - 1$$
(S10)

$$\Delta_{A}{}^{18}O_{FM} = \frac{\overline{a}_{18} + \frac{c_{m}}{c_{a} - c_{m}} \times \delta^{18}O_{ma}}{1 - \frac{c_{m}}{c_{a} - c_{m}} \times \delta^{18}O_{ma}}$$
(S11)

 $\Delta_A{}^{17}O_{FM}$ can be calculated analogous to $\Delta_A{}^{18}O_{FM}$.

$$\Delta_{A}^{17}O_{FM} = \frac{\overline{a}_{17} + \frac{c_{m}}{c_{a} - c_{m}} \times \delta^{17}O_{ma}}{1 - \frac{c_{m}}{c_{a} - c_{m}} \times \delta^{17}O_{ma}}$$
(S12)

540 Figure S1. Calibration of the LGR water isotope analyser for the measurement of δ^{18} O and δ D of water vapor. a) $\delta^{18}O_{IAEA}$ is the value assigned by IAEA while $\delta^{18}O_{LGR}$ is the value reported by the LGR instrument. b) δD_{IAEA} , is the value assigned by IAEA while δD_{LGR} is the value reported by the LGR instrument.

Figure S2 Dependency of isotope composition of water vapour on the water vapor concentration and the carrier gas used for the water vapor standard source for $\delta^{18}O$, $\delta^{17}O$, $\Delta^{17}O$ and δD .

550 Figure S3 Allan variance curves of δD , $\delta^{17}O$ and $\delta^{18}O$ for measurement at 20000 ppm water vapor concentration.

Figure S4 Schematic drawing of the setup used for the extraction of leaf water. The vial containing the leaf is heated to 60°C while the other vial is immersed in the liquid nitrogen to collect the water vapor.

Figure S5 Schematic diagram of the system used for the extraction of carbon dioxide from air samples. The moisture trap is cooled by a dry ice-ethanol mixture while the CO₂ trap is cooled by liquid nitrogen.

Figure S6 Schematic diagram of the conceptual leaf-cuvette model. δ and c are the oxygen isotope composition and mixing ratio of CO₂. The subscript *e*, *a*, *i*, *m*, *c* represents CO₂ entering the cuvette, leaving the cuvette, the intercellular air space, the mesophyll and the chloroplast, respectively.

Figure S7 The correlation between the observed $\Delta_A \Delta^{17}O$ (calculated using equation 12) and $\Delta_A \Delta^{17}O$ estimated from the Farquhar model $\left(\Delta_A \Delta^{17}O_{FM} = \ln(\Delta_A^{17}O_{FM} + 1) - 0.528 \times \ln(\Delta_A^{18}O_{FM} + 1)\right)$.

Figure 8. $\Delta_A^{13}C$ of carbon dioxide during photosynthesis. a) The $\Delta_A^{13}C$ of the two C₃ plants sunflower (circles) and ivy (triangles) at two different irradiances. b) The Δ_A^{13} C of maize at two different irradiances.

Figure S9. $\Delta_A^{13}C$ of carbon dioxide during photosynthesis. The $\Delta_A^{13}C$ of the two C₃ plants sunflower (circle) and ivy (triangles) and a C₄ plant maize (stars).

Figure S10. The relative difference in δ^{17} O (a) and δ^{18} O (b) of CO₂ leaving (index a) and entering (index e) the leaf cuvette during experiments with two C₃ plants, sunflower (circles) and ivy (triangles) and a C₄ plant maize (stars) as a function of the c_m/c_a ratio. The experiments were performed at low light (300 µmol m⁻²s⁻¹, purple) and high light (1200 µmol m⁻²s⁻¹, yellow) conditions.

Figure S11 The difference in Δ^{17} O of the CO₂ leaving (index a) and entering (index e) the cuvette as a function of c_m/c_a for sunflower (circles), ivy (triangles) and maize (stars).

