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Abstract. Water erosion in agricultural fieldson arable land can reduce soil fertility and agricultural productivity. 18 

Despite the impact of water erosion on crops, it is typically neglected in global crop yield projections. 19 

Furthermore, previous efforts to quantify global water erosion have paid little attention to the effects of field 20 

management on the magnitude of water erosion. In this study, we analyse the robustness of simulated water 21 

erosion estimates in wheat maize and maize wheat fields between the years 1980 to 2010 based on daily model 22 

outputs from a global gridded version of the Environmental Policy Integrated Climate (EPIC) crop model. Using 23 

the MUSS water erosion equation and country-specific and environmental indicators determining different 24 

intensities in tillage, residue handling and cover crops, we obtained the simulate global annual median and average 25 

water erosion rates of 6 7 t ha-1  a-1 in maize fields and 19 5 t ha-1 a-1t ha-1 in wheat fieldsand an annual soil removal 26 

of 7 Gt in global wheat and maize fields. A comparison of our simulation results with field data demonstrates an 27 

overlap of simulated and measured water erosion values for the majority of global cropland. Slope inclination and 28 

daily precipitation are key factors in determining the agreement between simulated and measured erosion values 29 

and are the most critical input parameters controlling all water erosion equations included in EPIC. The many 30 

differences between field management methods worldwide,  and the varying water erosion estimates from 31 

different equations and the complex distribution of cropland in mountainous regions add uncertainty to the 32 

simulation results. To reduce the uncertainties addressed here and to improvein global water erosion estimates 33 

generally, it is necessary to gather more data on more data on global field managementfarming techniques,  to 34 

reduce the uncertainty in global land use maps and to collect more data on soil erosion rates more field data from 35 

study sites representing the diversity of environmental conditions where crops are grown are necessary.  36 

 37 
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1 Introduction 38 

Water erosion is widely recognized as a threat to global agriculture (den Biggelaar et al., 2004; Kaiser, 2004; 39 

Panagos et al., 2018; Pimentel, 2006). The removal of topsoil by surface runoff reduces soil fertility and crop 40 

yields due to loss of nutrients, degradation of the soil structure, and decreasing plant-available water capacity 41 

(Våje et al., 2005). Water erosion is a natural process, but the impact of agricultural field management on surface 42 

cover and roughness is decisive for the magnitude of water erosion. High energy precipitation, steep slopes and 43 

lack of vegetation cover intensify water erosion. The most vulnerable areas are mountainous regions, due to steep 44 

slopes, the tropics and subtropics, due to abundant high energy precipitation, and arid regions, where precipitation 45 

events are rare but often intense and the vegetation cover is sparse. Since agricultural cultivation of mountains 46 

and arid regions is limited, the most widespread degradation of agricultural land by water erosion occurs in tropical 47 

areas. This global distribution of water erosion is indicated by suspended sediment in rivers (Walling and Webb, 48 

1996). South America, Sub-Saharan Africa, South and East Asia have been identified as the most vulnerable 49 

regions to erosion on agricultural land by several prior studies (Borrelli et al., 2017; Pimentel et al., 1995). 50 

Despite its importance for global agriculture, water erosion is usually not considered in global gridded crop model 51 

(GGCM) studies. Throughout the past decade, GGCMs - typically combinations of agronomic or ecosystems 52 

models and global gridded input data infrastructures - have become essential tools for climate change impact 53 

assessments, evaluations of agricultural externalities, and as input data providers for agro-economic models 54 

(Mueller et al., 2017). Few assessments have considered land degradation processes and found their inclusion and 55 

understanding crucial for evaluating climate change mitigation and adaptation strategies (Balkovič et al., 2018; 56 

Chappell et al., 2016). Beyond crop models, there is a need to improve the representation of agricultural 57 

management and soil-related processes in earth system models to better reflect carbon sinks and sources (Luo et 58 

al., 2016; McDermid et al., 2017; Pongratz et al., 2018). Moreover, improving the representation of water erosion 59 

in large-scale models is urgently needed to inform major environmental and agricultural policy programs such as 60 

the European Union's Common Agricultural Policy (CAP), the United Nations Sustainable Development Goals 61 

(SDGs), the United Nations Convention to Combat Desertification (UNCCD) and the Intergovernmental Science-62 

Policy Platform on Biodiversity and Ecosystem Services (IPBES) (Alewell et al., 2019). Yet, the necessary 63 

algorithms to simulate water erosion are often not incorporated in such models. Exceptions among field-scale crop 64 

models, which are frequently used in GGCM ensemble studies, are the Environmental Policy Integrated Climate 65 

model (EPIC) and Agricultural Production Systems Simulator (APSIM), which are frequently used in GGCM 66 

ensemble studies. Compared to other commonly used crop models in GGCMs, EPIC stands out in its detailed 67 

representation of soil processes including water erosion and the impacts of tillage on soil properties (Folberth et 68 

al., 2019). 69 

Recently, water erosion models such as the Universal Soil Loss Equation (USLE) and the Revised Universal Soil 70 

Loss Equation (RUSLE) have been used to estimate global water erosion. Annual global soil removal estimates 71 

and water erosion rates on cropland of recent studies range between 13 – 22 Gt and 11 - 13 t ha-1 (Borrelli et al., 72 

2017; Doetterl et al., 2012; van Oost et al., 2007). USLE and its modifications were developed in the Midwestern 73 

United States and should ideally be evaluated against soil erosion measurements when used for other agro-74 

environmental zones (Evans and Boardman, 2016). However, the uneven distribution and limited availability of 75 

field data around the world, the lack of long-term soil measurements in most global regions, and the great 76 
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variability of the designs of erosion rate measurements hamper the evaluation of global soil loss estimates derived 77 

from models (Auerswald et al., 2004; Borrelli et al., 2017; García-Ruiz et al., 2015). In addition, model input data 78 

on topography, soil properties and land use are often aggregated over large areas and thus simulation results cannot 79 

be directly compared to single field measurements at specific locations. 80 

Most global soil removal estimates using water erosion models are based on static observation approaches or on 81 

very coarse timescales that do not fall below annual time steps (Borrelli et al., 2017). Therefore, seasonal patterns 82 

of soil cover and precipitation intensities are neglected despite the fact thateven though they are crucial factors for 83 

water erosion. The state of the soil and its cover is influenced by land management, such as the choice of crops, 84 

planting and harvest dates, tillage and plant residue management. Accordingly, neglecting the impact of seasonal 85 

changes in vegetation cover and field management practices constitutes large uncertainty in global water erosion 86 

estimates. Crop models usually simulate crop growth on a daily timescale, which allows attached water erosion 87 

models to account for daily changes in weather, soil properties and vegetation cover. However, uncertainty 88 

remains due to the increasing requirement of input data for daily simulations, which is especially challenging at a 89 

global scale. 90 

The overall aim of this study is (i) to analyse the robustness of water erosion estimates in all global agro-91 

environmental regions simulated with an EPIC-based global-gridded crop model and (ii) to discuss the main 92 

drivers affecting the robustness and the uncertainty of simulated water erosion rates on a global scale.we examine 93 

the uncertainties and sensitivities of water erosion estimates in an EPIC-based global-gridded crop model, and 94 

evaluate the robustness of large-scale simulation results against field-scale water erosion measurements 95 

aggregated from different world environments.  We simulate global water erosion rates in wheat maize and maize 96 

wheat fields using different empirical erosion equations in EPIC while accounting for the daily crop growth and 97 

development under different field management scenarios. Here, wheat maize and maize wheat are used as 98 

representative crops of global agriculture, as they are grown under most environmental conditions and represent 99 

contrasting soil cover patterns. Our global simulations were are carried out for a baseline crop management 100 

scenario based on a set of environmental and country-specific assumptions and indicators, which is a common 101 

practice in global gridded crop modelling. In addition to the baseline scenario, we quantify the uncertainties of 102 

simulated water erosion values  stemming from (i) uncertain field management inputs, and (ii) water erosion 103 

calculation methods. We also evaluate the model’s sensitivity to all inputs involved in the water erosion 104 

calculation to interpret the variability and uncertainties of the simulation results, and to discuss the differences 105 

between water erosion equations. Finally, we use field measurements from various locations world-wide to 106 

evaluate the robustness of estimated water erosion rates under different environmental conditions. 107 

2 Methods 108 

The simplified framework in Figure 1 illustrates the particular stages of the methodological procedure applied by 109 

this study and their relationships to input data and model outputs. Both, input and output data are used twofold. 110 

We use input data (i) to simulate daily wheat maize and maize wheat growth and water erosion with EPIC, and 111 

(ii) to analyse the sensitivity of relevant model parameters to simulate global water erosion with all equations in 112 

EPIC. We use model outputs (i) to calculate a baseline global water erosion scenario, and (ii) to address the 113 

uncertainty of simulation results. The final step of this study consists of the robustness check of the model outputs 114 

using field data. A detailed description of each element of this study is described in the following sections. 115 
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 116 

2.1 Modelling water erosion and crop growth with EPIC 117 

2.1.1 Global gridded crop model and input data 118 

We use a global gridded version of the Environmental Policy Integrated Climate (EPIC) crop model, EPIC-IIASA 119 

(Balkovič et al., 2014), to simulate soil sediment loss with runoff from 1980 to 2010 while accounting for the 120 

daily growth of maize and wheat under different field management scenarios. EPIC can simulate the growth of a 121 

wide range of crops and has a sophisticated representation of carbon, nutrient and water dynamics as well as a 122 

wide variety of possible field management options, including tillage operations and crop rotations (Izaurralde et 123 

al., 2006; Sharpley and Williams, 1990). Originally EPIC was named Erosion-Productivity Impact Calculator and 124 

was developed to determine the relationship between erosion and soil productivity. Due to its origin, EPIC has 125 

several options to calculate water erosion caused by precipitation, runoff and irrigation (Williams, 1990). 126 

EPIC-IIASA requires global soil and topography data and daily weather data. The basic spatial resolution of the 127 

model is 5’ x 5’ at which soil and topographic data are provided. These are aggregated to homogenous response 128 

units and further intersected with a 30’ x 30’ climate grid, the resolution at which global gridded climate data are 129 

available. This results in a total of 131,326 simulation unitgrid cells with a spatial resolution ranging betweenof 130 

5’ to 30’ (about 9 km to 56 km near the equator) (Skalský et al., 2008). We use global daily weather data from the 131 

AgMERRA dataset for the years 1980-2010 (Ruane et al., 2015), soil information from the Harmonized World 132 

Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2009), and topography from USGS GTOPO30 (USGS, 1997). 133 

Each grid cell is represented by a single field characterized by the combination of topography and soil conditions 134 

prevailing in this landscape unit. Each representative field has a defined slope length (20 – 200 m) and field size 135 

(1 - 10 ha) based on a set of rules for different slope classes (Table S1). The slope of each representative field is 136 

determined by the slope class covering the largest area in each grid cell (Table S1). Slope classes are taken from 137 

a global terrain slope database (IIASA/FAO, 2012) and are based on a high-resolution 90 m SRTM digital 138 

elevation model. We run EPIC in each simulation unit upon a representative field with a defined slope length and 139 

field size based on a set of rules for different slope classes (Table S1). The slope class for each simulation unit is 140 

defined as the most common slope per simulation unit derived from a global terrain slope database . We use global 141 

daily weather data from the AgMERRA dataset for the years 1980-2010 (Ruane et al., 2015), soil information 142 

from the Harmonized World Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2009), and topography from USGS 143 

GTOPO30 (USGS, 1997). In each simulation unitgrid cell, we consider reported growing seasons for maize and 144 

wheat (Sacks et al., 2010), and spatially explicit nitrogen and phosphorus fertilizer application rates (Mueller et 145 

al., 2012). 146 

2.1.2 Water erosion equations 147 

EPIC includes seven empirical equations to calculate water erosion (Wischmeier and Smith, 1978). The basic 148 

equation is: 149 

Y = R ∗ K ∗ LS ∗ C ∗ P (1) 150 

where Y is soil erosion in Mg t ha-1 (mass/area), R is the erosivity factor (erosivity unit/area), K is the soil 151 

erodibility factor in Mg t MJ-1 (mass/erosivity unit), LS is the slope length and steepness factor (dimensionless), 152 
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C is the soil cover and management factor (dimensionless) and P is the conservation practices factor 153 

(dimensionless).  154 

The main difference between the water erosion equations available in EPIC is their energy components used to 155 

calculate the erosivity factor. The USLE, RUSLE and RUSLE2 equations use precipitation intensity as an erosive 156 

energy to calculate the detachment of soil particles. The Modified Universal Soil Loss Equation (MUSLE) 157 

equation and its variations MUST and MUSS use runoff variables to simulate water erosion and sediment yield. 158 

The Onstad-Foster equation (AOF) combines energy through rainfall and runoff (Table 1). 159 

The erosion energy component is calculated as a function of either runoff volume Q (mm), peak runoff rate qp 160 

(mm h-1) and watershed area WSA (ha), or via the rainfall erosivity index EI (MJ ha-1). The latter determines the 161 

detachment of soil particles through the energy of daily precipitation and a statistical estimate of the daily 162 

maximum intensity of precipitation falling within 30 minutes. RUSLE2 is the only equation calculating soil 163 

deposition. If the sediment load exceeds the transport capacity, determined by a function of flow rate and slope 164 

steepness, soil is deposited, which is calculated by a function of flow rate and particle size (USDA-ARC, 2013). 165 

The soil cover and management factor is updated for every day where runoff occurs using a function of crop 166 

residues, biomass cover and surface roughness. The impact of soil erodibility on simulated water erosion is 167 

calculated for the top-soil layer at the start of each simulation year as a function of sand, silt, clay and organic 168 

carbon content. The topographic factor is calculated as a function of slope length and slope steepness. A detailed 169 

description of the cover and management, soil erodibility and topographic factor is provided in the supporting 170 

information (Text S1). The conservation practice factor is included in all equations as a static coefficient ranging 171 

between 0 and 1, where 0 represents conservation practices that prevent any erosion and 1 represents no 172 

conservation practices. Typical conservation practice factors can be derived from tables, which include values 173 

ranging from 0.01 to 0.35 for terracing strategies and from 0.25 to 0.9 for different contouring practices (Morgan, 174 

2005; Wischmeier and Smith, 1978). Alternatively, values can be derived from local field studies and remote 175 

sensing (Karydas et al., 2009; Panagos et al., 2015), from equations using topographical data (Fu et al., 2005; 176 

Terranova et al., 2009), or from economic indicators (Scherer and Pfister, 2015).  177 

2.1.3 Field management scenarios 178 

Field management techniques influencing soil properties and soil cover have a significant impact on the amount 179 

of water erosion. However, these methods are very heterogenous around the world and data on different field 180 

management techniques are sparse. Therefore, three tillage management scenarios – conventional tillage, reduced 181 

tillage and no-tillage – were designed by altering parameters related to water erosion to analyse the impact of field 182 

management on simulated water erosion and to draw conclusions on its impact on the quality of simulation results. 183 

In the reduced and no-tillage scenarios, we decrease soil disturbance by reducing cultivation operations, tillage 184 

depth and surface roughness, and we increase plant residues left in the field after harvest. In addition, we reduce 185 

the runoff curve numbers, which indicate the runoff potential of a hydrological soil group, land use and treatment 186 

class, with decreasing tillage intensification by using pre-defined values for the cover treatment classes presented 187 

in Table 2 (Sharpley and Williams, 1990). By lowering the runoff curve numbers, the impact of reduced tillage 188 

practices on the hydrologic balance can be taken into account (Chung et al., 1999). We simulate each tillage 189 
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scenario with and without green fallow (grass) cover in between growing seasons, leading to a total of six field 190 

management scenarios. 191 

2.2 Baseline scenario for estimating global water erosion in wheat and maize fields 192 

We estimate the rate of water erosion globally by combining these six tillage and cover crop scenarios in different 193 

regions of the world, using climatic and country-specific assumptions and indicators (Table 3). We chose maize 194 

and wheat as two contrasting crop types for analysing water erosion in different cultivation systems. Maize is a 195 

row crop with relatively large areas of bare and unprotected soil between the crop rows. The plant density in wheat 196 

fields is much higher, which improves the protection of soils against water erosion. 197 

We consider conventional and reduced tillage systems globally while considering no-tillage only for countries in 198 

which the share of conservation agriculture is at least 5 %. In tropical regions, we simulate water erosion with a 199 

grass green cover in between maize and wheat seasons to account for soil cover from a year-round growing season. 200 

In temperate and snow regions, we simulate water erosion affected by both soil cover throughout the year and 201 

bare soil in winter seasons. In arid regions, we do not simulate grass green cover in between growing seasons due 202 

to the limited water supply. 203 

On slopes steeper than 5 %, we consider only rainfed agriculture, as hilly cropland is irrigated predominantly on 204 

terraces that prevent water runoff. To account for erosion control measures on steep slopes, we use a conservation 205 