Figure S12. 3D model result for the global average seasonal cycle of Δ^{17} O of atmospheric CO₂ for the years 2012 and 2013 (Koren et al., 2019). Note that Δ^{17} O value is reported here with λ value of 0.5229. To convert to the λ value of 0.528, $\Delta^{17}O(CO_2)_{\lambda=0.528}=\Delta^{17}O(CO_2)_{\lambda=0.5229}+(0.5229-0.528)\times\ln(\delta^{18}O(CO_2)+1)$. In the 3D global model, $\delta^{18}O(CO_2)$ is 41.5‰.

Figure S13. A 3D model result for the seasonal cycle of the global Δ^{17} O value of leaf water for the year 2012 (Koren et al., 2019). Note that Δ^{17} O value is reported here with λ value of 0.5229. To convert to the λ value of 0.528, Δ^{17} O(leaf) $_{\lambda=0.528} = \Delta^{17}$ O(leaf) $_{\lambda=0.5229} + (0.5229 - 0.528) \times \ln\alpha_{trans}$. $\alpha_{trans} = 1/0.9917$ (Koren et al., 2019;Hofmann et al., 2017).

Figure S14 Annual variability of c_i/c_a ratio for C₄ and C₃ plants from SiBCASA model (Schaefer et al., 2008;Koren et al., 2019).

Table S1 Reproducibility of the extraction system and the CO_2-O_2 exchange system. Extraction reproducibility experiments were performed using compressed air. To establish the reproducibility of the CO_2-O_2 isotope exchange system we used pure CO_2 (SCOTT, Air Products, Germany). *SE and SD* is a standard error and standard deviation. All the isotope values given in the table are in per mill [‰].

6	7	5
v	1	\mathcal{I}

Extraction system reproducibility					
Extraction	δ ¹⁸ Ο	SE	$\delta^{13}C$	SE	
03/03/2019	41.411	0.005	-8.636	0.004	
03/03/2019	41.352	0.006	-8.642	0.003	
03/03/2019	41.355	0.020	-8.636	0.005	
04/03/2019	41.314	0.008	-8.647	0.007	
04/03/2019	41.359	0.007	-8.651	0.004	
05/03/2019	41.297	0.006	-8.648	0.004	
05/03/2019	41.330	0.008	-8.652	0.004	

05/03/201	19	41 387	0.005	5		-8 648		0 004	
06/03/2019 41.368		0.010			-8 660 0		0.004		
06/03/201	19	41 369	0.010	, 1		-8 653 01		0.004	
06/03/201	19	41 329	0.008	2		-8 652		0.003	
07/03/201	19	41 373	0.000	, 1		-8 646		0.003	
07/03/201	10	41.375	0.007	7		-8.646		0.004	
07/03/201	10	41.324	0.007	7		8 6/3		0.004	
07/03/201		$\frac{41.332}{41.251 \pm 0.02}$	0.007			0 (17	+ 0.007	0.002	
Mean ± 5	D	41.351 ± 0.03	$\frac{50}{2}$			-8.64/	± 0.007		
		CO	$_2$ -O ₂ exchange	ge system r	eprod	lucibili	ty		
EXP	Pre-excha	ange O ₂	Post-exchai	nge O ₂	Pre-	-exchar	nge CO ₂		
	$\delta^{17}O_i$	$\delta^{18}O_i$	$\delta^{17}O_f$	$\delta^{18}O_f$	δ^{18}	Di	$\delta^{17}O_i$	$\Delta^{17}O_{1}$	í
1	9.254	18.542	10.949	21.591	25.8	303	13.3967	-0.14	3
2	9.254	18.542	10.986	21.649	25.8	303	13.4066	-0.13	4
3	9.254	18.542	10.972	21.638	25.8	303	13.3907	-0.14	9
4	9.254	18.542	10.967	21.637	25.8	303	13.3823	-0.15	8
5	9.254	18.542	10.934	21.571	25.8	303	13.3894	-0.15	1
6	9.254	18.542	10.942	21.575	25.8	303	13.4006	-0.14	0
7	9.254	18.542	11.080	21.818	25.8	303	13.4061	-0.13	4
8	9.254	18.542	11.038	21.760	25.8	303	13.3868	-0.15	3
9	-20.85	-38.2	-4.373	-7.288	25.8	303	13.401	-0.13	9
10	-20.85	-38.2	-4.210	-6.9804	25.8	303	13.3978	-0.14	2
11	-20.85	-38.2	-4.497	-7.520	25.8	303	13.4003	-0.14	0
12	-20.85	-38.2	-3.987	-6.573	25.8	303	13.4103	-0.13	0
Mean ± S	D						13.398±0.00	9 -0.14	2 ± 0.008