P-factor of 0.5 on slopes steeper than 16 % to simulate contouring, and a P-factor of 0.15 on slopes steeper than 206 

30 % to simulate contouring and terracing based on the range of P-values presented by (Morgan, (2005). The 207 

threshold for slopes that are cultivated with conservation practices is based on the slope classes used for the 208 

underlying structure of slope information of EPIC-IIASA, from which the three highest slope classes (16–30 %, 209 

30–45 %, >45 %) mark slopes that are less likely to be cultivated without provisions measures to prevent erosion. 210 

We choose the MUSS equation for the baseline scenario as it generates the lowest deviation between simulated 211 

and measured water erosion as discussed below. Table 3 summarises the field management assumptions used inof 212 

the baseline scenario used to aggregate erosion rates in each grid cell and region. 213 

2.3 Uncertainty analysis of field management scenarios and water erosion equations  214 

Given the global scale of the analysis and the aggregated nature of available field management information, there 215 

is much uncertainty about crop management strategies, which introduces uncertainty in the water erosion 216 

estimates. In addition, each water erosion equation gives a different overall erosion estimate. To discuss the 217 

uncertainty of simulation results, we evaluate the variance in simulated water erosion rates at grid level due to: (i) 218 

different management assumptions, and (ii) the choice of water erosion equation. The variance of simulation 219 

outputs is defined as the range between minimum and maximum simulated water erosion rates with all 220 

combinations of tillage and cover crop scenarios and with each water erosion equation. 221 

2.4 Sensitivity analysis of model parameters 222 

We use a sensitivity analysis to identify the most essential input parameters to the factors in the seven water 223 

erosion equations. We use the Sobol method (Sobol, 1990), which is a variance-based sensitivity analysis that is 224 

popular in environmental modelling (Nossent et al., 2011). With this method, it is possible to quantify the amount 225 

of variance that each parameter contributes to the total variance of the model output. These amounts are expressed 226 
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as sensitivity indices, which rank the importance of each input parameter for simulated water erosion. In addition, 227 

the sensitivity indices can be used to determine the impact of parameter interactions on the model output. 228 

We test 30 parameters directly connected to the water erosion equations in EPIC. In total, we assign 126,976 229 

random values to all input parameters along a pre-defined triangular distribution or a range of discrete values 230 

(Table S2). Water erosion is simulated with EPIC using the seven available equations for each random input 231 

combination at 40 locations where wheat and maize are cultivated. To represent a heterogenous distribution of 232 

global precipitation regimes, we use the natural break optimisation method to choose locations based on average 233 

annual precipitation amounts from 1980 to 2010 (Jenks, 1967). For each location and equation, the most sensitive 234 

parameters are ranked. To analyse the impact of precipitation regimes on the sensitivity of each parameter, we use 235 

Spearman coefficients (ρ) to determine if positive or negative relationships exist between each parameter’s 236 

sensitivity and annual precipitation. 237 

2.4 Evaluation of simulated erosion against reported field measurements 238 

We compared our simulated water erosion rates with 473 606 soil erosion measurements on arable land  from 36  239 

countries representing plot and field scale. Most of the selected erosion rates are based on the 137Cs method. In 240 

addition, data from erosion plots and volumetric measurements of rills collected by Auerswald et al. (2009), 241 

Benaud et al. (2020) and García-Ruiz et al. (2015) are used. In total, ; 314 315 records were are derived by the 242 
137Cs method and, 159 188 records from erosion plotsrunoff plots, and 103 records from volumetric measurements 243 

of rills. An overview of the field data is presented in Fig. S5S4-S8S7, and the full dataset is available in Table S5.  244 

Guidance on the 137Cs method is provided by Fulajtar et al. (2017); Mabit et al. (2014) and Zapata (2002). The 245 

137Cs radionuclide was released by nuclear weapon tests and from the accident of the Chernobyl Nuclear Power 246 

Plant to the atmosphere and subsequently deposited in the uppermost soil layer by atmospheric fallout. After its 247 

deposition it was bind to soil colloids and can be moved only together with soil particles by mechanical processes 248 

such as soil erosion. Its chemical mobility and uptake by plants is negligible (Mabit et al., 2014; Zapata, 2002). If 249 

part of the topsoil contaminated by 137Cs is removed by erosion, the 137Cs concentrations in soil profiles can be 250 

used to trace soil movements using mass balance equation (Walling et al., 2014). A major advantage of the 137Cs 251 

method is that it provides long term mean erosion rates (representing the period since 137Cs fallout in the 1960s 252 

until the time of sampling) and overcomes the problem of high temporal variability of erosion. Further advantages 253 

are that the obtained values are retrospective and that the erosion rates are determined for a grid of 137Cs sampling 254 

points, which can provide valuable information on the spatial distribution of erosion.  255 

Bounded plots are the most commonly used method of erosion measurements. They were introduced in the USA 256 

in the 1920s (Hudson, 1993) and were used for the development of USLE and WEPP models (Brazier, 2004). 257 

Eroded soil material can be quantified with erosion plots in different ways (total collection of sediment, fractioned 258 

collection of sediments using multislott divisors, measurement of discharge and sediment concentration by tipping 259 

buckets and Coshocton wheels). The overview of this method is provided by (Cerdan et al., . (2010); Hudson,  260 

(1993); Mutchler et al., . (1994); De Ploey and Gabriels,  (1980; ) and Zachar,  (1982). 261 

The volumetric measurements of rill erosion are used since approximately the 1940s in the USA (Kaiser, 1978 in 262 

Evans, 2013) and the 1950s in Europe (Lobotka, 1955), usually at field scale (Boardman, 1990, 2003; Boardman 263 

and Evans, 2020; Brazier, 2004; Evans, 2002, 2013; Herweg, 1988; Zachar, 1982). The volume of erosion rills is 264 
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derived from their lengths and profile cross-section areas, which are measured in field or from terrestrial and aerial 265 

photos (Evans, 1986, 1988; Watson and Evans, 1991).  266 

To expand the field data records for evaluation, we use also erosion rate measurements from erosion plots 267 

collected by . In contrast to the measurements using 137Cs tracer, most plot measurements represent short-term 268 

erosion rates. Measurement periods span between 1 and 60 years with an average of 10 years. 269 

The overwhelming effect of the experimental methodology on measured erosion rates, the lack of sufficient 270 

metadata accompanying erosion measurements and  in addition to the granular spatial resolution of our simulation 271 

setup hinders a direct comparison between simulated and observed water erosion rates. Instead we compare 272 

aggregated simulated and observed erosion values for different slope and precipitation classes to analyse the 273 

robustness of simulated water erosion rates under different environmental conditions. Therefore, only field 274 

measurements with recorded slope steepness and annual precipitation are used. Where annual precipitation 275 

amounts are is not recorded, they areit is taken from the WorldClim2 dataset (Fick and Hijmans, 2017). Due to 276 

the non-normal distribution of the simulated and measured data, the median deviation (MD) is used as a measure 277 

to compare the agreement between simulated and measured water erosion values. 278 

3 Results 279 

We estimate global annual average and median water erosion rates in wheat and maize fields of 19 7 t ha-1 and 6 280 

5 t ha-1 in maize and wheat fields, respectively. (Fig. S3). The difference between these values indicates that the 281 

global average is influenced by extreme values. The total removal of soil in global wheat maize and maize wheat 282 

fields is estimated to be 7 5.3 Gt a-1. and 1.9 Gt a-1 , respectively. The map in Figure 2 illustrates the global 283 

distribution of simulated water erosion rates. Highest water erosion is simulated in mountainous regions and 284 

regions with strong precipitation, especially in tropical climate zones. In Asia, those regions are widespread in the  285 

east, south-east and the Himalaya region. In Africa, similar areas with high water erosion values are spread around 286 

the continent and are most common at the west coast and in East Africa including broad areas in Guinea, Sierra 287 

Leone, Liberia, Ethiopia and Madagascar. In South America, highest water erosion is simulated in the south of 288 

Brazil and regions around the Andes mountain range and the Amazon river basin. The highest water erosion values 289 

on the American continent were are simulated in tropical Central America and the Caribbean. In North America, 290 

highest water erosion occurs along the west coast and in the east. Water erosion in Europe is highest in 291 

Mediterranean areas and around the Alps.  292 

Median annual water erosion values for the five largest wheat and maize producing countries demonstrate the 293 

strong impact of climate and topography on simulated water erosion. In Brazil, China and India, where a large 294 

proportion of cropland is in tropical areas, water erosion is relatively high with annual median values of 10 t ha-1, 295 

6 t ha-1, and 37 t ha-1, respectively. In Russia and the United States annual median values are much lower with 1 t 296 

ha-1, and 2 t ha-1, respectively. Overall, Figure 2 illustrates the large variation in simulated water erosion between 297 

tropical climate regions and regions with a large proportion of flat and dry land. 298 

 299 
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3.1 Sources of model uncertainty related to management assumptions and method selection 300 

The uncertainty of the simulation results due to management scenarios and the choice of water erosion equations 301 

is highest in regions most vulnerable to water erosion (Figure 3). The annual median uncertainty range at each 302 

grid cell due to management is 30 t ha-1. For 97 % of grid cells, the lowest erosion rates are simulated with 303 

management scenarios including no-tillage and cover crops. For 86 % of grid cells, maximum erosion rates are 304 

simulated under conventional tillage without cover crops. The annual median uncertainty range at each grid cell 305 

due to the choice of erosion equation is 23 t ha-1. In 74 % of grid cells, the lowest erosion rates were are simulated 306 

with the MUSS equation. The highest erosion values were are simulated with the RUSLE equation (46 %), 307 

followed by the USLE equation (25%). 308 

In most locations, the uncertainty due to field management exceeds the uncertainty caused by choice of erosion 309 

equation. For 46 % of grid cells, management scenarios cause the prevailing uncertainty, which we defined as the 310 

higher uncertainty range by at least 5 t ha-1. The selected erosion equation causes higher uncertainty by at least 5 311 

t ha-1 in 14 % of grid cells. The map in Figure 4 illustrates the global distribution of prevailing uncertainty sources.  312 

3.2 Main drivers of the global erosion model 313 

We designed the sensitivity study to explain the large variability of simulated water erosion rates in different 314 

regions and to discuss the main differences between water erosion equations. Water erosion is highly sensitive to 315 

slope steepness (SLP) for all equations. The first-order sensitivity index of the slope parameter indicates that 46–316 

54 % of the variance in the model output is attributable to the slope, without considering interactions between the 317 

input parameters (Table 4). Daily precipitation (PRCP) is the second most important parameter for calculating 318 

water erosion, with an individual contribution of around 9–20 % to the variance of the output. The remaining 319 

parameters contribute together 4–13 % to the output variance. 320 

The first-order sensitivity indices do not include interactions between input parameters, which leads to the sum of 321 

all first-order sensitivity indices being lower than 1. The total-order sensitivity indices sum all first-order effects 322 

and interactions between parameters, which leads to overlaps in case of interactions and a sum greater than 1. The 323 

differences between the first-order and the total-order indices can be used as a measure to determine the impact 324 

of the interactions between a specific parameter with other parameters. The total-order sensitivity indices show 325 

that slope steepness, including interactions to other parameters, contributes 63–75 % of the output variance from 326 

which 18–21 % are due to interactive effects with other parameters (Table 5). The total-order sensitivity indices 327 

from precipitation range from 21–36 %, from which 10–18 % is due to interactions with other parameters. 328 

The high sensitivity of slope and precipitation is similar for all equations, but the most sensitive parameters after 329 

these can be different for each equation. Equations estimating erosion energy by surface runoff and the RUSLE2 330 

equation are very sensitive to the hydrological soil group (HSG), which determines the soils infiltration ability. 331 

This parameter is used in the calculation of the curve number, which defines the partition of precipitation into 332 

runoff and infiltration. Also, the land use number (LUN), which is ranked among the most sensitive input 333 

parameters, is used for the calculation of the curve number. The most sensitive parameters of the USLE and 334 

RUSLE equation, following slope inclination and daily precipitation, are soil texture classes (SAND & SILT) 335 

followed by daily temperature changes (TMX). Crop residues (ORHI) are relatively important for all equations 336 
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but especially important for equations based on rainfall-energy. Other parameters relevant for field management, 337 

such as surface roughness and mixing efficiency of the topsoil, have little influence on water erosion. 338 

The sensitivity of slope steepness has a strong positive correlation with the amount of annual precipitation at each 339 

location (ρ = 0.69, p<0.01). The increase in the sensitivity of slope steepness with increasing annual precipitation 340 

is demonstrated in Figure 5, which illustrates substantially lower sensitivity indices at dry locations compared to 341 

wet locations. In contrast, the sensitivity indices of daily precipitation are negatively correlated to annual 342 

precipitation with a moderate strength (ρ = 0.45, p<0.05). Depending on the equation, strong positive or negative 343 

correlations between SIs and annual precipitation also exist for other parameters such as slope length, soil texture, 344 

soil organic carbon, channel length, channel slope and watershed area (Table S4).  345 

3.3 Evaluation of simulation results against field data 346 

The most recent estimated global water erosion rates on cropland of 11 - 13 t ha-1 derived from a comparable 347 

method (Borrelli et al., 2017; Doetterl et al., 2012; van Oost et al., 2007) lie above between our simulated median 348 

water erosion rates of 7 t ha-1 and 5 t ha-1 for maize and wheat fields, respectively. Similarly, our global water 349 

erosion estimates in maize and wheat fields are lower than the median value of 9 t ha-1 from 606 water erosion 350 

measurements from cropland around the world.  351 

value of 6 t ha-1 and our global average value of 19 t ha-1. In comparison to the median and average values of 473 352 

water erosion measurements of 15 t ha-1 and 23 t ha-1, respectively, the global median and average values simulated 353 

with our baseline scenario are lower. 354 

To evaluate the agreement between simulated and observed data, we compare median values between simulated 355 

and measured erosion rates grouped by precipitation and slope classes, which are defined along the whole range 356 

of recorded slope inclinations and annual precipitation amounts of the field data (Figure 6a). Although slope and 357 

precipitation classes from the field are spread unevenly, they cover most climatic and topographic characteristics 358 

relevant to global agriculture. The comparison illustrates that the deviation between simulated and field data is 359 

highest for locations with steep slopes and high annual precipitation. Where slopes are steeper than 8 % and annual 360 

precipitation is higher than 1000 mm, the median of simulated water erosion exceeds the median of measured 361 

water erosion in most cases by at least 50 t ha-1. With decreasing slope steepness and annual precipitation, the 362 

median deviation between simulated and measured data is decreasing. Where both slope steepness is below 8 % 363 

and annual precipitation is below 1000 mm, the median deviation is lower than 5 t ha1 in most cases. Higher 364 

deviations at those locations are caused by simulated water erosion values being lower than measured values. A 365 

comparison of measured and simulated water erosion using other equations with the baseline scenario can be 366 

found in Fig. S9S8. 367 

The boxplots in Figure 6b illustrate the range of water erosion values measured in the field and simulated with the 368 

baseline scenario. The high median deviation between observed and simulated values for grouped locations with 369 

slopes steeper than 8 % and annual precipitation higher than 1000 mm can also be observed between the range of 370 

simulated and measured water erosion values. Outside locations combining steep slopes and strong precipitation, 371 

median deviation between simulated and measured data is lower than the variability within the field data. The 372 

range of values at locations with lower precipitation and slope steepness demonstrates that simulated values are 373 

mostly below measured values in those environments.  374 
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The uncertainty in the choice of management scenarios and water erosion equations included in our baseline 375 

scenario leads to an uncertainty of the deviation between simulated and measured erosion values. This uncertainty 376 

is demonstrated in Figure 6b by additional three bars illustrating the range of simulated medians defined by 377 

minimum and maximum medians stemming fromdue to contrasting tillage management scenarios, cover crop 378 

scenarios and different water erosion equations. The uncertainty ranges indicate which management scenario and 379 

water erosion equation lead to simulation results that agree best with field data for the evaluated slope and 380 

precipitation classes.  381 

At locations with low to moderate slope steepness and annual precipitation, the measured water erosion values 382 

agree best with the simulation values generated under scenarios implying larger water erosion, such as high 383 

intensity tillage and low soil cover. On the other hand, at locations with steep slopes and intensive precipitation, 384 

the measured values are closer to the simulated values under scenarios with less intensive tillage and more soil 385 

cover. In addition, the varying sensitivities of each water erosion equation lead to a different magnitude of water 386 

erosion values in different environments. On low to moderate slopes, water erosion simulated with the MUSS 387 

equation is lowest, whereas RUSLE generates the highest values. On steep slopes, the RUSLE equation generates 388 

the lowest water erosion values, which agree best with the measured values. The options to increase and decrease 389 

simulated water erosion with different field management scenarios and water erosion equations creates both 390 

uncertainty in the model results, but also the possibility to closely match field data. 391 

At locations combining steep slopes and intense precipitation, most management scenarios and equations generate 392 

water erosion values that are higher than the measured values. However, those environmental conditions cover 393 

only a small share of global cropland. Cultivation areas with slopes steeper than 8 % and annual precipitation 394 

higher than 1000 mm represent only 7 % of global maize and wheat cropland in our simulation unitgrid cells. The 395 

map in Figure 7 illustrates that the highest concentration of these areas is in East and South-East Asia, followed 396 

by Central and South America, and Sub-Saharan Africa. 397 

 398 

4 Discussion 399 

4.1 Varying robustness of simulated water erosion in different global regions 400 

Global water erosion estimates generated with an EPIC-based GGCM and our baseline scenario overlap with 401 

observed water erosion values under most of the climatic and topographic environments where wheat maize and 402 

maize wheat are grown. However, global wheat maize and maize wheat land include locations where 403 

environmental characteristics differ significantly from the Midwestern United States, where the data was collected 404 

to develop the water erosion equations embedded in EPIC. The USLE model and its modification were developed 405 

with data for slopes of up to 20 %, which makes model application for steeper slopes uncertain (McCool et al., 406 

1989; Meyer, 1984). Furthermore, the relations between kinetic energy and rainfall energy in the American Great 407 

Plains differ from other regions in the world (Roose, 1996). Similarly, the runoff curve number method, which is 408 

the key methodology for the calculation of surface runoff, is based on an empirical analysis in watersheds located 409 

in the United States and might be less reliable in different regions of the world (Rallison, 1980). Due to the high 410 

sensitivity of slope steepness and daily precipitation for the calculation of water erosion, the reliability of the 411 

tested equations decreases in regions where typical slope and precipitation patterns differ from the Midwestern 412 
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US. Although some studies have successfully used USLE and its modification under a different environmental 413 

context (e.g. Alewell et al., 2019; Almas and Jamal, 2009; Fischer et al., 2018; Sadeghi and Mizuyama, 2007), 414 

many studies have concluded that the accuracy of these models may be reduced outside the environments they 415 

were created without calibration and model adaptation (e.g. Cohen et al., 2005; Labrière et al., 2015). 416 

The skewed distribution of simulated water erosion values influenced by extreme soil loss rates in few fields 417 

highly sensitive to water erosion results in a large difference between the global global median value of 6 t ha-1 a-418 

1 and the global average value of 19 t ha-1 a-1  (Fig. S39).. Due to the strong influence of outliers on average values, 419 

the we used simulated median values to is a better representation ofrepresent global and regional water erosion 420 

rates in wheat and maize fields. The high sensitivity of the simulation results to slope inclinations and precipitation 421 

suggests that a significant share of the estimated soil removal of 7.2 Gt a-1 originates from small wheat and maize 422 

fields cultivation areas on steep slopes with strong annual precipitation.  423 

4.2 Sources of uncertainties in global water erosion estimates 424 

4.2.1 Uncertain land use in mountainous regions 425 

Changing climatic conditions with increasing elevation and the variable soils in mountainous regions can favour 426 

crop cultivation in higher elevations over lower elevations (Romeo et al., 2015). However, upland farming without 427 

soil conservation measures can lead to exhaustive soil erosion and can become a critical problem for agriculture 428 

(Montgomery, 2007). Large areas of land have been abandoned due to high erosion rates as soils were no longer 429 

able to support crops (Figure 8) (Romeo et al., 2015). As mountain agriculture is determined by various 430 

environmental and socio-economic factors, the cultivation of steep slopes can be very variable between regions. 431 

Regional erosion assessments in mountainous cropland suggested that areas with extreme water erosion rates are 432 

mainly limited to marginal steep land cultivated by smallholders (Haile and Fetene, 2012; Long et al., 2006; 433 

Nyssen et al., 2019). In some mountainous regions efforts to remove marginal farmlands from agricultural 434 

production, and programs to improve land management on steep slopes have reduced high water erosion rates 435 

(Deng et al., 2012; Nyssen et al., 2015). On the contrary, recent pressure through increasing population and crop 436 

production demands has resulted in re-cultivation of hillslopes and a reduction of fallow periods, which limits the 437 

recovery of eroded soil (Turkelboom et al., 2008; Valentin et al., 2008).  438 

To analyse the sustainability of simulated maize and wheat cultivation systems exposed to high erosion rates, we 439 

compare simulated annual eroded soil depth with a global dataset on modelled sedimentary deposit thickness 440 

(Pelletier et al., 2016). The comparison shows that at 4 % of grid cells permanent maize and wheat cultivation 441 

would not be sustainable as the whole soil profile would be eroded at the end of the simulation period (Fig. S10). 442 

Most of the unsustainable agriculture is simulated on steep slopes. Although we account for conservation 443 

techniques and cover crops, we do not imitate the highly complex farming practices involving intercropping 444 

techniques and fallow periods, which are common on hillslopes typically managed by smallholders (Turkelboom 445 

et al., 2008). Moreover, we assume that the slope class representing the largest area in each grid cell most likely 446 

represents the largest share of arable land. This builds on the idea that a spatially extensive and diverse landscape 447 

can be represented by a single “representative field” characterized by the prevailing topography and soil conditions 448 

found in the landscape. On hilly terrain this setup simulates maize and wheat cultivation on steep slopes and thus 449 

mainly represents unsustainable agriculture. Although unsustainable maize and wheat cultivation can be observed 450 
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in several mountain regions, cropland is very heterogeneously distributed in mountains and thus erosion rates 451 

from one representative field are highly uncertain. 452 

The uncertainty in cropland distribution can partly be reduced by developing a higher resolution global gridded 453 

data infrastructure, which is currently not available for EPIC-IIASA. However, due to the large uncertainty in 454 

global land cover maps (Fritz et al., 2015; Lesiv et al., 2019), an explicit spatial link between cropland distribution 455 

and the corresponding slope category cannot be established without on-site observations. We test the impact of 456 

this uncertainty for erosion estimates in Italy, where large maize and wheat cultivation areas are distributed on 457 

both flat terrain in the north and mountainous regions in the south. In an ideal scenario where cropland is limited 458 

to flattest land available per grid cell, median simulated water erosion in Italy would be reduced to tolerable levels 459 

below 1 t ha-1. However, in a scenario, where the most common slopes per grid cell are cultivated, median 460 

simulated water erosion increases to 14 t ha-1 due to high water erosion simulated in Italy’s mountainous regions 461 

(Fig. S11). This suggests a high uncertainty in global water erosion estimates due to uncertain spatial links between 462 

maize and wheat cultivation areas and different slope categories. 463 

4.2.2 Uncertain field management 464 

Simulated water erosion values are highly variable depending on the choice of water erosion equation and field 465 

management scenario. The water erosion equation chosen for the baseline scenario generates the lowest global 466 

soil removal estimate. Different water erosion equations embedded in EPIC estimate a higher global soil removal 467 

of up to 11 Gt a-1 as well as higher median and average water erosion rates of up to 19 t ha-1 a-1 and 29 t ha-1 a-1. 468 

Simulating cover crop and no-tillage worldwide results in the lowest global soil removal of 2 Gt a-1 with median 469 

and average water erosion rates of 1 t ha-1 a-1 and 7 t ha-1 a-1 and simulating no cover crops and conventional tillage 470 

worldwide results in the highest global soil removal of 13 Gt a-1 with median and average water erosion rates of 471 

19 17 and 37 t ha-1 a-1. These variations cause further uncertainties in the simulation results. 472 

Indeed, a proper reconstruction of a business-as-usual field management is important to further narrow down the 473 

uncertainty in global crop modelling (Folberth et al., 2019). In this study we allocated a prevailing field 474 

management using a set of environmental- and country-specific indicators, similarly to (Porwollik et al., (2019). 475 

For example, we accounted for conservation agriculture only in countries where this management strategy is likely 476 

according to AQUASTAT (FAO, 2016). Furthermore, by assuming cover crops in beetween wheat and maize 477 

seasons we simulated more complex cropping systems in the tropics, where long and year-round growing seasons 478 

and frequent multi-cropping farm practices barely leave the soil uncovered. Hence, we did not simulate bare fallow 479 

in the tropics as erroneously high water erosion values would have been simulated at locations with heavy 480 

precipitation falling on bare soil. In addition, conservation practices such as contouring and terracing are crucial 481 

to reduce the simulation of high water erosion values on steep slopes. We simulated these practices for specific 482 

slope classes under the assumption that farmers around the world uniformly use conservation practices when 483 

cultivating on steep slopes. The most relevant parameters used for tillage scenarios are related to crop residues 484 

left in the field. In addition, equations directly connected to surface runoff are strongly influenced by the land use 485 

number used to determine the impact of cover type and treatment on soil permeability. While both crop residues 486 

and green fallow decrease water erosion significantly, especially in the tropics, their use varies widely between 487 

regions and even farms, based on a complex web of factors such as institutional factors, farm sizes, risk attitudes, 488 

interest rates, access to markets, farming systems, resource endowments, and farm management skills (Pannell et 489 
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al., 2014). Also, soil conservation measures such as terraces or contour farming significantly influence water 490 

erosion but are very heterogeneously used between regions, farming systems and farmers. Our baseline scenario 491 

is a very rough depiction of the complex patterns of field management around the world but attempts to represent 492 

these highly influential practices with the limited available data. 493 

4.2.3 Variable estimates from different water erosion equations 494 

The water erosion equation chosen for the baseline scenario generates the lowest global soil removal estimate. 495 

Different water erosion equations embedded in EPIC estimate a higher global soil removal of up to 11 Gt a -1 as 496 

well as higher median water erosion rates up to 19 t ha-1 a-1. The MUSS water erosion equation chosen for the 497 

baseline scenario generates water erosion rates closest to the field data. The focus of equations on either rainfall 498 

energy or runoff energy is relevant for the different simulation results under specific environmental conditions. 499 

Equations based on rainfall-energy such as RUSLE and USLE simulate higher water erosion values than the other 500 

equations at most locations. However, on steep slopes they generate the lowest water erosion values as runoff 501 

becomes a greater source of energy than rain with increasing slope steepness (Roose, 1996). Also, the varying 502 

sensitivities of other parameters to the equations such as soil properties and management parameters lead to a 503 

varying agreement between simulated data and field data depending on the equation selection. Detailed field data 504 

would facilitate the choice of an appropriate equation to simulate water erosion worldwide or for a specific region. 505 

4.3 The difficulty of evaluating large-scale erosion estimates with field data 506 

The selection of field data for evaluating simulated water erosion was limited by the low availability of suitable 507 

water erosion observations covering the entire globe. The lack of reliable data on water erosion rates is a severe 508 

obstacle for understanding erosion, developing and validating models and implementing soil conservation 509 

(Boardman, 2006; Nearing et al., 2000; Poesen et al., 2003; Trimble and Crosson, 2000). The main reasons for 510 

the low availability of suitable data to evaluate simulated water erosion rates are twofold: (i) erosion monitoring 511 

is expensive, time consuming and labour demanding; and, (ii) primary data and metadata of measurement sites 512 

accompanying final results are often not available and many older measurements are poorly accessible as they are 513 

not available online (Benaud et al., 2020). A variety of factors influencing water erosion such as climate, field 514 

topography, soil properties and field management need to be considered when modelling water erosion but are 515 

often not reported in available field measurements (García-Ruiz et al., 2015). This hampers a direct comparison 516 

between simulated and observed water erosion values. We demonstrated the varying match between measured 517 

and simulated water erosion using different tillage and cover crop scenarios. Metadata on field management often 518 

only provides the crop cultivated and therefore the conditions under which erosion was measured in the field are 519 

not known sufficiently to evaluate erosion values simulated under different field management scenarios. Similarly, 520 

information on field topography and soil properties is often not provided with recorded field measurements and 521 

thus their use is limited in an evaluation of water erosion estimates simulated in different global environments. 522 

Moreover, Moreover, the geographical distribution of erosion data is unbalanced. Mmost data are concentrated in 523 

the United States, West Europe and the West Mediterranean (García-Ruiz et al., 2015). In summary, there is a 524 

lack of field data representing all needed regions, situations and scenarios (Alewell et al., 2019).  525 

The appropriate selection of field data to evaluate model outputs needs to be considered as well. At different 526 

spatial scales different erosion processes are dominant and consequently different erosion measurement 527 

methods are suitable (Boix-Fayos et al., 2006; Stroosnijder, 2005).  An overview of erosion methods is provided 528 
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by Hudson, (1993) and Lal et al. (1994). Recently, most erosion methods are subject of significant criticism 529 

(García-Ruiz et al., 2015) and recent development of methodology is in crisis (Stroosnijder, 2005). Most authors 530 

use very heterogeneous data sets to evaluate their models, involving data generated by different methods at 531 

variable time and spatial scales and variable quality. For example, Doetterl et al. (2012) used plot data, 532 

suspended sediments from rivers, and data from RUSLE modelling. Borrelli et al. (2017) used soil erosion rates 533 

(measurement methods are not specified), remote sensing, vegetation index (NDVI) and results of RUSLE 534 

modelling. In his review on erosion rates under different land use, Montgomery (2007) used field data derived 535 

from erosion plots, field-scale measurements, catchment-scale measurements using hydrological methods, 536 

137Cs-method, soil profile truncation and elevated cemetery plots.  537 

 538 

Whilst all erosion measurement methods are open to criticism, Wwe decided to use only data obtained by field 539 

measurements from erosion runoff plots,  and by 137Cs method and volumetric surveys as both these methods are 540 

most suitable at plot, slope and field and slope scale.  Geodetic methods such as erosion pins and laser scanner 541 

are also used at these plot to field scales, but their accuracy is much lower than the accuracy of plot measurements 542 

and 137Cs method. Furthermore, erosion pins are mainly suitable for areas with extreme erosion rates (Hsieh et al., 543 

2009; Hudson, 1993), and laser scanners have difficulties to recognize vegetation (Hsieh et al., 2009). Other 544 

commonly used methods such as volumetric method, hydrological method (measurements of discharge and 545 

suspended sediment load) and bathymetric method are more suitable for larger scales and the latter two methods 546 

involve a significant portion of channel erosion, which is not related with agricultural land (García-Ruiz et al., 547 

2015). We did not consider plot experiments using rainfall simulators as they are usually performed on small plots 548 

with use artificially generated rainfalls, which mostly have very low energies and thus generate low erosion rates 549 

(Boix-Fayos et al., 2006; García-Ruiz et al., 2015) (Boix-Fayos et al., 2006), and usually only small plots are used 550 

for rain simulation experiments (García-Ruiz et al., 2015).  551 

The 137Cs method was criticised by (Parsons and Foster,  (2013), who questioned assumptions about the 137Cs 552 

behaviour in the environment (variability of the 137Cs input by wet fallout, its microspatial variability at reference 553 

sites, its possible mobility in certain soils, the 137Cs uptake by plants and other aspects of 137Cs behaviour in soil). 554 

To confront the criticism against the 137Cs method, (Mabit et al., . (2013) discussed all objections raised by Parsons 555 

and Foster (2013) and confirmed its accuracy by listing several studies, in which 137Cs based erosion rates are 556 

compared with erosion rates derived from direct measurements. The 137Cs method is based on a set of 557 

presumptions which should be met to produce useful results and thus careful interpretation of the obtained results 558 

is needed (Fulajtar et al., 2017; Mabit et al., 2014; Zapata, 2002). 559 

Similarly, erosion rates obtained by volumetric measurements require careful interpretation as they are exposed 560 

to various potential sources of errors and do not account for interill erosion. Although the latter can be neglected 561 

under certain circumstances, studies from Europe and semiarid areas of the USA have reported that interill erosion 562 

contributed significantly to the amount of soil eroded in fields (Boardman and Evans, 2020; Parsons, 2019). 563 

Further, measuring the lengths and cross-sections of rills during field surveys or on terrestrial and aerial photos 564 

can be very subjective (Panagos et al., 2016). Different approaches used to detect and measure rills in fields can 565 

cause variability in calculated erosion volumes up to a factor of two (Boardman and Evans, 2020; Casali et al., 566 
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2006; Watson and Evans, 1991). In order to obtain soil erosion rates in weight units, soil volumes need to be 567 

converted using the soil bulk density, which is often based on estimates (Evans and Brazier, 2005). 568 

The shortcomings of erosion plot measurements were discussed by several authors (Auerswald et al., 2009; 569 

Brazier, 2004; Evans, 1995, 2002; Loughran et al., 1988). Erosion plots have various sizes and shapes (few meters 570 

to few hundreds of meters) and various approaches of sediment recording are used (total collection, multislot 571 

divisors, tipping buckets, Coshocton wheels), which all involve significant uncertainties. Although some long-572 

term plot experiments exist, many plot measurements fail to cover the whole year erosion cycle (Auerswald et al., 573 

2009). Often, they have to be removed during land management operations such as seeding, ploughing, or they 574 

are too expensive and labour demanding. 575 

Despite all the shortcomings of available soil erosion data, most data provide valuable information (Benaud et al., 576 