Table S2: The ratio of stomatal conductance to mesophyll conductance and weighted mean fractionation of ${}^{12}C^{18}O^{16}O$ as it diffuses from the CO₂-H₂O exchange site (\overline{a}_{18}) for numerous species determined in previous investigations.

g_s/g_m	\overline{a}_{18}	Plant type	Reference
1.56	3.93	S. viridis (C ₄)	(Osborn et al., 2017)
1.26	4.33	S. viridis (C ₄)	(Osborn et al., 2017)
0.22	7.37	Tobacco (C ₃)	(Gillon and Yakir, 2000)
0.16	7.71	Soya (C ₃)	(Gillon and Yakir, 2000)
0.47	6.23	Oak (C ₃)	(Gillon and Yakir, 2000)
0.17	7.76	Tobacco (C ₃)	(Barbour et al., 2016)
0.06	8.32	Cotton (C ₃)	(Barbour et al., 2016)
0.32	7.04	Wheat (C ₃)	(Barbour et al., 2016)
0.06	8.27	Maize (C ₄)	(Barbour et al., 2016)
0.24	7.29	S. Vidrids (C ₄)	(Barbour et al., 2016)
0.29	7.21	F. bindentis (C ₄)	(Barbour et al., 2016)
0.88	5.05	Sunflower (C ₃)	This study
0.55	5.96	Ivy (C ₃)	This study
0.27	7.12	Maize (C ₄)	This study
1.2	4.18	A. edulis (C ₄)	(Cousins et al., 2006)
2.1	3.74	A. $edulis$ (C ₄)	(Cousins et al., 2006)
0.13	7.90	A. edulis (C ₄)	(Cousins et al., 2007)

Symbol	description	Unit/calculation/value	Ref					
	Gas exchange							
<i>t</i> ¹³	Ternary correction for	$\frac{(1+a_{13bs})E}{2g_{CO_2}^t}$	(Farquhar and Cernusak, 20)					
eRd	Dark respiration rate	$0.8 \ \mu mol \ m^{-2}s^{-1}$ [measured]						
Rd	Day respiration rate	1.5 μmol m ⁻² s ⁻¹	(Cernusak et al., 2004)					
	Carbon	n isotope effects						
a 13b	Fractionation in ¹³ CO ₂ as CO ₂ diffuses through the boundary layer	2.9‰	(Farquhar and Lloyd, 1993)					
<i>a</i> _{13s}	Fractionation in ¹³ CO ₂ as CO ₂ diffuses through the stomata	4.4‰	(Vogel.J.C., 1980;Farquhar (1982;Farquhar and Lloyd, 19					
<i>a</i> _m	fractionation factor for dissolution and diffusion through water	1.8‰	(Farquhar et al., 1982;Winga 2007)					
f	a fractionation factor for photorespiration (decarboxylation of glycine)	16‰	(Evans and von Caemmerer,					
е	The fractionation factor for day respiration	$eRd + e^*, \infty$	(Wingate et al., 2007;Bickfo 2009)					
е*	The apparent fractionation for day respiration	$\delta^{13}C_a - \Delta_A{}^{13}C - \delta^{13}C_{substrate}$, ‰	(Wingate et al., 2007;Cernus 2013)					
b	Fractionation factor for uptake by RubisCO	29‰	(Farquhar et al., 1982;Farqu Lloyd, 1993)					
Йf	a fractionation due to photorespiration (decarboxylation of glycine)	1+ <i>f</i>						
α_e	fractionation due to day respiration	1+ <i>e</i>						
$lpha_b$	Fractionation due to uptake by RubisCO	1+ <i>b</i>						
Isotopic of	composition							
$\delta^{l_3}C_{subst}$		$\frac{\delta^{13}C_a - \Delta_A^{13}C}{\Delta_A^{13}C + 1} , \%_0$	(Farquhar et al., 1989)					
$\Delta_A{}^{I3}C$	¹³ C-photosynthetic discrimination	$\frac{\zeta(\delta^{13}C_{a}-\delta^{13}C_{e})}{1+\delta^{13}C_{a}-\zeta(\delta^{13}C_{a}-\delta^{13}C_{e})},\%_{00}$	(Evans et al., 1986)					