2020).  577 

The evaluation against field measurements in this study provided a first indication of the robustness of results 578 

under specific topographic and climatic conditions. In most environments relevant for maize and wheat cultivation 579 

the deviation between simulated and measured water erosion values is lower than the variability within the field 580 

data. However, tThe reported data does not enable us to further narrow down the uncertainties addressed. Although 581 

the metadata accompanying the field measurements includes information on slope steepness and annual 582 

precipitation (or geographic coordinates allowing for overlay with climatic data), information on soil types or 583 

texture classes, crop type and tillage system implemented over time are provided only for few points. Also, the 584 

various methods used to measure erosion rates, their complex implementation and the bias of field studies towards 585 

locations sensitive to erosion lead to an uncertain representation of large-scale erosion rates based on field 586 

measurements. To facilitate in-depth evaluation of erosion models across different scales, it is crucial to provide 587 

detailed information on site characteristics and to harmonise approaches to measure erosion in the field. 588 

5 Conclusion 589 

The simulation of water erosion with GGCMs is largely influenced by the resolution of global datasets providing 590 

topographic, soil, climate, land use and field management data, which is currently not available at the field scale. 591 

Yet, considering water erosion in global crop yield projections can provide useful outputs to inform assessments 592 

of the potential impacts of erosion on global food production and to identify soil erosion hotspots on cropland for 593 

management and policy interventions. To improve the quality of the estimates and to further develop these models, 594 

it is crucial to identify, communicate and address the existing uncertainties. Increasing the resolution of global 595 

soil, topographic and precipitation data is central for improving global water erosion estimates. In addition, this 596 

study provides an insight into the importance of considering field management. The numerous options to simulate 597 

the cultivation of fields result in a large range of possible water erosion values, which can only partly be narrowed 598 

down at a global scale. Further improvement of global water erosion estimates requires detailed and harmonized 599 

field measurements across all environmental conditions to validate and calibrate simulation outputs. Using 600 

existing field data, we were able to identify specific environmental characteristics under for which we have lower 601 

confidence in the modelled erosion ratesthe model's performance was not sufficient enough. These are mainly 602 

found in the tropics and mountainous regions due to the high sensitivity of simulated water erosion to slope 603 

steepness and precipitation strength, and the complexity of mountain agriculture.  However, these areas represent 604 
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only a small fraction of global cropland for wheat maize and maizewheat. The overlap of simulated and measured 605 

water erosion values for most of the global wheat and maize fields underlines the robustnessThe overlap of 606 

simulated and measured water erosion values in most environments used to produce maize and wheat underlines 607 

the robustness of an EPIC-based GGCM to simulate the differences in water erosion rates of major global crop 608 

production regions. of simulated water erosion values generated with an EPIC-based GGCM. 609 
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 925 

Figure 1: Scheme of procedure used for simulating global water erosion with EPIC-IIASA and for analysing the 926 
uncertainty, sensitivity and robustness of our simulation setup. 927 
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928 



26 
 

 929 

Figure 2: (a) Soil loss due to water erosion in maize (a) and wheat (b) fields simulated with the baseline 930 
scenario. Each pixel cell illustrates the median relative water erosion of one representative field. The extent of 931 
cropland areas is not considered in pixel cell size. The bars in the bottom plot (c) illustrate median soil removal 932 
for major world regions simulated under maize and wheat cultivation. The lines and whiskers illustrate 25th and 933 
75th percentile values. The classification of world regions is illustrated in Fig. S3. Due to the large gap between 934 
aggregated values, all values in the bottom plot have been log-transformed to facilitate the visual 935 
comparison.Soil loss due to water erosion in maize and wheat fields simulated with the baseline scenario. (b) 936 
The bars in the bottom plot illustrate the median, the lines and whiskers 25th and 75th percentile of simulated soil 937 
loss for major world regions. The classification of world regions is illustrated in Fig. S4. Due to the large gap 938 
between aggregated values, all values in the bottom plot have been log-transformed to facilitate the visual 939 
comparison. 940 
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 941 

Figure 3: Water erosion uncertainty due to (a) field management assumptions and (b) water erosion equations. 942 

 943 

Figure 4: Prevailing uncertainty, defined as the higher uncertainty range by at least 5 t ha-1. 944 
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  945 

Figure 5: First-order and total-order sensitivity indices (SI) for (a) slope steepness (%) and (b) precipitation 946 
[mm]. The dashed vertical line illustrates median annual precipitation at all tested locations (1248 mm).  947 

948 

 949 

Figure 6: Comparison of simulated erosion with measured erosion. (Aa) Median deviation (MD) in t ha1 950 
between simulated erosion using the baseline scenario and measured erosion. Simulated and measured data is 951 
grouped into precipitation classes and slope classes used for the simulation setup. (Bb) Distributions of 952 
Measured measured erosion rates, erosion rates simulated with the baseline scenario and uncertainty ranges for 953 
management assumptions and erosion equations. The boxplots are defined by the median, the 25 th and the 75th 954 
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percentile of simulated and measured erosion rates. Whiskers illustrate the 10th and 90th percentile. The three 955 
bars next to the boxplots illustrate minimum and maximum median erosion rates calculated with all tillage and 956 
cover crop scenarios and with all water erosion equations. The values have been log-transformed for better 957 
visualization. 958 

 959 

Figure 7: Distribution of low to high slope steepness (SLP) and annual precipitation (PRCP) in maize and wheat 960 
fields. Dark areas illustrate grid cells where dominant slopes are steeper than 8 % and annual precipitation is above 961 
1000 mm. Correspondingly, blue, red, and grey pixels are below one or both thresholds. 962 

(a) 

 

(b) 

 

(c) 

 

(d)  

 



30 
 

Figure 8: (a) Sugar cane cultivation on steep slopes in South China (the steepest slopes are already abandoned 963 
and reforested by eucalyptus trees). (b) Maize cultivation on strongly eroded slopes in South West Uganda. (c) 964 
Abandoned fields and maize cultivation on a slope in South West Uganda. (d) Degraded and abandoned maize 965 
fields in Northern El Salvador. 966 

 967 

Table 1: Equations for calculating the erosivity factor in each water erosion equation available in EPIC.  968 

Erosivity factor Equation 

R = EI   (2) USLE, RUSLE, RUSLE2 (Renard et al., 1997; USDA-

ARC, 2013; Wischmeier and Smith, 1978) 

R = 0.646 ∗ EI + 0.45 ∗ (Q ∗ qp)
0.33 (3) AOF (Onstad and Foster, 1975) 

R = 1.586 ∗ (Q ∗ qp)
0.56

∗ WSA0.12 (4) MUSLE (Williams 1975) 

R = 2.5 ∗ Q ∗ qp
0.5  (5) MUST (Williams, 1995) 

R = 0.79 ∗ (Q ∗ qp)
0.65 ∗ WSA0.009 (6) MUSS (Williams, 1995) 

 969 

Table 2: Tillage management scenarios for maize and wheat cultivation 970 

 Conventional tillage Reduced tillage No-tillage 

total cultivation operations 6 – 7 4 – 5 3 

max. surface roughness 30 – 50 mm 20 mm 10 mm 

max. tillage depth 150 mm 150 mm 40 – 60 mm 

plant residues left 25 % 50 % 75 % 

cover treatment class straight  contoured contoured & terraced 

 971 

Table 3: Management assumptions and erosion equation selected for the baseline scenario 972 

Option Baseline 

TILLAGE • Mix of conventional, reduced and no-tillage in regions where the national share of 

conservation agriculture is > 5 % according to the latest reported data in FAO 

AQUASTAT (2007-2014) (FAO, 2016): Argentina, Australia, Bolivia, Brazil, 

Canada, Chile, China, Colombia, Finland, Italy, Kazakhstan, New Zealand, 

Paraguay, Spain, USA, Uruguay, Venezuela, Zambia and Zimbabwe. 

• Mix of conventional and reduced tillage in the rest of the world. 

OFF-SEASON 

COVER 

• Cultivation only with cover crops in tropics according to Koeppen-Geiger regions 

(Fig. S1) (Kottek et al., 2006). 

• Mix of off-season cover with and without cover crops in temperate and cold zones. 

• No cover crops in arid regions. 

CONSERVATION 

PRACTICE 

FACTOR 

Slope 0 – 16 % 16 – 30 % > 30 % 

P-Factor 1.0 0.5 0.15 
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CROP Water erosion is simulated in wheat and maize fields based on the global crop 

distribution by MIRCA2000 (Fig. S2) (Portmann et al., 2010). 

Weighted average of water erosion under wheat and maize cultivation where 
both crops are grown. 

CROP Water erosion is simulated in wheat and maize fields based on the global crop 

distribution by MIRCA2000 (Fig. S2) (Portmann et al., 2010). 

IRRIGATION • Only on slopes ≤ 5 %. 

• Weighted average of irrigated and rainfed cropland based on MIRCA2000 

(Portmann et al., 2010).. 

METHOD MUSS water erosion equation. 

AGGREGATION Median of all management scenarios per grid cell and region 

 973 

Table 4: First-order sensitivity indices (SI) ranking for the five most sensitive input parameters (PARM) for each 974 
water erosion equation including slope steepness (SLP), daily precipitation (PRCP), soil hydrologic group (HSG), 975 
land use number (LUN), soil silt content (SILT), soil sand content (SAND), curve number parameter (S301), 976 
maximum air temperature (TMX) and crop residues left after harvest (ORHI). The sensitivity indices of the 977 
remaining parameters are presented in Table S3. 978 

 

rank 

AOF MUSL MUSS MUST RUSLE2 RUSLE USLE 

PARM SI PARM SI PARM SI PARM SI PARM SI PARM SI PARM SI 

1 SLP 0.47 SLP 0.47 SLP 0.46 SLP 0.48 SLP 0.46 SLP 0.50 SLP 0.54 

2 PRCP 0.13 PRCP 0.10 PRCP 0.12 PRCP 0.09 PRCP 0.16 PRCP 0.20 PRCP 0.18 

3 HSG 0.03 HSG 0.04 HSG 0.05 HSG 0.04 HSG 0.03 SAND 0.05 SILT 0.02 
4 SILT 0.02 LUN 0.02 LUN 0.02 LUN 0.02 SAND 0.01 TMX 0.01 TMX 0.01 

5 LUN 0.01 SILT 0.02 S301 0.01 SILT 0.02 LUN 0.01 ORHI 0.01 ORHI 0.01 

… … … … … … … … … … … … … … … 

sum  0.69  0.68  0.71  0.69  0.71  0.78  0.77 
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 980 

Table 5: Total-order sensitivity indices (SI) ranking for the five most sensitive input parameters (PARM) for each 981 
water erosion equation including slope steepness (SLP), daily precipitation (PRCP), soil hydrologic group (HSG), 982 
land use number (LUN), soil silt content (SILT), soil sand content (SAND), maximum air temperature (TMX) 983 
and crop residues left after harvest (ORHI). The sensitivity indices of the remaining parameters are presented in 984 
Table S3. 985 

 

rank 

AOF MUSL MUSS MUST RUSLE2 RUSLE USLE 

PARM SI PARM SI PARM SI PARM SI PARM SI PARM SI PARM SI 

1 SLP 0.68 SLP 0.68 SLP 0.63 SLP 0.68 SLP 0.66 SLP 0.69 SLP 0.75 

2 PRCP 0.28 PRCP 0.23 PRCP 0.22 PRCP 0.21 PRCP 0.32 PRCP 0.36 PRCP 0.36 

3 HSG 0.09 HSG 0.12 HSG 0.13 HSG 0.12 HSG 0.08 SAND 0.12 SILT 0.05 
4 SILT 0.07 LUN 0.07 LUN 0.07 LUN 0.07 LUN 0.05 TMX 0.02 TMX 0.02 

5 LUN 0.05 SILT 0.07 SILT 0.05 SILT 0.07 SAND 0.04 ORHI 0.01 SAND 0.01 

… … … … … … … … … … … … … … … 

sum  1.29  1.30  1.25  1.27  1.34  1.27  1.27 

 986 



Text S1. 1 

The following equations describe the calculation of the cover and management factor, the soil erodibility factor 2 

and the topographic factor of each water erosion equation: 3 

The cover and management factor is calculated the same way for each equation:  4 

𝐶 = 𝐹𝑅𝑆𝐷 ∗ 𝐹𝐵𝐼𝑂 ∗ 𝐹𝑅𝑈𝐹 (1) 5 

where FRSD is the crop residue factor, FBIO is the growing biomass factor and FRUF is the soil random 6 

roughness factor, which are calculated with the following equations (Wang et al., 2011; Williams et al., 2012):  7 

𝐹𝑅𝑆𝐷 = 𝑒𝑥𝑝(−𝑃23 ∗ 𝐶𝑉𝑅𝑆) (2) 8 

𝐹𝐵𝐼𝑂 = 1 −
𝑆𝑇𝐿

(𝑆𝑇𝐿+𝑒𝑥𝑝(𝑆𝐶𝑅𝑃1(23)−𝑆𝐶𝑅𝑃2(23)∗𝑆𝑇𝐿))
∗ 𝑒𝑥𝑝⁡(−𝑃26 ∗ 𝐶𝑃𝐻𝑇) (3) 9 

𝐹𝑅𝑈𝐹 = 𝑒𝑥𝑝⁡(−0.026 ∗ (𝑅𝑅 − 6.1)) (4) 10 

where P23 is an exponential coefficient ranging from 0.01-0.5, CVRS is the amount of above ground crop 11 

residue [t ha-1], STL is the amount of standing live biomass of the crop [t ha-1], SCRP1(23) and SCRP2(23) are 12 

coefficients defining an S-shaped growth curve used to estimate the fraction of the ground covered by the plant 13 

as a function of the Leaf Area Index, P26 is an exponential coefficient ranging from 0.01-0.2, CPHT is the crop 14 

height [m] and RR is the soil surface random roughness [mm]. 15 

The soil erodibility factor is calculated the same way for the USLE, AOF, MUSLE, MUST and MUSS 16 

equation using a function of sand, silt, clay and organic carbon contents in the soil: 17 

𝐾 = 𝑋1 ∗ 𝑋2 ∗ 𝑋3 ∗ 𝑋4  (5) 18 

𝑋1 = 0.2 + 0.3 ∗ 𝑒𝑥𝑝⁡(−0.0256 ∗ 𝑆𝐴𝑁𝐷 ∗ (1 − 0.01 ∗ 𝑆𝐼𝐿𝑇)) 6) 19 

𝑋2 = (
𝑆𝐼𝐿𝑇

𝐶𝐿𝐴𝑌+𝑆𝐼𝐿𝑇
)
0.3

 (7) 20 

𝑋3 =
1−0.25∗𝑂𝐶

𝑂𝐶+𝑒𝑥𝑝⁡(3.718−2.947∗𝑂𝐶)
, 𝐼𝐹⁡𝑂𝐶 ≤ 5 (8) 21 

𝑋3 = 0.75, 𝐼𝐹⁡𝑂𝐶 > 5   (9) 22 

𝑋4 =
1−0.7∗𝑆𝑁1

𝑆𝑁1+𝑒𝑥𝑝(−5.509+22.899∗𝑆𝑁1)
  (10) 23 

𝑆𝑁1 = 1 − 0.01 ∗ 𝑆𝐴𝑁𝐷 (11) 24 

Where SAND, SILT, CLAY, and OC are the sand, silt, clay, and organic carbon contents of the soil in %. For 25 

the RUSLE and RUSLE2 method soil erodibility is calculated without the organic carbon contents of the soil 26 

using the following equation: 27 

𝐾𝑅 = 9.811 ∗ (0.0034 + 0.0405 ∗ 𝑒𝑥𝑝 (−0.5 ∗ (
𝐿𝑜𝑔10(𝐷𝐺)+1.659

0.7101
)
2
)) (12) 28 



𝐷𝐺 = 𝑒𝑥𝑝⁡(𝑆𝑈𝑀)  (13) 29 

𝑆𝑈𝑀 =
𝑆𝐴𝑁𝐷∗0.0247−𝑆𝐼𝐿𝑇∗3.65−𝐶𝐿𝐴𝑌∗6.908

100
  (14) 30 

The topographic factor is calculated the same way for the USLE, AOF, MUSLE, MUST and MUSS equation 31 

using a function of slope length and slope steepness: 32 

LS = (
SLPL

22.127
)
XM

∗ (SLP ∗ (65.41 ∗ SLP + 4.56) + 0.065)  (15) 33 

XM = 0.3 ∗
SLP

SLP+exp⁡(−1.47−61.09∗SLP)
+ 0.2 (16) 34 

Where SLPL is the slope length in m, SLP is the land surface slope in m/m and XM is an exponent dependent 35 

upon slope. The topographic factor for the RUSLE method is calculated using a function of slope length and 36 

slope steepness as well: 37 

LSR = RSF ∗ RLF (17) 38 

RSF = 10.8 ∗ SLP + 0.03, IF⁡SLPL > 4.57⁡&⁡SLP < 0.09 (18) 39 

RSF = 16.8 ∗ SLP − 0.5, IF⁡SLPL > 4.57⁡&⁡SLP > 0.09 (19) 40 

RSF = X1, IF⁡SLPL < 4.57 (20) 41 

X1 = 3 ∗ SLP0.8 + 0.56  (21) 42 

RLF =
SLPL

22.127

RXM
 (22) 43 

RXM =
B

1+B
 (23) 44 

B =
SLP

0.0896∗X1
 (24) 45 

Where SLPL is slope length in m and SLP is land surface slope in m/m. The slope steepness factor RSF is 46 

adjusted for different slope steepness and slope length thresholds based on experimental data (Renard et al., 47 

1997). The slope length factor RLF includes an exponent RXM, which is a function of the ratio B of rill erosion 48 

caused by flow and interill erosion caused by raindrop impact (USDA-ARC, 2013). B reflects how steepness 49 

affects rill erosion differently than it does interrill erosion. Rill erosion is assumed to vary linearly with 50 

steepness. The topographic factor for the RUSLE2 method is calculated the same way than for the RUSLE 51 

equation if the transport capacity determined by a function of flow rate and slope steepness exceeds sediment 52 

load. When sediment load exceeds transport capacity RUSLE2 computes deposition. Interrill erosion is assumed 53 

to occur even when RUSLE2 computes deposition, which can be calculated without a distance term as 54 

detachment is solely caused by impacting raindrops (USDA-ARC, 2013). Therefore, the slope length factor is 55 

not considered in the RUSLE2 equation when deposition occurs. 56 



  57 

Figure S1. Main climate zones using the updated Koeppen-Geiger climate classification (Peel et al., 2007). 58 

 59 

 60 

 61 

Figure S2. Grid cells with irrigated and rainfed wheat and maize cultivation around the year 2000 (Portmann et 62 
al., 2010). 63 

  64 



 65 

 66 

 67 

Figure S3. Distribution of average water erosion values from 1980 – 2010 simulated with the baseline scenario 68 
and weighted for each simulation grid. The dashed vertical line illustrates the median of the distribution, which 69 
represents global median water erosion of 6 t ha-1 a-1. Average water erosion at each grid and the global average 70 
water erosion of 19 t ha-1 a-1 has been calculated as a weighted average based on the distribution of irrigated and 71 
rainfed maize and wheat acreage (Portmann et al., 2010). 72 

 73 

 74 



Figure S4S3. World regions classified using the United Nations geoscheme  (UN, 1999) with minor 75 
modifications (UN, 1999): Melanesia has been added to South-Eeastern Asia and the Caribbean has been added 76 
to Central America. 77 

 78 

 79 

Figure S4. Locations of water erosion field data from cropland where coordinates were recorded (n=554). 80 

 81 

 82 



83 

 84 

Figure S5S5. Distribution of erosion (t ha-1) values measured in agricultural fields using runoff and sediment 85 
collection plot experiments (n = 159188, Mean = 17 21 t ha-1; Median = 4 t ha-1), and the 137Cs method (n = 86 
314315, Mean = 26 24 t ha-1; Median = 20 18 t ha-1) and volumetric surveys (n = 103, Mean = 2 t ha-1; Median = 87 
0.1 t ha-1). 88 
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 91 

Figure S66. (a) Distribution of slope steepness (%) records for measured erosion values (n = 473606; Mean = 92 
18.316 %; Median = 13 11 %). (b) Distribution of annual precipitation (mm) records for measured erosion 93 
values (n = 473606; Mean = 974 879 mm; Median = 872 774 mm). (c) Distribution of recorded measurement 94 
periods for soil loss experiments excluding radioisotopic methods (n = 15995; Mean = 10 15 a; Median = 1 a). 95 

 96 



 97 

 98 



Figure S7S7. (a) Number of measured water erosion records (n=473606) per country (n=39376). (b) Methods 99 
used to measure water erosion in agricultural fields (n=473). (c) Soil texture recorded at sites of water erosion 100 
measurement (n = 473). 101 

 102 

 103 

Figure S8. Locations of water erosion field data from cropland where coordinates were recorded (n=468). 104 

105 



 106 

Figure S9S8. Median deviation (MD) in t ha-1 between measured and simulated water erosion using the baseline 107 
scenario with different water erosion equations. Measured and simulated medians were calculated for different 108 
slope and precipitation classes. 109 

 110 



 111 

Figure S39. Distribution of average water erosion values from 1980 – 2010 simulated with the baseline scenario 112 
and weighted for each simulation grid. The dashed vertical line illustrates the median of the distribution, which 113 
represents global median water erosion of 6 t ha-1 a-1. Average water erosion at each grid and the global average 114 
water erosion of 19 t ha-1 a-1 has been calculated as a weighted average based on the distribution of irrigated and 115 
rainfed maize and wheat acreage (Portmann et al., 2010). 116 

 117 
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 119 



Figure S10. Simulated years left until the whole soil profile is eroded under permanent maize and wheat 120 
cultivation. Calculated as a ratio of the sedimentary deposit thickness [m] (Pelletier et al., 2016) and the eroded 121 
soil depth per year (water erosion [t ha-1 a-1] x bulk density [g m-3]). 122 

 123 

Figure S11. Comparison of slope inputs and simulated water erosion outputs between the cropland distribution 124 
scenario using the most common slopes and the cropland distribution scenario using the flattest terrain available 125 
in Italy. (a, b) distribution of the cropland share (Portmann et al., 2010) per slope class. (c, d) distribution of grid 126 
cells per slope class. (e) Simulated water erosion for Italy using both cropland distribution scenarios. Midlines 127 
visualise median values, boxes include values from the 25th to the 75th percentiles and whiskers bracket values 128 
between the 10th and the 90th percentiles. 129 
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 132 

Dominant 

slope class 

Lower 

value 

(%) 

Upper 

value 

(%) 

Mid 

value 

(%) 

Slope 

length 

(m) 

Field 

size (ha) 

1 0 0.5 0.25 200 10 

2 0.5 2 1.25 200 10 

3 2 5 3.5 200 10 

4 5 8 6.5 200 10 

5 8 16 12 100 5 

6 16 30 18 75 5 

7 30 45 35.5 50 1 

8 45 100 60 20 1 

 133 

Table S1. A set of rules for field size and slope length estimation for each dominant slope class. The 134 
area/dominant slope class was assigned to each grid cell from a global slope and terrain dataset (Fisher et al., 135 
2007) providing 3 arc-sec spatial resolution distributions of nine slope gradient classes: 0–0.5%, 0.5–2%, 2–5%, 136 
5–8%, 8–16%, 16–30%, 30–45%, and > 45% interpreted from SRTM elevation data (CGIAR-CSI, 2006). Mid-137 
interval value of the dominant slope class was used as an input for EPIC. 138 

Table S2. Input parameters for the sensitivity analysis of the water erosion equations. Random values assigned 139 
to each input parameter in the sensitivity analysis are defined by a range of discrete values or a triangular 140 
distribution defined by the values given in the table.  141 

Table S3. First- and total-order sensitivity indices (SI) ranking for 30 input parameters for each water erosion 142 
equation. 143 

Table S4. Spearman coefficients explaining the positive or negative correlation between the first- and total-144 
order sensitivity indices of the input parameters from each equation and the amount of annual rainfall at a 145 
location. 146 

Table S5. Measured water erosion values collected from 1013 studies. The reference list of each study is 147 
available at TWCarr-si02.docx. 148 
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gridded crop model 
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Reply to Anonymous Referee #1  
 

Referee comment is printed in purple and is addressed below 
 
Despite the decades of research, modelling spatially distributed phenomena such as soil water 
erosion, still represents very challenging job. The biggest challenge lies in comparing modelled and 
measured soil erosion rates, especially in case of global scaled models such EPIC. The main added 
values of presented paper are: 1. Evaluation of simulation results against field data and uncertainty 
assessment. Uncertainty assessment represents a crucial factor, when communicating the results of 
simulation and further incorporation of such models into for instance global circulation models. 2. The 
authors pointed out several obstacles, which prevent further development of soil erosion modelling 
research such as lack of uniform and reliable data on water erosion rates, lack of datasets providing 
distributed data on topography, soil, climate, land use and field management at the field scale. 
Supplementary TableS5 contains the list of soil erosion measurement records, it would be good to add 
an information about the scale of measurement (plot, field, : : :) The article is of high scientific value 
and I recommend it for the publication without any substantial revision. 

 
Thank you for your positive comment. We added a column to the supplementary TableS5 specifying 
the scale of the erosion measurement as “Hillslope”, “Plot” and “Field”. A more detailed discussion 
about the field data scale can be found in the reply to referee #2. 
 
 



Uncertainties, sensitivities and robustness of simulated water erosion in an EPIC based global-
gridded crop model 
By T. W. Carr et al. 

 
Reply to Anonymous Referee #2 
  

Dear reviewer,  

Before we address each of your comments, we briefly clarify the main incentive of this study. Large-

scale indicators about global-scale phenomena are needed to inform all major environmental and 

agricultural policies such as the European Union's Common Agricultural Policy (CAP), the United 

Nations Sustainable Development Goals (SDGs), the United Nations Convention to Combat 

Desertification (UNCCD) and the Intergovernmental Science-Policy Platform on Biodiversity and 

Ecosystem Services (IPBES). Water erosion will not be considered in any of these major environmental 

and agricultural policy programs without large-scale assessments (Alewell et al., 2019). Global-gridded 

crop models have the capacity to develop large-scale indicators and to inform about agricultural 

productivity in a transparent and consistent way across large areas (Mueller et al., 2017). This paper 

aims to address the gaps in the literature of the links between water erosion and crop cultivation in 

various large-scale and global impact assessments, as accurately as is currently feasible given data 

availability. Studies on large-scale and global climate change impacts in the agricultural sector lack 

representation of water erosion impacts on crops (Balkovič et al., 2018), studies on global terrestrial 

carbon fluxes do not account for carbon runoff from cropland through soil erosion (Chappell et al., 

2016), and studies assessing large-scale and global market impacts of soil erosion rely on simple linear 

estimates of water erosion impacts on crop production (Panagos et al., 2018; Sartori et al., 2019). It is 

important, though, to understand the limitations of such assessments so that they can be improved 

in the future, and that is why we systematically test a number of approaches in our paper. 

The model used in this study has been confirmed as a reliable tool for global crop yield projections 

and stands out against comparable global models due to its detailed representation of soil processes 

including water erosion and the impacts of tillage on soil properties. Therefore, a global-gridded EPIC 

model has the potential to deliver much needed indicators about relationships between erosion and 

crop productivity on large and global scales. This paper has the objective to support the ongoing 

development of large-scale and global model applications by analysing the robustness of average long-

term water erosion estimates generated with global-gridded crop models. In other words, we do not 

attempt to reproduce soil loss rates measured in single fields but to analyse the robustness of large-

scale water erosion estimates based on global-gridded crop model outputs. Moreover, we focus on 

the necessary improvements needed to account for water erosion in global models by analysing and 

discussing its robustness across global agro-environmental conditions, the importance of global input 

data on field management and the uncertainty resulting from different erosion equations. 

Most of the criticism by the referee is directed against the lack of field data, model calibration, and 

general criticism on RUSLE-based erosion models and the 137Cs-method used for erosion 

measurements. Each point of criticism is addressed in the following (Referee comments are printed in 

purple and our replies are listed below): 

The EPIC model has been used to look at climate change impacts on crop yields and erosion rates e.g. 
Favis-Mortlock et al. (1991) and to model 7000 years of erosion under changing climates and land 
uses for a single field (Favis-Mortlock et al., 1997). It is stressed that EPIC needs calibration in order 



to give reasonable results. This is the very firm conclusion of the GCTE erosion model testing exercise 
(Favis-Mortlock, 1998; Boardman and Favis-Mortlock, 1998). 
 
The first point of criticism is on the need to calibrate the EPIC model for reasonable results. The EPIC-

IIASA model uses state-of-the-art global crop management and agro-environmental input data and 

has been positively evaluated for representing national average yields and inter-annual yield 

variability globally (Balkovič et al., 2014). It was used in several studies and its outputs have been 

compared to regional yield statistics and other global crop and land use models as a part of ISI-MIP 

and GGCMI model inter-comparison initiatives (Mueller et al., 2017). Global crop models are not 

calibrated to reproduce crop yields at field scale but rather to represent the crop yield patterns across 

regions and countries to address research questions that cannot be addressed through field scale 

studies. Following the same paradigm, we aim to analyse the robustness of EPIC to represent regional 

differences and regional spatial patterns in water erosion estimates rather than accurately reproduce 

erosion events occurring in the past in response to individual rain events of rainy seasons. We are 

aware that our approach would be inappropriate for the latter case. We are also aware that a proper 

model calibration is always needed to meet experimental data obtained from the field, foremost for 

a complex process like soil loss due to water erosion. At the same time, sound calibration for a wide 

range of global environments and crop management practices would require enormous capacity and 

work force while still facing a high degree of subjectivity in experimental data (e.g. Panagos et al. 

2016). Given the current lack of consistent field measurements representing all global environments, 

it is not possible to produce plausible global erosion estimates using only bottom-up, field-scale 

modelling.  

To further clarify the intention of this study, we add a reference clarifying the usefulness of large-scale 

models to line 59: “Moreover, improving the representation of water erosion in large-scale models is 

urgently needed to inform major environmental and agricultural policy programs such as the European 

Union's Common Agricultural Policy (CAP), the United Nations Sustainable Development Goals (SDGs), 

the United Nations Convention to Combat Desertification (UNCCD) and the Intergovernmental Science-

Policy Platform on Biodiversity and Ecosystem Services (IPBES) (Alewell et al., 2019).” 

We will further clarify the focus of this paper in the introduction, line 91: “The overall aim of this study 

is: (i) to analyse the robustness of water erosion estimates in all global agro-environmental regions 

simulated with an EPIC-based global-gridded crop model; and, (ii) to discuss the main drivers affecting 

the robustness and the uncertainty of simulated water erosion rates on a global scale.” 

We will modify the last conclusion on line 606: “The overlap of simulated and measured water erosion 

values in most environments used to produce wheat and maize underlines the robustness of an EPIC-

based GGCM to simulate the differences in water erosion rates of major global crop production 

regions” 

The authors claim that they are evaluating their results against field-scale measures (lines 84 and 
95). This is not the case: they use 137Cs and erosion plot data (line 219). Erosion plot data cannot be 
up-scaled to field scale: it is useful for relative assessments e.g Cerdan et al. (2010). Extrapolation 
from12 plots in central Belgium to give an average rate of erosion for Europe is a well-known (?) 
example of misuse of experimental plot data (Boardman, 1998): the current paper is heading in that 
direction! 
 

The referee criticises the use of our erosion plot data. We do not extrapolate plot data to represent 

water erosion on continental scales as in the Belgium-example mentioned by the referee. As explained 

on line 235-239, we aggregate field data into groups with similar slope classes and precipitation classes 



and compare the values to model outputs with the same slope and precipitation classes. Thereby, we 

analyse the robustness of model outputs for different environments characterised by the most 

important parameters affecting water erosion on a global scale. Slope and precipitation are the most 

sensitive parameters influencing model outputs and are the parameters found previously to be most 

critical for the robustness of RUSLE-based models. We chose this method to illustrate the varying 

robustness of our model outputs around the globe and we identified regions where the model 

performance is not sufficient, which is communicated in the discussion (line 367-370) and the 

conclusion (line 472 – 473). 

More generally, plot and field scale are not exactly defined. These two categories can be overlapping 

as large plots can have similar slope length as fields. Plots of 20 m are most common, and if they are 

equipped by multislot divisors, typing buckets they can be up to 100 m long, or even several hundred 

meters if equipped by Coshocton wheels. We know about 100 m erosion plots from Slovakia and 

Austria or 30 m plots in Zimbabwe. Fields can also have slope length about 20-100 meters, especially 

if they are on slopes, contour oriented or when they belong to small family farms in developing 

countries. We have seen 30-50 m long slopes in Uganda, Madagascar, or Slovakia. 

Regarding the real scale of our data, most of them (both 137Cs and erosion plots) represent slopes of 

10-100 m so they are at the margin of plot and field scale. Therefore, in the paper, we will name the 

range of spatial scales of the field data on line 239 (we increased the field data sample as explained 

below). “We compared our simulated water erosion rates with 606 soil erosion measurements on 

arable land from 36 countries representing plot and field scale. Most of the selected erosion rates are 

based on the 137Cs method. In addition, data from erosion plots and volumetric measurements of rills 

collected by Auerswald et al. (2009), Benaud et al. (2020) and García-Ruiz et al. (2015) were used. In 

total, 315 records were derived by the 137Cs method, 188 records from runoff plots, and 103 records 

from volumetric measurements of rills. “ 

The term “field-scale measurements” on line 95 will be deleted as this sentence will be replaced with 

the sentence stating the overall aim of this study presented above. 