ble S3 List of symbols and equations used for ¹³C discrimination calculation

$\Delta_A{}^{l3}C_{ob}$	¹³ C-photosynthetic discrimination (Farquhar model)	$\left(\frac{1}{1-t}\right)\left[a_{13bs}\frac{c_{a}-c_{i}}{c_{a}}\right]$	(Farquhar and Cernusak, 20
		$+ \left(\frac{1+t}{1-t}\right) \left[a_m \frac{c_i - c_c}{c_a} + b \frac{c_c}{c_a}\right]$	
		$-\frac{\alpha_{\rm b}}{\alpha_{\rm e}} e \frac{R_{\rm d}}{R_{\rm d} + A} \frac{c_{\rm c}}{c_{\rm a}} - \frac{\alpha_{\rm b}}{\alpha_{\rm f}} f \frac{r}{c_{\rm a}} \right]$	
$\Delta_A{}^{l3}C_i$	¹³ C-photosynthetic discrimination (assuming the no mesophyll	$\left(\frac{1}{1-t}\right)\left[\overline{a}\frac{c_{a}-c_{i}}{c_{a}}\right]$	(Farquhar and Cernusak, 20
	conductance, i.e $c_i=c_c$)	$+ \left(\frac{1+t}{1-t}\right) \left[b\frac{c_i}{c_a} - \frac{\alpha_b}{\alpha_e}e\frac{R_d}{R_d + A}\frac{c_i - \Gamma^*}{c_a}\right]$	
		$-\frac{\alpha_{\rm b}}{\alpha_{\rm f}} f \frac{\Gamma^*}{c_{\rm a}}]$	

745

715 References

Barbour, M. M., Evans, J. R., Simonin, K. A., and Caemmerer, S. V.: Online CO₂ and H₂O oxygen isotope fractionation allows estimation of mesophyll conductance in C₄ plants, and reveals that mesophyll conductance decreases as leaves age in both C₄ and C₃ plants, New Phytol., 14, 2016.

- 720 Bickford, C. P., Mcdowell, N. G., Erhardt, E. B., Hanson, D. T., and David, T.: High-frequency field measurements of diurnal carbon isotope discrimination and internal conductance in a semi-arid species, Juniperus monosperma, Plant Cell Environ., 32, 14, 2009. Cernusak, L. A., Farquhar, G. D., Wong, S. C., and Stuart-Williams, H.: Measurement and
- interpretation of the oxygen isotope composition of carbon dioxide respired by leaves in the dark, Plant
 Physiol, 136, 3350-3363, 10.1104/pp.104.040758, 2004.

Cernusak, L. A., Ubierna, N., Winter, K., Holtum, J. A., Marshall, J. D., and Farquhar, G. D.: Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants, New Phytol, 200, 950-965, 10.1111/nph.12423, 2013.