The term “field measurements” on line 106 is not related to scale. 

 

RUSLE is an unvalidated model and its problems and poor performance are reviewed in Evans and 
Boardman (2016a and b). For a review of the general problems of using erosion models see Favis-
Mortlock et al. (2001): in Harmon and Doe (ed) book. 
 
Further criticism is focused on the validity of the RUSLE method in general, which is one out of seven 
similar erosion models included in our EPIC study. The RUSLE methodology is based on more than 
10,000 plot-years of experiments and has been applied in more than 100 countries with varying 
robustness (Alewell et al., 2019; Renard et al., 1997; Wischmeier & Smith, 1978). As already disputed 
above, the limited availability of global input and experimental data requires simple erosion models 
for global studies. Therefore, RUSLE has been chosen by most studies focusing on global erosion 
(Borrelli et al., 2017; Doetterl et al., 2012; van Oost et al., 2007) and it is unfortunate that the referee 
disagrees with the approach adopted by most of the scientific community. We agree that the varying 
robustness of RUSLE-based methods around the world need to be considered, which is one of the 
main foci of this paper and has been addressed in the introduction and in the discussion. Furthermore, 
we present the varying estimates of different water erosion equations and thereby demonstrate the 
uncertainty of relying on erosion estimates from a single model. The references used for criticising the 
RUSLE method by the referee promote field studies as alternatives to erosion models. However, this 
is not feasible for a range of research applications focusing on analysing scenarios at large and global 



scales (Alewell et al., 2019; Panagos et al., 2016), which is also a major purpose of global gridded crop 
models. Instead, focusing on the improvement of the application of simple erosion models such as 
RUSLE-based models as intended with this paper supports the ongoing development of global erosion 
impact assessments (Naipal et al., 2015). 
 

137Cs has been seriously criticised recently (Parsons and Foster, 2011). The technique should not be 
used without dealing with these limitations. This problem is ignored in the paper. 
 
The objections of Parsons and Foster (2011) were discussed by Mabit et al. (2013) published as a direct 

answer to Parsons and Foster in the same journal. One of the most important confirmation of the 

usefulness of the 137Cs method given by Mabit et al (2013) are the positive results of a comparison 

between erosion values obtained with various measurement methods and erosion values obtained by 

137Cs method: “Several studies at various scales (from plot to watershed scales) have been conducted 

to compare the 137Cs based erosion rates obtained with direct erosion measurement approaches such 

as erosion plots and catchment sediment yields (e.g. Schuller et al., 2003; Porto et al., 2003; Porto et 

al., 2004; Stankoviansky et al., 2006;Mabit et al., 2009; Parsons et al., 2010; Ceaglio et al., 2012; Porto 

and Walling, 2012a, 2012b). In northern California, rates of erosion from accumulated pond sediment 

and soil lost from hillsides assessed through 137Cs agreed well (i.e. O'Farrell et al., 2007). In Italy, the 

reliability of the mass balance model at slope and catchment scale was verified and confirmed by 

comparing the basin net soil erosion value obtained by 137Cs measurements against the mean annual 

value of sediment yield measured at the basin outlet (i.e. Di Stefano et al., 2005). For three small 

catchments located in Southern Italy, measurements of sediment output validated 137Cs theoretical 

conversion models to estimate soil redistribution rates (i.e. Porto et al., 2004)”.  

Another paper by Parsons (2019) also criticises erosion plots, modelling (several models) and 

volumetric measurements of rills. As our paper is focused on global erosion modelling, we did not 

include the extensive literature on the advantages and disadvantages of each erosion measurement 

method. A comprehensive discussion of the objections against the 137Cs method and other 

measurement methods would but too extensive for our paper. However, we will address Parsons and 

Fosters objections in this response:  

a. Regional and local heterogeneity of 137Cs fallout and its local redistribution by vegetation, 

infiltration, bioturbation, etc.: this is well known fact but it is considered in the methodology 

and the solution is the selection of reference sites in immediate vicinity of study sites and 

using statistical criteria (variation coefficient) criteria for microvariability of 137Cs. The 

microvariability of 137Cs is similar to most other soil properties and the potential error is 

similar or smaller than for other erosion measuring methods (as it will be demonstrated 

further). There is set a limit for variation coefficient which reference site should not exceed. 

b. Mobility of 137Cs: the references presented by Mabit et al. (2013) clearly demonstrate that 

137Cs is strongly bind to colloids (with details on particular clay minerals and organic matter) 

and its mobility (washing by runoff during the deposition, leaching and plant uptake are 

negligible (representing less than one percentage to very few percentages of 137Cs fallout). 

The ideas about mobility, leaching and plant uptake of 137Cs presented by Parsons and Foster 

are based mainly on laboratory experiments with Caesium which do not represent its real 

behaviour in nature because the laboratory conditions are artificial, and the used doses of 

Caesium are too high. Parsons and Foster admit that in their paper. If these ideas would be 

correct, we would frequently see leached Caesium in deeper part of soil profile or the whole 

inventories at sites undisturbed by erosion would be depleted by plant uptake. But this is 

never the case in natural soil. 



c. Selective removal and sorting of the particles: This is well known by all authors using the 137Cs 

method and it is mentioned in all handbooks and conversion procedure has a parameter for 

that. But it is true that this factor is difficult to quantify. But similar weak points are common 

in most methods of erosion measurements as will be demonstrated below. 

d. Conversion models: Indeed, procedures to calculate soil loss require some parameters which 

are not always available. The accuracy of calculation depends on quality of input data and is 

different in individual studies. But this is the case for all erosion measurements and all 

methods as it will be demonstrated below. 

e. Sample preparation: the problems with coarse fraction, dry or wet sieving can occur in specific 

soils, especially when having porous coarse fraction and concretions containing clay or organic 

matter so that the coarse fraction has electrical charges. This of course should be understood 

by staff who is expected to have basic pedological education. It is true that not all these details 

are mentioned in every methodological guidance, but they are discussed by some authors.  

f. Gammaspectroscopy: Criticism of gammaspectroscopy is not relevant at all. Indeed, there are 

possible different geometries of detectors and detectors have to be calibrated. But this is task 

for laboratory staff. Cs-method obviously require staff having background in nuclear physics. 

Each laboratory method whether physical or chemical require staff with appropriate 

qualification.   

Finally, we accept that we could have mentioned the limitations of the field data we collected and 

referred to some of the existing literature. We will mention the main limitations of the field data we 

collected on line 552:  

“The 137Cs method was criticised by Parsons and Foster (2013), who questioned assumptions about 

the 137Cs behaviour in the environment (variability of the 137Cs input by wet fallout, its microspatial 

variability at reference sites, its possible mobility in certain soils, the 137Cs uptake by plants and other 

aspects of 137Cs behaviour in soil). To confront the criticism against the 137Cs method, Mabit et al. 

(2013) discussed all objections raised by Parsons and Foster (2013) and confirmed its accuracy by listing 

several studies, in which 137Cs based erosion rates are compared with erosion rates derived from 

direct measurements. The 137Cs method is based on a set of presumptions which should be met to 

produce useful results and thus careful interpretation of the obtained results is needed (Fulajtar et al., 

2017; Mabit et al., 2014; Zapata, 2002). 

Similarly, erosion rates obtained by volumetric measurements require careful interpretation as they 

are exposed to various potential sources of errors and do not account for interill erosion. Although the 

latter can be neglected under certain circumstances, studies from Europe and semiarid areas of the 

USA have reported that interill erosion contributed significantly to the amount of soil eroded in fields 

(Boardman and Evans, 2020; Parsons, 2019). Further, measuring the lengths and cross-sections of rills 

during field surveys or on terrestrial and aerial photos can be very subjective (Panagos et al., 2016). 

Different approaches used to detect and measure rills in fields can cause variability in calculated 

erosion volumes up to a factor of two (Boardman and Evans, 2020; Casali et al., 2006; Watson and 

Evans, 1991). In order to obtain soil erosion rates in weight units, soil volumes need to be converted 

using the soil bulk density, which is often based on estimates (Evans and Brazier, 2005). 

The shortcomings of erosion plot measurements were discussed by several authors (Auerswald et al., 

2009; Brazier, 2004; Evans, 1995, 2002; Loughran et al., 1988). Erosion plots have various sizes and 

shapes (few meters to few hundreds of meters) and various approaches of sediment recording are used 

(total collection, multislot divisors, tipping buckets, Coshocton wheels), which all involve significant 

uncertainties. Although some long-term plot experiments exist, many plot measurements fail to cover 

the whole year erosion cycle (Auerswald et al., 2009). Often, they have to be removed during land 



management operations such as seeding, ploughing, or they are too expensive and labour 

demanding.” 

It is simply not true to claim that there is a limited availability of field data and lack of long term 
measurements (lines 68-69). There are extensive data sets from Switzerland, north Germany and the 
UK. These could be used to validate the results of erosion models: see Boardman and Evans (2020: 
PPG) for a review of these methods of assessment of erosion at a field scale. 
 
The need for slope and precipitation information accompanying erosion measurements in our 

evaluation method narrows down suitable field datasets, as meta data such as slope steepness is often 

not available in published datasets. Moreover, when we refer to a lack of field data, we are talking 

about the global scale and especially the imbalance in data availability among world regions. We have 

addressed the uneven distribution of global field data in the introduction and the skewed focus of 

field data on the United States and Europe in the discussion. Also, the difficulty of gathering field data 

from a very heterogenous mix of measurement methods is comprehensively addressed in the 

discussion. We attempted to gather field data from as many continents as possible to represent 

different global environments. Insufficient field data representing all global regions and the lack of 

sufficient metadata in available datasets to further improve erosion modelling on large and global 

scale is an important conclusion of this paper. 

We will further clarify these issues in the discussion after line 514  

“A variety of factors influencing water erosion such as climate, field topography, soil properties and 

field management need to be considered when modelling water erosion but are often not reported in 

available field measurements (García-Ruiz et al., 2015). This hampers a direct comparison between 

simulated and observed water erosion values. We demonstrated the varying match between measured 

and simulated water erosion using different tillage and cover crop scenarios. Metadata on field 

management often only provides the crop cultivated and therefore the conditions under which erosion 

was measured in the field are not known sufficiently to evaluate erosion values simulated under 

different field management scenarios. Similarly, information on field topography and soil properties is 

often not provided with recorded field measurements and thus their use is limited in an evaluation of 

water erosion estimates simulated in different global environments. Moreover, most data are 

concentrated in the United States, West Europe and the West Mediterranean (García-Ruiz et al., 2015). 

In summary, there is a lack of field data representing all needed regions, situations and scenarios 

(Alewell et al., 2019).” 

We increased the field data sample to 606 records using publicly available datasets from Germany and 

the UK provided by Auerswald et al. (2009) and Benaud et al. (2020). 

We add a description of the additional field data after line 256:  

“Bounded plots are the most commonly used method of erosion measurements. They were introduced 

in the USA in the 1920s (Hudson, 1993) and were used for the development of USLE and WEPP models 

(Brazier, 2004). Eroded soil material can be quantified with erosion plots in different ways (total 

collection of sediment, fractioned collection of sediments using multislott divisors, measurement of 

discharge and sediment concentration by tipping buckets and Coshocton wheels). The overview of this 

method is provided by Cerdan et al. (2010); Hudson (1993); Mutchler et al. (1994); De Ploey and 

Gabriels (1980) and Zachar (1982). 

The volumetric measurements of rill erosion are used since approximately the 1940s in the USA (Kaiser, 

1978 in Evans, 2013) and the 1950s in Europe (Lobotka, 1955), usually at field scale (Boardman, 1990, 



2003; Boardman and Evans, 2020; Brazier, 2004; Evans, 2002, 2013; Herweg, 1988; Zachar, 1982). The 

volume of erosion rills is derived from their lengths and profile cross-section areas, which are measured 

in field or from terrestrial and aerial photos (Evans, 1986, 1988; Watson and Evans, 1991).” 

An attempt to further increase the field data sample using the source provided by the referee ( 

Boardman & Evans (2020)) was not possible as only aggregated values are provided for the large 

datasets listed in Boardman & Evans (2020). 

Some more general remarks: Although huge effort was spent by the erosion community to generate 

an enormous number of data, there is a serious lack of useful data to evaluate large-scale models. It 

was very challenging to gather the amount of field data used in this study for the following reasons: 

1. As we are working with USLE-derived models, we were looking for data from certain spatial 

extend only. The USLE was developed at short slopes and represents sheet erosion and initial 

stages of rill erosion. Therefore, we preferred data from ca 10-100 m long slopes. This is the 

case for field data derived with the 137Cs method and erosion plots. Initially, we decided 

against using data from long slopes (several hundred of meters), which is usually the case of 

volumetric measurements of rill erosion and hydrological measurements in small watersheds. 

 

2. At the beginning of this project we tried to focus only on data derived by 137Cs method as 

different methods represent different erosion processes and are subject to different 

systematic errors which are presented in the following: 

 

Erosion plots with total collection of sediment have problems to collect great volumes of 

sediment in case of extreme rain events (the sediment may exceed the capacity of containers) 

and it can be difficult to determine the weight of sediment (when it is wet, the whole volume 

cannot be carried to the laboratory for drying so the quantity of soil in the collected mud is 

just estimated by taking a sample of the mud to measure concentration).  

 

Multislot divisors, tipping buckets and Coshocton wheels have many technical problems 

(multislot divisors may split the sediment unequally if they are not fixed exactly horizontally, 

the tipping buckets and Coshocton wheels loose part of the sediment when they are tipping 

or when the stream is strong water is splashing out, if the stream is weak the soil material is 

sedimenting immediately in tipping buckets and the sample is not representative, data loggers 

can break, etc.).  

 

Studies with replicated plots showed great variability for replicas. Nearing et al. (1999) report 

from almost 800 replicated plot pairs/year data a coefficient of variation ranging between 

14% and 150%. Variability was decreasing with increasing soil loss. The rates of 10 tons/ha 

had coefficient of variability of ca 40%.  

 

Geodetical method (erosion pins) has much bigger error than erosion plots because it has 

poor resolution. If one mm of soil is removed, the change of surface is hardly seen. But this 

represents already 10 tons of soil per hectare. On arable land the geodetic method has 

problems to distinguish between erosion and compaction.  

 

Rill and gully volumetric measurements (preferred method in the reference provided by the 

referee (Boardman & Evans (2020)) neglects sheet erosion completely. The recalculation of 

obtained volumetric data to weight is problematic because of the limited information on soil 



bulk density and its vertical and horizontal variability. This is problematic as we need data in 

t/ha to compare with models. Usually it is not indicated whether rill measurement represent 

the whole year or only the vegetation season, whether they involve rills from snow melt or 

not, etc.   

 

The measurement of rill volumes itself is a source of huge error. Authors who use this method 

know this (for example Evans, 2013, stated: “Mollenhauer notes (2002: 4) ‘The measurement 

of lengths and cross-section areas of linear forms can be extremely error ridden’; and quotes 

from Ruttiman and Prasuhn’s (1990) work in Switzerland that the ‘total error for soil loss 

volume can amount to between 20 and 40%’ (Mollenhauer, 2002: 4)” and further  “The level 

of accuracy of field-based estimates depends on the amount of time spent in 

measuring/estimating the number, lengths and dimensions of rills and gullies and assessing 

volumes of depositional features such as fans. The larger an area surveyed inevitably means 

that cruder estimates of eroded amount will be made, for example, numbers, lengths and 

cross-sectional areas of channels will all have to be estimated rather than measured”).  

 

Measurements have very few traverses (sometimes only 4, Boardman, 2003), which is a huge 

source of error. Boardman even says that sometimes one traverse is enough (Boardman, 

2003: “The number of traverses is clearly subject to the time and resources available and also 

the purpose of the survey as to how much detail and accuracy is required. In many situations, 

it is reasonable to undertake one traverse across the mid-point of the eroded slope and 

estimate total erosion based on the mean rill length.”). Measurement based on one traverse 

compared to measurements based on 4 traverse revealed errors from -18,1% to +48,7%. 

 

The method neglects interrill erosion which is an important portion of the whole erosion 

process. Estimates of the importance of interrill erosion differ significantly for different 

conditions (negligible amount of 0.3 m3/ha/y provided by Evans (1990, in Boardman 2003), 

few % of total erosion: 5-11% (Morgan et al., 1987, in Evans, 2013), up to few tens of %: 25% 

(Prasuhn, 2011) and 10-30% (Zachar, 1982)).  

 

Parsons (2019) emphasize that the volumetric measurements of rills severely underestimate 

overall erosion because rills also involve large quantity of material which was delivered by 

sheet erosion to rills and further transported by rills. These proportions can be 40% for rill 

erosion and 60% for interrill. Luk et al. (1993, in Parsons, (2019)) determined the portion of 

rill erosion ranging between 0 (when only sheet erosion develops) and 56%. Our own 

experience from Central Europe with more heavy rainfalls from own unpublished 

measurements is that at steep slopes (ca 8-12 degrees) it can be in some years 10-40 tons per 

ha. Govers and Poesen found that the proportion between rill and interrill erosion can change 

significantly with time and according to changes in physical properties of top layer and deeper 

layers either proportion of rill erosion can rise or the proportion of interrill erosion can rise. 

In their case study the proportion of interrill erosion was decreasing with time from 46 to 22%, 

but other authors found opposite trends. Therefore, estimating interrill erosion from rill 

erosion using fixed ratios is wrong. They also find, that interrill erosion has higher proportion 

on short slopes than on long slopes. 

 

Sometimes the presented rill measurements are not real measurements but just very rough 

and brief estimation. The rills and their lengths are estimated from photos, where smaller rills 

might be difficult to detect (for example Boardman, 2003: “Ground-level photographs of rills 



and gullies may be used as a record of length and size; subsequent analysis shows them to be 

a reliable means of estimating soil losses (Watson and Evans, 1991)” or Evans, 2013: “In this 

review paper, ‘direct’ assessment of water erosion is taken to mean the mapping of erosion 

and deposition as evident in fields (Figures 1–9) or on ground or aerial photographs and then 

when possible estimating eroded volumes based on lengths and cross-sections of rills and 

gullies and areas and depths of deposition (Evans, 1988; Herweg, 1996; Stocking & 

Murnaghan, 2001).” Watson and Evans (1991) estimate the sizes of rills on photos comparing 

it with the widths of crop rows and height of crop and thickness of colluvial fans they estimate 

according to their colour. They compared the results of volumetric measurements in field and 

on photos (12 photos) and found ratios from 0.67 to 2.12. 

 

Hydrological measurements in elementary watershed do not represent erosion only from 

agricultural land but also bank erosion and road erosion, and both these can be significant.  

 

Sampling of suspended sediment is not well representative, and samplers or data loggers can 

break. The range of discharge in small catchments is so huge that it makes instrumentation of 

hydrological profiles difficult.  

 

 

For these various possible sources of errors, we did not want to mix up different methods. The 

optimal case would have been to only use field data derived from one method, but to increase 

the amount of data we decided to take 137Cs data and some selected erosion plots (to further 

increase our sample we included suitable data from volumetric surveys).  

 

3. Large amount of existing data is not accessible for various reasons: 

a. Many older publications are in national languages 

b. Many older publications are not on internet 

c. Many measurements were published in grey literature, local conference proceedings, 

national acta of scientific institutions, unpublished reports, etc. 

d. Many published data are hardly interpretable because metadata are lacking (slope 

lengths, or inclinations or crop cover, period of measurement is not recorded, 

geographical position of the sites is not recorded, many measurements were running 

only during vegetation period of studied crop so they do not represent annual erosion 

but just few months, etc.). 

e. International journals do not have interest to publish usual case studies which present 

raw data. To get paper published the authors need to present some special objectives 

to follow some special goals or developing methodological innovations. Therefore, 

also many new data sets cannot be found online. 

f. Even if paper is published, journals have usually size limitations. To save space the 

primary data are not presented, only the results of interpretation, statistical 

processing, etc. are there. In publications using 137Cs it is more common to find 

primary data than in studies using other methods.  

Please consider that all methods have a lot of weak points, methodological shortcomings and sources 

of errors, uncertainties and variability and there is lack of reliable comparisons and comprehensive 

assessment of all methods which would be widely accepted by the whole erosion community. There 

are different schools and groups of researchers who use predominantly one method. One group uses 

137Cs method, other groups prefer erosion plots, the next one focuses on elementary watersheds 



using hydrological methods based on discharge and sediment concentration sampling (or combination 

of plots and watersheds) and other group focuses on volumetric measurements of rills and gullies. 

Some researchers using certain method are very critical about other methods, but they are very 

tolerant regarding the shortcomings of their favoured method. Although each method has advantages 

and limitations and each group has success and achievements as well as challenges and failures, it is 

normal if individual researchers or teams prefer one particular approach. But they should respect also 

other approaches. 

Our collected data set represents a reasonable compromise to achieve the objectives of this study. It 

is far beyond the capacities of the team and the objectives of this study to collect all existing erosion 

data. Such task would require years lasting international project with participation of research teams 

from most countries, so that each team would be able to revise data sources in his country and provide 

summary of data including those published in national language and unpublished reports. Most 

existing data have limited accuracy and representativeness, but we cannot wait until dense coverage 

of perfect data will cover the Globe. Erosion is running, agriculture is in troubles and we should 

proceed under existing circumstances and using available tools.  

 

The method of deriving a common slope within an area of 9x56 km is not clear and seems rather 
dubious (line 122). Averaging slope from a large cell (eg. 1km2) is a common failing of erosion 
modelling exercises (e.g. Evans and Brazier, 2005). 
 

The most common slope is determined by a slope class covering the largest area in each simulation 

grid. Slope classes are taken from a global terrain slope database (IIASA/FAO, 2012) and are based on 

a high-resolution 90 m SRTM digital elevation model. We assume that the slope class representing the 

largest area in each grid cell is most likely covered by the largest area of cropland. This builds on the 

idea that a spatially extensive and diverse landscape can be represented by a single “representative 

field” characterized by the prevailing combination of topography and soil condition found in the 

landscape. This method is designed to represent differences in large-scale global crop production with 

an emphasis on the most important global crop production regions.  

We clarify the concept of the representative field on line 134: “Each grid cell is represented by a single 

field characterized by the combination of topography and soil conditions prevailing in this landscape 

unit. Each representative field has a defined slope length (20 – 200 m) and field size (1 - 10 ha) based 

on a set of rules for different slope classes (Table S1). The slope of each representative field is 

determined by the slope class covering the largest area in each grid cell (Table S1). Slope classes are 

taken from a global terrain slope database (IIASA/FAO, 2012) and are based on a high-resolution 90 

m SRTM digital elevation model.” 

A detailed discussion about the uncertainty in slope input data has been added in response to 

comments by the third referee (see response to referee #3). 

One conclusion seems to be that wheat erodes are a greater average rate ((19t/ha) than maize 
(6t/ha) (line 244): this is contrary to all field evidence that I am aware of. 
 
The criticised conclusion on falsely higher erosion rates in wheat fields compared to maize fields is 

based on a misunderstanding. The values represent a global average value (19 t/ha) and a median 

value (6 t/ha) of water erosion rates for both maize and wheat fields combined.  



To avoid confusion, we will focus only on median values in the revised version as median values are 

less influenced by the skewed distribution of erosion values. In the discussion line 418 we mention 

both mean and median value to illustrate the skewed distribution of erosion rates due to very high 

values simulated on steep slopes.  

We will present global median water erosion for both maize (7 t/ha) and wheat (5 t/ha) fields on lines 

26, 280 and 349, and will delete average values. 

Global average water erosion values simulated under different management scenarios and different 

water erosion equations are deleted on line 466 – 468 and 497 to focus only on median values. 
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Uncertainties, sensitivities and robustness of simulated water erosion in an EPIC based global-
gridded crop model 
By T. W. Carr et al. 

 
Reply to Anonymous Referee #3 
 
Dear reviewer, we appreciate your thoughtful comments and have responded to each in the following 

(Referee comments are printed in purple and are each addressed below).  

 
 
This manuscript describes a study to characterize global soil erosion rates on cropland using the 
exploration of a large parameter space of driver data and erosion models. Starting with global 
information on climate, soils, agricultural practices, and field properties, the authors calculate 
representative erosion rates. In a series of experiments, they show the sensitivity of the model to 
driving inputs and parameter assumptions. They evaluate the model results against a large dataset 
of observed soil erosion data. The authors conclude that the model results are very sensitive to 
assumptions about management strategy, and the accuracy of the model is limited by a lack of field 
observations for calibration and evaluation. 
 
In general this manuscript is well written and simple enough to understand. However some key 
information is lacking in the main text of the manuscript, and some of the results seem rather 
suspicious, possibly because of artifacts in the input data. In particular, the headline numbers for 
global soil erosion, and the mapped model output, appear to be strongly influenced by erosion in 
mountainous areas, where in reality land use for agriculture may be much more limited than the 
model assumes. These issues need to be addressed in a revision before the manuscript is ready for 
publication. 
 
Our experience (not only from modelling, but also from field work, excursions and own observations 

and measurements) shows that in some mountainous areas the erosion rates reaches very high levels. 

But to some extent you are right and we considered your objection. Below, when answering other 

comments on this issue we will try to demonstrate in detail the situation in mountains. We will provide 

also some photos. 

Looking at the model results in Figure 2a, what stands out immediately is that very high rates of 

erosion are plotted in many regions of the world where I would not be sure that there is any 

significant amount of agriculture, including the central highlands of Borneo, the Himalaya, eastern 

Madagascar, South Korea, and parts of the Alps. These are indeed high-rainfall/high slope regions 

and in some of the area agriculture is practiced. But where there is cropland, it almost certainly must 

be limited to valley bottoms or other low-slope areas, or only performed with substantial investment 

in erosion mitigation measures, such as terracing.  

Digging deep into the manuscript supplementary materials, I discovered that the actual crop 

distribution data used in this study (5’) comes from Portmann et al. (2010). This citation, and 

explanation for how the crop areas were determined, must be moved to the main body of the text. It 

appears that Portmann et al. (2010) do not use slope or any other topographic characteristics in 

determining the spatial allocation of cropland in their crop area maps. Furthermore, 5’ resolution is 

probably too coarse even in the authors’ own admission to accurately determine appropriate mean 

slope classes for their soil erosion calculations.  



The reference to Portmann et al. (2010) is listed in Table 3 in the main text, which summarises the 

field management assumption and aggregation of model outputs.  

We extend the reference to table 3 on line 212. “Table 3 summarises the field management 

assumptions of the baseline scenario used to aggregate erosion rates in each grid cell and region.” 

We agree, that in some mountainous areas the erosion rates obtained by modelling do not represent 

typical rates. However, it is not the case for all mountains. The values are overestimated most probably 

in mountains of temperate areas such as Europe (Alps), Korea and Japan and also in some tropical rice 

grooving regions on tropical Monsoon Asia (such as Borneo). However, in many mountainous areas in 

tropics the land is cultivated, and maize and wheat are grown even in very steep slopes and often 

without any soil conservation practices or conservation practices are used with insufficient efficiency. 

We attached a collection of photos demonstrating these phenomena (photos are attached in the pdf-

file including the direct response to referee #3). In the tropics, agriculture is very active in mountains 

especially for four reasons:  

1. While in temperate areas such as Europe the temperature is limiting factor of agriculture and 

in higher altitudes (several hundred meters above the see level) it is too cold for most crops 

and if agriculture exist there, it is mainly grazing. In contrary, in tropics the temperature is 

sufficient also in high mountains. 

 

2. The limiting factor in tropics is drought. Therefore, mountains having more rainfall and less 

heat are popular agricultural area. Very good example is Uganda, where the whole flat central 

part of the country is too dry and it is used only for grazing, while steep mountains in west 

and east peripheries of the country are intensively cultivated. The same is in Madagascar and 

in whole Latin America where mountains are more agriculturally exploited than lowlands.  

 

3. In tropics the weathering crusts are very thick and so the loose materials constitute thick soils. 

Tropical soils are poor in organic matter so the difference between topsoil and subsoil is not 

very big. These soils can be exposed to extreme erosion rates much longer than thin soils of 

temperate areas, so farmers do not feel the decrease of fertility and production potential. It 

is decreasing slowly, and they do not realize the impact of erosion. 

 

4. In developing countries, a great portion of land is still under hand management of small family 

subsistence farming. These farmers can cultivate steep slopes easier than farmers who use 

heavy machines. 

Some examples from our own field work, where the extreme exploitation of steep slopes exists are 

following:  

1. In Latin America, especially in mountains with volcanic rocks are cultivate even in extreme 

slopes and here maize is dominant crop (see photos from El Salvador).  

2. Mountainous area of Sub-Saharan Africa: Extremely steep slopes are cultivated, many crops 

with low conserving efficiency are grown (such as cassava and other sweet potatoes, beans, 

maize, etc.), there are terraces, but these are not really horizontal but inclined so they reduce 

erosion partially but not much (see photos from Uganda and Madagascar) 

3. South and East Asia: In this region the major crop is rice which is usually grown on paddy field 

with flood irrigation. Therefore, the large mountainous areas are well terraced and well 

protected from erosion. However, there are also very large mountainous areas which are not 

terraced at all and steep slopes are cultivated. They are growing various crops there such as 



dryland rice, tea, fruit trees, sugar cane, etc. For example, in large part of southern China the 

rice terraces are only in valley bottoms occupying minor areas and all steep slopes occupying 

majority areas are used to grow sugar cane without any soil conservation. 

 

An explanation and further discussion of the resolution of slope input and cropland distribution data 

follows below 

These limitations mean that the headline numbers for erosion (e.g., lines 25-26 of the abstract), and 

much of the results are likely to be skewed by calculations that are not realistic, because they are 

biased by high-slope/high-precipitation areas where in reality, agriculture is not practiced at all, or 

only in very limited and specialized forms, e.g., agroforestry, and perennial crops such as tea and 

orchards. This source of uncertainty needs to be addressed more thoroughly and the methods 

presented more transparently before this manuscript is suitable for publication. 

Finally, it would be interesting if the authors performed a “reality check” on their erosion numbers. 

With some of the extreme values that they calculated, could agriculture be sustainable at all? How 

long would it take before most soil is completely eroded away?  

Unfortunately, in many mountainous areas especially in tropics conventional agriculture with very bad 

management is practiced and it has huge negative impact on land. We demonstrated it by photos. In 

many mountainous areas agriculture is not sustainable at all. But unfortunately, despite of that in 

many areas the destructive land management is going on and poor farmers are destroying the land 

completely. We even do not know how many cases like this occur. We have examples also from 

Slovakia, mainly historical but also recent. There are known cases that some slopes were cultivated 

just 10-20 years and then one extreme storm event removed all soil and the field was abandoned. In 

tropics frequently happens that when the field is destroyed, it is abandoned for 5-10 years being fallow 

and then cultivated again, but there are many cases also when slope is cultivated for 5-7 years and 

destroyed once for ever. See attached photos.  

There are indications of this problems also in literature, for example Montgomery (2007) calculated 

mean erosion rate under conventional agriculture (n= 448) to be over 3.9 mm (what is ca 60 tons per 

hectare). Of course, such agriculture is not sustainable at all. He concluded: “A direct implication of 

the imbalance between agricultural soil loss and erosion under both native vegetation and geologic 

time is that, given time, continued soil loss will become a critical problem for global agricultural 

production under conventional upland farming practices.” Catastrophic effects of agriculture on land 

discuss Pimentel and Burges (2013). They argue that annually 10 million ha of cropland is abandoned 

due to deteriorating production potential caused by erosion. Further, they estimate that recently the 

world cropland covers 1.5 billion ha but since the beginning agriculture people abandoned 2 billion ha 

of crop land. So, more soil is already destroyed and abandoned then what is still used.  

 

Lines 122-123 

What is the justification for choosing the “most common slope”? At the very least, wouldn’t it make 

more sense to choose the lowest slope class in each 5’ gridcell? At least until all of the area in the 

slope class is filled by agricultural land use before moving to the next steeper class? If not, the 

authors’ choice of modal slope class should be justified with citations. 

 



The most common slope is determined by the slope class covering the largest area in each simulation 

grid. Slope classes are taken from a global terrain slope database (IIASA/FAO, 2012) and are based on 

a high-resolution 90 m SRTM digital elevation model. We assume that the slope class representing the 

largest area in each grid cell is most likely covered by the largest area of cropland. This builds on the 

idea that a spatially extensive and diverse landscape can be represented by a single “representative 

field” characterized by the prevailing combination of topography and soil condition found in the 

landscape. This method is designed to represent differences in large-scale global crop production with 

an emphasis on the most important global crop production regions.  

We clarify the concept of the representative field on line 134: 

“Each grid cell is represented by a single field characterized by the combination of topography and soil 

conditions prevailing in this landscape unit. Each representative field has a defined slope length (20 – 

200 m) and field size (1 - 10 ha) based on a set of rules for different slope classes (Table S1). The slope 

of each representative field is determined by the slope class covering the largest area in each grid cell 

(Table S1). Slope classes are taken from a global terrain slope database (IIASA/FAO, 2012) and are 

based on a high-resolution 90 m SRTM digital elevation model.” 