Cousins, A. B., Badger, M. R., and Caemmerer, S. v.: A transgenic approach to understanding the

- influence of carbonic anhydrase on C¹⁸OO discrimination during C₄ photosynthesis, Plant Physiol., 142, 662-672, 10.1104/pp.106.085167, 2006.
 Cousins, A. B., Baroli, I., Badger, M. R., Ivakov, A., Lea, P. J., Leegood, R. C., and Caemmerer, S. v.: The role of phosphoenolpyruvate carboxylase during C₄ photosynthetic isotope exchange and stomatal
- conductance, Plant Physiol., 145, 11, 2007.
 735 Evans, J. R., Sharkey, T. D., Berry, J. A., and Farquhar, G. D.: Carbon isotope discrimination measured concurrently with gas exchange to investigate CO₂ diffusion in leaves of higher plants, Funct. Plant. Biol., 13, 11, 1986.

Evans, J. R., and von Caemmerer, S.: Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco, Plant Cell Environ, 36, 745-756, 10.1111/j.1365-

3040.2012.02591.x, 2013.
 Farquhar, D. G., O'Leary.M.H, and J.A.Berry: On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves Australian Journal of Plant Physiology, 9, 16, 1982.

Farquhar, D. G., and Lloyd, J.: Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere, Stable isotopes and plant carbon-water relations,

 Acadamic Press Inc., London, 47 pp., 1993.
 Farquhar, G. D., Ehleringer, J. R., and Hubic, K. T.: Carbon isotope discrimination and photosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Bioi, 40, 34, 1989. Farquhar, G. D., and Cernusak, L. A.: Ternary effects on the gas exchange of isotopologues of carbon

- dioxide, Plant Cell Environ, 35, 1221-1231, 10.1111/j.1365-3040.2012.02484.x, 2012.
 Gillon, J. S., and Yakir, D.: Internal conductance to CO₂ diffusion and C¹⁸OO discrimination in C₃ leaves, Plant Physiol., 123, 11, 2000.
 Hofmann, M. E. G., Horváth, B., Schneider, L., Peters, W., Schützenmeister, K., and Pack, A.: Atmospheric measurements of Δ¹⁷O in CO₂ in Göttingen, Germany reveal a seasonal cycle driven by
- biospheric uptake, Geochim. Cosmochim. Ac., 199, 143-163, 10.1016/j.gca.2016.11.019, 2017.
 Koren, G., Schneider, L., Velde, I. R. v. d., Schaik, E. v., Gromov, S. S., Adnew, G. A., D.J.Mrozek, Hofmann, M. E. D., Liang, M.-C., Mahata, S., Bergamaschi, P., Laan-Luijkx, I. T. v. d., Krol, M. C., Röckmann, T., and Peters, W.: Global 3-D Simulations of the Triple Oxygen Isotope Signature Δ¹⁷O in Atmospheric CO₂ J. Geophys. Res-Atmos.

760 , 124, 28, 2019.

Osborn, H. L., Alonso-Cantabrana, H., Sharwood, R. E., Covshoff, S., Evans, J. R., Furbank, R. T., and Caemmerer, S. v.: Effects of reduced carbonic anhydrase activity on CO₂ assimilation rates in Setaria viridis: a transgenic analysis, J. Exp. Bot., 68, 11, 2017.

Schaefer, K., Collatz, G. J., Tans, P., Denning, A. S., Baker, I., Berry, J., Prihodko, L., Suits, N., and
 Philpott, A.: Combined simple biosphere/Carnegie-Ames-Stanford approach terrestrial carbon cycle
 model, J. Geophys. Res-Biogeo.

, 113, 2008.

Vogel.J.C.: Fractionation of the Carbon Isotopes during Photosynthesis, Springer, Berlin, Heidelberg, 24 pp., 1980.

770 Wingate, L., Seibt, U., Moncrieff, J. B., Jarvis, P. G., and Lloyd, J. O. N.: Variations in ¹³C discrimination during CO₂ exchange by Picea sitchensis branches in the field, Plant Cell Environ., 30, 16, 2007.