Slope input data is an important uncertainty for simulating global water erosion estimates as we 

cannot identify cultivated slopes on a global scale. This will be discussed in the revised paper by 

addressing: (i) the simulation of extreme values on steep slopes including the proposed ‘reality check’; 

(ii) the consequences of using the most common slope; and, (iii) an ideal scenario, where cultivation 

is limited to the flattest terrain available. We used Italy as a test case for a comparison between water 

erosion rates simulated under the proposed ideal slope scenario and the slope scenario based on the 

most common slope. We chose Italy because it has large maize and wheat cultivation areas, which are 

located on both flat terrain in the north and in hilly regions in the south, and thus the country 

represents a diverse landscape with a wide range of possible water erosion rates. We add a 

comprehensive discussion addressing each slope related issues after line 426:  

“Changing climatic conditions with increasing elevation and the variable soils in mountain regions can 

favour crop cultivation in higher elevations over lower elevations (Romeo et al., 2015). However, 

upland farming without soil conservation measures can lead to exhaustive soil erosion and can become 

a critical problem for agriculture (Montgomery, 2007). Large areas of land have been abandoned due 

to high erosion rates as soils were no longer able to support crops (Figure 8) (Romeo et al., 2015). As 

mountain agriculture is determined by various environmental and socio-economic factors, the 

cultivation of steep slopes can be very variable between regions. Regional erosion assessments in 

mountainous cropland suggested that areas with extreme water erosion rates are mainly limited to 

marginal steep land cultivated by smallholders (Haile and Fetene, 2012; Long et al., 2006; Nyssen et 

al., 2019). In some mountainous regions efforts to remove marginal farmlands from agricultural 

production, and programs to improve land management on steep slopes have reduced high water 

erosion rates (Deng et al., 2012; Nyssen et al., 2015). On the contrary, recent pressure through 

increasing population and crop production demands has resulted in re-cultivation of hillslopes and a 

reduction of fallow periods, which limits the recovery of eroded soil (Turkelboom et al., 2008; Valentin 

et al., 2008).  

To analyse the sustainability of simulated maize and wheat cultivation systems exposed to high erosion 

rates, we compare simulated annual eroded soil depth with a global dataset on modelled sedimentary 

deposit thickness (Pelletier et al., 2016). The comparison shows that at 4 % of grid cells permanent 

maize and wheat cultivation would not be sustainable as the whole soil profile would be eroded at the 

end of the simulation period (Fig. S10). Most of the unsustainable agriculture is simulated on steep 



slopes. Although we account for conservation techniques and cover crops, we do not imitate the highly 

complex farming practices involving intercropping techniques and fallow periods, which are common 

on hillslopes typically managed by smallholders (Turkelboom et al., 2008). Moreover, we assume that 

the slope class representing the largest area in each grid cell most likely represents the largest share 

of arable land. This builds on the idea that a spatially extensive and diverse landscape can be 

represented by a single “representative field” characterized by the prevailing topography and soil 

conditions found in the landscape. On hilly terrain this setup simulates maize and wheat cultivation on 

steep slopes and thus mainly represents unsustainable agriculture. Although unsustainable maize and 

wheat cultivation can be observed in several mountain regions, cropland is very heterogeneously 

distributed in mountains and thus erosion rates from one representative field are highly uncertain. 

The uncertainty in cropland distribution can partly be reduced by developing a higher resolution global 

gridded data infrastructure, which is currently not available for EPIC-IIASA. However, due to the large 

uncertainty in global land cover maps (Fritz et al., 2015; Lesiv et al., 2019), an explicit spatial link 

between cropland distribution and the corresponding slope category cannot be established without 

on-site observations. We test the impact of this uncertainty for erosion estimates in Italy, where large 

maize and wheat cultivation areas are distributed on both flat terrain in the north and mountainous 

regions in the south. In an ideal scenario where cropland is limited to flattest land available per grid 

cell, median simulated water erosion in Italy would be reduced to tolerable levels below 1 t ha-1. 

However, in a scenario, where the most common slopes per grid cell are cultivated, median simulated 

water erosion increases to 14 t ha-1 due to high water erosion simulated in Italy’s mountainous regions 

(Fig. S11). This suggests a high uncertainty in global water erosion estimates due to uncertain spatial 

links between maize and wheat cultivation areas and different slope categories.” 

The following photos (taken by Emil Fulajtar) will be added to the discussion 

(a) 

 

(b) 

 



(c) 

 

(d)  

 

Figure 1: (a) Sugar cane cultivation on steep slopes in South China (the steepest slopes are already abandoned and reforested 
by eucalyptus trees). (b) Maize cultivation on strongly eroded slopes in South West Uganda. (c) Abandoned fields and maize 
cultivation on a slope in South West Uganda. (d) Degraded and abandoned maize fields in Northern El Salvador. 

The following two figures addressed in the discussion will be added to the supplementary information. 

 

Figure 2:Simulated years left until the whole soil profile is eroded under permanent maize and wheat cultivation. Calculated 
as a ratio of the sedimentary deposit thickness [m] (Pelletier et al., 2016) and the eroded soil depth per year (water erosion 
[t ha-1 a-1] x bulk density [g m-3]). 



 

 

Figure 3: Comparison of slope inputs and simulated water erosion outputs between the cropland distribution scenario using 
the most common slopes and the cropland distribution scenario using the flattest terrain available in Italy. (a, b) distribution 
of the cropland share (Portmann et al., 2010) per slope class. (c, d) distribution of grid cells per slope class. (e) Simulated 
water erosion for Italy using both cropland distribution scenarios. Midlines visualise median values, boxes include values 
from the 25th to the 75th percentiles and whiskers bracket values between the 10th and the 90th percentiles. 

 

Line 184-187 

Again, where is the evidence that steeper slopes are actually cultivated, and on what basis are these 

P-factors selected? Were the parameters selected using empirical evidence, or a citation? 

As described above, we cannot be certain that steep slopes are cultivated, but we assume that steep 

slopes are only cultivated with conservation techniques to reduce high water erosion values. The P-

values for contouring and terracing are within the range of the values reported by Morgan (2005).  

We modify line 205 accordingly: “To account for erosion control measures reducing high water erosion 

on steep slopes, we use a conservation P-factor of 0.5 on slopes steeper than 16 %, and a P-factor of 

0.15 on slopes steeper than 30 % to simulate contouring and terracing based on the range of P-factors 

presented by Morgan (2005).” 

 

Lines 377-379  

“…a significant share of the estimated soil removal of 7 Gt a-1 originates from small wheat and maize 

fields on steep slopes with strong annual precipitation”. So here the authors admit that the global 

numbers are skewed by extreme levels of simulated erosion. But more evidence that these fields 

actually exist needs to be provided. 



See comments and discussion above about the high uncertainty in cropland distribution on steep 

slopes.  

We delete the total soil loss value from the abstract, line 27, as it is significantly influenced by extreme 

water erosion rates from mountainous regions. But we will keep the value in the discussion, where 

we address the uncertainty of the global soil loss value. 

 

Lines 391-392 
How were the countries where “conservation agriculture… is likely” selected? What 
evidence is there for this? 

We selected countries where conservation agriculture is most likely based on the share of 

conservation agriculture reported by AQUASTAT (2005-2014). The criteria is presented on lines 184-

185 and table 3. 

We will refer to AQUASTAT (FAO, 2016) on line 477. 

Lines 423-425 
That “…many older measurements are poorly accessible as they are not available 
online” seems to be a bit of a weak argument for not collecting more measurements 
on soil erosion. Can the authors elaborate a bit more in what kind of data are out there 
and precisely what it would take to utilize them for future studies? 

Indeed, this is true. There was huge amount of erosion measurements at experimental plots in many 

countries. For example, in USA first measurements started in 1915 and when Wischmeier and Smith 

were developing their equation they had about 10000 erosion plot/year data and this was in 1970s. 

These data are archived by USDA but they are not directly accessible on internet. When in Germany 

Schwertmann was verifying USLE for Germany he used about 2500 plot/year data, but they are not 

available on internet and only small part was published and it was in German. We know situation 

mainly in central Europe. In Slovakia we have about 50 plot/year data published in Slovak language, 

we know about erosion plot measurements in Hungary, a lot of old data are in Czechia (starting with 

measurements by Maran in 1950ies, and Poland (starting by Gerlach in 1950ties), significant data set 

is in Austria, whole book about long term measurements (ca 20 years) was published in Croatia in 

Croatian language, there was extensive measurement programme in Yugoslavia (Serbia, Gavrilovic, 

Djorovic,). A lot of data exists in China, Japan, UK and Russia. In Africa we know about data from 

Uganda and Zimbabwe, most data from Francophone Africa are in French, from Latin America in 

Spanish, etc. There are five major reasons why most data are not available: 

1. Many older publications are in national languages 

2. Many older publications are not on internet 

3. Many measurements were published in grey literature, local conference proceedings, national 

acta of scientific institutions, unpublished reports, etc. 

4. Many published data are hardly interpretable because metadata are lacking (slope lengths, or 

inclinations or crop cover, period of measurement is not recorded, geographical position of 

the sites is not recorded, many measurements were running only during vegetation period of 

studied crop so they do not represent annual erosion, etc.). 

5. International journals do not have interest to publish usual case studies which present raw 

data. To get paper published the authors need to present some special objectives to follow 

some special goals or developing methodological innovations. Therefore, also many new data 

sets cannot be found online. 



6. Even if paper is published, journals have usually size limitations. To save space the primary 

data are not presented, only the results of interpretation, statistical processing, etc. are there.  

The collected data set represents a reasonable compromise to achieve the objectives of this study. It 

is far beyond the capacities of the team and the objectives of this study to collect all existing erosion 

data. Such task would require 3-5 years lasting international project with participation of research 

teams from most countries, so that each team would be able to revise data sources in his country and 

provide summary of data including those published in national language and unpublished reports. 

We added a more comprehensive discussion to available field data to the response addressing the 

second referee. 

We increased the field data sample from 473 to 606 following a comment by the second referee. We 

will change the values and the presentation of the field data accordingly on lines 239-244, 349 – 351.  

We will further clarify the field data needs in the discussion line 510:  

“The main reasons for the low availability of suitable data to evaluate simulated water erosion rates 

are twofold: (i) erosion monitoring is expensive, time consuming and labour demanding; and, (ii) 

primary data and metadata of measurement sites accompanying final results are often not available 

and many older measurements are poorly accessible as they are not available online (Benaud et al., 

2020). A variety of factors influencing water erosion such as climate, field topography, soil properties 

and field management need to be considered when modelling water erosion but are often not reported 

in available field measurements (García-Ruiz et al., 2015). This hampers a direct comparison between 

simulated and observed water erosion values. We demonstrated the varying match between measured 

and simulated water erosion using different tillage and cover crop scenarios. Metadata on field 

management often only provides the crop cultivated and therefore the conditions under which erosion 

was measured in the field are not known sufficiently to evaluate erosion values simulated under 

different field management scenarios. Similarly, information on field topography and soil properties is 

often not provided with recorded field measurements and thus their use is limited in an evaluation of 

water erosion estimates simulated in different global environments. Moreover, most data are 

concentrated in the United States, West Europe and the West Mediterranean (García-Ruiz et al., 2015). 

In summary, there is a lack of field data representing all needed regions, situations and scenarios 

(Alewell et al., 2019).” 

We additionally mention “the lack of sufficient metadata accompanying erosion measurements” on 

line 270. 

We add two sentences comparing the high variability within field data with the deviation between 

simulated values and measured values based on the evaluation results to Line 371: “Outside locations 

combining steep slopes and strong precipitation, median deviation between simulated and measured 

data is lower than the variability within the field data.” Line 579: “In most environments relevant for 

maize and wheat cultivation the deviation between simulated and measured water erosion values is 

lower than the variability within the field data.” 

Lines 466-467 
Yes, it seems clear that increased resolution would be important. Several datasets are 
already available however, including 100m agricultural cover fraction data (Buchhorn 
et al., 2019) and 90m topography from a range of different datasets, such as MERITHydro 
(Yamazaki et al., 2019). Global climate and soils data are available at at least 
1km resolution and could be downscaled (Fick Hijmans, 2017; Hengl et al., 2017). 
Some more explanation as to why the authors were limited to 5’ and more concrete 



recommendations for future research would be valuable. 

We rely on the existing data infrastructure of the EPIC-IIASA model, which has been constructed and 

evaluated for large-scale and global crop yield projections. The EPIC-IIASA model uses state-of-the-art 

global crop management and agro-environmental input data and has been positively evaluated for 

representing national average yields and inter-annual yield variability globally (Balkovič et al., 2014). 

It was used in several studies and its outputs have been compared to regional yield statistics and other 

global crop and land use models as a part of ISI-MIP and GGCMI model inter-comparison initiatives 

(Mueller et al., 2017). One of the main goals of this study is to analyse if EPIC-IIASA can account for 

relationships between water erosion and crop cultivation. Therefore, we rely on the existing model 

setup and data infrastructure of EPIC-IIASA, which has been confirmed as a reliable model to simulate 

daily crop growth on a global scale. The Input data for EPIC-IIASA originally available at different scales 

were aggregated at 5’ resolution grid. In EPIC-IIASA, each simulation grid is represented by a 

representative field (1 to 10 hectares, depending on the prevailing slope category) while the field 

topography was calculated as a “dominant combination” from the high-resolution 90-m SRTM digital 

elevation model. Given the large uncertainty in land cover maps (Fritz et al., 2015; Lesiv et al., 2019), 

EPIC-IIASA does not provide an explicit link between land cover category, such as cropland, and the 

dominant fields. Instead, an area share of each land cover category per simulation grid is provided 

based on the GLC2000 land cover map with 1x1 km spatial resolution. 

As mentioned above a discussion on the uncertainty in cropland distribution and slope input data will 

be added, as well as an explanation of the concept of the “representative field”.  

We will further clarify the focus of this paper in the introduction, line 91: “The overall aim of this study 

is: (i) to analyse the robustness of water erosion estimates in all global agro-environmental regions 

simulated with an EPIC-based global-gridded crop model; and, (ii) to discuss the main drivers affecting 

the robustness and the uncertainty of simulated water erosion rates on a global scale.” 

We further highlight the model’s weakness in conclusion line 600: “Using existing field data, we were 

able to identify specific environmental characteristics for which we have lower confidence in the 

modelled erosion rates. These are mainly found in the tropics and mountainous regions due to the high 

sensitivity of simulated water erosion to slope steepness and precipitation strength, and the complexity 

of agricultural systems in mountainous regions.”  

 

Lines 473-474 
As the high erosion “areas represent only a small fraction of global cropland for 
wheat and maize”, why not show median values as the headline results instead of 
means? 

We agree that the presentation of both mean and median values can be confusing. In the revised 

version we will focus only on median values. However, in the discussion, line 391 we mention both 

mean and median value to demonstrate the skewed distribution of erosion rates due to extreme 

values simulated on steep slopes. 

We present global median water erosion in maize (7 t/ha) and wheat (5 t/ha) fields on line 26, 280, 

349 and delete average values. 

Global average water erosion values simulated under different management scenarios and different 

water erosion equations will be deleted on line 470 – 472 and 497 to focus only on median values. 



We add a row to Table 3 clarifying that the median is used to aggregate water erosion values simulated 

under all management scenarios for grid cells and regions. 

 

 
Lines 684-689; Figure 2 
I would like to see the map and statistics separated out into two, one figure set each 
for maize and wheat. As the growing areas are different and only partially overlapping, 
it would be very helpful to see these individually in the main body of the manuscript. 

We will present two maps for maize and wheat respectively in the revised paper (see figure below). 

We will group bars by crop in the revised version (see figure below). 

The explanation that water erosion is presented as a weighted average from maize and wheat fields 

will be deleted in table 3. 

We include a note in the figure label explaining that pixel cells in figures do not indicate cropland sizes. 

“Each pixel cell illustrates the median relative water erosion of one representative field. The extent of 

cropland areas is not considered in pixel cell size. “ 



 

Figure 4: Soil loss due to water erosion in maize (a) and wheat (b) fields simulated with the baseline scenario. Each pixel cell 
illustrates the median relative water erosion of one representative field. The extent of cropland areas is not considered in 
pixel cell size. The bars in the bottom plot (c) illustrate median soil removal for major world regions simulated under maize 
and wheat cultivation. The lines and whiskers illustrate 25th and 75th percentile values. The classification of world regions is 
illustrated in Fig. S4. Due to the large gap between aggregated values, all values in the bottom plot have been log-transformed 
to facilitate the visual comparison. 

 

Lines 706-709; Figure 7 

I am quite suspicious that there is any substantial amount agriculture at all in the purple 
areas marked on the map, e.g., Borneo highlands, northern Laos, Himalayan front, 
western Madagascar, Korea, Japan. If there is, agriculture must be limited to valley 



bottoms that are not detected at 5’ resolution or done with extreme terracing. 

Each pixel in the maps illustrates the median erosion rate of one representative field. The pixel cells 

in each map do not indicate total cropland area. In other words, most of the pixel in mountainous 

regions represent a very small cultivated area. Table 3 lists details on how erosion rates in each pixel 

are aggregated.  

 

Lines 691-693; Figures 3 and 4 
Would also be useful to see how much uncertainty is caused by the assumption of what 
slopes are being farmed, e.g., always lowest slopes first, mean slope, median slope, 
etc. 

We will address slope uncertainty in an extended discussion (see comments above) 
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